JP2009054289A - Anode material, its manufacturing method, and fuel cell using anode material - Google Patents

Anode material, its manufacturing method, and fuel cell using anode material Download PDF

Info

Publication number
JP2009054289A
JP2009054289A JP2007216867A JP2007216867A JP2009054289A JP 2009054289 A JP2009054289 A JP 2009054289A JP 2007216867 A JP2007216867 A JP 2007216867A JP 2007216867 A JP2007216867 A JP 2007216867A JP 2009054289 A JP2009054289 A JP 2009054289A
Authority
JP
Japan
Prior art keywords
anode material
powder
sno
ceo
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007216867A
Other languages
Japanese (ja)
Other versions
JP5158760B2 (en
Inventor
Toshiyuki Mori
利之 森
Motoi Takahashi
基 高橋
Matolin Vladimir
マトリン ウラジミール
Matolinova Iva
マトリノーヴァ イバ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007216867A priority Critical patent/JP5158760B2/en
Publication of JP2009054289A publication Critical patent/JP2009054289A/en
Application granted granted Critical
Publication of JP5158760B2 publication Critical patent/JP5158760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive carbon nano-hetero anode material carrying an oxide available with respect to CO oxidizing activity and prices, and also to provide its manufacturing method. <P>SOLUTION: A mixture of undoped CeO<SB>2</SB>powder having: a specific surface area of not less than 1×10 m<SP>2</SP>/g and not more than 1×10<SP>2</SP>m<SP>2</SP>/g; SnO<SB>2</SB>powder having a specific surface area of not less than 10 m<SP>2</SP>/g and not more than 1×10<SP>2</SP>m<SP>2</SP>/g; and Pt having an average secondary particle diameter of not more than 30 nanometer, which does not dissolve conductive carbon and components such as rare earth elements, is used as the anode material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、メタノールなどの可燃性アルコールを用いる燃料電池のアノード電極とそれを構成する材料の製造方法に関する。   The present invention relates to an anode electrode of a fuel cell using a flammable alcohol such as methanol and a method for producing a material constituting the anode electrode.

Pt/導電性炭素アノード材料は、高分子型燃料電池用電極材料として用いられる代表的な電極材料である。この材料による電極は、高い電極活性を示すものの、燃料として高純度水素を用いる必要があるという使用上の制約を有していた。
その原因として、燃料電池発電用に用いられる燃料に、微量の可燃性不純物が混在した場合、白金(Pt)表面で、可燃性成分は、燃焼し二酸化炭素(CO)と一酸化炭素(CO)といったガス成分を発生させるが、なかでもCOは、極めて微量であっても、Pt表面上に極めて強く吸着し、Pt表面の活性を著しく低下させることによることが知られている(非特許文献1)。
The Pt / conductive carbon anode material is a typical electrode material used as an electrode material for polymer fuel cells. Although the electrode made of this material shows high electrode activity, it has a usage limitation that it is necessary to use high-purity hydrogen as a fuel.
As a cause of this, when a small amount of combustible impurities are mixed in the fuel used for fuel cell power generation, the combustible components burn on the surface of platinum (Pt), and carbon dioxide (CO 2 ) and carbon monoxide (CO It is known that CO is adsorbed very strongly on the Pt surface even if it is in a very small amount, and the activity of the Pt surface is significantly reduced (non-patent document). 1).

近年、燃料電池を携帯機器用電源に利用する試みが盛んに検討されているが、この場合は燃料に、水素に代わり、メタノールなどの可燃性アルコールを用いることが一般的である。このように燃料にメタノールを用いて、直接、メタノールを燃料電池内に、燃料として供給する燃料電池を、ダイレクトメタノール型燃料電池と呼ぶが、この燃料電池では、上記のCOによるPt電極の性能低下(CO被覆現象)の問題を克服することが重要であると考えられている。   In recent years, attempts to use a fuel cell as a power source for portable devices have been extensively studied. In this case, it is common to use a flammable alcohol such as methanol instead of hydrogen as the fuel. A fuel cell that uses methanol as a fuel and supplies methanol directly into the fuel cell as a fuel is called a direct methanol fuel cell. In this fuel cell, the performance of the Pt electrode is reduced by the CO described above. It is considered important to overcome the problem of (CO coating phenomenon).

そこで、従来、ダイレクトメタノール型燃料電池用アノード電極としては、Ptと金属ルテニウム(Ru)や、金属鉄(Fe)、金属マンガン(Mn)などの金属元素の間で合金ナノ粒子を作製し、このナノサイズ合金粒子を導電性カーボン上に分散させることで、Pt自身のCO被覆現象を低下させ、燃料としてメタノールやエタノールといった可燃性アルコールを用いるこころみがなされている(非特許文献2)。   Therefore, conventionally, as an anode electrode for a direct methanol fuel cell, alloy nanoparticles are produced between metal elements such as Pt and metal ruthenium (Ru), metal iron (Fe), and metal manganese (Mn). By dispersing nano-sized alloy particles on conductive carbon, the CO coating phenomenon of Pt itself is reduced, and efforts are made to use flammable alcohols such as methanol and ethanol as fuel (Non-patent Document 2).

こうしたアルコールを燃料として用いた場合、Pt表面上では、水素とCOが多量に発生するが、Ru、Fe、またはMnといった金属と合金をつくることで、Pt表面の電子がRuなどの合金成分金属側に強く引き寄せられることで、PtとCO間の結合が弱まり、そのうえ、Ruなどの添加金属元素上で活性化した活性な水酸化物イオンが、Pt表面に吸着したCOを酸化してCOに転化することから、Ptの高い電極活性を低下させることなく、長期間燃料電池を利用することが可能になった。
しかし、添加するRu金属は希少な得がたいもの(高価)であるとともに、COの酸化活性はいまだ十分に高いものではなく、他の安価な酸化鉄や酸化マンガンといった化合物も、Ruほどの高いCO酸化活性を示すにいたっていないため、こうしたPt/第2成分/導電性炭素からなるアノード材料を用いることは、いまだ実用化がなされていない。
When such an alcohol is used as a fuel, a large amount of hydrogen and CO is generated on the Pt surface. By forming an alloy with a metal such as Ru, Fe, or Mn, the electron on the Pt surface is an alloy component metal such as Ru. By being strongly attracted to the side, the bond between Pt and CO is weakened. Moreover, active hydroxide ions activated on an additive metal element such as Ru oxidize CO adsorbed on the Pt surface to produce CO 2. Therefore, it is possible to use the fuel cell for a long time without reducing the electrode activity with high Pt.
However, the Ru metal to be added is rare and difficult to obtain (expensive), and the oxidation activity of CO is not yet sufficiently high. Other inexpensive compounds such as iron oxide and manganese oxide also have high CO oxidation as high as Ru. Since it has not been shown to be active, the use of such an anode material composed of Pt / second component / conductive carbon has not yet been put into practical use.

M.Watanabe, et al., Denki Kagaku, 38巻, 927頁−932頁, 1970年、電気化学協会発行M.M. Watanabe, et al. , Denki Kagaku, 38, 927-932, 1970, published by the Electrochemical Society 渡辺政廣、触媒(Catalysis and Catalyst)、44巻、3号、182頁−188頁、2002年、触媒学会発行Masanori Watanabe, Catalysis and Catalyst, Vol. 44, No. 3, pp. 182-188, 2002, published by the Catalysis Society of Japan

背景技術において述べたように、従来のPt/第2成分/導電性炭素系アノード材料は、CO酸化活性や価格の面など、いくつかの点で困難な問題があった。本発明は、このような問題のないPt/CeO・SnO/導電性炭素ナノへテロアノード材料およびその製造方法を提供しようというものである。 As described in the background art, the conventional Pt / second component / conductive carbon-based anode material has several problems such as CO oxidation activity and cost. The present invention is intended to provide a Pt / CeO 2 .SnO 2 / conductive carbon nanoheteroanode material free from such problems and a method for producing the same.

本発明者らは、上記従来技術の問題点に鑑み、鋭意検討を続けた結果、以下の発明を得るに至った。   In light of the above-described problems of the prior art, the present inventors have intensively studied and, as a result, have obtained the following invention.

発明1のアノード材料は、導電性カーボンと、希土類元素などの成分を固溶せず、かつ比表面積が1×10m/g以上1×10/g以下の未ドープCeO粉末と、比表面積が1×10m/g以上1×10/g以下のSnO粉末と、平均2次粒子径が30ナノメーター以下のPtの混合物であることともに、その材料が下記化学式1を満たすものであることを特徴とする。
(化学式1)
XPt/Y(ACeO・(1−A)SnO)/Zcarbon
(ただし式中、X、Y、Z、Aは、それぞれ白金(Pt)、CeO、SnO、carbonの含有割合を示すものであり、5×10−2≦X≦4×10−11×10−1≦Y≦3×10−1、Z=1−X−Y、6×10−1≦A<8×10−1であり、Carbonは導電性カーボンを表す)
The anode material of the invention 1 includes conductive carbon and an undoped CeO 2 powder that does not dissolve a component such as a rare earth element and has a specific surface area of 1 × 10 m 2 / g or more and 1 × 10 2 m 2 / g or less. And a mixture of SnO 2 powder having a specific surface area of 1 × 10 m 2 / g or more and 1 × 10 2 m 2 / g or less and Pt having an average secondary particle size of 30 nanometers or less. 1 is satisfied.
(Chemical formula 1)
XPt / Y (ACeO 2. (1-A) SnO 2 ) / Zcarbon
(In the formula, X, Y, Z, and A represent the content ratios of platinum (Pt), CeO 2 , SnO 2 , and carbon, respectively, and 5 × 10 −2 ≦ X ≦ 4 × 10 −1 1. × 10 −1 ≦ Y ≦ 3 × 10 −1 , Z = 1−XY, 6 × 10 −1 ≦ A <8 × 10 −1 , and Carbon represents conductive carbon)

発明2は、発明1又は2のアノード電極を構成する材料の製造方法であって、以下の工程によることを特徴とする。
濃度5×10−2(M)以上8×10−1(M)以下の硝酸セリウム水溶液を、45℃以上60℃以下の温度にした濃度1×10−1(M)以上5×10−1(M)以下の炭酸アンモニウムまたは炭酸水素アンモニウム水溶液中に、2.5ml/min以下の速度で滴下してセリア前駆体を作製する第一工程と、
第一工程で得られたセリア前駆体を2×10時間以上4×10時間未満その温度に保持して固−液分離し、水洗して乾燥し、その固形分を得る第二工程と、
第二工程で得られた固形分を酸素流雰囲気中にて3×10℃超5×10℃未満で仮焼して結晶性セリアナノ粉末を作製する第三工程と、
第三工程で得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度1×10-2(M)以上5×10-2(M)以下)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥させる第四工程と、
第四工程にて得られた固形分を3×10℃超5×10℃未満の温度で、水素流雰囲気下において、W/F(試料重量/水素ガス流量)1×10−3(g・min/ml)以上1×10−2(g・min/ml)以下でさらに仮焼する第五工程と、
第五工程にて得られた粉末に、室温においてSnO粉末を物理的に混合した後、導電性カーボンと混合する第六工程。
Invention 2 is a method for producing a material constituting the anode electrode of Invention 1 or 2, and is characterized by the following steps.
Concentration of 1 × 10 −1 (M) to 5 × 10 −1 in a cerium nitrate aqueous solution having a concentration of 5 × 10 −2 (M) to 8 × 10 −1 (M). (M) a first step of preparing a ceria precursor by dropping into the following ammonium carbonate or ammonium hydrogen carbonate aqueous solution at a rate of 2.5 ml / min or less;
The ceria precursor obtained in the first step is maintained at that temperature for 2 × 10 hours or more and less than 4 × 10 hours, and is subjected to solid-liquid separation, washed with water and dried to obtain the solid content,
A third step of preparing a calcined to crystalline ceria powder is less than 3 × 10 2 ° C. Ultra 5 × 10 2 ° C. The solid obtained in an oxygen stream atmosphere in the second step,
The ceria powder obtained in the third step was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 1 × 10 -2 (M) or 5 × 10 -2 (M) hereinafter), the solvent A fourth step of evaporating and drying in an inert gas flow;
A fourth solids obtained in Step 3 × 10 2 ℃ super 5 × 10 below 2 ℃ temperature, under a hydrogen stream atmosphere, W / F (sample weight / hydrogen gas flow) 1 × 10 -3 ( g · min / ml) to 1 × 10 −2 (g · min / ml),
A sixth step in which SnO 2 powder is physically mixed at room temperature with the powder obtained in the fifth step and then mixed with conductive carbon.

