JP2006189339A - Thin film shape measuring method and thin film shape measuring instrument - Google Patents

Thin film shape measuring method and thin film shape measuring instrument Download PDF

Info

Publication number
JP2006189339A
JP2006189339A JP2005001788A JP2005001788A JP2006189339A JP 2006189339 A JP2006189339 A JP 2006189339A JP 2005001788 A JP2005001788 A JP 2005001788A JP 2005001788 A JP2005001788 A JP 2005001788A JP 2006189339 A JP2006189339 A JP 2006189339A
Authority
JP
Japan
Prior art keywords
light
value
interference
thin film
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005001788A
Other languages
Japanese (ja)
Other versions
JP4560622B2 (en
Inventor
Osami Sasaki
修己 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2005001788A priority Critical patent/JP4560622B2/en
Publication of JP2006189339A publication Critical patent/JP2006189339A/en
Application granted granted Critical
Publication of JP4560622B2 publication Critical patent/JP4560622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film shape measuring method and a thin film shape measuring instrument for minutely measuring the shape of each reflective surface of a physical object and its film thickness distribution on a quadratic plane. <P>SOLUTION: A personal computer 62 estimates a modulation amplitude Z<SB>bi</SB>and a phase α<SB>i</SB>with respect to each reflective surface of the physical object 50 included in a theoretical expression by minimizing an error function H where the error function H is the sum of squares of a difference between the value of a processed signal obtained from an electrically converted interference signal S(t) and the value of a processed signal that is the theoretical expression. From estimated values on the modulation amplitude Z<SB>bi</SB>and the phase α<SB>i</SB>, the position of each reflective surface of the object 50 is found, making it possible to minutely measure the shape of each reflective surface of the object 50 on a quadratic plane while excluding mechanical error factors as seen in the past. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば半導体ウェハ上の薄膜や、プラスチックフィルムや、コーティングフィルムなどの薄膜の各反射面の形状と、膜厚分布とを同時に二次平面上で測定するための薄膜形状測定装置に関する。   The present invention relates to a thin film shape measuring apparatus for simultaneously measuring the shape of each reflecting surface of a thin film such as a thin film on a semiconductor wafer, a plastic film, or a coating film, and the film thickness distribution on a secondary plane.

一般に、薄膜を被対象物として、この被対象物の膜厚を測定する方法として、入射角走査測定法,波長走査測定法による測定法が知られている。入射角走査測定法では、半導体レーザなどの光源から、被対象物に向けて単色光を入射角度を変化させながら照射し、被対象物からの反射光の強度変化を測定することで、被対象物の膜厚を算出している。しかし、被対象物の一点に単色光を当てて測定するものであるため、測定点が一点に限られてしまう。   In general, as a method for measuring the film thickness of an object with a thin film as an object, measurement methods using an incident angle scanning measurement method and a wavelength scanning measurement method are known. In the incident angle scanning measurement method, a monochromatic light is emitted from a light source such as a semiconductor laser toward an object while changing the incident angle, and the intensity change of reflected light from the object is measured, thereby measuring the object. The film thickness of the object is calculated. However, since the measurement is performed by applying monochromatic light to one point of the object, the number of measurement points is limited to one point.

波長走査測定法は、ハロゲンランプなどを光源として、この光源から被対象物に照射する光の波長を変化させながら、被対象物からの反射光量をマルチチャンネル分光光度計(MCPD)で測定して、被対象物の膜厚を求めている。この方法では、測定点が線状になるが、二次元的な面での膜厚測定を行なうには、線状の走査点を何らかの手段で走査する必要がある。また、単層の薄膜については測定できるものの、複数の反射面を有する多層膜には適用できない不満がある。さらに、上記2つの方法では、被対象物の膜厚分布を求めることができるが、薄膜の表面と裏面の形状を求めることができない。   The wavelength scanning measurement method uses a multi-channel spectrophotometer (MCPD) to measure the amount of light reflected from an object while changing the wavelength of light emitted from the light source to the object using a halogen lamp or the like as a light source. The film thickness of the object is obtained. In this method, the measurement points are linear, but in order to measure the film thickness on a two-dimensional surface, it is necessary to scan the linear scanning points by some means. Moreover, although it can measure about a thin film of a single layer, there is a dissatisfaction that cannot be applied to a multilayer film having a plurality of reflecting surfaces. Furthermore, in the above two methods, the film thickness distribution of the object can be obtained, but the shape of the front and back surfaces of the thin film cannot be obtained.

これとは別に、膜厚分布のみならず膜厚の表面と裏面の形状をも同時に測定できる白色干渉計による測定装置が知られている。その原理は、特許文献1にも示されているが、白色光源からの狭帯域フィルタを通して得られる特定周波数帯域の白色光を、ビームスプリッタにより対物レンズの方向に向け、この対物レンズを通過した白色光を参照面へ反射させて得た参照光と、被測定物の表面へ反射させて得た測定光とを再びまとめて、CCDカメラの撮像面上で結像させる光学系を備えている。そして、CCDカメラにより光干渉信号を検出しながら、PZTなどの駆動手段により対物レンズを白色光の照射方向(垂直方向)に移動させることで、この光干渉信号の振幅が最大となるPZTの位置が薄膜の面となると共に、PZTの垂直移動量から被対象物の膜厚を求めるようにしている。
特開2001−66122号公報
Apart from this, a measuring apparatus using a white interferometer that can simultaneously measure not only the film thickness distribution but also the shape of the front and back surfaces of the film thickness is known. The principle is also shown in Patent Document 1, but white light in a specific frequency band obtained through a narrow band filter from a white light source is directed toward the objective lens by a beam splitter, and the white light that has passed through the objective lens. An optical system is provided that combines again the reference light obtained by reflecting the light to the reference surface and the measurement light obtained by reflecting the light to the surface of the object to be measured, and forms an image on the imaging surface of the CCD camera. Then, while detecting the optical interference signal by the CCD camera, the position of the PZT where the amplitude of the optical interference signal is maximized by moving the objective lens in the irradiation direction (vertical direction) of the white light by the driving means such as PZT. Becomes the surface of the thin film, and the film thickness of the object is obtained from the amount of vertical movement of PZT.
JP 2001-66122 A

上述の白色干渉計による測定装置では、干渉信号の振幅が最大となるPZTの位置によって被対象物である薄膜の面形状を知ることができると共に、PZTの走査距離によって被対象物の膜厚を知ることができる。しかし高精度な測定に際しては、PZTなどの駆動手段により対物レンズを正しく走査する必要があり、駆動手段による機械的な誤差要因を完全に排除することができない。   In the measurement apparatus using the white interferometer described above, the surface shape of the thin film as the object can be known from the position of the PZT where the amplitude of the interference signal is maximized, and the film thickness of the object is determined according to the scanning distance of the PZT. I can know. However, in the case of highly accurate measurement, it is necessary to scan the objective lens correctly by driving means such as PZT, and the mechanical error factor by the driving means cannot be completely eliminated.

そこで本発明は上記問題点に鑑み、機械的な誤差要因を排除して、被対象物の各反射面の形状や膜厚の分布を、二次平面上で精密に測定することができる薄膜形状測定方法および薄膜形状測定装置を提供することをその目的とする。   Therefore, in view of the above problems, the present invention eliminates mechanical error factors, and allows the shape of each reflecting surface of the object and the distribution of film thickness to be accurately measured on a secondary plane. It is an object of the present invention to provide a measuring method and a thin film shape measuring apparatus.

請求項1における薄膜形状測定方法は、角周波数ωbで正弦波状に波長走査された光を発生する第1の工程と、前記光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る第2の工程と、前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる第3の工程と、前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する第4の工程と、前記干渉信号をフーリエ変換して得た処理信号に基づき、前記第4の工程で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を前記検出点毎に推定する第5の工程と、前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第6の工程と、前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第7の工程と、を含むことを特徴としている。 The thin film shape measuring method according to claim 1 includes a first step of generating a sine wave-scanned light having an angular frequency ω b and a plurality of reflecting surfaces which are measurement surfaces of an object by dividing the light. And a second step of combining the object light from the measurement surface of the object and the reference light from the reference surface to obtain interference light after being reflected by the reference surface, the reference surface or the reference surface A third step of sine-wave oscillating the measurement surface of the object at an angular frequency ω c , and a fourth step of capturing the interference light at two-dimensionally arranged detection points and converting them into electrical interference signals, respectively. A process, a value of the processing signal obtained from the interference signal electrically converted in the fourth step based on a processing signal obtained by Fourier transforming the interference signal, and the process theoretically derived The interference signal changes when the sum of squares of the difference from the signal value is minimized. A fifth step of estimating amplitude Z bi and phase α i (i = 1,2, ... n) the value of each said detection point, the value of the modulation amplitude Z bi and phase alpha i, the subject matter A sixth step of calculating, for each detection point, the optical path difference L zi , Lα i between the light reflected by each of the reflecting surfaces and the reference light reflected by the reference surface, and the optical path differences L zi , Lα and a seventh step of calculating the position of each reflection surface of the object for each detection point based on the value of i .

