JP2009053148A - Multi-wavelength interferometer - Google Patents

Multi-wavelength interferometer Download PDF

Info

Publication number
JP2009053148A
JP2009053148A JP2007222370A JP2007222370A JP2009053148A JP 2009053148 A JP2009053148 A JP 2009053148A JP 2007222370 A JP2007222370 A JP 2007222370A JP 2007222370 A JP2007222370 A JP 2007222370A JP 2009053148 A JP2009053148 A JP 2009053148A
Authority
JP
Japan
Prior art keywords
wavelength
light
reflecting surface
reflected
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007222370A
Other languages
Japanese (ja)
Other versions
JP5282929B2 (en
Inventor
Kazuhiko Kawasaki
和彦 川▲崎▼
Yoshimasa Suzuki
義将 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2007222370A priority Critical patent/JP5282929B2/en
Publication of JP2009053148A publication Critical patent/JP2009053148A/en
Application granted granted Critical
Publication of JP5282929B2 publication Critical patent/JP5282929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-wavelength interferometer capable of measuring at high precision with accurately specifying a composed wavelength determined by a plurality of different wavelengths by measuring wavelength difference among a plurality of different wavelengths with a simple constitution. <P>SOLUTION: Multi-wavelength interference measurement is performed using emitted light having different wavelengths λ<SB>1</SB>, λ<SB>2</SB>(λ<SB>1</SB>>λ<SB>2</SB>). A reflection member 20 for measuring wavelength is provided with a reflection face 20A and 20B which are arranged mutually separately at a light path length 1a. The light reflected by a beam splitter 19 and reflected by each of the reflection faces 20A and 20B reaches a photographing device 21 to form interference fringe. By acquiring these interference fringe images using different wavelengths λ<SB>1</SB>, λ<SB>2</SB>respectively, the phase of each interference fringe is computed. Using these computed phases, the composed wavelength Λ is computed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の異なる波長の光を用いて被測定物の干渉計測を行う多波長干渉計に関する。   The present invention relates to a multiwavelength interferometer that performs interference measurement of an object to be measured using light of a plurality of different wavelengths.

平面形状等を高精度に測定する装置として干渉計が知られている。干渉計は基準となる参照面からの反射光(参照光)と、被測定物からの反射光(測定光)とを合成させて干渉縞を発生させ、この干渉縞を解析することにより参照面に対する測定対象物の相対的な形状を測定するものである。しかし、干渉計測で一意に求めることができるのは、測定光の波長の整数倍成分(縞次数)を除いた、一波長未満の端数成分である。縞次数の部分は、例えば位相アンラッピング等の方法により求めることが出来る。しかし、測定面に測定光の波長の半分以上の不連続な段差(撮像素子の隣接する画素間での段差)がある場合には、その不連続な部分での高低差の判別が不可能となり、測定を行うことができないという問題がある。   An interferometer is known as an apparatus for measuring a planar shape or the like with high accuracy. The interferometer generates interference fringes by synthesizing the reflected light (reference light) from the reference surface serving as a reference and the reflected light (measurement light) from the object to be measured. It measures the relative shape of the object to be measured. However, what can be uniquely obtained by interference measurement is a fractional component of less than one wavelength excluding an integral multiple component (stripe order) of the wavelength of the measurement light. The fringe order portion can be obtained by a method such as phase unwrapping. However, if there is a discontinuous step (step between adjacent pixels of the image sensor) that is more than half the wavelength of the measurement light on the measurement surface, it is impossible to determine the height difference at that discontinuous portion. There is a problem that the measurement cannot be performed.

この問題を解決するものとして、測定光として複数の異なる波長による干渉測定を行い、それぞれの波長によって計測された干渉縞の位相を合成する方法(以下「多波長干渉法」という)が知られている(例えば、特許文献1参照)。例えば2つの異なる波長λ、λ(λ>λ)を用いる場合、その合成波長Λ=λ×λ/(λ−λ)の半分までの不連続な段差も測定可能となり、通常の干渉計測よりも測定レンジを大きくすることができる。例えば、λ=633nm、λ=632nmとした場合、約0.2mmの不連続な段差を有する被測定物の形状も測定可能となり、単一波長による干渉計測に比べ300倍以上の測定レンジを得ることが出来る。λとλの差を小さくすればするほど、大きな測定レンジを得ることができる。 As a solution to this problem, there is known a method (hereinafter referred to as “multi-wavelength interferometry”) in which interference measurement is performed using a plurality of different wavelengths as measurement light, and the phases of interference fringes measured by the respective wavelengths are synthesized. (For example, refer to Patent Document 1). For example, when two different wavelengths λ 1 and λ 21 > λ 2 ) are used, it is possible to measure discontinuous steps up to half of the combined wavelength Λ = λ 1 × λ 2 / (λ 1 −λ 2 ). Thus, the measurement range can be made larger than that of normal interference measurement. For example, when λ 1 = 633 nm and λ 2 = 632 nm, the shape of an object to be measured having a discontinuous step of about 0.2 mm can be measured, and the measurement range is 300 times or more that of interference measurement using a single wavelength. Can be obtained. The smaller the difference between λ 1 and λ 2 , the larger the measurement range can be obtained.

多波長干渉法では、波長差(λ−λ)が設定値からずれると、合成波長Λが変化し、測定精度に影響を及ぼすため、波長差(λ−λ)が設定値からずれないように制御する必要がある。特に、測定レンジを大きくするために波長差(λ−λ)を小さく設定する場合には、波長差(λ−λ)の設定値からの誤差が測定精度に大きく影響する。
特開平7−181005号公報
In the multi-wavelength interferometry, if the wavelength difference (λ 1 −λ 2 ) deviates from the set value, the combined wavelength Λ changes and affects the measurement accuracy, so the wavelength difference (λ 1 −λ 2 ) It is necessary to control so as not to shift. In particular, when the wavelength difference (λ 1 −λ 2 ) is set to be small in order to increase the measurement range, an error from the set value of the wavelength difference (λ 1 −λ 2 ) greatly affects the measurement accuracy.
JP 7-181005 A

本発明は、複数の異なる波長間の波長差を、簡易な構成により測定して、複数の異なる波長によって定められる合成波長を正確に特定することで、高精度な測定を可能にした多波長干渉計を提供することを目的とする。   The present invention measures the wavelength difference between a plurality of different wavelengths with a simple configuration and accurately specifies a synthetic wavelength determined by the plurality of different wavelengths, thereby enabling multi-wavelength interference that enables highly accurate measurement. The purpose is to provide a total.