発明3は、発明1又は2のアノード材料をアノード電極の構成材料としたことを特徴とする燃料電池   Invention 3 is a fuel cell characterized in that the anode material of Invention 1 or 2 is a constituent material of an anode electrode.

本発明は、ダイレクトメタノール型燃料電池などに利用可能なアノード電極特性を大幅に改良することに成功したものであり、今後、ダイレクトメタノール型燃料電池を始めとした各種燃料電池(高分子型燃料電池、中温作動・酸化物形燃料電池)等において使用され、それらの性能アップと、優れた性能の長期安定性に大いに寄与するものと期待される。とりわけ、近年注目されているダイレクトメタノール型燃料電池の小型化、高出力化、低価格化には大いに寄与するものと期待され、その意義は極めて大きいし、重大である。   The present invention has succeeded in greatly improving the anode electrode characteristics that can be used in direct methanol fuel cells and the like, and in the future, various fuel cells (polymer fuel cells) including direct methanol fuel cells. , Medium temperature operation / oxide fuel cell) and the like, and is expected to greatly contribute to the improvement in performance and long-term stability of excellent performance. In particular, it is expected to contribute greatly to the downsizing, higher output, and lower price of direct methanol fuel cells that have been attracting attention in recent years, and its significance is extremely large and serious.

ここに、本発明のアノード材料は、導電性カーボンと、希土類元素などの成分を固溶せず、かつ比表面積が1×10m/g以上1×10/g以下の未ドープCeO粉末と、比表面積が1×10m/g以上1×10/g以下のSnO粉末と、平均2次粒子径が30ナノメーター以下のPtの混合物である。 Here, the anode material of the present invention comprises a conductive carbon, not a solid solution components such as rare earth elements, and a specific surface area of 1 × 10m 2 / g or more 1 × 10 2 m 2 / g or less undoped CeO and 2 powder, the specific surface area and is 1 × 10 m 2 / g or more 1 × 10 2 m 2 / g or less of SnO 2 powder, an average secondary particle diameter is a mixture of the following Pt 30 nanometers.

CeO粉末の比表面積は、1×10m/g以上1×10/g以下でなければならない。比表面積がこの範囲を下回ると、PtやSnOとの相互作用が低下する。一方、上記範囲を上回る場合、CeOは微粒子ではなく、多孔体や表面にナノ細孔を多量にもつようになり、そのことがかえって、PtやSnOとの十分な接触界面を確保することを妨げる。
アノード材料中のSnO粉末の比表面積もまた、1×10m/g以上1×10/g以下でなければならない。この範囲を下回るとPtやCeOとの相互作用が低下する。一方、上記範囲を上回る場合、SnOは微粒子ではなく、多孔体や表面にナノ細孔を多量にもつようになり、そのことがかえって、PtやCeOとの十分な接触界面を確保すること妨げる。
The specific surface area of the CeO 2 powder must be 1 × 10 m 2 / g or more and 1 × 10 2 m 2 / g or less. When the specific surface area is below this range, the interaction with Pt and SnO 2 is reduced. On the other hand, when the above range is exceeded, CeO 2 is not a fine particle, but has a large amount of nanopores on the porous body and the surface, and on the contrary, a sufficient contact interface with Pt and SnO 2 is ensured. Disturb.
The specific surface area of the SnO 2 powder in the anode material must also be 1 × 10 m 2 / g or more and 1 × 10 2 m 2 / g or less. Below this range, the interaction with Pt and CeO 2 decreases. On the other hand, when the above range is exceeded, SnO 2 is not a fine particle, but has a large amount of nanopores on the porous body or surface, and on the contrary, it ensures a sufficient contact interface with Pt and CeO 2. Hinder.

アノード材料中のPtの平均2次粒子径は、30ナノメーター以下であることが好ましい。平均2次粒子径が30ナノメーターを上回る場合には、Pt、 CeO、 SnO間の相互作用が十分に高まらないので好ましくなく、一方、Ptの平均2次粒子径が、極端に小さいということも現実的にはありえないので、1ナノメーター程度の大きさになっていれば、十分に本発明で開示した効果は現れるので、1ナノメーター以上であればよい。 The average secondary particle size of Pt in the anode material is preferably 30 nanometers or less. When the average secondary particle diameter exceeds 30 nanometers, the interaction between Pt, CeO 2 and SnO 2 is not sufficiently high, which is not preferable. On the other hand, the average secondary particle diameter of Pt is extremely small. Since this is impossible in practice, the effect disclosed in the present invention will be sufficiently exhibited if the size is about 1 nanometer, so it should be 1 nanometer or more.

また、その素材組成としては下記(式1)を満たすものがより好ましい。
(化学式1)
XPt/Y(ACeO・(1−A)SnO)/Zcarbon
(ただし式中、X、Y、Z、Aは、それぞれ白金(Pt)、CeO、SnO、carbonの含有割合を示すものであり、5×10−2≦X≦4×10−11×10−1≦Y≦3×10−1、Z=1−X−Y、6×10−1≦A<8×10−1であり、Carbonは導電性カーボンを表す)
Moreover, as the material composition, one satisfying the following (Formula 1) is more preferable.
(Chemical formula 1)
XPt / Y (ACeO 2. (1-A) SnO 2 ) / Zcarbon
(In the formula, X, Y, Z, and A represent the content ratios of platinum (Pt), CeO 2 , SnO 2 , and carbon, respectively, and 5 × 10 −2 ≦ X ≦ 4 × 10 −1 1. × 10 −1 ≦ Y ≦ 3 × 10 −1 , Z = 1−XY, 6 × 10 −1 ≦ A <8 × 10 −1 , and Carbon represents conductive carbon)

上記のXの範囲を下回ると、活性発現の主役であるPt量が過少であることから、例えば、燃料(メタノール、エタノールなどのアルコール類)からの十分な水素生成が行いにくくなる傾向となることから望ましくない。また上記Xの範囲を上回っても、効果の向上はあまり望めない上、Ptを多量に使用することになり、材料自体の価格が高くなるので望ましくない。   Below the above range of X, the amount of Pt, which is the main role of activity expression, is too small. For example, sufficient hydrogen generation from fuel (alcohols such as methanol and ethanol) tends to be difficult. Not desirable. Further, even if it exceeds the range of X, the effect cannot be expected so much, and a large amount of Pt is used, which is undesirable because the price of the material itself increases.

一方、上記一般式中のCeOは、Pt表面に吸着したCOを酸化する働きをすると考えられる活性な酸素を放出すると考えられるうえ、CeO上のPtと同時に還元処理を施すことで、PtとCeO間の相互作用が強まり、Pt表面の電子状態を、通常ではPt表面に現れない1価の状態にし、COとの結合を弱める働きをする。さらに、後に述べるSnO粒子とCeO粒子間の相互作用もPtの活性を高めるうえで重要であると考えられることから、上記Yの範囲を下回ると、このCeOが不足する傾向となり、CO被覆低減効果が低下するので望ましくない。一方、上記の範囲を上回ると、CeO自身に導電性が低下する傾向となり望ましくない。 On the other hand, CeO 2 in the above general formula is considered to release active oxygen which is considered to oxidize CO adsorbed on the Pt surface, and is subjected to a reduction treatment at the same time as Pt on CeO 2. Interaction between Ce and CeO 2 is strengthened, and the electronic state of the Pt surface is made to be a monovalent state that does not normally appear on the Pt surface, and functions to weaken the bond with CO. Furthermore, since the interaction between SnO 2 particles and CeO 2 particles, which will be described later, is also considered to be important in increasing the activity of Pt, if it falls below the above range of Y, this CeO 2 tends to be insufficient, and CO 2 This is undesirable because the effect of reducing the coating is reduced. On the other hand, if it exceeds the above range, CeO 2 itself tends to decrease in conductivity, which is not desirable.

CeOとSnOの相互の割合を決めるAは6×10−1≦A<8×10−1であるのが好ましい。この範囲を下回るとCeOの割合が少な過ぎることから、Pt上に吸着したCOを酸化する能力が低下する傾向になるので望ましくない。また、この範囲を上回ると、導電性を有するSnOの添加効果が十分に現れずに、望ましくない。上記の範囲の中で、さらに好ましいAの値は0.3の場合である。この場合にはCeOとSnOの界面に(CeSn)O2−xという固溶体表面がもつ酸素欠陥構造が形成されるものと考えられる。(CeSn)O2−xという固溶体は、CeOとSnOの状態図の中では、高温でのみ安定に存在する結晶相であると考えられているが、CeOとSnOの界面では、CeO/SnO= 2/1 (CeO/(CeO+SnO) = 0.77)の割合で配合された場合、上述の(CeSn)O2−x固溶体の表面がもつ酸素欠陥構造が形成されることで、CeO上のPtとの相互作用が最大化し、アノード性能が最大化するものと考察される。 A that determines the mutual ratio of CeO 2 and SnO 2 is preferably 6 × 10 −1 ≦ A <8 × 10 −1 . Below this range, the proportion of CeO 2 is too small, which is undesirable because the ability to oxidize CO adsorbed on Pt tends to decrease. On the other hand, if it exceeds this range, the effect of adding SnO 2 having conductivity is not sufficiently exhibited, which is not desirable. Within the above range, a more preferable value of A is 0.3. In this case, it is considered that an oxygen defect structure having a solid solution surface of (Ce 2 Sn) O 2-x is formed at the interface between CeO 2 and SnO 2 . In the phase diagram of CeO 2 and SnO 2 , the solid solution (Ce 2 Sn) O 2-x is considered to be a crystalline phase that exists stably only at high temperatures, but the interface between CeO 2 and SnO 2 Then, when it is blended at a ratio of CeO 2 / SnO 2 = 2/1 (CeO 2 / (CeO 2 + SnO 2 ) = 0.77), the surface of the above (Ce 2 Sn) O 2-x solid solution has It is considered that the formation of the oxygen defect structure maximizes the interaction with Pt on CeO 2 and maximizes the anode performance.