この場合、電気的に変換された干渉信号の位相は正弦波状に変化し、その変調振幅Zbiは光路差Lziと正弦波状に波長走査された光の走査振幅bとに比例すると共に、干渉信号の位相の時間平均である位相αiは光路差Lαiに比例する。そのため、変調振幅Zbiから得られる波長以上の光路差Lziと、位相αiから得られる波長以下の光路差Lαiとを組み合わせることで、波長以上の光路差Liの値を波長以下の光路差Lαiの測定精度と同じ高い精度で算出できる。 In this case, the phase of the electrically converted interference signal changes in a sine wave shape, and the modulation amplitude Z bi is proportional to the optical path difference L zi and the scanning amplitude b of the light wave scanned in the sine wave shape, and the interference The phase α i that is the time average of the phase of the signal is proportional to the optical path difference Lα i . Therefore, a modulation amplitude Z optical path difference over the wavelength obtained from the bi L zi, by combining the phase α optical path difference equal to or smaller than the wavelength obtained from i L [alpha i, the value of the following wavelengths or more of the optical path difference L i Wavelength It can be calculated with the same high accuracy as the measurement accuracy of the optical path difference Lα i .

また、電気的に変換された干渉信号から得られた処理信号の値と、理論式である処理信号の値との差の二乗和を誤差関数Hとし、この誤差関数Hを最小にすることで、理論式に含まれている被対象物の各反射面に関する変調振幅Zbiと位相αiを推定できる。この変調振幅Zbiと位相αiの推定値から、被対象物の各反射面の位置が求められ、従来のような機械的な誤差要因を排除して、被対象物の各反射面の形状を二次平面上で精密に測定することができる。 Further, the sum of squares of the difference between the value of the processed signal obtained from the electrically converted interference signal and the value of the processed signal, which is a theoretical formula, is defined as an error function H, and the error function H is minimized. The modulation amplitude Z bi and the phase α i for each reflecting surface of the object included in the theoretical formula can be estimated. From the estimated values of the modulation amplitude Z bi and the phase α i , the positions of the respective reflecting surfaces of the object are obtained, and the mechanical error factors as in the prior art are eliminated, and the shapes of the reflecting surfaces of the object are determined. Can be measured accurately on the secondary plane.

そして、このような作用効果は、角周波数ωbで正弦波状に波長走査された光を発生する光源装置と、前記光源装置からの光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る干渉光学系と、前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる正弦波振動手段と、前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する光電変換手段と、前記干渉信号をフーリエ変換して得た処理信号に基づき、前記光電変換手段で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を前記検出点毎に推定する第1の演算手段と、前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第2の演算手段と、前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第3の演算手段と、を備えた請求項4の薄膜形状測定装置でも実現できる。 Such an effect is obtained by a light source device that generates light that is wavelength-scanned in a sine wave form at an angular frequency ω b and a plurality of reflections that are measurement surfaces of an object by dividing the light from the light source device. An interference optical system that obtains interference light by combining the object light from the measurement surface of the object and the reference light from the reference surface after being reflected by the surface and the reference surface, and the reference surface or the reference surface a sinusoidal oscillation means for sinusoidally vibrating the measurement surface of the object at angular frequency omega c, the interference light captured at the detection point arranged two-dimensionally, each photoelectric conversion means for converting the electrical interference signals And the value of the processing signal obtained from the interference signal electrically converted by the photoelectric conversion means based on the processing signal obtained by Fourier transforming the interference signal, and the theoretically derived processing signal Before the sum of squares of the difference from the value is minimized Modulation amplitude of the interference signal Z bi phase α i (i = 1,2, ... n) first calculating means for estimating the value of each said detection point, the value of the modulation amplitude Z bi and phase alpha i Second calculation means for calculating, for each detection point, optical path differences L zi and Lα i between the light reflected by each reflecting surface of the object and the reference light reflected by the reference surface; 5. A thin film shape measuring apparatus according to claim 4, further comprising: a third calculation unit that calculates the position of each reflecting surface of the object for each detection point based on the values of the optical path differences L zi and Lα i. it can.

請求項2における薄膜形状測定方法は、前記第5の工程で、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、次に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、 In the thin film shape measuring method according to claim 2, in the fifth step, the frequency component ω is in a region where ω c / 2 <ω <3ω c / 2 and a region where 3ω c / 2 <ω <5ω c / 2. , To obtain the following two processed signals A s (t) and A c (t) by Fourier transforming the interference signal,

Figure 2006189339
Figure 2006189339

前記第4の工程で変換した干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値(符号「^」を付して区別する)との差の二乗和を次式のような誤差関数Hとして、   The sum of squares of the difference between the value of the processed signal obtained from the interference signal converted in the fourth step and the value of the processed signal that is theoretically derived (distinguishes by adding a sign “^”) As an error function H such as

Figure 2006189339
Figure 2006189339

この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値を前記検出点毎に推定することを特徴している。 It is characterized in that the values of the modulation amplitude Z bi and the phase α i that minimize the value of the error function H are estimated for each detection point.

このように、干渉信号をフーリエ変換して、周波数成分がωc付近の領域(ωc/2<ω<3ωc/2)と、2ωc付近の領域(3ωc/2<ω<5ωc/2)から、2つの処理信号As(t)とAc(t)を得た後、上記誤差関数Hの値が最小となる変調振幅Zbiと位相αiとの値を推定すれば、被対象物の各反射面の位置を正確に測定すること可能になる。 Thus, the interference signal by Fourier transform, areas in the vicinity of the frequency components ω c (ω c / 2 < ω <3ω c / 2) and a region near 2ω c (3ω c / 2 < ω <5ω c / 2), after obtaining the two processed signals A s (t) and A c (t), the values of the modulation amplitude Z bi and the phase α i that minimize the value of the error function H are estimated. The position of each reflecting surface of the object can be accurately measured.

そして、このような作用効果は、請求項5の構成を備えた薄膜形状測定装置でも実現できる。   Such an effect can also be realized by a thin film shape measuring apparatus having the configuration of claim 5.

請求項3における薄膜形状測定方法は、前記光路差Lαiziの値に基づき、前記被対象物の反射面間の厚さを前記検出点毎に算出する第8の工程をさらに含んでいる。 The thin film shape measuring method according to claim 3 further includes an eighth step of calculating, for each detection point, a thickness between the reflecting surfaces of the object based on the value of the optical path difference Lα i L zi . .

これにより、被対象物の各反射面の形状だけでなく、反射面間の厚さをも機械的な誤差要因を排除しつつ、二次平面上で精密に測定することが可能になる。   As a result, not only the shape of each reflecting surface of the object but also the thickness between the reflecting surfaces can be accurately measured on the secondary plane while eliminating mechanical error factors.

そして、このような作用効果は、請求項6の構成を備えた薄膜形状測定装置でも実現できる。   Such an effect can also be realized by a thin film shape measuring apparatus having the configuration of claim 6.

請求項1の薄膜形状測定方法及び請求項4の薄膜形状測定装置によれば、機械的な誤差要因を排除して、被対象物の各反射面の形状を、二次平面上で精密に測定することができる。   According to the thin film shape measuring method of claim 1 and the thin film shape measuring apparatus of claim 4, the mechanical error factor is eliminated and the shape of each reflecting surface of the object is accurately measured on the secondary plane. can do.

請求項2の薄膜形状測定方法及び請求項5の薄膜形状測定装置によれば、被対象物の各反射面の位置を正確に測定すること可能になる。   According to the thin film shape measuring method of claim 2 and the thin film shape measuring apparatus of claim 5, it is possible to accurately measure the position of each reflecting surface of the object.

請求項3の薄膜形状測定方法及び請求項6の薄膜形状測定装置によれば、機械的な誤差要因を排除して、被対象物の各反射面の形状のみならず、反射面間の膜厚の分布を、二次平面上で精密に測定することができる。   According to the thin film shape measuring method of claim 3 and the thin film shape measuring apparatus of claim 6, the mechanical error factor is eliminated, and not only the shape of each reflecting surface of the object but also the film thickness between the reflecting surfaces. Can be accurately measured on the secondary plane.