上記目的を達成するため、本発明に係る干渉計は、複数の異なる波長の出射光を出射可能に構成された光源と、前記光源が出射する出射光を測定光と参照光とに分割すると共に、参照面で反射した前記参照光及び被測定物で反射した測定光を合成して合成光とする光分割合成部材と、前記合成光による干渉縞を撮像する撮像部とを備え、前記複数の異なる波長の出射光の各々により得られた干渉縞の位相、及び前記複数の異なる波長の合成波長に基づいて前記被測定物の形状を算出する多波長干渉計において、光路長差が既知の第1反射面及び第2反射面を有する反射部材と、前記複数の異なる波長の出射光をそれぞれ前記反射部材に入射させて得られた複数の干渉縞を前記撮像部で撮像し、撮像された複数の干渉縞の位相に基づいて前記合成波長を算出する算出部とを備えたことを特徴とする。   In order to achieve the above object, an interferometer according to the present invention divides light emitted from the light source into measurement light and reference light, which is configured to emit light having a plurality of different wavelengths. A light splitting / combining member that combines the reference light reflected by the reference surface and the measurement light reflected by the object to be measured to be combined light, and an imaging unit that captures interference fringes by the combined light, In a multi-wavelength interferometer that calculates the shape of the object to be measured based on the phase of interference fringes obtained from each of outgoing lights having different wavelengths and the combined wavelength of the plurality of different wavelengths, the optical path length difference is known. A plurality of interference fringes obtained by causing a reflection member having one reflection surface and a second reflection surface, and a plurality of interference fringes obtained by causing the plurality of outgoing lights having different wavelengths to enter the reflection member, respectively, Based on the phase of the interference fringes Characterized by comprising a calculation unit for calculating a wavelength.

この発明によれば、複数の異なる波長間の波長差を、簡易な構成により測定して、複数の異なる波長によって定められる合成波長を正確に特定することができ、高精度な測定を可能にした多波長干渉計を提供することができる。   According to the present invention, the wavelength difference between a plurality of different wavelengths can be measured with a simple configuration, and the combined wavelength determined by the plurality of different wavelengths can be accurately specified, enabling high-precision measurement. A multi-wavelength interferometer can be provided.

次に、本発明の実施の形態を、図面を参照して詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態] 図1は、本発明の第1の実施の形態に係る多波長干渉計の全体構成を示している。この多波長干渉計は、レーザ光源11と、コリメート光学系12と、ビームスプリッタ13と、参照面14と、結像レンズ16と、撮像装置17と、モニタ18と、ビームスプリッタ19と、波長観測用反射部材20と、撮像素子21と、モニタ22と、コンピュータ100とから構成されている。コンピュータ100は、機能ブロック図として、被測定物Wを測定する為の干渉縞の位相を算出する位相算出部101と、被測定物Wの形状を算出する形状算出部102と、波長観測用反射部材20からの反射光による干渉縞の位相を算出する位相算出部103と、合成波長算出部104とを含むものとして表現されている。   1ST EMBODIMENT FIG. 1: has shown the whole structure of the multiwavelength interferometer which concerns on the 1st Embodiment of this invention. This multiwavelength interferometer includes a laser light source 11, a collimating optical system 12, a beam splitter 13, a reference surface 14, an imaging lens 16, an imaging device 17, a monitor 18, a beam splitter 19, and wavelength observation. It is comprised from the reflective member 20, the image pick-up element 21, the monitor 22, and the computer 100. FIG. As a functional block diagram, the computer 100 includes a phase calculation unit 101 that calculates the phase of interference fringes for measuring the object to be measured W, a shape calculation unit 102 that calculates the shape of the object to be measured W, and a reflection for wavelength observation. It is expressed as including a phase calculation unit 103 that calculates the phase of interference fringes due to reflected light from the member 20 and a synthetic wavelength calculation unit 104.

レーザ光源11は、少なくとも2つ以上の可干渉性の単一波長の光を出射する光源である。コリメート光学系12は、レーザ光源11から射出された出射光束を平行光束とする機能を有する。ビームスプリッタ13、参照面14、結像レンズ16、撮像装置17は、公知の多波長干渉計と同様の構成である。すなわち、ビームスプリッタ13は、レーザ光源11からの出射光束を被測定物Wに向かう測定光と、参照面14に向かう参照光とに分離すると共に、被測定物Wで反射した測定光及び参照面14で反射した参照光を合成した合成光を生成するものである。   The laser light source 11 is a light source that emits light of at least two or more coherent single wavelengths. The collimating optical system 12 has a function of converting the emitted light beam emitted from the laser light source 11 into a parallel light beam. The beam splitter 13, the reference surface 14, the imaging lens 16, and the imaging device 17 have the same configuration as a known multiwavelength interferometer. That is, the beam splitter 13 separates the light beam emitted from the laser light source 11 into measurement light directed to the object to be measured W and reference light directed to the reference surface 14, and the measurement light and the reference surface reflected by the object to be measured W. 14, the combined light is generated by combining the reference light reflected by 14.

この合成光は結像レンズ16を通過して撮像装置17の受光面に結像される。撮像装置17の撮像面には合成光による干渉縞画像が形成され、この干渉縞画像がモニタ18に表示される。撮像装置17で撮像された干渉縞画像がコンピュータ100で解析されることにより、被測定物Wの表面性状データを得ることができる。なお、撮像装置17としてはCCD撮像素子が使用できるが、これに限らず、フォトダイオードアレイなど、干渉縞の明暗が観測可能な素子であれば様々なものが利用可能である。   The combined light passes through the imaging lens 16 and forms an image on the light receiving surface of the imaging device 17. An interference fringe image formed by the combined light is formed on the imaging surface of the imaging device 17, and this interference fringe image is displayed on the monitor 18. By analyzing the interference fringe image captured by the imaging device 17 by the computer 100, the surface property data of the object W to be measured can be obtained. A CCD image pickup device can be used as the image pickup device 17, but not limited to this, various devices such as a photodiode array can be used as long as the light and darkness of interference fringes can be observed.

ここで、通常の一波長の干渉計の計測原理、及び多波長干渉計の計測の原理を簡単に説明する。   Here, the measurement principle of a normal single-wavelength interferometer and the measurement principle of a multi-wavelength interferometer will be briefly described.

波長λの光源により得られる干渉縞の強度I(x、y)は、次の[数1]で示される。   The intensity I (x, y) of the interference fringes obtained by the light source having the wavelength λ is expressed by the following [Equation 1].

ただし、B(x、y)は点(x、y)における干渉縞のバイアス、A(x、y)は点(x、y)における振幅、φ(x、y)+2πn/λは点(x、y)における位相を表している(nは縞次数、φ(x、y)は端数部分)。この干渉縞の強度I(x、y)からは、実際の位相φ(x、y)+2πn/λを一意に求めることはできず、一意に求めることが出来るのは、波長λの整数倍部分即ち縞次数nを除いた一波長未満の端数成分であるφ(x、y)のみである。縞次数nは、位相アンラッピング法等を用いて、試行錯誤的に求めることができる。しかし、被測定物Wに波長λの半分を超える不連続な段差がある場合、被測定物Wの測定は不可能となる。   Where B (x, y) is the interference fringe bias at point (x, y), A (x, y) is the amplitude at point (x, y), and φ (x, y) + 2πn / λ is the point (x , Y) (n is the fringe order, φ (x, y) is the fractional part). From the interference fringe intensity I (x, y), the actual phase φ (x, y) + 2πn / λ cannot be determined uniquely, but can be determined uniquely by an integer multiple of the wavelength λ. That is, only φ (x, y) which is a fractional component of less than one wavelength excluding the fringe order n. The fringe order n can be obtained by trial and error using a phase unwrapping method or the like. However, if the workpiece W has a discontinuous step exceeding half the wavelength λ, the workpiece W cannot be measured.

本発明の実施の形態に係る多波長干渉計は、異なる波長λ、λの出射光を用いて干渉縞画像をそれぞれの波長毎に得るものである。このとき、それぞれの波長で求められる位相差の変化の周期は、合成波長Λ=λ・λ/|λ−λ|で表される周期で一致する。合成波長Λの範囲内であれば、2つの波長の位相差により縞次数が決定できる。このため、単一波長による干渉計測に比べ大きい測定レンジを得ることができる。 The multi-wavelength interferometer according to the embodiment of the present invention obtains an interference fringe image for each wavelength by using outgoing lights having different wavelengths λ 1 and λ 2 . At this time, the period of change of the phase difference obtained at each wavelength coincides with the period represented by the combined wavelength Λ = λ 1 · λ 2 / | λ 1 −λ 2 |. Within the range of the combined wavelength Λ, the fringe order can be determined by the phase difference between the two wavelengths. For this reason, a large measurement range can be obtained as compared with interference measurement using a single wavelength.

本実施の形態のような多波長干渉計においては、異なる波長λ、λの差(波長差)が変化すると合成波長Λが変化する。波長安定性の高いレーザ等を光源として用いた場合であっても、温度変化等により波長は変化し、合成波長Λも変化する。合成波長Λが変化していることを把握せずに設定値に沿って干渉計測を行うことは、測定精度を低下させることにつながる。特に、測定レンジを広げるため波長λ、λの波長差を小さくしている場合には、波長の僅かな変化が合成波長Λの設定値からの大きな変化へとつながる。 In the multiwavelength interferometer as in the present embodiment, the combined wavelength Λ changes when the difference (wavelength difference) between the different wavelengths λ 1 and λ 2 changes. Even when a laser having high wavelength stability or the like is used as a light source, the wavelength changes due to a temperature change or the like, and the combined wavelength Λ also changes. Performing interference measurement along the set value without knowing that the synthetic wavelength Λ has changed leads to a decrease in measurement accuracy. In particular, when the wavelength difference between the wavelengths λ 1 and λ 2 is reduced in order to widen the measurement range, a slight change in the wavelength leads to a large change from the set value of the combined wavelength Λ.

そこで、この実施の形態の多波長干渉計では、次の構成により、合成波長Λを算出し、この算出された合成波長Λを用いて被測定物Wの形状を計測する。即ち、この実施の形態の多波長干渉計は、コリメート光学系12とビームスプリッタ13との間にビームスプリッタ19を備え、このビームスプリッタ19の分岐光路に波長観測用反射部材20を設置している。また、ビームスプリッタ19を挟んで波長観測用反射部材20と反対側には、撮像装置21が備えられている。なお、ビームスプリッタ19と撮像装置21との間に結像光学系を備えることも可能である。   Therefore, in the multiwavelength interferometer of this embodiment, the combined wavelength Λ is calculated with the following configuration, and the shape of the workpiece W is measured using the calculated combined wavelength Λ. That is, the multi-wavelength interferometer of this embodiment includes a beam splitter 19 between the collimating optical system 12 and the beam splitter 13, and a wavelength observation reflecting member 20 is installed in the branch optical path of the beam splitter 19. . An imaging device 21 is provided on the side opposite to the wavelength observation reflecting member 20 with the beam splitter 19 in between. An imaging optical system may be provided between the beam splitter 19 and the imaging device 21.

波長観測用反射部材20は、図1に示すように、光路長laだけ離間して配置された反射面20Aと20Bとから構成される。ビームスプリッタ19で反射されて反射面20A及び20Bでそれぞれ反射された光は、光路長差2×laを与えられて撮像装置21に達する。この光路差の異なる光がビームスプリッタ19で合成されて撮像装置21に入射すると、この光路差に基づく干渉縞画像が撮像される。このような干渉縞画像を異なる波長λ、λを用いてそれぞれ取得し、それぞれの干渉縞の位相をコンピュータ100の位相算出部103において算出する。この算出された位相を用いて、合成波長算出部104により合成波長Λを算出することができる。その具体的な算出手順を以下に説明する。 As shown in FIG. 1, the wavelength observing reflecting member 20 is composed of reflecting surfaces 20A and 20B spaced apart by an optical path length la. The light reflected by the beam splitter 19 and reflected by the reflecting surfaces 20A and 20B reaches the imaging device 21 with an optical path length difference of 2 × la. When lights having different optical path differences are combined by the beam splitter 19 and incident on the imaging device 21, an interference fringe image based on the optical path difference is captured. Such interference fringe images are acquired using different wavelengths λ 1 and λ 2 , respectively, and the phase of each interference fringe is calculated by the phase calculation unit 103 of the computer 100. The synthetic wavelength Λ can be calculated by the synthetic wavelength calculation unit 104 using the calculated phase. The specific calculation procedure will be described below.

波長λ、λそれぞれの場合に撮像装置21で得られる干渉縞のある点における位相を、それぞれφ(x、y)、φ(x、y)とすると、λ、λ、φ、φの関係は、次の[数2]、[数3]のように表現され得る((x、y)の部分は簡略化の為省略する)。 When the phases at the points where there are interference fringes obtained by the imaging device 21 in the case of each of the wavelengths λ 1 and λ 2 are φ 1 (x, y) and φ 2 (x, y), respectively, λ 1 , λ 2 , The relationship between φ 1 and φ 2 can be expressed as the following [Equation 2] and [Equation 3] (the portions of (x, y) are omitted for simplification).

ここで、n、nは縞次数であり、光路長差laが波長の何倍であるかを示している。この[数2]、[数3]の差を取って、次式[数4]を得る。 Here, n 1 and n 2 are stripe orders and indicate how many times the optical path length difference la is the wavelength. Taking the difference between [Equation 2] and [Equation 3], the following equation [Equation 4] is obtained.

波長λ、λの値と光路長差laが[数5]の関係にある場合には、波長λの場合と波長λの場合とで縞次数n、nが変化しない(n=n)とみなすことができる。 When the values of the wavelengths λ 1 and λ 2 and the optical path length difference la are in the relationship of [Equation 5], the fringe orders n 1 and n 2 do not change between the wavelength λ 1 and the wavelength λ 2 ( n 1 = n 2 ).


例えば、λ=632nm、λ=633nmであって距離laが0.1mm以下程度であれば、n=nとみなすことができる。この場合、[数4]の第2項を消去して変形することにより、合成波長Λは次の[数6]のようにして算出することができる。このようにこの実施の形態によれば、正確な合成波長Λをリアルタイムに、しかも波長観測用反射部材20等の簡易な構成により算出することができるため、多波長干渉計の測定精度が低下することを防止することができる。 For example, if λ 1 = 632 nm and λ 2 = 633 nm and the distance la is about 0.1 mm or less, it can be considered that n 1 = n 2 . In this case, by deleting the second term of [Equation 4] and modifying it, the combined wavelength Λ can be calculated as in the following [Equation 6]. As described above, according to this embodiment, since the accurate combined wavelength Λ can be calculated in real time and with a simple configuration such as the wavelength observation reflecting member 20, the measurement accuracy of the multiwavelength interferometer is lowered. This can be prevented.

なお、通常、n、nの絶対値は、laが波長λ、λと同等の精度を与えられていれば決定することができる。しかしここでは上記のようにn=nとみなすことができれば、n、nの絶対値を求める必要は無い。また、laが0.1mmよりも大きい場合であっても、縞次数nとnの相対的な関係を定めることが出来る程度にlaが値付けされていれば、[数4]、[数6]に基づいて合成波長Λを算出することができる。この場合、[数4]の右辺第2項が残るが、この第2項は定数であるため、合成波長Λを算出する上で何ら問題はない。 In general, the absolute values of n 1 and n 2 can be determined if la is given the same accuracy as the wavelengths λ 1 and λ 2 . However, if it can be considered that n 1 = n 2 as described above, there is no need to obtain the absolute values of n 1 and n 2 . Even if la is larger than 0.1 mm, if la is priced to such an extent that the relative relationship between the stripe orders n 1 and n 2 can be determined, [Equation 4], [ The synthetic wavelength Λ can be calculated based on Equation 6]. In this case, the second term on the right side of [Equation 4] remains, but since the second term is a constant, there is no problem in calculating the combined wavelength Λ.

上記の実施の形態では、波長観測用反射部材20は、反射面20Aと20Bを路長差Laだけ離間して配置してなるものとして説明したが、波長観測用部材20はこれに限定されるものではない。例えば、図2に示すように、反射面20Aをレーザ光源11から見てビームスプリッタ19の透過側に、反射面20Bをビームスプリッタ19の反射側に配置し、両者間の光路長差がlaとなるようにしてもよい。また、図3に示すような平行平面板を波長観測用反射部材20として用いてもよい。この場合、表面側を反射面20A、裏面側を反射面20Bとして機能させ、両者間の光路長差をlaとなるようにする。   In the above embodiment, the wavelength observation reflection member 20 is described as having the reflection surfaces 20A and 20B spaced apart by the path length difference La, but the wavelength observation member 20 is limited to this. It is not a thing. For example, as shown in FIG. 2, the reflection surface 20A is disposed on the transmission side of the beam splitter 19 when viewed from the laser light source 11, and the reflection surface 20B is disposed on the reflection side of the beam splitter 19, and the optical path length difference between the two is la. It may be made to become. Further, a parallel flat plate as shown in FIG. 3 may be used as the wavelength observation reflecting member 20. In this case, the front surface side functions as the reflecting surface 20A and the back surface side functions as the reflecting surface 20B, and the optical path length difference between them is set to la.

図4は、波長観測用反射部材20の別の構成例を示したものである。この図4の波長観測用反射部材20は、平面状の反射面20Aと、階段状に高さが変化する面を反射面20Bとした材料とを備えている。これにより、反射面20Aと反射面20Bとの間の光路長差がla、lb、lc、ld(la<lb<lc<ld)と階段状に変化するものである。このように複数通りの光路長差を提供することにより、広い測定レンジを得ると同時に高い分解能で合成波長Λを算出することが可能となる。   FIG. 4 shows another configuration example of the wavelength observation reflecting member 20. The wavelength observing reflecting member 20 in FIG. 4 includes a planar reflecting surface 20A and a material having a reflecting surface 20B having a step-like height changing surface. As a result, the optical path length difference between the reflecting surface 20A and the reflecting surface 20B changes stepwise as la, lb, lc, and ld (la <lb <lc <ld). By providing a plurality of optical path length differences in this way, it is possible to obtain a wide measurement range and at the same time calculate the combined wavelength Λ with high resolution.