導電性カーボンの割合Zは、上記XとYの値とZを足した合計が1になることが望ましい。この割合を下回ると、アノード材料全体の導電特性が低下する傾向にあるので望ましくはない。また、導電性については上述の割合を上回る場合でも大きな変化はないが、Pt/CeOとSnOの界面の形成が阻害されるか、Pt/CeO/SnOの表面全体を導電性カーボンが覆い、電極反応を阻害する傾向があると思われるので望ましくはない。上述のX、Y、及びZの関係を満たすことが望ましい。 The ratio Z of the conductive carbon is preferably 1 as the sum of the values of X and Y plus Z. Below this ratio, it is not desirable because the conductive properties of the whole anode material tend to be reduced. In addition, the conductivity does not change greatly even when the ratio exceeds the above-mentioned ratio, but the formation of the interface between Pt / CeO 2 and SnO 2 is hindered, or the entire surface of Pt / CeO 2 / SnO 2 is electrically conductive carbon. Is undesirable because it appears to tend to inhibit the electrode reaction. It is desirable to satisfy the relationship of X, Y, and Z described above.

さらに、本発明におけるアノード材料を作成する方法として以下の工程を採用した。
濃度5×10−2(M)以上8×10−1(M)以下の硝酸セリウム水溶液を、45℃以上60℃以下の温度にした濃度1×10−1(M)以上5×10−1(M)以下の炭酸アンモニウムまたは炭酸水素アンモニウム水溶液中に、2.5ml/min以下の速度で滴下してセリア前駆体を作製する第一工程と、
第一工程で得られたセリア前駆体を2×10時間以上4×10時間未満その温度に保持して固−液分離し、水洗して乾燥し、その固形分を得る第二工程と、
第二工程で得られた固形分を酸素流雰囲気中にて3×10℃超5×10℃未満で仮焼して結晶性セリアナノ粉末を作製する第三工程と、
第三工程で得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度1×10-2(M)以上5×10-2(M)以下)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥させる第四工程と、
第四工程にて得られた固形分を3×10℃超5×10℃未満の温度で、水素流雰囲気下において、W/F(試料重量/水素ガス流量)1×10−3(g・min/ml)以上1×10−2(g・min/ml)以下でさらに仮焼する第五工程と、
第五工程にて得られた粉末に、室温においてSnO粉末を物理的に混合した後、導電性カーボンと混合する第六工程。
Further, the following steps were adopted as a method for producing the anode material in the present invention.
Concentration of 1 × 10 −1 (M) to 5 × 10 −1 in a cerium nitrate aqueous solution having a concentration of 5 × 10 −2 (M) to 8 × 10 −1 (M). (M) a first step of preparing a ceria precursor by dropping into the following ammonium carbonate or ammonium hydrogen carbonate aqueous solution at a rate of 2.5 ml / min or less;
The ceria precursor obtained in the first step is maintained at that temperature for 2 × 10 hours or more and less than 4 × 10 hours, and is subjected to solid-liquid separation, washed with water and dried to obtain the solid content,
A third step of preparing a calcined to crystalline ceria powder is less than 3 × 10 2 ° C. Ultra 5 × 10 2 ° C. The solid obtained in an oxygen stream atmosphere in the second step,
The ceria powder obtained in the third step was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 1 × 10 -2 (M) or 5 × 10 -2 (M) hereinafter), the solvent A fourth step of evaporating and drying in an inert gas flow;
A fourth solids obtained in Step 3 × 10 2 ℃ super 5 × 10 below 2 ℃ temperature, under a hydrogen stream atmosphere, W / F (sample weight / hydrogen gas flow) 1 × 10 -3 ( g · min / ml) to 1 × 10 −2 (g · min / ml),
A sixth step in which SnO 2 powder is physically mixed at room temperature with the powder obtained in the fifth step and then mixed with conductive carbon.

<第一工程>
高比表面積CeO粒子を作製するために、まず硝酸セリウム水溶液(濃度5×10−2(M)以上8×10−1(M)以下)を調整する。原料水溶液の濃度は、合成されるCeO粒子の比表面積に関係している。本発明に示す範囲を下回ると、粒子の凝集が大きくなり、高性能化に必要な高表面積が得にくくなるので好ましくない。一方、上記濃度範囲を上回る場合も、空孔径の小さな粒子が多数生じるので、比表面積の低いものが生じるので好ましくない。
<First step>
In order to produce high specific surface area CeO 2 particles, first, an aqueous cerium nitrate solution (concentration of 5 × 10 −2 (M) to 8 × 10 −1 (M)) is prepared. The concentration of the raw material aqueous solution is related to the specific surface area of the CeO 2 particles to be synthesized. Below the range shown in the present invention, the agglomeration of particles becomes large, and it is difficult to obtain a high surface area required for high performance, which is not preferable. On the other hand, when the concentration range is exceeded, a large number of particles having a small pore diameter are generated, and therefore, a low specific surface area is generated, which is not preferable.

この水溶液を炭酸アンモニウムまたは炭酸水素アンモニウム水溶液(いずれも濃度1×10−1(M)以上5×10−1(M)以下)中に滴下するが、この際の水溶液温度は、45℃以上60℃以下であることが好ましい。この温度を下回ると沈殿剤である炭酸アンモニウムまたは炭酸水素アンモニウムの反応速度が低く、高い比表面積をもつCeO粒子をつくるための沈殿が沈殿剤中に生成しにくくなり好ましくない。一方、この温度を上回ると、沈殿の溶液中への再溶解が進み、結果として、高い比表面積をもつCeO粒子をつくるための前駆体が沈殿剤中に生成しにくくなり好ましくない。さらに、沈殿剤である炭酸アンモニウムまたは炭酸水素アンモニウム水溶液の濃度は、1×10−1(M)以上5×10−1(M)以下が好ましい。沈殿剤濃度がこの範囲を下回ると、炭酸アンモニウムまたは炭酸水素アンモニウムとセリウム溶液間の反応性が低く、高い比表面積をもつCeO粒子をつくるための沈殿が沈殿剤中に生成しにくくなり好ましくない。一方、沈殿剤濃度が、この範囲を上回ると、熱分解が高温でおき、比表面積の低下を引き起こす沈殿が生じやすくなるため、高い比表面積をもつCeO粒子を作製することが難しくなる傾向になるので好ましくない。 This aqueous solution is dropped into an ammonium carbonate or ammonium hydrogen carbonate aqueous solution (both having a concentration of 1 × 10 −1 (M) to 5 × 10 −1 (M)), and the aqueous solution temperature is 45 ° C. to 60 ° C. It is preferable that it is below ℃. Below this temperature, the reaction rate of ammonium carbonate or ammonium hydrogen carbonate, which is a precipitant, is low, and precipitation for producing CeO 2 particles having a high specific surface area is difficult to form in the precipitant, which is not preferable. On the other hand, if the temperature is exceeded, re-dissolution of the precipitate into the solution proceeds, and as a result, a precursor for producing CeO 2 particles having a high specific surface area is hardly generated in the precipitant, which is not preferable. Furthermore, the concentration of the ammonium carbonate or ammonium hydrogen carbonate aqueous solution as a precipitating agent is preferably 1 × 10 −1 (M) or more and 5 × 10 −1 (M) or less. If the concentration of the precipitant is below this range, the reactivity between the ammonium carbonate or ammonium hydrogen carbonate and the cerium solution is low, and it is difficult to form a precipitate for producing CeO 2 particles having a high specific surface area in the precipitant. . On the other hand, if the concentration of the precipitant exceeds this range, thermal decomposition occurs at a high temperature, and precipitation that causes a decrease in the specific surface area is likely to occur, so that it is difficult to produce CeO 2 particles having a high specific surface area. This is not preferable.

この滴下速度は、2.5ml/min以下の滴下速度であることが好ましい。しかし、1ml/minを下回っても、1ml/min以上の場合に比してより高い効果が得られない。また、2.5ml/minを越えると生成する沈殿の凝集がすすみ始めることから、高い比表面積をもつCeO粒子をつくるための沈殿が沈殿剤中に生成しにくくなるので好ましくない。 This dropping rate is preferably a dropping rate of 2.5 ml / min or less. However, even if it falls below 1 ml / min, a higher effect cannot be obtained as compared with the case of 1 ml / min or more. On the other hand, when the concentration exceeds 2.5 ml / min, aggregation of the generated precipitate starts to proceed, so that it is difficult to generate a precipitate for producing CeO 2 particles having a high specific surface area in the precipitant, which is not preferable.

<第二工程>
第二工程にて得られた沈殿(セリア前駆体)は、上述の温度において、2×10時間以上4×10時間未満保持して、沈殿の熟成を行うことが好ましい。この熟成時間が上記範囲を下回り短いと、高い比表面積をもつCeO粒子をつくるための前駆体が沈殿剤中に生成しにくくなるので好ましくない。また逆に、この時間が上記範囲を上回ると(長すぎると)、沈殿の再溶解と再析出が活発にくり替えされ、高い比表面積をもつCeO粒子をつくるための前駆体が沈殿剤中に含まれにくくなるので好ましくない。
<Second step>
It is preferable that the precipitate (ceria precursor) obtained in the second step is kept at 2 × 10 hours or more and less than 4 × 10 hours at the above-mentioned temperature to ripen the precipitate. When the aging time is shorter than the above range, it is not preferable because a precursor for producing CeO 2 particles having a high specific surface area is hardly generated in the precipitant. On the other hand, if this time exceeds the above range (too long), the re-dissolution and re-precipitation of the precipitate are actively repeated, and the precursor for producing CeO 2 particles having a high specific surface area is contained in the precipitant. It is not preferable because it becomes difficult to be contained in the slag.

<第三工程>
上記第二工程で得られた固−液混合物を固−液分離し、水洗と乾燥を行い、得られた沈殿物(固形分)は、3×10℃超5×10℃未満の温度において、酸素流通下において仮焼し、結晶性セリアナノ粉末を作製する。
この仮焼温度が低いと、十分に前駆体の熱分解が終了せず、未酸化分解反応物が、非晶質状態のまま、CeO粒子の中に取り残され、CeO粒子の働きが阻害されることから好ましくない。また、上記温度範囲を上回ると、高温での熱分解によりCeO粒子の比表面積が大きく低下し、CeO粒子とPtやSnOとの相互作用が低下するので好ましくない。この焼成時間については特に制限はないが、あまり短すぎても、前記低温時と同様に熱分解が十分に進行しないため好ましくない。なお時間が長すぎる場合は、効果の向上がないので、余分なことになる。前記焼結温度を最低温度にした場合でも1時間〜3時間程度の範囲が望ましい。また、最高温度にした場合は、1/2時間〜1時間が好ましい。
<Third step>
The obtained in the second step solid - liquid mixture solid - and liquid separation, followed by washing with water and drying, the resulting precipitate (solids), 3 × 10 2 ℃ super 5 × 10 below 2 ℃ Temperature And calcining under oxygen flow to produce crystalline ceria nanopowder.
When the calcination temperature is low, without terminating pyrolysis of sufficiently precursor, unoxidized decomposition reactant remains in the amorphous state, left behind in the CeO 2 particles, inhibition action of CeO 2 particles Is not preferable. On the other hand, if the temperature range is exceeded, the specific surface area of the CeO 2 particles is greatly reduced by thermal decomposition at a high temperature, and the interaction between the CeO 2 particles and Pt or SnO 2 is unfavorable. The firing time is not particularly limited, but if it is too short, it is not preferable because the thermal decomposition does not proceed sufficiently as in the case of the low temperature. If the time is too long, there is no improvement in the effect, which is extra. Even when the sintering temperature is set to the lowest temperature, a range of about 1 to 3 hours is desirable. Moreover, when it is set as the maximum temperature, 1/2 hour-1 hour are preferable.