以下、本発明に係る薄膜形状測定方法および薄膜形状測定装置の好ましい実施例について、添付図面を参照しながら詳しく説明する。装置の全体構成を示す図1において、本実施例では2重正弦波位相変調干渉法を実現するための干渉光学系として、SWS(Sinusoidal Wavelength-Scanning:正弦波状波長走査)光源装置1と、このSWS光源装置1からの出力光を取り入れる例えばマイケルソン型のレーザ干渉計2がそれぞれ配設されている。SWS光源装置1は、正弦波状に波長走査された光を発生するもので、具体的には光源としての半導体レーザ10と、半導体レーザ10からの出射光を平行光にするレンズ11と、前記平行光が入射する回折格子12と、回折格子12からの1次回折光を半導体レーザ10に戻すように反射させるミラー13と、このミラー13を角周波数ωbで正弦波状に回転振動させる振動手段としてのレーザスキャナ31とにより構成される。そして、半導体レーザ10の後側の反射面(図示せず)とミラー13との間で、回折格子12からの1次回折光による外部共振器を構成することで、回折格子12の0次回折光がレーザ干渉計2への入射光としてSWS光源装置1から出力されるようになっている。なお、光源としては半導体レーザ10以外のものを用いてもよく、またSWS光源装置1の構成も実施例中のものに限定されない。 Hereinafter, preferred embodiments of a thin film shape measuring method and a thin film shape measuring apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In FIG. 1 showing the overall configuration of the apparatus, in this embodiment, as an interference optical system for realizing the double sine wave phase modulation interferometry, a SWS (Sinusoidal Wavelength-Scanning) light source apparatus 1 and this For example, a Michelson-type laser interferometer 2 that takes in output light from the SWS light source device 1 is provided. The SWS light source device 1 generates light that has been wavelength-scanned in a sine wave form. Specifically, the semiconductor laser 10 as a light source, the lens 11 that makes emitted light from the semiconductor laser 10 parallel light, and the parallel light. A diffraction grating 12 on which light is incident, a mirror 13 for reflecting the first-order diffracted light from the diffraction grating 12 back to the semiconductor laser 10, and a vibration means for rotating and vibrating the mirror 13 in a sinusoidal shape at an angular frequency ω b And a laser scanner 31. Then, by forming an external resonator using the first-order diffracted light from the diffraction grating 12 between the reflection surface (not shown) on the rear side of the semiconductor laser 10 and the mirror 13, the 0th-order diffracted light of the diffraction grating 12 is The light is output from the SWS light source device 1 as incident light to the laser interferometer 2. In addition, you may use things other than the semiconductor laser 10 as a light source, and the structure of SWS light source device 1 is not limited to the thing in an Example.

レーザ干渉計2は、ビームスプリッタ21と、振動手段である圧電素子41を備えたミラー20と、レンズ22,23とにより構成される。ビームスプリッタ21は、SWS光源装置1からの正弦波状に波長走査された出力光を、参照面を形成するミラー20および薄膜状の被対象物50へと分割すると共に、これらのミラー20からの反射光である参照光と、被対象物50からの反射光である物体光とを合成して干渉光を得るものである。また圧電素子41は、ミラー20を角周波数ωcで正弦波振動させるもので、これによりミラー20からの参照光の位相が正弦波位相変調される。被対象物50からの物体光は、当該被対象物50の測定面である表面と裏面でそれぞれ反射された光からなっており、この物体光と前記参照光とを合成したビームスプリッタ21からの干渉光が、レンズ22,23を通過して後述するCCDイメージセンサ61の検出面上に導かれるようになっている。なお、レーザ干渉計2としては、種々の干渉光学系を利用することができる。 The laser interferometer 2 includes a beam splitter 21, a mirror 20 including a piezoelectric element 41 that is a vibrating means, and lenses 22 and 23. The beam splitter 21 divides the output light that has been wavelength-scanned in a sine wave form from the SWS light source device 1 into a mirror 20 that forms a reference surface and a thin film-like object 50, and the reflection from these mirrors 20. The reference light, which is light, and the object light, which is the reflected light from the object 50, are combined to obtain interference light. The piezoelectric element 41 causes the mirror 20 to vibrate in a sine wave at an angular frequency ω c , whereby the phase of the reference light from the mirror 20 is sine wave phase modulated. The object light from the object 50 consists of light reflected by the front surface and the back surface, which are the measurement surfaces of the object 50, and from the beam splitter 21 that combines the object light and the reference light. The interference light passes through lenses 22 and 23 and is guided onto a detection surface of a CCD image sensor 61 described later. As the laser interferometer 2, various interference optical systems can be used.

61は、二次元の光電変換手段に相当するCCDイメージセンサで、これはレンズ22,23を通して形成される前記干渉光の像面にその検出面が配置され、この干渉による光強度分布を各画素毎に電気的な検出信号に変換して出力するものである。ここでの光電変換手段は、時間変化する光強度を短時間で測定できればよいので、CCD(Charge Coupled Device)のような追従性のよい光電変換素子を用いるのが好ましい。62は、CCDイメージセンサ61からの検出信号に基づいて、被対象物50の表面および裏面でそれぞれ反射された物体光と、ミラー20で反射された参照光との各光路差を算出して、被対象物50の表面および裏面の各位置を決定すると共に、前記各光路差から被対象物50の厚さを算出する処理処理装置としてのパソコンである。このパソコン62には、必要に応じてCCDイメージセンサ61の撮影画像を表示するモニタなどの表示器(図示せず)が接続される。   61 is a CCD image sensor corresponding to a two-dimensional photoelectric conversion means, which has a detection surface arranged on the image surface of the interference light formed through the lenses 22 and 23, and the light intensity distribution due to this interference is measured for each pixel. Each is converted into an electrical detection signal and output. Since the photoelectric conversion means here should just be able to measure the light intensity which changes with time in a short time, it is preferable to use a photoelectric conversion element with good follow-up like a CCD (Charge Coupled Device). 62 calculates, based on the detection signal from the CCD image sensor 61, each optical path difference between the object light reflected by the front and back surfaces of the object 50 and the reference light reflected by the mirror 20, The personal computer is a processing apparatus that determines the positions of the front and back surfaces of the object 50 and calculates the thickness of the object 50 from the optical path differences. The personal computer 62 is connected to a display (not shown) such as a monitor for displaying a photographed image of the CCD image sensor 61 as necessary.

次に、上記構成についてその動作原理を説明する。SWS光源装置1の半導体レーザ10に所定の注入電流を印加すると、この半導体レーザ10からの光がレンズ11に向けて出力され、レンズ11を通過した平行光が回折格子12に入射して回折される。回折格子12からの1次回折光は、レーザスキャナ31を背面に取付けたミラー13に垂直に入射し、ミラー13からの反射光は再び回折格子12とレーザ11を経て、半導体レーザ10に戻る。これにより、SWS光源装置1の内部では、半導体レーザ10の後側の反射面(図示せず)とミラー13との間で外部共振器が構成される。   Next, the operation principle of the above configuration will be described. When a predetermined injection current is applied to the semiconductor laser 10 of the SWS light source device 1, light from the semiconductor laser 10 is output toward the lens 11, and parallel light that has passed through the lens 11 enters the diffraction grating 12 and is diffracted. The The first-order diffracted light from the diffraction grating 12 is perpendicularly incident on the mirror 13 with the laser scanner 31 attached to the back surface, and the reflected light from the mirror 13 returns to the semiconductor laser 10 through the diffraction grating 12 and the laser 11 again. As a result, an external resonator is formed between the reflection surface (not shown) on the rear side of the semiconductor laser 10 and the mirror 13 inside the SWS light source device 1.

この状態で、レーザスキャナ31によってミラー13を角周波数ωbで正弦波状に回転振動させると、回折格子12の0次回折光の波長λ(t)は、次式のように正弦波状に走査される。 In this state, when the rotationally oscillate sinusoidally mirror 13 at the angular frequency omega b by the laser scanner 31, 0 wavelength of the diffracted light of the diffraction grating 12 lambda (t) is scanned sinusoidally as: .

Figure 2006189339
Figure 2006189339

但し、λ0は半導体レーザ10の中心波長であり、またbは走査振幅である。上記回折格子12の0次回折光は、レーザ干渉計2への入射光となってビームスプリッタ21に到達し、ここでミラー20へ伝搬する光と被測定物50へ伝搬する光とにそれぞれ分割される。ミラー20は圧電素子41により振幅aおよび角周波数ωcで正弦波状に振動しているので、ミラー20からの反射光である参照光の位相が正弦波状に変調(正弦波位相変調)される。一方、被対象物50からの反射光である物体光は、被対象物50の表面と裏面でそれぞれ反射された光からなっている。ミラー20からの参照光と被対象物50からの物体光は、ビームスプリッタ21により合成して重ね合わされ、干渉光としてCCDイメージセンサ61の検出面上に到達する。特にここでは、被対象物50の表面及び裏面の反射面の光場が、レンズ22,23によってCCDイメージセンサ61上に形成される。 Where λ 0 is the center wavelength of the semiconductor laser 10 and b is the scanning amplitude. The 0th-order diffracted light of the diffraction grating 12 becomes incident light to the laser interferometer 2 and reaches the beam splitter 21 where it is divided into light propagating to the mirror 20 and light propagating to the object to be measured 50. The Since the mirror 20 is vibrated sinusoidally with the amplitude a and the angular frequency ω c by the piezoelectric element 41, the phase of the reference light, which is reflected light from the mirror 20, is modulated in a sinusoidal shape (sinusoidal phase modulation). On the other hand, object light, which is reflected light from the object 50, is composed of light reflected by the front and back surfaces of the object 50, respectively. The reference light from the mirror 20 and the object light from the object 50 are combined and overlapped by the beam splitter 21 and reach the detection surface of the CCD image sensor 61 as interference light. In particular, here, the light fields of the front and back reflecting surfaces of the object 50 are formed on the CCD image sensor 61 by the lenses 22 and 23.

CCDイメージセンサ61は、物体光と参照光の干渉による二次元的な強度分布を電気的な干渉信号に変換するものである。干渉信号は、図示しないA/D変換器によってデジタル信号に変換された後、パソコン62に取込まれ、ここで被対象物50の複数の反射面の表面形状と膜厚分布を求めるための演算処理が行なわれる。上述のように、SWS光源装置1で正弦波状に波長走査された光を生成し、さらにミラー20を圧電素子41により振動させて、干渉信号にさらに正弦波位相変調を与えた時の、前記CCDイメージセンサ61で検出される干渉信号に含まれている時間変化する成分S(t)は、次式のように表すことができる。   The CCD image sensor 61 converts a two-dimensional intensity distribution resulting from interference between object light and reference light into an electrical interference signal. The interference signal is converted into a digital signal by an A / D converter (not shown) and then taken into the personal computer 62, where calculation for obtaining the surface shape and film thickness distribution of the plurality of reflecting surfaces of the object 50 is performed. Processing is performed. As described above, when the SWS light source device 1 generates light that has been wavelength-scanned in a sine wave form, and further oscillates the mirror 20 by the piezoelectric element 41, the interference signal is further subjected to sine wave phase modulation. The time-varying component S (t) included in the interference signal detected by the image sensor 61 can be expressed by the following equation.

Figure 2006189339
Figure 2006189339

ここでa1とa2は、それぞれ被対象物50の表面と裏面の各反射率である。なお、ミラー20がacos(ωc+θ)で振動し、且つSWS光源装置1からの光の強度変化M(t)を考慮した場合には、干渉信号S(t)が次式のようになる。 Here, a 1 and a 2 are the respective reflectances of the front surface and the back surface of the object 50. When the mirror 20 vibrates with acos (ω c + θ) and the intensity change M (t) of the light from the SWS light source device 1 is taken into consideration, the interference signal S (t) is expressed by the following equation. .

Figure 2006189339
Figure 2006189339

被対象物50の表面および裏面の各位置をあらわす前記光路差を、それぞれL1およびL2とすると、上記式の変調振幅Zbiは、Zbi=2πbLi/λ0 2となり、位相αiは、αi=2πLi/λ0となる。つまり、被対象物50の表面と裏面のそれぞれについて変調振幅Zbiと位相αiとを算出すれば、既知である比例定数(2πb/λ0 2)と(2π/λ0)によって、光路差Liを特定することができる。 Assuming that the optical path differences representing the positions of the front and back surfaces of the object 50 are L 1 and L 2 , the modulation amplitude Z bi in the above equation is Z bi = 2πbL i / λ 0 2 , and the phase α i Is α i = 2πL i / λ 0 . That is, if the modulation amplitude Z bi and the phase α i are calculated for each of the front surface and the back surface of the object 50, the optical path difference is obtained by the known proportionality constants (2πb / λ 0 2 ) and (2π / λ 0 ). the L i can be identified.

ここでパソコン62は、前記干渉信号S(t)をフーリエ変換して、周波数成分ωがωc付近の領域(ωc/2<ω<3ωc/2)と、2ωc付近の領域(3ωc/2<ω<5ωc/2)から、それぞれ次に示す2つの処理信号As(t)とAc(t)を得る。 Here PC 62, the interference signal by S (t) is the Fourier transform, a region near the frequency component omega is ω c (ω c / 2 < ω <3ω c / 2), area near 2 [omega c (3 [omega] From c / 2 <ω <5ω c / 2), the following two processed signals A s (t) and A c (t) are respectively obtained.

Figure 2006189339
Figure 2006189339

パソコン62は次に、CCDイメージセンサ61で検出した干渉信号S(t)から得られる時間tm=mΔtの時点での処理信号の値と、理論式である処理信号の値(符号「^」を付して区別する)との差の二乗和の級数を誤差関数Hとして、この誤差関数Hの値が最小となるように多次元探索を行ない、変調振幅Zbiと位相αiのそれぞれについて推定値を求める。誤差関数Hの最小値は、パソコン62のソフトウェア上の処理で、理論式で求まる処理信号の値を連続的に代入することで短時間に算出できる。当該誤差関数Hは、次式のようにあらわせる。 The personal computer 62 then processes the value of the processed signal at the time t m = mΔt obtained from the interference signal S (t) detected by the CCD image sensor 61 and the value of the processed signal (sign “^”) as a theoretical expression. A series of the sum of squares of the difference from the difference is used as an error function H, and a multidimensional search is performed so that the value of the error function H is minimized, and each of the modulation amplitude Z bi and the phase α i is determined. Get an estimate. The minimum value of the error function H can be calculated in a short time by continuously substituting the value of the processing signal obtained by the theoretical formula by processing on the software of the personal computer 62. The error function H is expressed as follows:

Figure 2006189339
Figure 2006189339

ここで、変調振幅Zbiの推定値から求まる光路差Liの値をLziとし、位相αiの推定値から求まる光路差Liの値をLαiとすると、光路差Lziは波長以上の大まかな値であり、光路差Lαiは波長以下の大きさの部分の値(位相αiの値が−π〜+πの範囲で求まるので、光路差Lαiの値は−λ0/2〜+λ0/2の範囲となる)である。したがって、光路差Lziの測定誤差がλ0/2未満(<λ0/2)であれば、パソコン62は算出した2つの光路差Lzi,Lαiの値から、次式に示す数値mciを算出する。なお、光路差Lziの測定精度は、Zbi=2πbLi/λ0 2の関係式から明らかなように、正弦波状に波長走査された光の走査振幅bに比例するため、光路差Lziの測定誤差をλ0/2未満にするには、走査振幅bを大きくするSWS光源装置1が必要となる。 Here, when the value of the optical path difference L i obtained from the estimated value of the modulation amplitude Z bi is L zi and the value of the optical path difference L i obtained from the estimated value of the phase α i is Lα i , the optical path difference L zi is equal to or greater than the wavelength. a rough value, the value of the optical path difference L [alpha i value parts: the magnitude wavelength (phase alpha i is determined in the range of -π~ + π, the value of the optical path difference L [alpha i is 1-? 0/2 - a + λ becomes 0/2 range). Therefore, if it is less than the measurement error of the optical path difference L zi is λ 0/2 (<λ 0 /2), the personal computer 62 the two optical path difference L zi calculated from the value of L [alpha i, numeric shown in the following equation m Calculate ci . The measurement accuracy of the optical path difference L zi is, Z bi = 2πbL i / λ 0 As is apparent from the second relational expression is proportional to the scan amplitude b of the light wavelength scanning sinusoidally, the optical path difference L zi to the measurement errors of less than lambda 0/2 is, SWS light source device 1 to increase the scan amplitude b is required.

Figure 2006189339
Figure 2006189339

パソコン62は上式で求めた数値mciの小数点以下を四捨五入し、光路差Lziに含まれる波長λ0の次数(整数値)miを算出して、次式の波長以上の光路差Liを得ることができる。 PC 62 rounds the decimal point numbers m ci obtained by the above equation, the order of the wavelength lambda 0 contained in the optical path difference L zi (integer value) to calculate the m i, the optical path difference longer than the wavelength of the formula L i can get.

Figure 2006189339
Figure 2006189339

ここで得られた光路差Liの値は、波長以下の大きさの部分の値(Lαi)に、波長λ0の整数倍を加えたものとなるため、その測定精度は、位相αiの推定値から求まる光路差Lαiによる測定精度と等しく、数nmのオーダーとなる。 The value of the optical path difference L i obtained here is obtained by adding an integral multiple of the wavelength λ 0 to the value (Lα i ) of the portion having a size equal to or smaller than the wavelength, and therefore the measurement accuracy is the phase α i. It is equal to the measurement accuracy by the optical path difference Lα i obtained from the estimated value, and is on the order of several nm.

また前述した光路差Lzi,Lαiの値が求まると、パソコン62はCCDイメージセンサ61で検出される二次元平面(X−Y)上の各位置で、被対象物50の一方の面である表面の形状r1と、他方の面である裏面の形状r2とを、次式を利用して算出することができる。 When the values of the optical path differences L zi and Lα i described above are obtained, the personal computer 62 is located at one position of the object 50 at each position on the two-dimensional plane (XY) detected by the CCD image sensor 61. The shape r 1 of a certain front surface and the shape r 2 of the back surface that is the other surface can be calculated using the following equations.

Figure 2006189339
Figure 2006189339

但し、nRは被対象物50の屈折率である。さらに被対象物の厚さdについても、パソコン62は次の式を利用して簡単にその値を算出できる。ここでの整数値mは、m=m2−m1である。 Here, n R is the refractive index of the object 50. Further, the personal computer 62 can easily calculate the value of the thickness d of the object using the following equation. The integer value m here is m = m 2 −m 1 .

Figure 2006189339
Figure 2006189339

このように、レーザ干渉計2およびCCDイメージセンサ31を介して得られる干渉信号の位相が正弦波状に変化し、その変調振幅Zbiは光路差Lziと正弦波状に波長走査された光の走査振幅bとに比例すると共に、干渉信号の位相の時間平均である位相αiは光路差Lαiに比例する。そのため、変調振幅Zbiから得られる波長以上の光路差Lziと、位相αiから得られる波長以下の光路差Lαiとを組み合わせることで、波長以上の光路差Liの値を波長以下の光路差Lαiの測定精度と同じ高い精度で算出できる。なお、光路差Lzi,Lαiの組み合わせを行なうには、光路差Lziの測定精度を波長走査される光の中心波長λ0の2分の1より高くする必要があるが、光路差Lziの測定精度は前記走査振幅bに比例するので、この走査振幅bを大きくすれば所望の測定精度が得られる。 In this way, the phase of the interference signal obtained through the laser interferometer 2 and the CCD image sensor 31 changes in a sine wave shape, and the modulation amplitude Z bi is the optical path difference L zi and the scanning of light wavelength-scanned in a sine wave shape. In addition to being proportional to the amplitude b, the phase α i that is the time average of the phases of the interference signals is proportional to the optical path difference Lα i . Therefore, a modulation amplitude Z optical path difference over the wavelength obtained from the bi L zi, by combining the phase α optical path difference equal to or smaller than the wavelength obtained from i L [alpha i, the value of the following wavelengths or more of the optical path difference L i Wavelength It can be calculated with the same high accuracy as the measurement accuracy of the optical path difference Lα i . In order to combine the optical path differences L zi and Lα i , the measurement accuracy of the optical path difference L zi needs to be higher than half the center wavelength λ 0 of the wavelength-scanned light. Since the measurement accuracy of zi is proportional to the scanning amplitude b, a desired measurement accuracy can be obtained by increasing the scanning amplitude b.

また特に本実施例では、CCDイメージセンサ31で検出した処理信号の値と、理論式である処理信号の値との差の二乗和を誤差関数Hとし、この誤差関数Hを最小にすることで、理論式に含まれている薄膜の各反射面(被対象物50の表面と裏面)に関する変調振幅Zbiと位相αiを推定できる。この変調振幅Zbiと位相αiの推定値から、薄膜の各反射面の位置が求められ、薄膜の面形状を正確に求めることができると共に、各反射面間の厚さも正確に求めることができる。 Particularly in this embodiment, the sum of squares of the difference between the value of the processing signal detected by the CCD image sensor 31 and the value of the processing signal, which is a theoretical formula, is defined as an error function H, and this error function H is minimized. The modulation amplitude Z bi and the phase α i for each reflecting surface (the front surface and the back surface of the object 50) included in the theoretical formula can be estimated. From the estimated values of the modulation amplitude Z bi and the phase α i , the position of each reflecting surface of the thin film can be obtained, the surface shape of the thin film can be obtained accurately, and the thickness between the reflecting surfaces can also be obtained accurately. it can.

次に、図2〜図5を参照しながら、本実施例の薄膜形状測定装置を利用した実際の測定例を提示する。被対象物50として、ここでは屈折率nRが1.46で厚さ20μmの石英ガラスを使用する。また、SWS光源装置1として使用する半導体レーザ10の中心波長λ0は780nm,出力は40mWであり、レーザスキャナ31がミラー13に回転振動を与えることで、波長走査幅2b=20nm,周波数ωb/2π=66.4Hzの正弦波状に波長走査された光をSWS光源装置1から取り出した。さらに、レーザ干渉計2において、圧電素子41がミラー20に振動を与えることで、参照光の正弦波位相変調の周波数はωc/2π=2125Hzとなった。光電検出手段としては、上述したような二次元のCCDイメージセンサ61を用いたが、ここでのX−Y平面上の測定点の数(ピクセル数)は60×60であり、測定領域は1.2×1.2mmであった。従って、各ピクセルのサイズは20μm四方となる。 Next, an actual measurement example using the thin film shape measuring apparatus of the present embodiment will be presented with reference to FIGS. Here, quartz glass having a refractive index n R of 1.46 and a thickness of 20 μm is used as the object 50. The center wavelength λ 0 of the semiconductor laser 10 used as the SWS light source device 1 is 780 nm, the output is 40 mW, and the laser scanner 31 gives rotational vibration to the mirror 13 so that the wavelength scanning width 2b = 20 nm and the frequency ω b The light that was wavelength-scanned in a sine wave shape of /2π=66.4 Hz was taken out from the SWS light source device 1. Furthermore, in the laser interferometer 2, the frequency of the sine wave phase modulation of the reference light is ω c / 2π = 2125 Hz because the piezoelectric element 41 vibrates the mirror 20. As the photoelectric detection means, the two-dimensional CCD image sensor 61 as described above is used, but the number of measurement points (number of pixels) on the XY plane here is 60 × 60, and the measurement area is 1.2. × 1.2 mm. Therefore, the size of each pixel is 20 μm square.

図2は、CCDイメージセンサ61の一つのピクセルで検出された処理信号As(t)の値と、同じ位置で理論的に推定される処理信号の値とをそれぞれ別個に示したものである。ここでは、被対象物50の表面の反射率a1や、各変調振幅Zb1,Zb2の大まかな値を、検出した処理信号As(t)の値から入手し、各位相α1,α2の初期値を1.0radの間隔で設定した。次の表は、a1,Zb1,Zb2,α1,α2,Hの初期値と、誤差関数Hが最小となるa1,Zb1,Zb2,α1,α2,Hの推定値を示したものである。 FIG. 2 separately shows the value of the processing signal A s (t) detected by one pixel of the CCD image sensor 61 and the value of the processing signal theoretically estimated at the same position. . Here, the reflectance a 1 of the surface of the object 50 and the rough values of the modulation amplitudes Z b1 and Z b2 are obtained from the detected value of the processed signal A s (t), and each phase α 1 , The initial value of α 2 was set at an interval of 1.0 rad. The following table shows the initial values of a 1 , Z b1 , Z b2 , α 1 , α 2 , H and the values of a 1 , Z b1 , Z b2 , α 1 , α 2 , H that minimize the error function H. It shows an estimated value.

Figure 2006189339
Figure 2006189339

こうしてパソコン62は、CCDイメージセンサ61の各ピクセルについて、反射率aiと、変調振幅Zbiと、位相αiの各値を推定する。次の表は、各ピクセルのX−Y平面上の座標位置を(Ix,IY)とした場合に、上式から算出された光路差Lz1,Lz2,Lα1,Lα2と、四捨五入前の数値mc1,mc2とを示したもので、ここではx軸で10個目のピクセル(Ix=10)に沿って、Y軸で10個単位に測定した値をあらわしている。 In this way, the personal computer 62 estimates each value of the reflectance a i , the modulation amplitude Z bi, and the phase α i for each pixel of the CCD image sensor 61. The following table shows the optical path differences L z1 , L z2 , Lα 1 , Lα 2 calculated from the above equations, where the coordinate position of each pixel on the XY plane is (I x , I Y ), The numerical values m c1 and m c2 before rounding are shown, and here, the values measured in units of 10 on the Y axis along the 10th pixel (I x = 10) on the x axis are shown. .

Figure 2006189339
Figure 2006189339

CCDイメージセンサ61の各ピクセルにおいて、位相α1,α2の各推定値から求まる光路差Lα1,Lα2が算出されれば、上式から二次元平面上での被対象物50の表面の形状r1と裏面の形状r2をそれぞれ求めることができる。図3は、測定結果の一例を三次元的に示したものであるが、ここでは約10nm以下の繰り返し測定誤差で、被対象物50の表面形状と、裏面形状が求められている。なお、X−Y軸に沿った各ピクセルサイズ(ΔIx,ΔIY)は、前述のようにいずれも20μmである。 At each pixel of the CCD image sensor 61, phase alpha 1, the optical path difference L [alpha 1 obtained from the estimated value of alpha 2, if L [alpha 2 is calculated, the surface of the object 50 on a two-dimensional plane from the above equation The shape r 1 and the shape r 2 of the back surface can be obtained respectively. FIG. 3 shows an example of the measurement result three-dimensionally. Here, the surface shape and the back surface shape of the object 50 are obtained with repeated measurement errors of about 10 nm or less. Each pixel size (ΔI x , ΔI Y ) along the XY axis is 20 μm as described above.

図4は、各ピクセル毎に上記数値mc1,mc2の小数点を四捨五入して得た次数m1,m2の分布を三次元的に示している。被対象物50の表面に対応した次数m1について、ここではm1=30が全体の16%を占め、m1=31が全体の73%を占め、m1=32が全体の11%を占めていたので、パソコン62は最も占有率の高いm1=31の値を採用した。また、次数m2についても、m2=101が全体の4%を占め、m2=102が全体の80%を占め、m2=103が全体の16%を占めていたので、パソコン62は最も占有率の高いm2=102の値を採用した。したがって、この場合の前記m=m2−m1の値は71となる。 FIG. 4 three-dimensionally shows the distribution of the orders m 1 and m 2 obtained by rounding off the decimal points of the numerical values m c1 and m c2 for each pixel. For the order m 1 corresponding to the surface of the object 50, here m 1 = 30 occupies 16% of the whole, m 1 = 31 occupies 73% of the whole, and m 1 = 32 occupies 11% of the whole. Therefore, the personal computer 62 adopted the value of m 1 = 31, which has the highest occupation ratio. As for the order m 2 , m 2 = 101 accounted for 4% of the total, m 2 = 102 accounted for 80% of the total, and m 2 = 103 accounted for 16% of the total. The value of m 2 = 102, which has the highest occupation rate, was adopted. Therefore, the value of m = m 2 −m 1 in this case is 71.

被対象物50の表面の形状r1および裏面の形状r2と、整数値mが決定すれば、上式より被対象物50の表面と裏面との間の厚さを測定することができる。図5は、その測定結果を三次元的に示したものである。被対象物50の厚さも、約10nm以下の繰り返し測定誤差で算出できる。 If the surface shape r 1 and the back surface shape r 2 of the object 50 and the integer value m are determined, the thickness between the surface and the back surface of the object 50 can be measured from the above equation. FIG. 5 shows the measurement results three-dimensionally. The thickness of the object 50 can also be calculated with a repeated measurement error of about 10 nm or less.

上述したミラー13を正弦波状に回転振動させる方法では、SWS光源装置1から2b=20nmの広い走査幅で正確に正弦波状に波長走査された光が与えられている。この波長走査された光から生じる干渉信号を、二次元的に展開されたCCDイメージセンサ31で検出すれば、被対象物50の表面と裏面に対する変調振幅Zbiや位相αiの各値を、パソコン62の演算処理によって処理信号As(t),Ac(t)から推定できると共に、整数値miを決定できる。これにより、位相αiの推定値から求まる光路差Lαiによる測定誤差で、波長以上の光路差Liを得ることができ、10nmの誤差で被対象物50の表面の形状r1および裏面の形状r2が同時に測定できると共に、被対象物50の厚さdも測定できる。 In the above-described method of rotating and vibrating the mirror 13 in a sine wave shape, the SWS light source device 1 provides light that has been accurately wavelength-scanned in a sine wave shape with a wide scanning width of 2b = 20 nm. If the interference signal generated from the wavelength scanned light is detected by the CCD image sensor 31 developed two-dimensionally, each value of the modulation amplitude Z bi and the phase α i with respect to the front and back surfaces of the object 50 is obtained. processing by the processing of the personal computer 62 signals a s (t), it is possible to estimate from the a c (t), can be determined integer value m i. As a result, the optical path difference L i greater than the wavelength can be obtained by the measurement error due to the optical path difference Lα i obtained from the estimated value of the phase α i , and the surface shape r 1 and the back surface of the object 50 can be obtained with an error of 10 nm. The shape r 2 can be measured simultaneously, and the thickness d of the object 50 can also be measured.

また上記実施例では、被対象物50が単層の薄膜である場合を想定しているが、反射面を複数有する多層膜についても、同様に上式のiを3以上にすることで(i=1,2,…n)、被対象物50の各反射面における形状や、反射面間の膜厚を個々に測定できる。また被対象物50としては、半導体ウェハ上の薄膜や、プラスチックフィルムや、コーティングフィルムなども適用できる。   In the above embodiment, it is assumed that the object 50 is a single-layer thin film. However, in the case of a multilayer film having a plurality of reflecting surfaces, i in the above equation is also set to 3 or more (i = 1, 2,... N), the shape of each reflection surface of the object 50 and the film thickness between the reflection surfaces can be individually measured. As the object 50, a thin film on a semiconductor wafer, a plastic film, a coating film, or the like can be applied.

以上のように本実施例では、角周波数ωbで正弦波状に波長走査された光を発生する第1の工程と、前記光を分割して被対象物50の測定面である複数の反射面(表面,裏面)およびミラー20による参照面に各々反射させた後、被対象物50の測定面からの物体光と、ミラー20からの参照光とを合成して干渉光を得る第2の工程と、参照面または被対象物50の測定面を角周波数ωcで正弦波振動させる第3の工程と、干渉光を二次元状に配置したCCDイメージセンサ61の検出点で捕らえて、それぞれ電気的な干渉信号S(t)に変換する第4の工程と、干渉信号S(t)をフーリエ変換して得た処理信号As(t),Ac(t)に基づき、前記第4の工程で電気的に変換した前記干渉信号から得られる処理信号As(t),Ac(t)の値と、理論的に導出される処理信号の値との差の二乗和が最小になったときの、前記干渉信号S(t)に含まれる変調振幅Zbiと位相αi(i=1,2,…n)の値をCCDイメージセンサ61の有効な各検出点毎に推定する第5の工程と、前記変調振幅Zbiと位相αiの値から、被対象物50の各反射面で反射された光と、ミラー20で反射された参照光との光路差Lzi,Lαiを前記CCDイメージセンサ61の検出点毎に算出する第6の工程と、前記光路差Lzi,Lαiの値に基づき、被対象物50の各反射面の位置をCCDイメージセンサ61の検出点毎に算出する第7の工程と、を含む方法を採用している。 As described above, in the present embodiment, the first step of generating a sine wave-scanned light having an angular frequency ω b and a plurality of reflecting surfaces which are the measurement surfaces of the object 50 by dividing the light. (Front surface, back surface) and the second step of obtaining interference light by combining the object light from the measurement surface of the object 50 and the reference light from the mirror 20 after reflection on the reference surface by the mirror 20 And the third step of vibrating the reference surface or the measurement surface of the object 50 at the angular frequency ω c and the detection point of the CCD image sensor 61 in which the interference light is arranged two-dimensionally, On the basis of a fourth step of converting the interference signal S (t) to a typical interference signal S (t) and the processed signals A s (t) and A c (t) obtained by Fourier transforming the interference signal S (t). the value of the electrically converted the resulting from the interference signal processing signal a s (t), a c (t) in step, theoretical When the square sum of the difference between the value of the processed signal derived is minimized, modulation amplitude Z bi and phase α i (i = 1,2, ... n) contained in the interference signal S (t) of A fifth step of estimating the value for each effective detection point of the CCD image sensor 61, and the light reflected by each reflecting surface of the object 50 from the values of the modulation amplitude Z bi and the phase α i ; the optical path difference L zi and the reference light reflected by the mirror 20, a sixth step of calculating the L [alpha i for each detection point of the CCD image sensor 61, the optical path difference L zi, based on the value of L [alpha i, the And a seventh step of calculating the position of each reflecting surface of the object 50 for each detection point of the CCD image sensor 61.

また本実施例では、第1の工程を行なう光源装置としてのSWS光源装置1と、第2の工程を行なう干渉光学系としてのレーザ干渉計2と、第3の工程を行なう正弦波振動手段としての圧電素子41と、第4の工程を行なう光電変換手段としてのCCDイメージセンサ61と、第5の工程を行なう第1の演算手段,第6の工程を行なう第2の演算手段,第7の工程を行なう第3の演算手段としてのパソコン62と、を備えた装置を採用している。   In this embodiment, the SWS light source device 1 as a light source device that performs the first step, the laser interferometer 2 as the interference optical system that performs the second step, and the sine wave vibration means that performs the third step. Piezoelectric element 41, a CCD image sensor 61 as photoelectric conversion means for performing the fourth step, first calculation means for performing the fifth step, second calculation means for performing the sixth step, and seventh A device including a personal computer 62 as a third calculation means for performing the process is employed.

上記の方法および装置では、電気的に変換された干渉信号S(t)の位相は正弦波状に変化し、その変調振幅Zbiは光路差Lziと正弦波状に波長走査された光の走査振幅bとに比例すると共に、干渉信号S(t)の位相の時間平均である位相αiは光路差Lαiに比例する。そのため、変調振幅Zbiから得られる波長以上の光路差Lziと、位相αiから得られる波長以下の光路差Lαiとを組み合わせることで、波長以上の光路差Liの値を波長以下の光路差Lαiの測定精度と同じ高い精度で算出できる。 In the above method and apparatus, the phase of the electrically converted interference signal S (t) changes sinusoidally, and the modulation amplitude Z bi is the optical path difference L zi and the scanning amplitude of the light that has been wavelength-scanned sinusoidally. In addition to being proportional to b, the phase α i, which is the time average of the phase of the interference signal S (t), is proportional to the optical path difference Lα i . Therefore, a modulation amplitude Z optical path difference over the wavelength obtained from the bi L zi, by combining the phase α optical path difference equal to or smaller than the wavelength obtained from i L [alpha i, the value of the following wavelengths or more of the optical path difference L i Wavelength It can be calculated with the same high accuracy as the measurement accuracy of the optical path difference Lα i .

また、電気的に変換された干渉信号S(t)から得られた処理信号の値と、理論式である処理信号の値との差の二乗和を誤差関数Hとし、この誤差関数Hを最小にすることで、理論式に含まれている被対象物50の各反射面に関する変調振幅Zbiと位相αiを推定できる。この変調振幅Zbiと位相αiの推定値から、被対象物50の各反射面の位置が求められ、従来のような機械的な誤差要因を排除して、被対象物50の各反射面の形状を二次平面上で精密に測定することができる。 Further, the sum of squares of the difference between the value of the processed signal obtained from the electrically converted interference signal S (t) and the value of the processed signal as a theoretical formula is defined as an error function H, and this error function H is minimized. By doing so, it is possible to estimate the modulation amplitude Z bi and the phase α i for each reflecting surface of the object 50 included in the theoretical formula. From the estimated values of the modulation amplitude Z bi and the phase α i , the position of each reflecting surface of the object 50 is obtained, and the mechanical error factors as in the prior art are eliminated, and each reflecting surface of the object 50 is removed. Can be accurately measured on the secondary plane.

本実施例では、前記第5の工程で、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、上記数10に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、前記第4の工程で変換した干渉信号S(t)から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和を、前記数11のような誤差関数Hとして、この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値をCCDイメージセンサ61の検出点毎に推定する方法を採用している。 In the present embodiment, in the fifth step, the interference signal is obtained in a region where the frequency component ω is ω c / 2 <ω <3ω c / 2 and a region where 3ω c / 2 <ω <5ω c / 2. The two processing signals A s (t) and A c (t) shown in Equation 10 above are obtained by performing Fourier transform, and the processing obtained from the interference signal S (t) converted in the fourth step. The sum of squares of the difference between the signal value and the theoretically derived value of the processed signal is defined as an error function H as shown in Equation 11, and the modulation amplitude Z bi at which the value of the error function H is minimized. And the phase α i are estimated for each detection point of the CCD image sensor 61.

また本実施例では、パソコン62に含まれる第1の演算手段が、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、上記数10に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、CCDイメージセンサ61で変換した干渉信号S(t)から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和を、前記数11のような誤差関数Hとして、この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値をCCDイメージセンサ61の検出点毎に推定するように構成している。 In the present embodiment, the first computing means included in the personal computer 62 is configured such that the frequency component ω is a region where ω c / 2 <ω <3ω c / 2 and a region where 3ω c / 2 <ω <5ω c / 2. Then, the interference signal S (t) obtained by Fourier transforming the interference signal to obtain the two processed signals A s (t) and A c (t) shown in the above equation 10 and converted by the CCD image sensor 61. The sum of squares of the difference between the value of the processed signal obtained from the above and the theoretically derived value of the processed signal is defined as the error function H as shown in Equation 11, and the value of the error function H is minimized. The modulation amplitude Z bi and the phase α i are estimated for each detection point of the CCD image sensor 61.

上記の方法および装置によれば、干渉信号S(t)をフーリエ変換して、周波数成分がωc付近の領域(ωc/2<ω<3ωc/2)と、2ωc付近の領域(3ωc/2<ω<5ωc/2)から、2つの処理信号As(t)とAc(t)を得た後、上記誤差関数Hの値が最小となる変調振幅Zbiと位相αiとの値を推定すれば、被対象物50の各反射面の位置を正確に測定すること可能になる。 According to the above method and apparatus, the interference signal S with Fourier transform (t), a region (ω c / 2 <ω < 3ω c / 2) in the vicinity of the frequency component omega c, the region near 2 [omega c ( After obtaining two processed signals A s (t) and A c (t) from 3ω c / 2 <ω <5ω c / 2), the modulation amplitude Z bi and the phase at which the value of the error function H is minimized are obtained. If the value of α i is estimated, the position of each reflecting surface of the object 50 can be accurately measured.

本実施例では、前記光路差Lαiziの値に基づき、被対象物50の反射面間の厚さをCCDイメージセンサ61の検出点毎に算出する第8の工程をさらに含んだ方法を採用している。 In this embodiment, the method further includes an eighth step of calculating the thickness between the reflecting surfaces of the object 50 for each detection point of the CCD image sensor 61 based on the value of the optical path difference Lα i L zi. Adopted.

また本実施例では、前記光路差Lzi,Lαiの値に基づき、被対象物50の反射面間の厚さをCCDイメージセンサ61の検出点毎に算出する第4の演算手段を、パソコン62にさらに備えている。 In this embodiment, the fourth computing means for calculating the thickness between the reflecting surfaces of the object 50 for each detection point of the CCD image sensor 61 based on the values of the optical path differences L zi and Lα i is a personal computer. 62 is further equipped.

上記の方法および装置によれば、被対象物50の各反射面の形状だけでなく、反射面間の厚さをも機械的な誤差要因を排除しつつ、二次平面上で精密に測定することが可能になる。   According to the above method and apparatus, not only the shape of each reflecting surface of the object 50 but also the thickness between the reflecting surfaces is accurately measured on the secondary plane while eliminating mechanical error factors. It becomes possible.

なお、本発明は上記各実施例に限定されるものではなく、種々の変形実施が可能である。例えば本実施例では、参照面となるミラー20を振動させた構成を示したが、被対象物50の測定面を振動させるようにしてもよい。さらにSWS光源装置1は、本発明に係るSWS干渉計の光源に限らず、他の用途にも適用できる。   In addition, this invention is not limited to said each Example, A various deformation | transformation implementation is possible. For example, in the present embodiment, the configuration in which the mirror 20 serving as the reference surface is vibrated is shown, but the measurement surface of the object 50 may be vibrated. Furthermore, the SWS light source device 1 is applicable not only to the light source of the SWS interferometer according to the present invention but also to other uses.

本発明の好ましい一実施例における薄膜形状測定装置の全体構成を示す概略説明図である。It is a schematic explanatory drawing which shows the whole structure of the thin film shape measuring apparatus in one preferable Example of this invention. 同上、CCDイメージセンサの一つのピクセルで検出された処理信号の値と、同じ位置で理論的に推定される処理信号の値とをそれぞれ別個に示したグラフである。FIG. 6 is a graph showing separately the value of the processing signal detected by one pixel of the CCD image sensor and the value of the processing signal theoretically estimated at the same position. 同上、被対象物の表面の形状と裏面の形状をそれぞれ別個に示したグラフである。It is the graph which showed the shape of the surface of a to-be-targeted object, and the shape of a back surface separately, respectively. 同上、被対象物の次数m1,m2の分布をそれぞれ別個に示したグラフである。FIG. 6 is a graph showing separately the distributions of orders m 1 and m 2 of the object. 同上、被対象物の厚さを示すグラフである。It is a graph which shows the thickness of a target object same as the above.

符号の説明Explanation of symbols

1 SWS光源装置(光源装置)
2 レーザ干渉計(干渉光学系)
41 圧電素子(正弦波振動手段)
50 被対象物
61 CCDイメージセンサ(光電変換手段)
62 パソコン(第1の演算手段,第2の演算手段,第3の演算手段,第4の演算手段)
1 SWS light source device (light source device)
2 Laser interferometer (interference optical system)
41 Piezoelectric element (sinusoidal vibration means)
50 Object
61 CCD image sensor (photoelectric conversion means)
62 Personal computer (first computing means, second computing means, third computing means, fourth computing means)

Claims (6)

角周波数ωbで正弦波状に波長走査された光を発生する第1の工程と、
前記光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る第2の工程と、
前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる第3の工程と、
前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する第4の工程と、
前記干渉信号をフーリエ変換して得た処理信号に基づき、前記第4の工程で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を前記検出点毎に推定する第5の工程と、
前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第6の工程と、
前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第7の工程と、
を含むことを特徴とする薄膜形状測定方法。
A first step of generating a sinusoidally wavelength scanned light at an angular frequency ω b ;
After dividing the light and reflecting each of the plurality of reflection surfaces and the reference surface, which are measurement surfaces of the object, object light from the measurement surface of the object and reference light from the reference surface A second step of combining to obtain interference light;
A third step of sine-wave oscillating the reference surface or the measurement surface of the object with an angular frequency ω c ;
A fourth step of capturing the interference light at detection points arranged two-dimensionally and converting the interference light into an electrical interference signal;
Based on the processed signal obtained by Fourier transforming the interference signal, the value of the processed signal obtained from the interference signal electrically converted in the fourth step and the value of the processed signal theoretically derived A fifth step of estimating the value of the modulation amplitude Z bi and the phase α i (i = 1, 2,... N) of the interference signal for each detection point when the sum of squares of the difference between the two is minimized. ,
Based on the values of the modulation amplitude Z bi and the phase α i , optical path differences L zi and Lα i between the light reflected by each reflection surface of the object and the reference light reflected by the reference surface are determined as the detection points. A sixth step of calculating each time;
A seventh step of calculating the position of each reflecting surface of the object for each detection point based on the values of the optical path differences L zi and Lα i ;
A thin film shape measuring method comprising:
前記第5の工程で、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、次に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、
Figure 2006189339
前記第4の工程で変換した干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値(符号「^」を付して区別する)との差の二乗和を次式のような誤差関数Hとして、
Figure 2006189339
この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値を前記検出点毎に推定することを特徴とする請求項1記載の薄膜形状測定方法。
In the fifth step, Fourier transform is performed on the interference signal in a region where the frequency component ω is ω c / 2 <ω <3ω c / 2 and a region where 3ω c / 2 <ω <5ω c / 2. , Obtain the following two processed signals A s (t) and A c (t),
Figure 2006189339
The sum of squares of the difference between the value of the processed signal obtained from the interference signal converted in the fourth step and the value of the processed signal that is theoretically derived (distinguishes by adding a sign “^”) As an error function H such as
Figure 2006189339
2. The thin film shape measuring method according to claim 1, wherein the value of the modulation amplitude Z bi and the phase α i at which the value of the error function H is minimized is estimated for each detection point.
前記光路差Lαiziの値に基づき、前記被対象物の反射面間の厚さを前記検出点毎に算出する第8の工程をさらに含むことを特徴とする請求項1または2記載の薄膜形状測定方法。 3. The method according to claim 1, further comprising an eighth step of calculating, for each of the detection points, a thickness between the reflection surfaces of the object based on the value of the optical path difference Lα i L zi . Thin film shape measurement method. 角周波数ωbで正弦波状に波長走査された光を発生する光源装置と、
前記光源装置からの光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る干渉光学系と、
前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる正弦波振動手段と、
前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する光電変換手段と、
前記干渉信号をフーリエ変換して得た処理信号に基づき、前記光電変換手段で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を前記検出点毎に推定する第1の演算手段と、
前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第2の演算手段と、
前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第3の演算手段と、
を備えたことを特徴とする薄膜形状測定装置。
A light source device for generating light that is wavelength-scanned in a sinusoidal form at an angular frequency ω b ,
After the light from the light source device is divided and reflected by a plurality of reflection surfaces and reference surfaces, which are measurement surfaces of the object, object light from the measurement surface of the object, and from the reference surface An interference optical system that obtains interference light by combining with reference light;
A sinusoidal oscillation means for sinusoidally oscillating at an angular frequency omega c the measurement surface of the reference surface or the subject matter,
Photoelectric conversion means for capturing the interference light at detection points arranged two-dimensionally and converting them into electrical interference signals, and
Based on the processed signal obtained by Fourier transforming the interference signal, the value of the processed signal obtained from the interference signal electrically converted by the photoelectric conversion means, and the theoretically derived value of the processed signal First arithmetic means for estimating the value of the modulation amplitude Z bi and the phase α i (i = 1, 2,... N) of the interference signal when the sum of squares of the difference between the two is minimized. ,
From the values of the modulation amplitude Z bi and the phase α i , optical path differences L zi and Lα i between the light reflected by each reflection surface of the object and the reference light reflected by the reference surface are determined as the detection points. A second calculation means for calculating each time;
Third arithmetic means for calculating the position of each reflecting surface of the object for each detection point based on the values of the optical path differences L zi and Lα i ;
A thin-film shape measuring apparatus comprising:
前記第1の演算手段は、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、次に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、
Figure 2006189339
前記光電変換手段で変換した干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値(符号「^」を付して区別する)との差の二乗和を次式のような誤差関数Hとして、
Figure 2006189339
この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値を前記検出点毎に推定するものであることを特徴とする請求項4記載の薄膜形状測定装置。
The first calculation means performs Fourier transform on the interference signal in a region where the frequency component ω is ω c / 2 <ω <3ω c / 2 and a region where 3ω c / 2 <ω <5ω c / 2. To obtain the following two processed signals A s (t) and A c (t) respectively,
Figure 2006189339
The square sum of the difference between the value of the processing signal obtained from the interference signal converted by the photoelectric conversion means and the value of the processing signal that is theoretically derived (distinguishes by adding a sign “^”) is as follows: As an error function H like the equation,
Figure 2006189339
5. The thin film shape measuring apparatus according to claim 4, wherein the value of the modulation amplitude Z bi and the phase α i at which the value of the error function H is minimized is estimated for each detection point.
前記光路差Lzi,Lαiの値に基づき、前記被対象物の反射面間の厚さを前記検出点毎に算出する第4の演算手段をさらに含むことを特徴とする請求項4または5記載の薄膜形状測定装置。

6. The apparatus according to claim 4, further comprising fourth calculation means for calculating a thickness between reflection surfaces of the object for each detection point based on the values of the optical path differences L zi and Lα i. The thin film shape measuring apparatus described.

JP2005001788A 2005-01-06 2005-01-06 Thin film shape measuring method and thin film shape measuring apparatus Active JP4560622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001788A JP4560622B2 (en) 2005-01-06 2005-01-06 Thin film shape measuring method and thin film shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001788A JP4560622B2 (en) 2005-01-06 2005-01-06 Thin film shape measuring method and thin film shape measuring apparatus

Publications (2)

Publication Number Publication Date
JP2006189339A true JP2006189339A (en) 2006-07-20
JP4560622B2 JP4560622B2 (en) 2010-10-13

Family

ID=36796695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001788A Active JP4560622B2 (en) 2005-01-06 2005-01-06 Thin film shape measuring method and thin film shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP4560622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053148A (en) * 2007-08-29 2009-03-12 Mitsutoyo Corp Multi-wavelength interferometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214309A (en) * 1986-03-17 1987-09-21 Tokyo Seimitsu Co Ltd Measuring instrument for surface roughness and shape
JP2000065517A (en) * 1998-08-18 2000-03-03 Tokyo Seimitsu Co Ltd Sinusoidal wavelength scanning interferometer and sinusoidal wavelength scanning light source unit
JP2004286689A (en) * 2003-03-25 2004-10-14 Niigata Tlo:Kk Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214309A (en) * 1986-03-17 1987-09-21 Tokyo Seimitsu Co Ltd Measuring instrument for surface roughness and shape
JP2000065517A (en) * 1998-08-18 2000-03-03 Tokyo Seimitsu Co Ltd Sinusoidal wavelength scanning interferometer and sinusoidal wavelength scanning light source unit
JP2004286689A (en) * 2003-03-25 2004-10-14 Niigata Tlo:Kk Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053148A (en) * 2007-08-29 2009-03-12 Mitsutoyo Corp Multi-wavelength interferometer

Also Published As

Publication number Publication date
JP4560622B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5241806B2 (en) Apparatus and method for surface contour measurement
US7599071B2 (en) Determining positional error of an optical component using structured light patterns
JP5349739B2 (en) Interferometer and interferometer calibration method
KR101596290B1 (en) Thickness Measuring Apparatus And Thickness Measuring Method
JPH0374763B2 (en)
JPH0760086B2 (en) Method and apparatus for measuring shape error of object
US9464882B2 (en) Interferometer with continuously varying path length measured in wavelengths to the reference mirror
JP4560622B2 (en) Thin film shape measuring method and thin film shape measuring apparatus
JP3960427B2 (en) Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film
JP5667891B2 (en) Shape measurement method
JP2010060420A (en) Surface shape and/or film thickness measuring method and its system
EP2955490B1 (en) Displacement detecting device
JP5249739B2 (en) Observation apparatus and observation method
JP2993836B2 (en) Interferometer using coherence degree
JP2017090123A (en) Interferometer
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP2993835B2 (en) Multi-wavelength phase interferometry and multi-wavelength phase interferometer
JP2009145068A (en) Surface profile measuring method and interferometer
JP4081538B2 (en) Interference fringe analysis method for transparent parallel plates
JP6501307B2 (en) Heterodyne interference device
KR0173509B1 (en) Optical phase-shifting interferometry and method for inspecting precision surface using it
JP3396284B2 (en) Phase and amplitude measurement device
JP2003090765A (en) Method and apparatus for measuring wavelength fluctuation
JP2002340539A (en) Shape measuring instrument
GB2516277A (en) Optical apparatus and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100628

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150