上記の[数2]、[数3]から明らかなように、レーザ光源11からの出射光の波長λ、λが変化した場合に算出される干渉縞の位相φ、φの変化量は、波長観測用反射部材20の反射面20A、20B間の光路長差laに依存する。光路長差laが大きいと波長λ、λの変化に対する位相φ、φの変化量が大きくなり、波長λ、λの変化が所定の範囲内であれば、合成波長Λを高い分解能で算出することができる。しかし、位相φ、φの変化量が大きい分、縞次数n、nも変わりやすくなる。縞次数n、nが変わると、波長λ、λの変化量ひいては合成波長Λの大きさを決定することが困難となる。一方、laが小さいと、波長λ、λの変化に対する位相φ、φの変化量が小さくなり、縞次数n、nが変化しない状態で干渉縞信号を得ることが出来る波長の範囲を広くすることができる。しかし、位相φ、φの変化が小さい分、合成波長Λの算出精度は低下する。 As is clear from the above [Equation 2] and [Equation 3], changes in the phases [phi] 1 and [phi] 2 of the interference fringes calculated when the wavelengths [lambda] 1 and [lambda] 2 of the light emitted from the laser light source 11 change. The amount depends on the optical path length difference la between the reflecting surfaces 20A and 20B of the wavelength observation reflecting member 20. Wavelength lambda 1 and a large optical path length difference la, phase phi 1, the amount of change phi 2 becomes large with respect to a change in lambda 2, the wavelength lambda 1, a change in lambda 2 is within the predetermined range, the synthetic wavelength Λ It can be calculated with high resolution. However, as the amount of change in the phases φ 1 and φ 2 is large, the fringe orders n 1 and n 2 are also easily changed. When the fringe orders n 1 and n 2 change, it becomes difficult to determine the amount of change in the wavelengths λ 1 and λ 2 and thus the combined wavelength Λ. On the other hand, when la is small, the amount of change in the phases φ 1 and φ 2 with respect to changes in the wavelengths λ 1 and λ 2 is small, and the interference fringe signal can be obtained in a state where the fringe orders n 1 and n 2 do not change. Can be widened. However, the calculation accuracy of the combined wavelength Λ is reduced by the small change in the phases φ 1 and φ 2 .

図4の波長観測用反射部材20を用いた場合、異なる光路長差la、lb、lc、ldの部分で測定される位相φの変化を比較することにより、縞次数nの変化量を把握することができ、これにより、広い測定レンジを得ると同時に高い分解能で合成波長Λを算出することが可能となる。すなわち、測定レンジと分解能が異なる波長センサを複数用意したのと同等の効果を得ることができる。   When the reflection member 20 for wavelength observation of FIG. 4 is used, the amount of change in the fringe order n is grasped by comparing the changes in the phase φ measured in the different optical path length differences la, lb, lc, and ld. This makes it possible to obtain a wide measurement range and at the same time calculate the composite wavelength Λ with high resolution. That is, it is possible to obtain the same effect as when a plurality of wavelength sensors having different measurement ranges and resolutions are prepared.

図5は複数の光路長差を有する波長観測用反射部材20の別の例を示している。この波長観測用反射部材20は、ガラス等の透明材料1つのみで形成され、階段状に形成された表面を反射面20Aとし、裏面側の平面状の反射面を反射面20Bとしている。   FIG. 5 shows another example of the wavelength observation reflecting member 20 having a plurality of optical path length differences. This wavelength observation reflecting member 20 is formed of only one transparent material such as glass, and the surface formed in a stepped shape is the reflecting surface 20A, and the planar reflecting surface on the back surface side is the reflecting surface 20B.

[第2の実施の形態] 図6は、本発明の第2の実施の形態に係る多波長干渉計の全体構成を示している。この実施の形態の多波長干渉計は、波長観測用反射部材20が被測定物Wからの反射光によって発生する干渉縞を撮像する撮像装置の撮像領域内に設置され、コリメート光学系12による平行光束の照明範囲に両者が含まれるように構成される。従って、被測定物W、及び波長観測用反射部材20それぞれの干渉縞画像P1、P2が同一の撮像装置17により撮像され、モニタ18に並列的に表示される。この実施の形態では、第1の実施の形態のように別個のビームスプリッタ19及び撮像装置21が不要となるため、構成を簡単にすることができ、装置の低価格化や小型化を図ることができる。   Second Embodiment FIG. 6 shows the overall configuration of a multiwavelength interferometer according to a second embodiment of the present invention. In the multi-wavelength interferometer of this embodiment, the wavelength observation reflecting member 20 is installed in an imaging region of an imaging device that captures interference fringes generated by reflected light from the object W to be measured, and is parallel by the collimating optical system 12. Both are comprised in the illumination range of a light beam. Accordingly, the interference fringe images P <b> 1 and P <b> 2 of the object to be measured W and the wavelength observation reflecting member 20 are captured by the same imaging device 17 and displayed in parallel on the monitor 18. In this embodiment, since the separate beam splitter 19 and the imaging device 21 are not required as in the first embodiment, the configuration can be simplified, and the cost and size of the device can be reduced. Can do.

[第3の実施の形態] 図7は、本発明の第3の実施の形態に係る多波長干渉計の全体構成を示している。この実施の形態は、波長観測用反射部材20が被測定物Wと隣接して設置され、コリメート光学系12による平行光束の照明範囲に両者が含まれるようにされている点では第2の実施の形態と共通している。   [Third Embodiment] FIG. 7 shows an overall configuration of a multi-wavelength interferometer according to a third embodiment of the present invention. This embodiment is the second embodiment in that the wavelength observation reflecting member 20 is installed adjacent to the object W to be measured, and both are included in the illumination range of the parallel light flux by the collimating optical system 12. It is common with the form.

ただし、この実施の形態では、いわゆる位相シフト法による干渉計測を行うための構成を備えている点で、第2の実施の形態と異なっている。即ちこの実施の形態の多波長干渉計は、被測定物Wと参照面14との間に配置されるλ/4板31、参照光と測定光を合成した合成光を3分割するビームスプリッタ32、45°ずつ透過軸方向の異なる3つの偏光板33A〜C、及び撮像装置17A〜Cを備えている。   However, this embodiment is different from the second embodiment in that a configuration for performing interference measurement by a so-called phase shift method is provided. That is, the multiwavelength interferometer of this embodiment includes a λ / 4 plate 31 disposed between the object to be measured W and the reference surface 14, and a beam splitter 32 that divides the combined light obtained by combining the reference light and the measurement light into three. , Three polarizing plates 33A to 33C having different transmission axis directions by 45 ° and imaging devices 17A to 17C are provided.

この構成において、被測定物Wで反射されλ/4板31を通過した測定光と、参照面14で反射した参照光とは、互いに偏光方向が直交した直線偏光となり、ビームスプリッタ13により合成されて合成光となる。この合成光は、ビームスプリッタ32により3つに分割された後、3つの偏光板33A〜Cを通過する。   In this configuration, the measurement light reflected by the object to be measured W and passed through the λ / 4 plate 31 and the reference light reflected by the reference surface 14 become linearly polarized light whose polarization directions are orthogonal to each other, and are combined by the beam splitter 13. To become synthetic light. The combined light is divided into three by the beam splitter 32 and then passes through the three polarizing plates 33A to 33C.

偏光板33A〜C通過した3つの光は互いに位相が90°ずつ異なる光となり、撮像装置17A〜Cに投影される。この実施の形態によれば、偏光板33A〜Cにより干渉縞の位相をシフトさせて、複数枚の干渉縞画像を撮像装置17A〜Cにより同時に取得することができる。また、上記実施の形態と同様に、レーザ光源11からの出射光の波長を波長λ、λと切り換えて多波長干渉を行うことにより、その合成波長Λにより、広い測定レンジでの干渉計測が可能となる。合成波長Λは、被測定物Wと隣接して配置された波長観測用反射部材20による干渉縞画像を解析することにより求めることができるのは、上記の実施の形態と同様である。 The three lights that have passed through the polarizing plates 33A to 33C are lights that are 90 ° out of phase with each other, and are projected onto the imaging devices 17A to 17C. According to this embodiment, the phase of the interference fringes can be shifted by the polarizing plates 33A to 33C, and a plurality of interference fringe images can be simultaneously acquired by the imaging devices 17A to 17C. Similarly to the above-described embodiment, the wavelength of the light emitted from the laser light source 11 is switched between the wavelengths λ 1 and λ 2 to perform multi-wavelength interference. Is possible. The synthetic wavelength Λ can be obtained by analyzing the interference fringe image by the wavelength observation reflecting member 20 arranged adjacent to the object W to be measured, as in the above embodiment.

なお、この実施の形態において、波長観測用反射部材の干渉画像を、第1の実施の形態と同様に別個のビームスプリッタおよび撮像装置(19,21)を設置することにより観測することも可能である。また、図7では偏光板33A〜Cを用いた光学的な位相シフト法による干渉計を説明したが、参照面を物理的に移動させて位相シフトを行う干渉計にも、本発明は適用可能である。また、撮像装置17A〜Cを3台準備する例を説明したが、これに限らず、光路切替部材による切り替えを行うこと等により、1台の撮像装置のみで撮像を行うことも可能である。このような位相シフト法を用いることにより、上記の実施の形態の干渉計に比べ高精度に被測定物Wの形状を解析することができる。   In this embodiment, it is also possible to observe the interference image of the wavelength observation reflecting member by installing separate beam splitters and imaging devices (19, 21) as in the first embodiment. is there. In FIG. 7, the interferometer based on the optical phase shift method using the polarizing plates 33 </ b> A to 33 </ b> C has been described. However, the present invention can also be applied to an interferometer that performs phase shift by physically moving the reference surface. It is. Moreover, although the example which prepares three imaging device 17A-C was demonstrated, it is not restricted to this, It is also possible to image only with one imaging device by switching by an optical path switching member. By using such a phase shift method, the shape of the workpiece W can be analyzed with higher accuracy than the interferometer of the above embodiment.

以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において、種々の変更、追加等が可能である。例えば、上記実施の形態では波長観測用反射部材20は平面状の2つの反射部材20A、20Bを有するものとして説明したが、所定の光路長差を有するものであれば、必ずしも平面状で有る必要はなく、例えば球面状のものであってもよい。   Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various modifications and additions can be made without departing from the spirit of the invention. For example, although the wavelength observation reflecting member 20 has been described as having two planar reflecting members 20A and 20B in the above-described embodiment, it may be necessarily planar if it has a predetermined optical path length difference. For example, it may be spherical.

また、上記の実施の形態では、反射面20A及び20Bでそれぞれ反射された光を干渉させて得られた干渉縞を撮像するようにしていたが、これに代えて、反射面20Aと参照面14の各々で反射した光を干渉させて得られた干渉縞、及び反射面20Bと参照面14の各々で反射した光を干渉させて得られた干渉縞を撮像するようにしてもよい。この場合でも、反射面20Aと20Bは既知の光路差を与えられており、2つの干渉縞にはこの光路差の差に従った違いが生じるので、同様の効果を得ることができる。   In the above-described embodiment, the interference fringes obtained by causing the light reflected by the reflection surfaces 20A and 20B to interfere with each other are imaged. Instead, the reflection surface 20A and the reference surface 14 are captured. You may make it image the interference fringe obtained by making the light reflected by each of these interfere, and the interference fringe obtained by making the light reflected by each of the reflective surface 20B and the reference surface 14 interfere. Even in this case, the reflecting surfaces 20A and 20B are given a known optical path difference, and the two interference fringes have a difference according to the difference in the optical path difference, so that the same effect can be obtained.

また、図8に示すように、参照面14とは別に、例えば波長観測用反射部材20に向かう光路に配置されるビームスプリッタ41と、これにより分岐された光路に配置された第2参照面42を設けることもできる。このとき、この反射面20Aにおける反射光及び第2参照面42における反射光を互いに干渉させて得られた干渉縞、並びに反射面20Bにおける反射光及び第2参照面42における反射光を互いに干渉させて得られた干渉縞を撮像するように光学系を構成することが可能である。   In addition to the reference surface 14, as shown in FIG. 8, for example, a beam splitter 41 disposed in the optical path toward the wavelength observation reflecting member 20, and a second reference surface 42 disposed in the optical path branched thereby. Can also be provided. At this time, the interference fringes obtained by causing the reflected light on the reflecting surface 20A and the reflected light on the second reference surface 42 to interfere with each other, and the reflected light on the reflecting surface 20B and the reflected light on the second reference surface 42 are caused to interfere with each other. The optical system can be configured to image the interference fringes obtained in this way.

本発明の第1の実施の形態に係る多波長干渉計の全体構成を示している。1 shows an overall configuration of a multiwavelength interferometer according to a first embodiment of the present invention. 図1に示す波長観測用反射部材20の別の構成例を示す。Another configuration example of the wavelength observation reflecting member 20 shown in FIG. 1 is shown. 図1に示す波長観測用反射部材20の別の構成例を示す。Another configuration example of the wavelength observation reflecting member 20 shown in FIG. 1 is shown. 図1に示す波長観測用反射部材20の別の構成例を示す。Another configuration example of the wavelength observation reflecting member 20 shown in FIG. 1 is shown. 図1に示す波長観測用反射部材20の別の構成例を示す。Another configuration example of the wavelength observation reflecting member 20 shown in FIG. 1 is shown. 本発明の第2の実施の形態に係る多波長干渉計の全体構成を示している。The whole structure of the multiwavelength interferometer which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施の形態に係る多波長干渉計の全体構成を示している。The whole structure of the multiwavelength interferometer which concerns on the 3rd Embodiment of this invention is shown. 本発明の実施の形態の変形例を示す。The modification of embodiment of this invention is shown.

符号の説明Explanation of symbols

11・・・レーザ光源、 12・・・コリメート光学系、 13・・・ビームスプリッタ、 14・・・参照面、 16・・・結像レンズ、 17・・・撮像装置、 18・・・モニタ、 19・・・ビームスプリッタ、 20・・・波長観測用反射部材、 20A、20B・・・反射面、 21・・・撮像素子、 22・・・モニタ、 31・・・λ/4板、 32・・・ビームスプリッタ、 33A〜C・・・偏光板、 100・・コンピュータ、 101・・・位相算出部、 102・・・形状算出部、 103・・・位相算出部、 104・・・合成波長算出部。 DESCRIPTION OF SYMBOLS 11 ... Laser light source, 12 ... Collimating optical system, 13 ... Beam splitter, 14 ... Reference surface, 16 ... Imaging lens, 17 ... Imaging apparatus, 18 ... Monitor, DESCRIPTION OF SYMBOLS 19 ... Beam splitter, 20 ... Reflective member for wavelength observation, 20A, 20B ... Reflecting surface, 21 ... Imaging element, 22 ... Monitor, 31 ... λ / 4 plate, 32. .. Beam splitter, 33A to C ... Polarizing plate, 100. Computer, 101 ... Phase calculation unit, 102 ... Shape calculation unit, 103 ... Phase calculation unit, 104 ... Calculation of combined wavelength Department.

Claims (8)

複数の異なる波長の出射光を出射可能に構成された光源と、
前記光源が出射する出射光を測定光と参照光とに分割すると共に、参照面で反射した前記参照光及び被測定物で反射した測定光を合成して合成光とする光分割合成部材と、
前記合成光による干渉縞を撮像する撮像部と
を備え、
前記複数の異なる波長の出射光の各々により得られた干渉縞の位相、及び前記複数の異なる波長の合成波長に基づいて前記被測定物の形状を算出する多波長干渉計において、
光路長差が既知の第1反射面及び第2反射面を有する反射部材と、
前記複数の異なる波長の出射光をそれぞれ前記反射部材に入射させて得られた複数の干渉縞を前記撮像部で撮像し、撮像された複数の干渉縞の位相に基づいて前記合成波長を算出する算出部と
を備えたことを特徴とする多波長干渉計。
A light source configured to emit a plurality of different wavelengths of emitted light;
A light splitting and combining member that divides the emitted light emitted from the light source into measurement light and reference light, and combines the reference light reflected by the reference surface and the measurement light reflected by the object to be measured into a combined light;
An imaging unit for imaging interference fringes by the combined light, and
In the multi-wavelength interferometer that calculates the shape of the object to be measured based on the phase of the interference fringes obtained by each of the plurality of different wavelengths of emitted light and the combined wavelength of the plurality of different wavelengths,
A reflecting member having a first reflecting surface and a second reflecting surface whose optical path length difference is known;
The plurality of interference fringes obtained by causing the plurality of outgoing lights having different wavelengths to enter the reflecting member are imaged by the imaging unit, and the combined wavelength is calculated based on the phases of the plurality of captured interference fringes. A multi-wavelength interferometer comprising: a calculation unit.
前記反射部材は、表面及び裏面を前記第1反射面及び前記第2反射面とする平行平面板である請求項1記載の多波長干渉計。   2. The multiwavelength interferometer according to claim 1, wherein the reflection member is a plane-parallel plate having a front surface and a back surface as the first reflection surface and the second reflection surface. 前記反射部材は、前記第1反射面又は前記第2反射面が階段状に形成されて前記第1反射面と前記第2反射面との間の光路長差が1段又はそれ以上の複数段の階段状に変化することを特徴とする請求項1記載の多波長干渉計。   In the reflecting member, the first reflecting surface or the second reflecting surface is formed in a step shape, and the optical path length difference between the first reflecting surface and the second reflecting surface is one or more steps. The multi-wavelength interferometer according to claim 1, wherein the multiwavelength interferometer changes in a step shape. 前記反射部材は、前記被測定物からの反射光によって発生する干渉縞を撮像する前記撮像部の撮像領域内に配置され、前記反射部材による干渉縞の画像は、前記被測定物による干渉縞の画像と共に共通の撮像装置により撮像されることを特徴とする請求項1記載の多波長干渉計。   The reflecting member is disposed in an imaging region of the imaging unit that images an interference fringe generated by reflected light from the object to be measured, and an image of the interference fringe by the reflecting member is an interference fringe by the object to be measured. The multi-wavelength interferometer according to claim 1, wherein the multi-wavelength interferometer is picked up by a common image pickup device together with an image. 前記合成光に位相シフトを与える位相シフト付与手段を備え、異なる量の位相シフト毎に得られた複数の干渉縞を前記撮像手段で撮像することにより位相シフト法を実行可能に構成された請求項1記載の多波長干渉計。   A phase shift imparting unit that imparts a phase shift to the combined light, and configured to execute the phase shift method by imaging a plurality of interference fringes obtained for different amounts of phase shift by the imaging unit. 1. The multiwavelength interferometer according to 1. 前記第1反射面における反射光及び前記第2反射面における反射光を互いに干渉させて得られた干渉縞を前記撮像部で撮像するように構成された請求項1記載の多波長干渉計。   The multi-wavelength interferometer according to claim 1, wherein the imaging unit captures an interference fringe obtained by causing the reflected light on the first reflecting surface and the reflected light on the second reflecting surface to interfere with each other. 前記第1反射面における反射光及び前記参照面における反射光を互いに干渉させて得られた干渉縞、並びに前記第2反射面における反射光及び前記参照面における反射光を互いに干渉させて得られた干渉縞を前記撮像部で撮像するように構成された請求項1記載の多波長干渉計。   The interference fringes obtained by causing the reflected light on the first reflecting surface and the reflected light on the reference surface to interfere with each other, and obtained by causing the reflected light on the second reflecting surface and the reflected light on the reference surface to interfere with each other. The multi-wavelength interferometer according to claim 1, wherein the multi-wavelength interferometer is configured to image an interference fringe with the imaging unit. 前記第1反射面における反射光及び前記参照面とは別個に設けられた第2参照面における反射光を互いに干渉させて得られた干渉縞、並びに前記第2反射面における反射光及び前記第2参照面における反射光を互いに干渉させて得られた干渉縞を前記撮像部で撮像するように構成された請求項1記載の多波長干渉計。   Interference fringes obtained by causing the reflected light on the first reflecting surface and the reflected light on the second reference surface provided separately from the reference surface to interfere with each other, and the reflected light on the second reflecting surface and the second The multi-wavelength interferometer according to claim 1, wherein interference fringes obtained by causing reflected lights on a reference surface to interfere with each other are imaged by the imaging unit.
JP2007222370A 2007-08-29 2007-08-29 Multi-wavelength interferometer Active JP5282929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222370A JP5282929B2 (en) 2007-08-29 2007-08-29 Multi-wavelength interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222370A JP5282929B2 (en) 2007-08-29 2007-08-29 Multi-wavelength interferometer

Publications (2)

Publication Number Publication Date
JP2009053148A true JP2009053148A (en) 2009-03-12
JP5282929B2 JP5282929B2 (en) 2013-09-04

Family

ID=40504334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222370A Active JP5282929B2 (en) 2007-08-29 2007-08-29 Multi-wavelength interferometer

Country Status (1)

Country Link
JP (1) JP5282929B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100929A1 (en) 2009-03-06 2010-09-10 日本電気株式会社 Photoelectric conversion element, process for producing same, optical sensor, and solar cell
WO2010113985A1 (en) * 2009-03-30 2010-10-07 国立大学法人長岡技術科学大学 Interferometer
CN102323670A (en) * 2011-09-06 2012-01-18 中国科学院长春光学精密机械与物理研究所 Ultraviolet, visible and near-infrared light three-band optical imaging system
JP2015530598A (en) * 2012-10-04 2015-10-15 ザイゴ コーポレーションZygo Corporation Position monitoring system with reduced noise
CN113587844A (en) * 2021-07-27 2021-11-02 中国科学院长春光学精密机械与物理研究所 Phase-shifting interferometry system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322514A (en) * 1992-05-20 1993-12-07 Topcon Corp Absolute length measuring device
JPH07181005A (en) * 1993-12-24 1995-07-18 Tokyo Seimitsu Co Ltd Multi-wavelength phase interference and interferometer
JPH07198328A (en) * 1993-12-29 1995-08-01 Topcon Corp Position measuring apparatus
JPH10281738A (en) * 1997-04-08 1998-10-23 Fuji Xerox Co Ltd Method and equipment for measuring interference
JP2000275021A (en) * 1999-03-25 2000-10-06 Nikon Corp Apparatus for measuring shape of face
JP2006189339A (en) * 2005-01-06 2006-07-20 Niigata Univ Thin film shape measuring method and thin film shape measuring instrument
JP2006266841A (en) * 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology Method for measuring shape and step through interference fringes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322514A (en) * 1992-05-20 1993-12-07 Topcon Corp Absolute length measuring device
JPH07181005A (en) * 1993-12-24 1995-07-18 Tokyo Seimitsu Co Ltd Multi-wavelength phase interference and interferometer
JPH07198328A (en) * 1993-12-29 1995-08-01 Topcon Corp Position measuring apparatus
JPH10281738A (en) * 1997-04-08 1998-10-23 Fuji Xerox Co Ltd Method and equipment for measuring interference
JP2000275021A (en) * 1999-03-25 2000-10-06 Nikon Corp Apparatus for measuring shape of face
JP2006189339A (en) * 2005-01-06 2006-07-20 Niigata Univ Thin film shape measuring method and thin film shape measuring instrument
JP2006266841A (en) * 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology Method for measuring shape and step through interference fringes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100929A1 (en) 2009-03-06 2010-09-10 日本電気株式会社 Photoelectric conversion element, process for producing same, optical sensor, and solar cell
WO2010113985A1 (en) * 2009-03-30 2010-10-07 国立大学法人長岡技術科学大学 Interferometer
JP5740701B2 (en) * 2009-03-30 2015-06-24 国立大学法人埼玉大学 Interferometer
CN102323670A (en) * 2011-09-06 2012-01-18 中国科学院长春光学精密机械与物理研究所 Ultraviolet, visible and near-infrared light three-band optical imaging system
JP2015530598A (en) * 2012-10-04 2015-10-15 ザイゴ コーポレーションZygo Corporation Position monitoring system with reduced noise
CN113587844A (en) * 2021-07-27 2021-11-02 中国科学院长春光学精密机械与物理研究所 Phase-shifting interferometry system and method

Also Published As

Publication number Publication date
JP5282929B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5349739B2 (en) Interferometer and interferometer calibration method
JP5149486B2 (en) Interferometer, shape measurement method
US10054429B2 (en) System for tomography and/or topography measurements of a layered objects
JP4505807B2 (en) Multiplexed spectral interferometric optical coherence tomography
JP5882674B2 (en) Multi-wavelength interferometer, measuring apparatus and measuring method
KR102456213B1 (en) Systems and Methods for Focus Optimization for Imaging-Based Overlay Metrology
US7471396B2 (en) Dual polarization interferometers for measuring opposite sides of a workpiece
JP7233536B2 (en) Method, interferometer and signal processor for measuring input phase and/or input amplitude, respectively, of an input optical field
JP5282929B2 (en) Multi-wavelength interferometer
CN106352789A (en) Instantaneous phase-shift interferometer and measurement method
JP2012181060A (en) Spectral characteristic measuring apparatus and calibration method thereof
JP3426552B2 (en) Shape measuring device
JP2013152191A (en) Multi-wavelength interferometer
Richoz et al. Simultaneous two-axis shearographic interferometer using multiple wavelengths and a color camera
JP4852651B2 (en) Multiplexed spectral interferometric optical coherence tomography
JP4544103B2 (en) Interface position measuring method and position measuring apparatus
JP2007093288A (en) Light measuring instrument and light measuring method
JP5480479B2 (en) Shape measuring device and calibration method of shape measuring device
JP5149923B2 (en) Multiplexed spectral interferometric optical coherence tomography
JP2006349382A (en) Phase shift interferometer
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP2020153992A (en) Shape measurement device by white interferometer
JP2017026494A (en) Device for measuring shape using white interferometer
JPH11218411A (en) Measurement method for interference and measurement device of interference
TWM552099U (en) Device measuring refractive index and dispersion coefficient of optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Ref document number: 5282929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250