<第四工程>
第三工程で得られたセリアナノ粉末は、塩化白金酸(HPtCl・6HO)水溶液(濃度1×10-2(M)以上5×10-2(M)以下)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥する。
PtCl・6HO水溶液の濃度が上記範囲を上回ると、Pt粒子の凝集がおこり、CeOやSnOとの間に必要な電子のやりとりが阻害されるので好ましくない。また、上記範囲を下回ると、溶媒の乾燥に、極めて長時間を必要とするものの、それなりの効果しか得られないので、工業的に好ましくないことから、その濃度は、0.01M以上が好ましい。
また、溶媒の乾燥は、不活性ガス流通下において室温において行うことが好ましく、室温を越える高温度で乾燥を行うと、Pt粒子の凝集をまねくので好ましくない。
0℃以上室温以下の低温で乾燥を行うと、乾燥ガス中への水分などの溶媒の揮発速度が、著しく遅くなり、乾燥に多大な時間が必要となるので、好ましくない。また0℃未満の極低温では、水分などの溶媒が固体化し、乾燥効果が現れないので、好ましくない。
<Fourth process>
Ceria powder obtained in the third step was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 1 × 10 -2 (M) or 5 × 10 -2 (M) or less), The solvent is evaporated to dryness under an inert gas flow.
If the concentration of the H 2 PtCl 6 · 6H 2 O aqueous solution exceeds the above range, the Pt particles are aggregated, and exchange of necessary electrons with CeO 2 or SnO 2 is hindered. Moreover, if it is less than the above range, although it takes an extremely long time to dry the solvent, only a certain effect can be obtained, and this is not industrially preferable, so the concentration is preferably 0.01 M or more.
The solvent is preferably dried at room temperature under an inert gas flow, and drying at a high temperature exceeding the room temperature is not preferable because it causes aggregation of Pt particles.
If drying is performed at a low temperature of 0 ° C. or more and room temperature or less, the volatilization rate of a solvent such as moisture in the drying gas is remarkably slow, and a long time is required for drying. Further, an extremely low temperature of less than 0 ° C. is not preferable because a solvent such as moisture is solidified and a drying effect does not appear.

<第五工程>
第四工程で得られたPt/CeO(固形分)は、3×10℃超5×10℃未満の温度で、水素流通下において、W/F(試料重量/水素ガス流量)1×10−3(g・min/ml)以上1×10−2(g・min/ml)以下で仮焼することで、PtのCeO表面への担持を行うことが好ましい。上記温度を下回ると、Ptの表面が十分に還元されないうえ、PtとCeO間の相互作用により、はじめて現れるPt+1価の電子状態が、Pt表面に現れないので好ましくない。また上記温度範囲を上回ると、白金の凝集が大きくなり、期待される電極性能が現れないので好ましくない。さらに、こうした焼付け処理は、W/F(試料重量/水素ガス流量)1×10−3(g・min/ml)以上1×10−2(g・min/ml)以下の水素ガス流通下で行うことが好ましい。このW/F(試料重量/水素ガス流量)が
この範囲を上回る(水素ガスの流量が少なすぎる)と、Ptの還元処理が十分に行われれないのみならず、副生成物として塩化セリウムが生成し、著しく活性が低下するので、好ましくない。また、この範囲を下回(水素ガス流量が多すぎ)ても、それなりの効果しか期待できないので、ここで示す下限のW/Fにおいて、試料を処理すればよい。
また、この処理時間については、特に制限はないが、あまり短すぎても、十分な効果が期待できない。なお時間が長すぎる場合は、効果の向上がないので、余分なことになる。1/2時間から2時間の範囲で、選択すればよい。
<Fifth process>
Pt / CeO 2 (solid content) obtained in the fourth step is W / F (sample weight / hydrogen gas flow rate) 1 in a hydrogen flow at a temperature of more than 3 × 10 2 ° C. and less than 5 × 10 2 ° C. It is preferable to carry Pt on the CeO 2 surface by calcining at 10 × 3 −3 (g · min / ml) to 1 × 10 −2 (g · min / ml). Below the above temperature, the Pt surface is not sufficiently reduced, and the Pt + 1 valence electronic state that appears for the first time due to the interaction between Pt and CeO 2 does not appear on the Pt surface. On the other hand, exceeding the above temperature range is not preferable because aggregation of platinum increases and expected electrode performance does not appear. Further, such a baking treatment is performed under a hydrogen gas flow of W / F (sample weight / hydrogen gas flow rate) of 1 × 10 −3 (g · min / ml) to 1 × 10 −2 (g · min / ml). Preferably it is done. If this W / F (sample weight / hydrogen gas flow rate) exceeds this range (hydrogen gas flow rate is too low), not only Pt reduction will not be performed sufficiently, but also cerium chloride will be produced as a by-product. However, the activity is remarkably lowered, which is not preferable. Moreover, even if it falls below this range (the hydrogen gas flow rate is too high), only a reasonable effect can be expected, so the sample may be processed at the lower limit W / F shown here.
The processing time is not particularly limited, but if it is too short, a sufficient effect cannot be expected. If the time is too long, there is no improvement in the effect, which is extra. What is necessary is just to select in the range of 1/2 hour to 2 hours.

<第六工程>
第五工程を行ったのちに、Pt/CeOとSnO粉末と物理的に混合することが好ましい。Pt/CeOとSnO粉末を室温において物理的に混合するだけで、その界面には活性な界面が構築される。この混合を加熱状態で行っても、CeOとSnOの界面は大きく変化することはないので、室温で十分に物理的に混合すれば良い。こうしてえられた生成物は、導電性カーボンと混合することで、優れた性能を有するアノード材料の提供が可能になる。
<Sixth step>
It is preferable to physically mix the Pt / CeO 2 and SnO 2 powder after the fifth step. By simply physically mixing Pt / CeO 2 and SnO 2 powder at room temperature, an active interface is established at the interface. Even if this mixing is performed in a heated state, the interface between CeO 2 and SnO 2 does not change greatly, and therefore, sufficient physical mixing may be performed at room temperature. The product thus obtained can be mixed with conductive carbon to provide an anode material having excellent performance.

前記アノード材料をアノード電極に用いたことを特徴とする燃料電池について、
電極性能は、電極の電流値のみで規定されるものはなく、メタノールの酸化反応が開始される電位(On Set Potentialと呼ばれる)が低いことも重要である。この電位が低いということは、Pt上に吸着したメタノールの酸化が極めて容易に起こることを意味している。また、低いon set potentialを有するアノードを燃料電池用の電極として用いることで、燃料電池を発電させる場合に生じるアノード損失を低減させ、燃料電池から大きな電流密度ならびに出力をとりだすことが可能になる。よって、on set potentialは十分に低いものでなければならない。このon set potentialを低下させる働きは、Pt/CeO/SnO/導電性炭素アノード材料中のPt−CeO粒子間やCeO−SnO粒子間の相互作用が相まって、はじめて現れるものであり、こうした相互作用は、上記の組成及び製造方法をもってしてはじめて可能となる。
About the fuel cell, wherein the anode material is used for an anode electrode,
The electrode performance is not limited only by the current value of the electrode, and it is also important that the potential at which the methanol oxidation reaction is started (referred to as On Set Potential) is low. This low potential means that oxidation of methanol adsorbed on Pt occurs very easily. Further, by using an anode having a low on set potential as an electrode for a fuel cell, it is possible to reduce anode loss that occurs when generating power from the fuel cell, and to extract a large current density and output from the fuel cell. Thus, on set potential should be sufficiently low. The action of reducing this on set potential appears only when the interaction between Pt / CeO 2 / SnO 2 / Pt—CeO 2 particles and CeO 2 —SnO 2 particles in the conductive carbon anode material is combined. Such interaction is possible only with the above-described composition and manufacturing method.

次に、本発明を実施例、図面及び比較例に基づいて説明する。但し、これらの実施例は、あくまでも本発明を具体的に示し、容易に理解するための一助として開示するものであって、本発明の内容は、これらの実施例により制限されるものではない。   Next, this invention is demonstrated based on an Example, drawing, and a comparative example. However, these examples are disclosed only as an aid for specifically showing and easily understanding the present invention, and the contents of the present invention are not limited by these examples.

実施例1;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Example 1;
Composition 30wt% Pt / 19wt% (0.77CeO 2 0.33SnO 2) / so that 51 wt% C, as a starting material, cerium nitrate 0.4 (M) and (purity 99.99%) 0. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to produce a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(CI化成株式会社製、NanoTek)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、粉末状のアノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder (produced by CI Kasei Co., Ltd.) at room temperature , NanoTek) were physically mixed and then mixed with a predetermined amount of carbon black powder to obtain a powdered anode material.

図1には、得られたアノード材料のX線回折図を示す。結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、濃度0.5(M)の HSO 水溶液と濃度 0.5(M)のメタノールの混合水溶液中において、50mV/sの走査速度で、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
FIG. 1 shows an X-ray diffraction pattern of the obtained anode material. From the identification result of the crystal phase, it was found that the anode material was composed of three kinds of components of Pt, CeO 2 and SnO 2 . The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was subjected to cyclic voltammetry at a scanning speed of 50 mV / s in a mixed aqueous solution of H 2 SO 4 solution having a concentration of 0.5 (M) and methanol having a concentration of 0.5 (M). The electrode activity was evaluated.

図2には、本実施例で得られたアノード材料の28℃におけるサイクリック・ボルタモグラムを示す。この図からも分かるように、0.82V vs RHEの電位に、メタノール酸化を示す2.6mA/cmの大きな電流値のピークが確認された。このピークの大きさは、メタノールから水素が発生した際に、副生成物として発生するCOのCOへの転化の効率をはかる指標となり、大きな電流値がとれるほど、COのCOへの転化反応が容易に進むことを意味していることから、実施例1において得られたアノード材料は、メタノールから水素とCOへの添加が起こり、かつ副生成物であるCOのCOへの転化反応が容易に進み、極めて高い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こることか否かを示す指標であるon set potentialも、図3に示すように0.39(V vs. RHE)と十分に低いものであった。
実施例1で得られた結果を、表1から表6にまとめて示した。
FIG. 2 shows a cyclic voltammogram of the anode material obtained in this example at 28 ° C. As can be seen from this figure, a peak of a large current value of 2.6 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. The size of this peak serves as an index for measuring the efficiency of conversion of CO generated as a by-product into CO 2 when hydrogen is generated from methanol. The larger the current value, the more the CO is converted into CO 2 . Since the reaction means that the reaction proceeds easily, in the anode material obtained in Example 1, addition of methanol to hydrogen and CO occurs, and conversion reaction of CO, which is a by-product, to CO 2 It has been confirmed that the process proceeds easily and exhibits extremely high electrode activity. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was as low as 0.39 (V vs. RHE) as shown in FIG.
The results obtained in Example 1 are summarized in Tables 1 to 6.

実施例2;
組成が20wt%Pt/19wt%(0.77CeO0.33SnO)/61wt%Cになるように、出発原料として、0.1(M)の硝酸セリウム(純度99.99%)と0.2(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、46℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を1.2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、46℃の温度で、20時間熟成を行った。
Example 2;
As a starting material, 0.1 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33SnO 2 ) / 61 wt% C were used. A 2 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 46 ° C. at a rate of 1.2 ml / min to produce a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was carried out at a temperature of 46 ° C. for 20 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、380℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.015M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、380℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.002(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、粉末状のアノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 380 ° C. for 2 hours under a flow of oxygen to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.015 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 380 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.002 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain a powdered anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ72及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果31m/gであり、その表面積から計算される平均2次粒子径は9nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 72 and 60 m 2 / g, respectively. Further, the particle diameter of Pt in the produced anode material was estimated from the surface area measured by the CO stripping method to be 31 m 2 / g, and the average secondary particle diameter calculated from the surface area was 9 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す2.6mA/cmの大きな電流値のピークが確認されたことから、実施例2において得られたアノード材料は、メタノールから水素とCOへの添加が起こり、かつ副生成物であるCOのCOへの転化反応が容易に進み、極めて高い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.39(V vs. RHE)と十分に低いものであった。
実施例2で得られた結果を、実施例1同様、表1から表6にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a large current value of 2.6 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in Example 2 was obtained from methanol to hydrogen. It was confirmed that addition to CO occurred, and the conversion reaction of CO, which is a by-product, to CO 2 proceeded easily and exhibited extremely high electrode activity. Moreover, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was also sufficiently low as 0.39 (V vs. RHE).
The results obtained in Example 2 are summarized in Tables 1 to 6 as in Example 1.

実施例3;
組成が35wt%Pt/30wt%(0.77CeO0.33SnO)/35wt%Cになるように、出発原料として、0.7(M)の硝酸セリウム(純度99.99%)と0.4(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、35時間熟成を行った。
Example 3;
As a starting material, 0.7 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 30 wt% (0.77 CeO 2 0.33 SnO 2 ) / 35 wt% C were used. A 4 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 35 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、430℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.045M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、430℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)1×10−2(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末を物理的に混合した後、所定量のカーボンブラック粉末と混合して、粉末状のアノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 430 ° C. for 2 hours under a flow of oxygen to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.045M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 430 ° C., Under a hydrogen flow, calcined for 1 hour with W / F (sample weight / hydrogen gas flow rate) of 1 × 10-2 (g · min / ml), and then physically a predetermined amount of SnO 2 powder at room temperature. After mixing, it was mixed with a predetermined amount of carbon black powder to obtain a powdered anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ38及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果20m/gであり、その表面積から計算される平均2次粒子径は13nmであった。
こうして得られたアノード材料を、濃度0.5(M)の HSO 水溶液と濃度 0.5(M)のメタノールの混合水溶液中において、50mV/sの走査速度で、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 38 and 60 m 2 / g, respectively. Further, the particle diameter of Pt in the produced anode material was estimated from the surface area measured by the CO stripping method, and as a result, it was 20 m 2 / g, and the average secondary particle diameter calculated from the surface area was 13 nm.
The anode material thus obtained was subjected to cyclic voltammetry at a scanning speed of 50 mV / s in a mixed aqueous solution of H 2 SO 4 solution having a concentration of 0.5 (M) and methanol having a concentration of 0.5 (M). The electrode activity was evaluated.

本実施例で得られたアノード材料の28℃におけるサイクリック・ボルタモグラムは、実施例1の図1と同様な形状を示し、0.82V vs RHEの電位に、メタノール酸化を示す2.8mA/cmの大きな電流値のピークが確認された。このピークの大きさは、メタノールから水素が発生した際に、副生成物として発生するCOのCOへの転化の効率をはかる指標となり、大きな電流値がとれるほど、COのCOへの転化反応が容易に進むことを意味していることから、本実施例において得られたアノード材料は、メタノールから水素とCOへの添加が起こり、かつ副生成物であるCOのCOへの転化反応が容易に進み、極めて高い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialは、0.39(V vs. RHE)と十分に低いものであった。
実施例3で得られた結果を、表1から表6にまとめて示した。
The cyclic voltammogram of the anode material obtained in this example at 28 ° C. shows the same shape as that in FIG. 1 of Example 1, and 2.8 mA / cm, which shows methanol oxidation at a potential of 0.82 V vs RHE. the peak of the large current of 2 was confirmed. The size of this peak serves as an index for measuring the efficiency of conversion of CO generated as a by-product into CO 2 when hydrogen is generated from methanol. The larger the current value, the more the CO is converted into CO 2 . Since the reaction means that the reaction proceeds easily, in the anode material obtained in this example, addition of methanol to hydrogen and CO occurs, and conversion reaction of CO as a byproduct to CO 2 occurs. It has been confirmed that the process proceeds easily and exhibits extremely high electrode activity. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol occurs easily, was as low as 0.39 (V vs. RHE).
The results obtained in Example 3 are summarized in Tables 1 to 6.

実施例4;
組成が30wt%Pt/19wt%(0.65CeO0.35SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、58℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2.4ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、58℃の温度で、20時間熟成を行った。
Example 4;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.65 CeO 2 0.35 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 58 ° C. at a rate of 2.4 ml / min to prepare a precipitate. . After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 58 ° C. for 20 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(CI化成株式会社製、NanoTek)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、粉末状のアノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder (produced by CI Kasei Co., Ltd.) at room temperature , NanoTek) were physically mixed and then mixed with a predetermined amount of carbon black powder to obtain a powdered anode material.

得られたアノード材料のX線回折図は、実施例1で示した図1と同様な結果を示し、その結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material has three types of Pt, CeO 2 and SnO 2 . It turned out to consist of ingredients. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、濃度0.5(M)の HSO 水溶液と濃度 0.5(M)のメタノールの混合水溶液中において、50mV/sの走査速度で、サイクリック・ボルタンメトリーにより、電極活性評価を行った。 The anode material thus obtained was subjected to cyclic voltammetry at a scanning speed of 50 mV / s in a mixed aqueous solution of H 2 SO 4 solution having a concentration of 0.5 (M) and methanol having a concentration of 0.5 (M). The electrode activity was evaluated.

本実施例で得られたアノード材料の28℃におけるサイクリック・ボルタモグラムは、実施例1の図2と同様な形状を示し、0.82V vs RHEの電位に、メタノール酸化を示す2.4mA/cmの大きな電流値のピークが確認された。このピークの大きさは、メタノールから水素が発生した際に、副生成物として発生するCOのCOへの転化の効率をはかる指標となり、大きな電流値がとれるほど、COのCOへの転化反応が容易に進むことを意味していることから、本実施例において得られたアノード材料は、メタノールから水素とCOへの添加が起こり、かつ副生成物であるCOのCOへの転化反応が容易に進み、極めて高い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こることか否かを示す指標であるon set potentialは、0.40(V vs. RHE)と十分に低いものであった。
実施例4で得られた結果を、表1から表6にまとめて示した。
The cyclic voltammogram of the anode material obtained in this example at 28 ° C. shows a shape similar to that of FIG. 2 of Example 1, and 2.4 mA / cm, which indicates methanol oxidation at a potential of 0.82 V vs RHE. the peak of the large current of 2 was confirmed. The size of this peak serves as an index for measuring the efficiency of conversion of CO generated as a by-product into CO 2 when hydrogen is generated from methanol. The larger the current value, the more the CO is converted into CO 2 . Since the reaction means that the reaction proceeds easily, in the anode material obtained in this example, addition of methanol to hydrogen and CO occurs, and conversion reaction of CO as a byproduct to CO 2 occurs. It has been confirmed that the process proceeds easily and exhibits extremely high electrode activity. Moreover, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was as low as 0.40 (V vs. RHE).
The results obtained in Example 4 are summarized in Tables 1 to 6.

実施例5;
組成が30wt%Pt/19wt%(0.72CeO0.28SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、46℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、46℃の温度で、20時間熟成を行った。
Example 5;
Composition 30wt% Pt / 19wt% (0.72CeO 2 0.28SnO 2) / so that 51 wt% C, as a starting material, cerium nitrate 0.4 (M) and (purity 99.99%) 0. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 46 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was carried out at a temperature of 46 ° C. for 20 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(CI化成株式会社製、NanoTek)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、粉末状のアノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder (produced by CI Kasei Co., Ltd.) at room temperature , NanoTek) were physically mixed and then mixed with a predetermined amount of carbon black powder to obtain a powdered anode material.

得られたアノード材料のX線回折図は、実施例1で示した図1と同様な結果を示し、その結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果27m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material has three types of Pt, CeO 2 and SnO 2 . It turned out to consist of ingredients. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. Further, the particle diameter of Pt in the produced anode material was estimated from the surface area measured by the CO stripping method to be 27 m 2 / g, and the average secondary particle diameter calculated from the surface area was 10 nm.

こうして得られたアノード材料を、濃度0.5(M)の HSO 水溶液と濃度 0.5(M)のメタノールの混合水溶液中において、50mV/sの走査速度で、サイクリック・ボルタンメトリーにより、電極活性評価を行った。 The anode material thus obtained was subjected to cyclic voltammetry at a scanning speed of 50 mV / s in a mixed aqueous solution of H 2 SO 4 solution having a concentration of 0.5 (M) and methanol having a concentration of 0.5 (M). The electrode activity was evaluated.

本実施例で得られたアノード材料の28℃におけるサイクリック・ボルタモグラムは、実施例1の図2と同様な形状を示し、0.82V vs RHEの電位に、メタノール酸化を示す2.4mA/cmの大きな電流値のピークが確認された。このピークの大きさは、メタノールから水素が発生した際に、副生成物として発生するCOのCOへの転化の効率をはかる指標となり、大きな電流値がとれるほど、COのCOへの転化反応が容易に進むことを意味していることから、本実施例において得られたアノード材料は、メタノールから水素とCOへの添加が起こり、かつ副生成物であるCOのCOへの転化反応が容易に進み、極めて高い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialは、0.39(V vs. RHE)と十分に低いものであった。
実施例5で得られた結果を、表1から表6にまとめて示した。
The cyclic voltammogram of the anode material obtained in this example at 28 ° C. shows a shape similar to that of FIG. 2 of Example 1, and 2.4 mA / cm, which indicates methanol oxidation at a potential of 0.82 V vs RHE. the peak of the large current of 2 was confirmed. The size of this peak serves as an index for measuring the efficiency of conversion of CO generated as a by-product into CO 2 when hydrogen is generated from methanol. The larger the current value, the more the CO is converted into CO 2 . Since the reaction means that the reaction proceeds easily, in the anode material obtained in this example, addition of methanol to hydrogen and CO occurs, and conversion reaction of CO as a byproduct to CO 2 occurs. It has been confirmed that the process proceeds easily and exhibits extremely high electrode activity. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol occurs easily, was as low as 0.39 (V vs. RHE).
The results obtained in Example 5 are summarized in Tables 1 to 6.

比較例1;
組成が3wt%Pt/19wt%(0.77CeO0.33SnO)/78wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿(固形分)は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 1;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 78 wt% C were used. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to produce a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.
The precipitate (solid content) thus obtained was subjected to water washing treatment and filtration alternately three times, then ethanol treatment and filtration alternately repeated twice, and dried in dry nitrogen gas for 2 days. A powder was prepared. The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.5mA/cmの小さな電流値のピークが確認されたことから、比較例1において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.52(V vs. RHE)と高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例1で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a small current value of 0.5 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in Comparative Example 1 was obtained from methanol to hydrogen. Although the addition to CO occurred, the conversion reaction of CO, which is a byproduct, to CO 2 hardly occurred, and it was confirmed that extremely low electrode activity was exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a high value of 0.52 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 1 are summarized in Tables 7 to 12.

比較例2;
組成が20wt%Pt/5wt%(0.77CeO0.33SnO)/75wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 2;
The starting material was 0.4 (M) cerium nitrate (purity 99.99%) and 0.1% so that the composition would be 20 wt% Pt / 5 wt% (0.77 CeO 2 0.33 SnO 2 ) / 75 wt% C. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.8mA/cmの小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.51(V vs. RHE)と高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例2で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a small current value of 0.8 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol to hydrogen. Although addition to CO occurred, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 did not easily occur, and extremely low electrode activity was exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a high value of 0.51 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 2 are summarized in Tables 7 to 12.

比較例3;
組成が30wt%Pt/19wt%(0.5CeO0.5SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 3;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.5 CeO 2 0.5SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.2mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.48(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例3で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a relatively small current value of 1.2 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.48 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 3 are summarized in Tables 7 to 12.

比較例4;
組成が30wt%Pt/19wt%(0.85CeO0.15SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 4;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.85 CeO 2 0.15 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.3mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.48(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例4で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a relatively small current value peak of 1.3 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE, and therefore the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.48 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 4 are summarized in Tables 7 to 12.

比較例5;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cを基準として、この配合割合に、さらに20wt%C分を添加した組成となるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 5;
Based on the composition of 30 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C, 0% as a starting material was added so that 20 wt% C was added to this blending ratio. .4 (M) cerium nitrate (purity 99.99%) and 0.25 (M) ammonium carbonate aqueous solution (purity 99.5%) were prepared, and the ammonium carbonate aqueous solution heated to 55 ° C. was charged with cerium nitrate. The aqueous solution was dropped at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.4mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.47(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例5で得られた結果を、表7から表12にまとめて示した。
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a comparatively small current value of 1.4 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.47 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 5 are summarized in Tables 7 to 12.

比較例6;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.02(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 6;
0.02 (M) cerium nitrate (purity 99.99%) and 0.02 (M) were used as starting materials so that the composition was 30 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ6及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 6 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.8mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.52(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例6で得られた結果を、比較例1同様、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 0.8 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was a relatively high value of 0.52 (V vs. RHE), and it was difficult to initiate methanol oxidation.
The results obtained in Comparative Example 6 are summarized in Tables 7 to 12 as in Comparative Example 1.

比較例7;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、1.2(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 7;
The starting material was 1.2 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示し、結晶相の同定結果から、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ5及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2. I found out that The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 5 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.6mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.52(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例7で得られた結果を、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 0.6 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was a relatively high value of 0.52 (V vs. RHE), and it was difficult to initiate methanol oxidation.
The results obtained in Comparative Example 7 are summarized in Tables 7 to 12.

比較例8;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.05(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。沈殿は生成したが、沈殿剤水溶液の濃度が低いことから十分な量の沈殿が生成していないように見受けられた。硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 8;
As a starting material, 0.4 (M) of cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 05 (M) ammonium carbonate aqueous solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the ammonium carbonate aqueous solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. Although a precipitate was formed, it appeared that a sufficient amount of precipitate was not formed due to the low concentration of the precipitant aqueous solution. After completion of the dropwise addition of the cerium nitrate aqueous solution, aging was performed at a temperature of 55 ° C. for 20 hours.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示していたが、CeO2のピーク強度は、極めて低いものであった。しかし、結晶相の同定結果からは、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ8及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.3mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.53(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例8で得られた結果を、表7から表12にまとめて示した。
The X-ray diffraction pattern of the obtained anode material showed the same result as that of FIG. 1 shown in Example 1, but the peak intensity of CeO 2 was extremely low. However, from the identification result of the crystal phase, it was found that the anode material is composed of three kinds of components of Pt, CeO 2 and SnO 2 . The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 8 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a relatively small current value of 0.3 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.53 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 8 are summarized in Tables 7 to 12.

比較例9;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と1.0(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。沈殿は生成したが、沈殿剤水溶液の濃度が高すぎたとから、かえって沈殿の再溶解・再析出が起こったと思われ、沈殿は生成してが、凝集が大きく、他の例に比しても明らかな違いとして、生成した沈殿が極めて早く、水溶液中において、反応容器のそこに堆積したように見受けられた。
引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 9;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 1. wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 0 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. Precipitation was generated, but the concentration of the precipitant solution was too high, so it seems that re-dissolution and re-precipitation of the precipitate occurred, and precipitation was formed, but agglomeration was large, even compared to other examples. The obvious difference was that the precipitate formed was very fast and appeared to have accumulated in the reaction vessel in the aqueous solution.
Subsequently, the solution containing this precipitate was aged at a temperature of 55 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ4及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is 3 of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 4 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.7mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.52(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例9で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a relatively small current value peak of 0.7 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE, and therefore the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was a relatively high value of 0.52 (V vs. RHE), and it was difficult to initiate methanol oxidation.
The results obtained in Comparative Example 9 are summarized in Tables 7 to 12.

比較例10;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、30℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、30℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 10;
As a starting material, 0.4 (M) of cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 30 ° C. at a rate of 2 ml / min to prepare a precipitate. Subsequently, the solution containing the precipitate was aged at a temperature of 30 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ5及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is 3 of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 5 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.2mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.48(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例10で得られた結果を、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 1.2 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.48 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 10 are summarized in Tables 7 to 12.

比較例11;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、70℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、70℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 11;
As a starting material, 0.4 (M) of cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 25 (M) ammonium hydrogen carbonate aqueous solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 70 ° C. at a rate of 2 ml / min to prepare a precipitate. Subsequently, the solution containing this precipitate was aged at a temperature of 70 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ8及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.3mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.48(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例11で得られた結果を、表7から表12にまとめて示した。
The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is 3 of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 8 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a relatively small current value peak of 1.3 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE, and therefore the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.48 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 11 are summarized in Tables 7 to 12.

比較例12;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を5ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 12;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 5 ml / min to prepare a precipitate. Subsequently, the solution containing this precipitate was aged at a temperature of 55 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード材料のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード材料は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ7及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。 The X-ray diffraction pattern of the obtained anode material shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode material is 3 of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 7 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.2mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.49(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例12で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a relatively small current value of 1.2 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.49 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 12 are summarized in Tables 7 to 12.

比較例13;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、1時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 13;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and an aqueous cerium nitrate solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. Subsequently, the solution containing the precipitate was aged at 55 ° C. for 1 hour after the cerium nitrate aqueous solution was dropped.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード粉末のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード粉末は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ6及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode powder shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode powder is composed of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 6 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.2mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.48(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例13で得られた結果を、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 1.2 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.48 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 13 are summarized in Tables 7 to 12.

比較例14;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、200℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、200℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
Comparative Example 14;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and an aqueous cerium nitrate solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. Subsequently, the solution containing this precipitate was aged at a temperature of 55 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 200 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 200 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード粉末のX線回折図は、実施例1に示した図1とはことなる結果を示し、結晶相の同定結果からは、アノード粉末は、Pt, Ce(NO, Ce(OH)(NOなどのセリウム硝酸塩及びSnOの複数の成分からなることが分かった。BET法により測定したCe塩 及びSnOの比表面積は、それぞれ15及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode powder shows a result different from that shown in FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode powder is Pt, Ce (NO 3 ) 3 , Ce. It was found to be composed of a plurality of components of cerium nitrate such as (OH) (NO 3 ) 2 and SnO 2 . The specific surface areas of Ce salt and SnO 2 measured by the BET method were 15 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.3mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.54(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。その理由として、溶媒を不活性ガス流通下において蒸発させ乾燥した後、200℃の温度で、水素流通下において、焼成することで、電極材料中の原料の熱分解が完全に終了せず、Pt, CeO, SnOの他に Ce(NOやCe(OH)(NOなどのセリウム硝酸塩が共存したことが、結果的に、電極反応を大きく低下させる要因になったものと考察した。
比較例14で得られた結果を、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 0.3 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.54 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start. The reason is that the pyrolysis of the raw material in the electrode material is not completely completed by evaporating and drying the solvent under an inert gas flow, followed by baking at a temperature of 200 ° C. under a hydrogen flow. , CeO 2 , SnO as well as cerium nitrates such as Ce (NO 3 ) 3 and Ce (OH) (NO 3 ) 2 resulted in a significant decrease in electrode reaction. Considered.
The results obtained in Comparative Example 14 are summarized in Tables 7 to 12.

比較例15;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸水素アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 15;
As a starting material, 0.4 (M) cerium nitrate (purity 99.99%) and 0.03 wt% Pt / 19 wt% (0.77 CeO 2 0.33 SnO 2 ) / 51 wt% C were used. A 25 (M) aqueous ammonium hydrogen carbonate solution (purity 99.5%) was prepared, and an aqueous cerium nitrate solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to prepare a precipitate. Subsequently, the solution containing this precipitate was aged at a temperature of 55 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、550℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 550 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (same as in Example 1) ) Was physically mixed and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード粉末のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード粉末は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ8及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果8.5m/gであり、その表面積から計算される平均2次粒子径は33nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode powder shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode powder is composed of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 8 and 60 m 2 / g, respectively. The particle diameter of Pt in the produced anode material was estimated from the surface area measured by the CO stripping method to be 8.5 m 2 / g, and the average secondary particle diameter calculated from the surface area was 33 nm. .
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.6mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.52(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。その主たる理由は、溶媒を不活性ガス流通下において蒸発させ乾燥した後、550℃の温度で焼成したことで、Ptの粗大化が進み、活性を著しく低下させたものと考察した。
比較例15で得られた結果を、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 0.6 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, was a relatively high value of 0.52 (V vs. RHE), and it was difficult to initiate methanol oxidation. The main reason for this was that the solvent was evaporated and dried under a flow of inert gas and then baked at a temperature of 550 ° C., so that the coarsening of Pt progressed and the activity was significantly reduced.
The results obtained in Comparative Example 15 are summarized in Tables 7 to 12.

比較例16;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 16;
Composition 30wt% Pt / 19wt% (0.77CeO 2 0.33SnO 2) / so that 51 wt% C, as a starting material, cerium nitrate 0.4 (M) and (purity 99.99%) 0. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to produce a precipitate. Subsequently, the solution containing this precipitate was aged at a temperature of 55 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1の試料を空気中、1時間1000℃で仮焼したもの)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。
得られたアノード粉末のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード粉末は、Pt, CeO 及びSnOの3種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ50及び8m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.005 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder (sample of Example 1) at room temperature Were calcined at 1000 ° C. for 1 hour in air) and then mixed with a predetermined amount of carbon black powder to obtain an anode material.
The X-ray diffraction pattern of the obtained anode powder shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode powder is composed of Pt, CeO 2 and SnO 2 . It was found to be composed of various components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 50 and 8 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.

こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.1mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.48(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。
比較例16で得られた結果を、表7から表12にまとめて示した。
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a relatively small current value of 1.1 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. although the addition of the hydrogen and CO takes place, hardly occurs conversion reaction of CO to CO 2 by-product, was confirmed to exhibit a very low electrode activity. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.48 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start.
The results obtained in Comparative Example 16 are summarized in Tables 7 to 12.

比較例17;
組成が30wt%Pt/19wt%(0.77CeO0.33SnO)/51wt%Cになるように、出発原料として、0.4(M)の硝酸セリウム(純度99.99%)と0.25(M)の炭酸アンモニウム水溶液(純度99.5%)を調製し、55℃に熱した炭酸アンモニウム水溶液中に、硝酸セリウム水溶液を2ml/minの速度で滴下して沈殿を作製した。引き続き、この沈殿を含む溶液に関しては、硝酸セリウム水溶液滴下終了後、55℃の温度で、20時間熟成を行った。
Comparative Example 17;
Composition 30wt% Pt / 19wt% (0.77CeO 2 0.33SnO 2) / so that 51 wt% C, as a starting material, cerium nitrate 0.4 (M) and (purity 99.99%) 0. A 25 (M) aqueous ammonium carbonate solution (purity 99.5%) was prepared, and a cerium nitrate aqueous solution was dropped into the aqueous ammonium carbonate solution heated to 55 ° C. at a rate of 2 ml / min to produce a precipitate. Subsequently, the solution containing this precipitate was aged at a temperature of 55 ° C. for 20 hours after the dropwise addition of the cerium nitrate aqueous solution.

こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、エタノール処理とろ過とを交互に2回繰り返し、乾燥窒素ガス中において、2日間乾燥し、前駆体粉末を作製した。前駆体粉末は引き続き、酸素流通下において、400℃の温度で2時間仮焼して結晶性セリア粉末を作成した。得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度0.025M)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥した後、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.05(g・min/ml)で、1時間仮焼し、その後、室温において所定量のSnO粉末(実施例1の試料に同じ)を物理的に混合した後、所定量のカーボンブラック粉末と混合して、アノード材料を得た。 The precipitate thus obtained was repeatedly washed with water and filtered three times, and then alternately treated with ethanol and filtered twice, and dried in dry nitrogen gas for two days to produce a precursor powder. . The precursor powder was subsequently calcined at a temperature of 400 ° C. for 2 hours under an oxygen flow to prepare a crystalline ceria powder. Ceria powder was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 0.025 M), after the solvent is evaporated in an inert gas flow under dry, at a temperature of 400 ° C., Under a hydrogen flow, calcined at W / F (sample weight / hydrogen gas flow rate) 0.05 (g · min / ml) for 1 hour, and then a predetermined amount of SnO 2 powder at room temperature (sample of Example 1) Were the same as the above and then mixed with a predetermined amount of carbon black powder to obtain an anode material.

得られたアノード粉末のX線回折図は、実施例1に示した図1と同様な結果を示しており、結晶相の同定結果からは、アノード粉末は、Pt, CeCl, CeO 及びSnOの4種類の成分からなることが分かった。BET法により測定したCeO 及びSnOの比表面積は、それぞれ21及び60m/gであった。また作製したアノード材料中のPtの粒径を、COストリッピング法により測定した表面積から見積もった結果28m/gであり、その表面積から計算される平均2次粒子径は10nmであった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
The X-ray diffraction pattern of the obtained anode powder shows the same result as that of FIG. 1 shown in Example 1. From the identification result of the crystal phase, the anode powder is Pt, CeCl 4 , CeO 2 and SnO. It was found that it was composed of 2 types of 4 components. The specific surface areas of CeO 2 and SnO 2 measured by the BET method were 21 and 60 m 2 / g, respectively. The Pt particle size in the produced anode material was 28 m 2 / g as estimated from the surface area measured by the CO stripping method, and the average secondary particle size calculated from the surface area was 10 nm.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.

その結果、0.82V vs RHEの電位に、メタノール酸化を示す0.4mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.53(V vs. RHE)と比較的高い値であり、メタノールの酸化が始まりにくい結果となった。この理由を考察するために、X線回折試験により、電極材料を調べた結果、塩化セリウムに帰属する回折線が観察され、セリアに帰属する回折線の強度が著しく低下していた。このように、副生成物である塩化セリウムの生成と不十分なPtの還元処理が、活性の大幅な低下を招いたものと考察した。
比較例17で得られた結果を、表7から表12にまとめて示した。
As a result, a peak of a relatively small current value of 0.4 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE, and therefore the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. In addition, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.53 (V vs. RHE), which indicates that the oxidation of methanol is difficult to start. In order to consider this reason, as a result of examining the electrode material by an X-ray diffraction test, diffraction lines attributed to cerium chloride were observed, and the intensity of diffraction lines attributed to ceria was significantly reduced. Thus, it was considered that the generation of cerium chloride as a by-product and insufficient reduction of Pt led to a significant decrease in activity.
The results obtained in Comparative Example 17 are summarized in Tables 7 to 12.

比較例18;
比較のために、組成が30 wt%Pt/15wt%Ru/55wt%Cとして市販されているアノード材料(Johnson Mattey社製、HighSPEC 7000)を用いて、このアノード材料を、400℃の温度で、水素流通下において、W/F(試料重量/水素ガス流量)0.005(g・min/ml)で、1時間仮焼し、Pt表面の活性化処理を行った。
作製した電極物質活物質上のPt粒子は、TEM観察結果から、2次粒子径が3から5ナノメーター程度のナノ粒子になっていることが分かった。
こうして得られたアノード材料を、実施例1と同じ実験条件下において、サイクリック・ボルタンメトリーにより、電極活性評価を行った。
その結果、0.82V vs RHEの電位に、メタノール酸化を示す1.75mA/cmの比較的小さな電流値のピークが確認されたことから、本比較例において得られたアノード材料は、メタノールから水素とCOへの添加は起こるものの、副生成物であるCOのCOへの転化反応が起こりにくく、極めて低い電極活性を示すことが確認された。また、メタノールの酸化反応が容易に起こるか否かを示す指標であるon set potentialも0.46(V vs. RHE)と比較的高い値であり、本発明により作製したアノード電極にくらべ、メタノールの酸化が始まりにくい結果となった。
Comparative Example 18;
For comparison, an anode material (Johnson Mattey, High SPEC 7000) with a composition of 30 wt% Pt / 15 wt% Ru / 55 wt% C was used, and the anode material was heated at a temperature of 400 ° C. Under hydrogen flow, the Pt surface was activated by calcining at W / F (sample weight / hydrogen gas flow rate) of 0.005 (g · min / ml) for 1 hour.
From the TEM observation result, it was found that the Pt particles on the produced electrode material active material were nanoparticles having a secondary particle diameter of about 3 to 5 nanometers.
The anode material thus obtained was evaluated for electrode activity by cyclic voltammetry under the same experimental conditions as in Example 1.
As a result, a peak of a relatively small current value of 1.75 mA / cm 2 indicating methanol oxidation was confirmed at a potential of 0.82 V vs RHE. Therefore, the anode material obtained in this comparative example was obtained from methanol. Although addition to hydrogen and CO occurs, it was confirmed that the conversion reaction of CO, which is a by-product, to CO 2 hardly occurs and extremely low electrode activity is exhibited. Further, on set potential, which is an index indicating whether or not the oxidation reaction of methanol easily occurs, is a relatively high value of 0.46 (V vs. RHE), which is higher than that of the anode electrode produced according to the present invention. As a result, it was difficult to start oxidation.

以上の実施例及び比較例を総合すると、本発明の特許請求の範囲で規定した、一般式に基づく組成式で規定されるアノード材料であって、アノード材料の平均粒子径、比表面積がそれぞれ特定の値を有してなる場合、その範囲外に比し極めて高い電極活性を有することが明らかにされた。すなわち、このデータによると特許請求の範囲で規定した各要件事項は、それぞれ格別意義のある事項を規定したものと言える。   Summarizing the above examples and comparative examples, the anode material is defined by the composition formula based on the general formula defined in the claims of the present invention, and the average particle diameter and specific surface area of the anode material are specified respectively. It was clarified that the electrode activity was extremely high compared to the range outside the range. In other words, according to this data, it can be said that each requirement defined in the scope of claims defines a matter of exceptional significance.

近年、温暖化対策の一環として二酸化炭素削減が叫ばれる一方、高まるエネルギー需要に応えるために、高出力小型燃料電池の開発が活発に進められている。こうした燃料電池の開発には、家庭などでも気軽につける温度域で、高い出力を示す燃料電池用固体電解質の研究、開発が必要不可欠である。本発明は、まさにこのニーズに対応した燃料電池用電極材料を提供するもので、今後大いに利用されることが期待される。また本発明の高性能電極は、極めて多角的且つ基本的な観点に立脚してナノレベルへテロ界面における新たな知見を得、その上で開発することに成功したものであるところから、極めて安定した品質が保証され、今後は、燃料電池のみならず、各種技術分野において優れた電極材料として供され、且つ利用されるものと期待される。とくに、白金などのリサイクル性に優れた電極であるところから、その利用範囲は広く、新産業創出へと発展することが期待される。   In recent years, reduction of carbon dioxide has been called out as part of global warming countermeasures, while development of high-power small fuel cells has been actively promoted to meet increasing energy demand. For the development of such fuel cells, it is essential to research and develop solid electrolytes for fuel cells that exhibit high output in a temperature range that can be easily applied at home. The present invention provides a fuel cell electrode material that exactly meets this need, and is expected to be used greatly in the future. The high-performance electrode of the present invention is extremely stable because it has been successfully developed based on new knowledge at the nano-level heterointerface based on a very diverse and basic viewpoint. In the future, it is expected to be used as an excellent electrode material not only in fuel cells but also in various technical fields. In particular, since it is an electrode with excellent recyclability, such as platinum, its range of use is wide, and it is expected to develop into the creation of new industries.

本発明にもとづき合成したPt/CeO・SnO/導電性炭素系ナノへテロアノード材料(a:実施例1のアノード材料)、Pt/CeO/導電性炭素系ナノへテロアノード材料(b)と市販のPt/Ru/導電性炭素系ナノへテロアノード材料(c:比較例20のアノード材料)のX線回折図。Pt / CeO 2 .SnO 2 / conductive carbon-based nanoheteroanode material (a: anode material of Example 1) synthesized according to the present invention, Pt / CeO 2 / conductive carbon-based nanoheteroanode material (b ) And a commercially available Pt / Ru / conductive carbon-based nanoheteroanode material (c: anode material of Comparative Example 20). 本発明にもとづき合成したPt/CeO・SnO/導電性炭素系ナノへテロアノード材料(a:実施例1のアノード材料)と市販のPt/Ru/導電性炭素系ナノへテロアノード材料(b:比較例20のアノード材料)のサイクリック・ボルタモグラムの比較。(電解液:0.5M硫酸水溶液+0.5Mメタノール、走査速度:50mV/sec)Pt / CeO 2 .SnO 2 / conductive carbon-based nanoheteroanode material (a: anode material of Example 1) synthesized on the basis of the present invention and commercially available Pt / Ru / conductive carbon-based nanoheteroanode material ( b: Comparison of cyclic voltammograms of the anode material of Comparative Example 20). (Electrolyte: 0.5 M sulfuric acid aqueous solution + 0.5 M methanol, scanning speed: 50 mV / sec) 本発明にもとづき合成したPt/CeO・SnO/導電性炭素系ナノへテロアノード材料(a:実施例1のアノード材料)と市販のPt/Ru/導電性炭素系ナノへテロアノード材料(b:比較例20のアノード材料)上におけるメタノール酸化反応のon set potentialの比較。Pt / CeO 2 .SnO 2 / conductive carbon-based nanoheteroanode material (a: anode material of Example 1) synthesized on the basis of the present invention and a commercially available Pt / Ru / conductive carbon-based nanoheteroanode material ( b: Comparison of on set potential of methanol oxidation reaction on anode material of comparative example 20).

Claims (3)

酸化活性を有するアノード材料であって、導電性カーボンと、希土類元素などの成分を固溶せず、かつ比表面積が1×10m/g以上1×10/g以下の未ドープCeO粉末と、比表面積が1×10m/g以上1×10/g以下のSnO粉末と、平均2次粒子径が30ナノメーター以下のPtの混合物であるとともに、下記化学式1を満たすものであることを特徴とする。
(化学式1)
XPt/Y(ACeO・(1−A)SnO)/Zcarbon
(ただし式中、X、Y、Z、Aは、それぞれ白金(Pt)、CeO、SnO、carbonの含有割合を示すものであり、5×10−2≦X≦4×10−11×10−1≦Y≦3×10−1、Z=1−X−Y、6×10−1≦A<8×10−1であり、Carbonは導電性カーボンを表す)
An anode material having an oxidation activity, which does not dissolve components such as conductive carbon and rare earth elements, and has a specific surface area of 1 × 10 m 2 / g or more and 1 × 10 2 m 2 / g or less. and 2 powder, the specific surface area and is 1 × 10 m 2 / g or more 1 × 10 2 m 2 / g or less of SnO 2 powder, with an average secondary particle diameter is a mixture of 30 nanometers or less of Pt, formula 1 It is characterized by satisfying.
(Chemical formula 1)
XPt / Y (ACeO 2. (1-A) SnO 2 ) / Zcarbon
(In the formula, X, Y, Z, and A represent the content ratios of platinum (Pt), CeO 2 , SnO 2 , and carbon, respectively, and 5 × 10 −2 ≦ X ≦ 4 × 10 −1 1. × 10 −1 ≦ Y ≦ 3 × 10 −1 , Z = 1−XY, 6 × 10 −1 ≦ A <8 × 10 −1 , and Carbon represents conductive carbon)
請求項1に記載のアノード材料の製造方法であって、以下の工程によることを特徴とする。
濃度5×10−2モル/リットル(以下(M)と記す)以上8×10−1(M)以下の硝酸セリウム水溶液を、45℃以上60℃以下の温度にした濃度1×10−1(M)以上5×10−1(M)以下の炭酸アンモニウムまたは炭酸水素アンモニウム水溶液中に、2.5ml/min以下の速度で滴下してセリア前駆体を作製する第一工程と、
第一工程で得られたセリア前駆体を2×10時間以上4×10時間未満その温度に保持して固−液分離し、水洗して乾燥し、その固形分を得る第二工程と、
第二工程で得られた固形分を酸素流雰囲気中にて3×10℃超5×10℃未満で仮焼して結晶性セリアナノ粉末を作製する第三工程と、
第三工程で得られたセリアナノ粉末を塩化白金酸(HPtCl・6HO)水溶液(濃度1×10-2(M)以上5×10-2(M)以下)と混合し、溶媒を不活性ガス流通下において蒸発させ乾燥させる第四工程と、
第四工程にて得られた固形分を3×10℃超5×10℃未満の温度で、水素流雰囲気下において、W/F(試料重量/水素ガス流量)1×10−3(g・min/ml)以上1×10−2(g・min/ml)以下でさらに仮焼する第五工程と、
第五工程にて得られた粉末に、SnO粉末を物理的に混合した後、導電性カーボンと混合する第六工程。
A method for producing an anode material according to claim 1, characterized by the following steps.
Concentration 5 × 10 -2 mol / liter (hereinafter (M) and denoted) or 8 × 10 -1 cerium nitrate aqueous solution (M) or less, the concentration 1 × 10 -1 which is at a temperature of 45 ° C. or higher 60 ° C. or less ( M) a first step of preparing a ceria precursor by dropping into an aqueous ammonium carbonate or ammonium hydrogen carbonate solution of 5 × 10 −1 (M) or less at a rate of 2.5 ml / min or less;
The ceria precursor obtained in the first step is maintained at that temperature for 2 × 10 hours or more and less than 4 × 10 hours, and is subjected to solid-liquid separation, washed with water and dried to obtain the solid content,
A third step of preparing a calcined to crystalline ceria powder is less than 3 × 10 2 ° C. Ultra 5 × 10 2 ° C. The solid obtained in an oxygen stream atmosphere in the second step,
The ceria powder obtained in the third step was mixed with chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) aqueous solution (concentration 1 × 10 -2 (M) or 5 × 10 -2 (M) hereinafter), the solvent A fourth step of evaporating and drying in an inert gas flow;
A fourth solids obtained in Step 3 × 10 2 ℃ super 5 × 10 below 2 ℃ temperature, under a hydrogen stream atmosphere, W / F (sample weight / hydrogen gas flow) 1 × 10 -3 ( g · min / ml) to 1 × 10 −2 (g · min / ml),
A sixth step in which SnO 2 powder is physically mixed with the powder obtained in the fifth step and then mixed with conductive carbon.
請求項1に記載のアノード材料をアノード電極に用いたことを特徴とする燃料電池   A fuel cell comprising the anode material according to claim 1 as an anode electrode.
JP2007216867A 2007-08-23 2007-08-23 Anode material, production method thereof, and fuel cell using the anode material. Expired - Fee Related JP5158760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216867A JP5158760B2 (en) 2007-08-23 2007-08-23 Anode material, production method thereof, and fuel cell using the anode material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216867A JP5158760B2 (en) 2007-08-23 2007-08-23 Anode material, production method thereof, and fuel cell using the anode material.

Publications (2)

Publication Number Publication Date
JP2009054289A true JP2009054289A (en) 2009-03-12
JP5158760B2 JP5158760B2 (en) 2013-03-06

Family

ID=40505218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216867A Expired - Fee Related JP5158760B2 (en) 2007-08-23 2007-08-23 Anode material, production method thereof, and fuel cell using the anode material.

Country Status (1)

Country Link
JP (1) JP5158760B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251297A (en) * 2009-03-27 2010-11-04 National Institute For Materials Science Cathode material
JP2012049070A (en) * 2010-08-30 2012-03-08 National Institute For Materials Science Powder material for electrode, manufacturing method for the same and polymer fuel cell
JP2014034727A (en) * 2012-08-10 2014-02-24 National Institute For Materials Science Electrode catalyst of oxygen electrode for solid oxide type steam electrolytic cell, and production method of the same
CN114583189A (en) * 2022-03-08 2022-06-03 中南大学 Preparation method of efficient precious metal-rare earth alloy methanol poisoning resistant oxygen reduction catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132054A (en) * 1987-11-18 1989-05-24 Agency Of Ind Science & Technol Air electrode material for molten carbonate fuel cell
JP2003080077A (en) * 2001-06-29 2003-03-18 Denso Corp Catalyst particle and method for manufacturing the same
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
JP2005529824A (en) * 2002-06-12 2005-10-06 エンゲルハード・コーポレーシヨン Suppression of methanation activity of platinum group metal catalysts for water-gas conversion
WO2006006739A1 (en) * 2004-07-14 2006-01-19 National Institute For Materials Science Pt/CeO2/CONDUCTIVE CARBON NANOHETEROANODE MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2006210135A (en) * 2005-01-28 2006-08-10 Sony Corp Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
JP2006524898A (en) * 2003-04-16 2006-11-02 キャボット コーポレイション Method of manufacturing a membrane electrode assembly for use in proton exchange membrane fuel cells and direct methanol fuel cells
WO2007011004A1 (en) * 2005-07-15 2007-01-25 Kyoto University Co tolerant multicomponent electrode catalyst for solid polymer fuel cell
JP2007095585A (en) * 2005-09-29 2007-04-12 Toshiba Corp Electrode for fuel cell, membrane electrode complex and fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132054A (en) * 1987-11-18 1989-05-24 Agency Of Ind Science & Technol Air electrode material for molten carbonate fuel cell
JP2003080077A (en) * 2001-06-29 2003-03-18 Denso Corp Catalyst particle and method for manufacturing the same
JP2005529824A (en) * 2002-06-12 2005-10-06 エンゲルハード・コーポレーシヨン Suppression of methanation activity of platinum group metal catalysts for water-gas conversion
JP2006524898A (en) * 2003-04-16 2006-11-02 キャボット コーポレイション Method of manufacturing a membrane electrode assembly for use in proton exchange membrane fuel cells and direct methanol fuel cells
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
WO2006006739A1 (en) * 2004-07-14 2006-01-19 National Institute For Materials Science Pt/CeO2/CONDUCTIVE CARBON NANOHETEROANODE MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2006210135A (en) * 2005-01-28 2006-08-10 Sony Corp Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
WO2007011004A1 (en) * 2005-07-15 2007-01-25 Kyoto University Co tolerant multicomponent electrode catalyst for solid polymer fuel cell
JP2007095585A (en) * 2005-09-29 2007-04-12 Toshiba Corp Electrode for fuel cell, membrane electrode complex and fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251297A (en) * 2009-03-27 2010-11-04 National Institute For Materials Science Cathode material
JP2012049070A (en) * 2010-08-30 2012-03-08 National Institute For Materials Science Powder material for electrode, manufacturing method for the same and polymer fuel cell
JP2014034727A (en) * 2012-08-10 2014-02-24 National Institute For Materials Science Electrode catalyst of oxygen electrode for solid oxide type steam electrolytic cell, and production method of the same
CN114583189A (en) * 2022-03-08 2022-06-03 中南大学 Preparation method of efficient precious metal-rare earth alloy methanol poisoning resistant oxygen reduction catalyst
CN114583189B (en) * 2022-03-08 2024-02-06 中南大学 Preparation method of efficient noble metal-rare earth alloy methanol poisoning resistant oxygen reduction catalyst

Also Published As

Publication number Publication date
JP5158760B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5164089B2 (en) Pt / CeO2 / conductive carbon nanoheteroanode material and method for producing the same
US9647275B2 (en) Bi-functional catalysts for oxygen reduction and oxygen evolution
TWI744400B (en) Electrode material and its manufacturing method
JP5503465B2 (en) Method for preparing pyrochlore oxide catalyst and method for producing electrode catalyst for fuel cell
Omari et al. Cu-doped GdFeO3 perovskites as electrocatalysts for the oxygen evolution reaction in alkaline media
JP5623680B1 (en) Tantalum-containing tin oxide for fuel cell electrode materials
JP2010272248A (en) High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst
CN109967068A (en) A kind of netted doping type perovskite catalyst and its preparation method and application
WO2020096022A1 (en) Material for oxygen evolution (oer) electrode catalyst, and use thereof
Kaedi et al. Ethanol electrooxidation on high-performance mesoporous ZnFe 2 O 4-supported palladium nanoparticles
CN110416562A (en) A kind of netted doping type perovskite catalyst and its preparation method and application
JP5158760B2 (en) Anode material, production method thereof, and fuel cell using the anode material.
CN111133619A (en) Positive electrode catalyst for metal-air battery and metal-air battery
JPWO2019065285A1 (en) Melilite complex oxide
Yuasa Molten salt synthesis of Nb-doped TiO2 rod-like particles for use in bifunctional oxygen reduction/evolution electrodes
CN113621988B (en) High-efficiency oxygen precipitation high-entropy amorphous oxide nano catalyst and preparation method and application thereof
JP2013176717A (en) Metal oxide catalyst and method of manufacturing the same, and fuel cell using the same
Liu et al. Cuprous oxide template synthesis of hollow-cubic Cu 2 O@ Pd x Ru y nanoparticles for ethanol electrooxidation in alkaline media
JP5521198B2 (en) Powder material for electrode, production method thereof, and polymer fuel cell
JP2005050759A (en) Cathode reaction catalyst for solid polymer electrolytic fuel cell
JP2019137596A (en) Composite material and method for producing the same, catalyst and metal air battery
KR102385067B1 (en) Co catalyst for oxygen evolution reaction and The manufacturing method for the same
JP5858077B2 (en) High potential stable carrier and electrode catalyst for polymer electrolyte fuel cell
Yavari et al. Presentation of anodic electrocatalyst for polymeric fuel cell: Pt nanoparticles immobilized on NdFeO3 nanocrystals and carbon nanotubes
JP6923133B2 (en) Catalyst and anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

R150 Certificate of patent or registration of utility model

Ref document number: 5158760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees