JP2009054814A - Electronic element - Google Patents

Electronic element Download PDF

Info

Publication number
JP2009054814A
JP2009054814A JP2007220476A JP2007220476A JP2009054814A JP 2009054814 A JP2009054814 A JP 2009054814A JP 2007220476 A JP2007220476 A JP 2007220476A JP 2007220476 A JP2007220476 A JP 2007220476A JP 2009054814 A JP2009054814 A JP 2009054814A
Authority
JP
Japan
Prior art keywords
schottky electrode
sixny
silicon nitride
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007220476A
Other languages
Japanese (ja)
Other versions
JP5294238B2 (en
Inventor
Yoshihiro Irokawa
芳宏 色川
Yoshiki Sakuma
芳樹 佐久間
Takashi Sekiguchi
隆史 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007220476A priority Critical patent/JP5294238B2/en
Publication of JP2009054814A publication Critical patent/JP2009054814A/en
Application granted granted Critical
Publication of JP5294238B2 publication Critical patent/JP5294238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element having a structure which is directly formed on a semiconductor as a schottky electrode made of a metal having hydrogen absorbing property such as Pt, etc. which has high work function to solve the problem that characteristics changes significantly to temperature or surrounding atmosphere. <P>SOLUTION: A silicon nitride (SixNy) thin film is provided between a semiconductor substrate and the schottky electrode. The silicon nitride (SixNy) thin film has a thickness of 0.5 to 10 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体基板上に水素吸蔵性のある金属からなるショットキー電極を有する電子素子に関する。   The present invention relates to an electronic device having a Schottky electrode made of a metal having a hydrogen storage property on a semiconductor substrate.

従来、ダイオード及びFETにおいては、高い仕事関数を持つPt等の水素吸蔵性のある金属からなるショットキー電極として直接、半導体上に作製する構造の素子が主に使用されている。しかしながら、このような構造の素子は温度や周辺の雰囲気に対して、特性が大きく変動することが問題になっている。   Conventionally, in a diode and FET, an element having a structure directly formed on a semiconductor is mainly used as a Schottky electrode made of a metal having a high work function such as Pt or the like and having a hydrogen storage property. However, there is a problem that the characteristics of the element having such a structure greatly vary with respect to temperature and the surrounding atmosphere.

本発明はこのような問題を解決することを目的とする。   The present invention aims to solve such problems.

本発明1の電子素子は、上記目的を達成するために、半導体基板とショットキー電極との間に窒化シリコン(SixNy)薄膜が設けてあることを特徴とする。
本発明2は、発明1の電子素子において、前記窒化シリコン(SixNy)薄膜の厚さが0.5nmから10nmであることを特徴とする。
In order to achieve the above object, the electronic device of the present invention 1 is characterized in that a silicon nitride (SixNy) thin film is provided between the semiconductor substrate and the Schottky electrode.
According to a second aspect of the present invention, in the electronic device of the first aspect, the silicon nitride (SixNy) thin film has a thickness of 0.5 nm to 10 nm.

本発明は、上記構成により金属/絶縁膜/半導体構造を導入し、さらには絶縁膜の種類を最適化することによって、素子の動作雰囲気や温度に対して、素子特性の変動を抑えることができた。
その結果、
1)雰囲気ガス(特に水素)に依存した素子特性の変動を抑える、
2)高温動作時にショットキー電極からの電流リークを減少させることで素子の安定化に貢献する、という二点の効果を実現することができた。
In the present invention, by introducing a metal / insulating film / semiconductor structure with the above configuration and further optimizing the type of insulating film, fluctuations in element characteristics can be suppressed with respect to the operating atmosphere and temperature of the element. It was.
as a result,
1) Suppress fluctuations in device characteristics depending on the atmospheric gas (especially hydrogen).
2) The two effects of contributing to the stabilization of the device by reducing the current leakage from the Schottky electrode during high temperature operation could be realized.

1)ショットキーダイオードをMIS構造化すると、ショットキー電極からのリーク電流を抑制可能なために、高温などの過酷な環境においても、素子を安定に動作することができることは一般的に知られている。従って、実施例を示す図1の構造のデバイスが、実施例図2、3、表1、2、3に示すように、高い雰囲気安定特性を持つと同時に、高温において、安定的なデバイス動作を可能にする。   1) It is generally known that when a Schottky diode has a MIS structure, a leak current from a Schottky electrode can be suppressed, so that the element can be stably operated even in a severe environment such as a high temperature. Yes. Therefore, the device having the structure of FIG. 1 showing the embodiment has high atmospheric stability characteristics as shown in FIGS. 2 and 3 and Tables 1, 2, and 3, and at the same time, stable device operation at a high temperature. enable.

2)実施例図1はショットキーダイオードのMIS構造化に関するものであるが、HEMT型FETにおいて、ゲート電極をMIS構造化した際にも、同様の効果が予測できる。すなわち、本技術をHEMTに適用することで、高い雰囲気安定特性を持つと同時に、高温において、安定動作可能なデバイスを実現する。   2) Embodiment FIG. 1 relates to the MIS structure of a Schottky diode, but the same effect can be predicted when the gate electrode is formed in the MIS structure in the HEMT type FET. That is, by applying the present technology to the HEMT, it is possible to realize a device that has high atmospheric stability characteristics and can be stably operated at a high temperature.

3)実施例図1は、半導体材料として窒化物系半導体材料(GaN)を使用している。しかしながら、半導体材料として他の窒化物系半導体材料(AlGaN, AlInNなど)やSiC, Siなどの窒化物系以外の半導体材料に対しても、同様の効果が予測できる。   3) Example FIG. 1 uses a nitride-based semiconductor material (GaN) as a semiconductor material. However, the same effect can be expected for other nitride semiconductor materials (AlGaN, AlInN, etc.) as semiconductor materials and semiconductor materials other than nitrides such as SiC, Si.

4)実施例は、電極金属としてPtを使用している。しかしながら、Pdなどの高仕事関数を持つ水素吸蔵性のある金属は、同様の効果が予測できる。
5)本発明を構成する絶縁膜は、厚さが10nm以下0.5nm以上であるのが好ましい。これは、絶縁膜の厚さが10nm以上の場合、素子に流れる電流が小さくなるので望ましくない。また、絶縁膜の厚さが0.5nm以下の場合、絶縁膜による素子特性安定性の効果が薄れてしまうためである。実施例では、ショットキー電極、オーミック電極はEB蒸着法で作成したが、スパッタリング法での電極製造も可能である。
4) The example uses Pt as the electrode metal. However, the same effect can be predicted for a metal having a high work function such as Pd and having a hydrogen storage property.
5) The insulating film constituting the present invention preferably has a thickness of 10 nm or less and 0.5 nm or more. This is not desirable when the thickness of the insulating film is 10 nm or more because the current flowing through the element becomes small. Further, when the thickness of the insulating film is 0.5 nm or less, the effect of device characteristic stability by the insulating film is diminished. In the examples, the Schottky electrode and the ohmic electrode are formed by the EB vapor deposition method, but the electrode can be manufactured by the sputtering method.

以下の、本実施例の構造および製造方法を詳しく説明する。図1に示す構造のデバイスは、厚さ0.43mmのc面サファイア基板上にMOCVDによって製膜された2.0μmの厚さのn型GaNを半導体材料として用いる。この半導体材料上に、フォトリソグラフィーとEB蒸着装置を用いてTi(20nm)/Al(100nm)/Pt(40nm)/Au(100nm)からなるオーミック電極を形成した後に、窒素雰囲気中で750℃、30秒の電極シンター処理を行った。次に、RFスパッタ装置を用いて半導体材料上に10nmのSi34を形成した。この際、アルゴンを10sccm流し、チャンバーの圧力を3mTorrに保ち、プラズマのパワーを100Wにして、10分間の蒸着を行った。その後、フォトリソグラフィーとEB蒸着装置を用いてPt(25nm)からなるショットキー電極を形成した。ショットキー電極とオーミック電極はリング状に配置されており、ショットキー電極の直径は300μm、ショットキー電極とオーミック電極との距離は20μmである。 The structure and manufacturing method of the present embodiment will be described in detail below. The device having the structure shown in FIG. 1 uses, as a semiconductor material, n-type GaN having a thickness of 2.0 μm formed by MOCVD on a c-plane sapphire substrate having a thickness of 0.43 mm. On this semiconductor material, an ohmic electrode made of Ti (20 nm) / Al (100 nm) / Pt (40 nm) / Au (100 nm) is formed using photolithography and an EB vapor deposition apparatus, and then at 750 ° C. in a nitrogen atmosphere. An electrode sintering treatment for 30 seconds was performed. Next, 10 nm Si 3 N 4 was formed on the semiconductor material using an RF sputtering apparatus. At this time, argon was allowed to flow at 10 sccm, the pressure in the chamber was kept at 3 mTorr, the plasma power was 100 W, and deposition was performed for 10 minutes. Thereafter, a Schottky electrode made of Pt (25 nm) was formed using photolithography and an EB vapor deposition apparatus. The Schottky electrode and the ohmic electrode are arranged in a ring shape. The diameter of the Schottky electrode is 300 μm, and the distance between the Schottky electrode and the ohmic electrode is 20 μm.

図1に示すように、窒化シリコン(SixNy)を取り入れたMIS型ダイオード構造を用いることで、図2、3及び表1、2、3に示すように、素子特性の雰囲気ガス(本実験では水素ガス)依存性を完全に除去することができた。前記本実施例による水素感度の検査結果を図2、3及び表1、2、3に示す。なお、表1は図2、3を作成した測定結果から、表2は図2を作成した測定結果から、表3は図3を作成した測定結果から作成した。感度検査は以下の条件で行った。ステンレス製チャンバー内に素子を入れ、室温において、窒素希釈の1%水素ガスを200ml/minの流量で25分流して、素子の電流−電圧特性の変化をKeithley 2602 system source meterを用いて計測した。
表2(図2を作成した測定結果から作成)および図2から、通常の構造のショットキー接合は、水素雰囲気下においては、電流−電圧特性が大きく変化するのに対して、図1の構造を用いると、表3(図3を作成した測定結果から作成)および図3に示すように、水素雰囲気下においても、電流−電圧特性がほとんど変化しない。
As shown in FIG. 1, by using a MIS type diode structure incorporating silicon nitride (SixNy), as shown in FIGS. (Gas) dependence could be removed completely. 2 and 3 and Tables 1, 2, and 3 show the test results of the hydrogen sensitivity according to the present example. Table 1 was created from the measurement results created in FIGS. 2 and 3, Table 2 was created from the measurement results created in FIG. 2, and Table 3 was created from the measurement results created in FIG. The sensitivity test was performed under the following conditions. The element was placed in a stainless steel chamber, and at room temperature, 1% hydrogen gas diluted with nitrogen was allowed to flow at a flow rate of 200 ml / min for 25 minutes, and changes in the current-voltage characteristics of the element were measured using a Keithley 2602 system source meter. .
From Table 2 (created from the measurement results created in FIG. 2) and FIG. 2, the Schottky junction of the normal structure has a large change in current-voltage characteristics in a hydrogen atmosphere, whereas the structure of FIG. As shown in Table 3 (created from the measurement results created in FIG. 3) and FIG. 3, the current-voltage characteristics hardly change even in a hydrogen atmosphere.

実用上、電子デバイスの特性変化が生じることは望ましくない。特に、素子温度および動作雰囲気に対して、特性変化が生じると、システムの信頼性の点から大きな問題となりうる。本発明は、電極と半導体材料の間に窒化シリコン(SixNy)薄膜を挿入することで上記の問題を一度に解決することが可能である。   In practice, it is not desirable that the characteristics of the electronic device change. In particular, if a characteristic change occurs with respect to the element temperature and the operating atmosphere, it can be a serious problem in terms of system reliability. The present invention can solve the above problem at a time by inserting a silicon nitride (SixNy) thin film between the electrode and the semiconductor material.

本発明の実施例を示すMIS型ダイオードの構造模式図Schematic structure diagram of MIS type diode showing an embodiment of the present invention 従来のショットキーダイオードの水素応答特性を示すグラフGraph showing the hydrogen response characteristics of a conventional Schottky diode 本発明の実施例に示すMIS型ダイオードの水素応答特性を示すグラフThe graph which shows the hydrogen response characteristic of the MIS type diode shown in the Example of this invention

Claims (2)

半導体基板上に水素吸蔵性のある金属からなるショットキー電極を有する電子素子であって、前記半導体基板とショットキー電極との間に窒化シリコン(SixNy)薄膜が設けてあることを特徴とする電子素子。   An electronic element having a Schottky electrode made of a metal having hydrogen storage properties on a semiconductor substrate, wherein a silicon nitride (SixNy) thin film is provided between the semiconductor substrate and the Schottky electrode. element. 請求項1に記載の電子素子において、前記窒化シリコン(SixNy)薄膜の厚さが、0.5nmから10nmであることを特徴とする。   The electronic device according to claim 1, wherein the silicon nitride (SixNy) thin film has a thickness of 0.5 nm to 10 nm.
JP2007220476A 2007-08-28 2007-08-28 Electronic element Expired - Fee Related JP5294238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220476A JP5294238B2 (en) 2007-08-28 2007-08-28 Electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220476A JP5294238B2 (en) 2007-08-28 2007-08-28 Electronic element

Publications (2)

Publication Number Publication Date
JP2009054814A true JP2009054814A (en) 2009-03-12
JP5294238B2 JP5294238B2 (en) 2013-09-18

Family

ID=40505633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220476A Expired - Fee Related JP5294238B2 (en) 2007-08-28 2007-08-28 Electronic element

Country Status (1)

Country Link
JP (1) JP5294238B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837282A (en) * 1994-07-21 1996-02-06 Matsushita Electron Corp Capacitive device, semiconductor device and manufacture thereof
JPH11135736A (en) * 1997-10-31 1999-05-21 Nec Corp Semiconductor device and its manufacture
JP2000174285A (en) * 1998-12-07 2000-06-23 Nec Corp Field effect transistor
JP2002299642A (en) * 2001-03-29 2002-10-11 Toshiba Corp Semiconductor element and its fabricating method
WO2006131968A1 (en) * 2005-06-09 2006-12-14 Fujitsu Limited Semiconductor device and method for fabricating same
JP2007129166A (en) * 2005-11-07 2007-05-24 Toshiba Corp Semiconductor device and manufacturing method thereof
WO2007081528A2 (en) * 2006-01-10 2007-07-19 Cree, Inc. Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
JP2009042213A (en) * 2007-07-17 2009-02-26 National Institute For Materials Science Gas sensor element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837282A (en) * 1994-07-21 1996-02-06 Matsushita Electron Corp Capacitive device, semiconductor device and manufacture thereof
JPH11135736A (en) * 1997-10-31 1999-05-21 Nec Corp Semiconductor device and its manufacture
JP2000174285A (en) * 1998-12-07 2000-06-23 Nec Corp Field effect transistor
JP2002299642A (en) * 2001-03-29 2002-10-11 Toshiba Corp Semiconductor element and its fabricating method
WO2006131968A1 (en) * 2005-06-09 2006-12-14 Fujitsu Limited Semiconductor device and method for fabricating same
JP2007129166A (en) * 2005-11-07 2007-05-24 Toshiba Corp Semiconductor device and manufacturing method thereof
WO2007081528A2 (en) * 2006-01-10 2007-07-19 Cree, Inc. Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
JP2009522823A (en) * 2006-01-10 2009-06-11 クリー, インコーポレイティッド Environmentally robust passivation structure for high voltage silicon carbide semiconductor devices
JP2009042213A (en) * 2007-07-17 2009-02-26 National Institute For Materials Science Gas sensor element

Also Published As

Publication number Publication date
JP5294238B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
US8354312B2 (en) Semiconductor device fabrication method
JP5799604B2 (en) Semiconductor device
JP4875701B2 (en) Method for manufacturing gallium nitride high electron mobility transistor structure
US8896122B2 (en) Semiconductor devices having gates including oxidized nickel
TWI496284B (en) Compound semiconductor device and method of manufacturing the same
JP6004319B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20120002985A (en) Dopant diffusion modulation in gan buffer layers
US20110217816A1 (en) Field effect transistor and method for fabricating the same
JP5685020B2 (en) Manufacturing method of semiconductor device
JP2008306027A (en) Manufacturing method of semiconductor device
JP2013069772A (en) Semiconductor device and semiconductor device manufacturing method
JP2008306025A (en) Method of manufacturing semiconductor device
JP2007329483A5 (en)
JP5871785B2 (en) Heterojunction field effect transistor and manufacturing method thereof
US10367088B2 (en) Nitride semiconductor device
JP2009042213A (en) Gas sensor element
Odabasi et al. Impact of the low temperature ohmic contact process on DC and forward gate bias stress operation of GaN HEMT devices
US9117742B2 (en) High electron mobility transistor with shortened recovery time
US11430653B2 (en) Method of manufacturing high electron mobility transistor and high electron mobility transistor
JP5294238B2 (en) Electronic element
JP2009076874A (en) Schottky barrier diode
JP2011091075A (en) Hetero junction field-effect transistor and method of manufacturing the same
Hamdaoui et al. Optimization of Non-Alloyed Backside Ohmic Contacts to N-Face GaN for Fully Vertical GaN-on-Silicon-Based Power Devices
Xie et al. Dependence of reverse leakage on the edge termination process in vertical GaN power device
CN212230435U (en) Grid metal structure and III-nitride device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5294238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees