JP2009053142A - Sensor fixing structure - Google Patents

Sensor fixing structure Download PDF

Info

Publication number
JP2009053142A
JP2009053142A JP2007222251A JP2007222251A JP2009053142A JP 2009053142 A JP2009053142 A JP 2009053142A JP 2007222251 A JP2007222251 A JP 2007222251A JP 2007222251 A JP2007222251 A JP 2007222251A JP 2009053142 A JP2009053142 A JP 2009053142A
Authority
JP
Japan
Prior art keywords
sensor
polymer material
vibration
measurement object
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007222251A
Other languages
Japanese (ja)
Inventor
Daisuke Kanari
大輔 金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007222251A priority Critical patent/JP2009053142A/en
Publication of JP2009053142A publication Critical patent/JP2009053142A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor fixing structure which can be fastened without restrictions of a fixing portion and with which bad influence by resonance can be eliminated. <P>SOLUTION: When measuring vibration generated in a measurement object 10, such as a machine and a vehicle by a sensor 20 equipped with a sensor body 22, such as an acceleration sensor and an oscillation sensor, the sensor 20 is adhered to the measurement object 10 through an intervention member 30 made of high polymer materials having absorption property around the resonance frequency of the sensor 20. Thereby, the sensor can be simply fixed to an optional portion of the measurement object 10 and would be free of the restrictions of the fixing portion. Since vibration of the resonance frequency entering the sensor 20 can be effectively blocked by the intervention member 30, bad influence by resonance can be eliminated, and accurate measurement can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、測定対象物に発生する振動を測定するセンサを測定対象物に取り付ける構造に関するものである。   The present invention relates to a structure for attaching a sensor for measuring vibration generated in a measurement object to the measurement object.

従来、振動や加速度を測定するセンサの取付構造としては、例えば、特開平11−242047号公報(特許文献1)に開示される加速度センサ取付方法や特開2001−337100号公報(特許文献2)に開示されるセンサの取り付け構造が知られている。   Conventional sensor mounting structures for measuring vibration and acceleration include, for example, an acceleration sensor mounting method disclosed in Japanese Patent Laid-Open No. 11-242047 (Patent Document 1) and Japanese Patent Laid-Open No. 2001-337100 (Patent Document 2). There is known a mounting structure of a sensor disclosed in the above.

上記特許文献1に開示される加速度センサ取付方法は、エアバッグシステムに用いる加速度センサの取り付けを前提としてなされたものである。このようなエアバッグシステムでは、加速度センサからの信号により衝突の判定を行うため、帯域外の不要な振動(共振等による信号)は、誤作動を引き起こすため除去しなければならない。共振周波数がサンプリング周波数に近い場合、或いは、共振レベルが高い場合には、衝突信号と関係のない共振による信号がA/D変換時のサンプリングの関係(エーリアシング等)により帯域内に現れて、衝突と判定されて誤作動を起こしてしまう可能性がある。   The acceleration sensor mounting method disclosed in Patent Document 1 is based on the premise of mounting an acceleration sensor used in an airbag system. In such an airbag system, a collision is determined based on a signal from an acceleration sensor. Therefore, unnecessary vibration (signal due to resonance or the like) outside the band must be removed because it causes a malfunction. When the resonance frequency is close to the sampling frequency, or when the resonance level is high, a signal due to resonance that is not related to the collision signal appears in the band due to the sampling relationship (aliasing, etc.) during A / D conversion, and the collision occurs. May cause malfunction.

このような誤作動を防止するために、加速度センサを保持した加速度センサ取付基板に、加速度センサの加速度検出方向の前後いずれか1ヵ所および左右の2ヵ所、または前後の2ヵ所に、相手部材にねじ等により固定するための取付穴を設ける。これにより、共振周波数の高域化または共振レベルの低下を図り、共振による弊害を除去する。したがって、従来必要であった、加速度センサ内外に付加していたフィルタを省略することができ、簡単で低コストの加速度センサ取付構造を実現できる。   In order to prevent such a malfunction, the acceleration sensor mounting substrate holding the acceleration sensor is attached to the mating member at one of the front and rear of the acceleration sensor in the direction of acceleration detection and at two places on the left or right. Provide mounting holes for fixing with screws. As a result, the resonance frequency is increased or the resonance level is lowered, and the harmful effects due to resonance are eliminated. Therefore, it is possible to omit the filter added to the inside and outside of the acceleration sensor, which has been necessary conventionally, and a simple and low-cost acceleration sensor mounting structure can be realized.

また、上記特許文献2に開示されるセンサの取り付け構造では、加速度センサを収容するハウジングにハウジング底面との間で1乃至複数の挿入溝を形成する取付部を設け、被取付部位に固定されるブラケットの要所に各挿入溝に挿入される1乃至複数の挿入片を設けるとともに、挿入溝に挿入した後に取付部側にかしめられるかしめ片を各挿入片に設け、このかしめ片を少なくとも挿入片を挿入溝に挿入した状態で外部から視認可能とした。これにより、取り付け状態が容易に検証できるとともに使用中にがたや緩みが生じ難くなる。
特開平11−242047号公報 特開2001−337100号公報
In the sensor mounting structure disclosed in Patent Document 2, a housing for accommodating the acceleration sensor is provided with a mounting portion for forming one or a plurality of insertion grooves between the housing bottom surface and fixed to the mounted site. One or a plurality of insertion pieces to be inserted into the insertion grooves are provided at important points of the bracket, and caulking pieces that are caulked to the mounting portion side after being inserted into the insertion grooves are provided on the insertion pieces, and the caulking pieces are at least inserted pieces. Can be visually recognized from the outside in a state of being inserted into the insertion groove. As a result, the attachment state can be easily verified, and rattling and loosening are less likely to occur during use.
Japanese Patent Application Laid-Open No. 11-242047 JP 2001-337100 A

加速度センサや振動センサなどで機械や車両などの振動を計測する際には、これらから様々な振動周波数が発生しているので、この振動スペクトルにセンサの共振周波数が含まれると、加速度センサや振動センサはその構造上共振周波数を有しているため、共振周波数を入力するとセンサ出力が飽和するほど大きく振動してしまい、正確な値を測定できない或いは測定不能になるという問題があった。   When measuring vibrations of machines, vehicles, etc. using acceleration sensors or vibration sensors, various vibration frequencies are generated from these. If the resonance frequency of the sensor is included in this vibration spectrum, the acceleration sensor or vibration sensor Since the sensor has a resonance frequency due to its structure, there is a problem that when the resonance frequency is input, the sensor output vibrates greatly as the sensor output is saturated, and an accurate value cannot be measured or cannot be measured.

上記特許文献1に開示される加速度センサ取付方法では、共振による弊害を除去できるが、共振周波数の高域化および共振レベルの低下は、使用する加速度センサの大きさや重量、加速度センサ取付基板の大きさや厚さ、ねじ取付穴の加速度センサからの距離等により変化するので、固定するための取付穴の位置を特定するのが面倒であった。さらに、加速度センサ取付基板をねじを用いて相手部材に固定しているので、ねじを使用できない相手部材への取り付けができなかった。   The acceleration sensor mounting method disclosed in Patent Document 1 can eliminate the harmful effects of resonance, but the increase in the resonance frequency and the decrease in the resonance level are caused by the size and weight of the acceleration sensor used and the size of the acceleration sensor mounting substrate. Since it varies depending on the sheath thickness, the distance of the screw mounting hole from the acceleration sensor, etc., it is troublesome to specify the position of the mounting hole for fixing. Furthermore, since the acceleration sensor mounting substrate is fixed to the mating member using a screw, the mounting to the mating member where the screw cannot be used cannot be performed.

また、上記特許文献2に開示されるセンサの取り付け構造では、加速度センサを収容するハウジングが被取付部位にかしめ片によって固定されるので、特許文献1に開示される方法のように共振による弊害を除去することができない。   Further, in the sensor mounting structure disclosed in Patent Document 2, since the housing that houses the acceleration sensor is fixed to the mounting site by caulking pieces, there is a problem caused by resonance as in the method disclosed in Patent Document 1. It cannot be removed.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、取付箇所の制約を受けずに簡単に装着でき且つ共振による弊害を除去できるセンサ取付構造を提供することである。   The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a sensor mounting structure that can be easily mounted without being restricted by mounting locations and can eliminate the adverse effects caused by resonance. .

本発明は前記目的を達成するために、測定対象物に発生する振動を測定するセンサを前記測定対象物に取り付けるセンサ取付構造において、前記センサが持つ共振周波数を含む所定の周波数帯域内に、温度−周波数換算則により得られるガラス転移温度(Tg)を有する高分子材料からなる部材が、前記センサに装着されて前記センサと前記測定対象物の間に介在され、該高分子材料からなる部材が前記測定対象物に接着されているセンサ取付構造を提案する。   In order to achieve the above object, the present invention provides a sensor mounting structure in which a sensor for measuring vibration generated in a measurement object is attached to the measurement object, and a temperature within a predetermined frequency band including a resonance frequency of the sensor. A member made of a polymer material having a glass transition temperature (Tg) obtained by a frequency conversion law is mounted on the sensor and interposed between the sensor and the measurement object, and the member made of the polymer material A sensor mounting structure bonded to the measurement object is proposed.

本発明のセンサ取付構造は、測定対象物とセンサとの間に高分子材料からなる部材が介在され、センサに装着された前記部材が測定対象物に接着され、センサが測定対象物に固定される。また、前記部材をなす高分子材料は、センサが持つ共振周波数を含む所定の周波数帯域内に、温度−周波数換算則により得られるガラス転移温度(Tg)を有するため、前記部材はこのガラス転移温度(Tg)に対応する周波数の振動を吸収する。   In the sensor mounting structure of the present invention, a member made of a polymer material is interposed between the measurement object and the sensor, the member attached to the sensor is bonded to the measurement object, and the sensor is fixed to the measurement object. The Further, since the polymer material constituting the member has a glass transition temperature (Tg) obtained by a temperature-frequency conversion rule within a predetermined frequency band including the resonance frequency of the sensor, the member has the glass transition temperature. Absorbs vibrations having a frequency corresponding to (Tg).

本発明のセンサ取付構造によれば、加速度センサや振動センサなどで機械や車両などの測定対象物に発生する振動を測定する際、センサの共振周波数付近に吸収特性を持つ高分子材料からなる部材を介して測定対象物にセンサを接着することによって取り付けているので、測定対象物の任意の箇所に簡単に取り付けることができるため、取付箇所の制約を受けることがないと共に、前記高分子材料からなる部材によってセンサに入力する共振周波数の振動を効果的に遮断しているので、共振による弊害を除去することができ、精度の良い測定が可能になる。   According to the sensor mounting structure of the present invention, a member made of a polymer material having an absorption characteristic near the resonance frequency of a sensor when measuring vibration generated in a measurement object such as a machine or a vehicle by an acceleration sensor or a vibration sensor. Since it is attached by adhering the sensor to the object to be measured via the sensor, it can be easily attached to any part of the object to be measured. Since the vibration of the resonance frequency input to the sensor is effectively cut off by the member, the adverse effect due to resonance can be eliminated, and accurate measurement can be performed.

以下、図面を参照して本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の第1実施形態のセンサ取付構造を示す図である。図において、10は測定対象物で、機械や車両などのように振動を発生するものである。20はセンサ装置で、ケース21の中に振動センサや加速度センサからなるセンサ本体22がその上面に半田付けされたセンサ基板23が設けられ、このセンサ基板23の下面には複数の支持部材24の上面が接着され、支持部材24の下面はケース21の内部底面に接着されている。これにより、センサ本体22はケース21内部に固定されている。   FIG. 1 is a diagram showing a sensor mounting structure according to a first embodiment of the present invention. In the figure, reference numeral 10 denotes an object to be measured, which generates vibration like a machine or a vehicle. Reference numeral 20 denotes a sensor device. A sensor substrate 23 having a sensor main body 22 composed of a vibration sensor and an acceleration sensor soldered to the upper surface thereof is provided in a case 21, and a plurality of support members 24 are provided on the lower surface of the sensor substrate 23. The upper surface is bonded, and the lower surface of the support member 24 is bonded to the inner bottom surface of the case 21. Thereby, the sensor main body 22 is fixed inside the case 21.

30は介在部材で、所定厚さDの矩形板形状をなし、その上面がセンサ20のケース21の外部底面に接着され、下面が測定対象物10の表面に接着されている。また、介在部材30は、センサ20の共振周波数付近に吸収特性を有する高分子材料からなる。尚、本実施形態で用いた高分子材料のJIS・A硬度は30〜60の範囲内の値である。JIS・A硬度が30未満であると、材料が柔らかすぎてセンサの取付位置が徐々にずれたり(コールドフロー)、強度が不足して大きな加速度が加わったときに大きく変形したり、破壊してしまったりするので好ましくない。またJIS・A硬度が60を超えると、振動吸収能力が小さくなり、効果が小さくなるため好ましくない。また、介在部材30の厚さDは0.5mm〜30mmの範囲内の値とすることが好ましい。すなわち、厚さDが0.5mm以下であると高分子材料の体積が小さくなりすぎて、振動吸収性能が不十分になる恐れがあり、また厚さDが30mm以上になると、本来振動を測定したい部位からセンサが離れすぎてしまい、所望の目的を達成できなくなる恐れがあり、また大きな加速度が加わったときに高分子材料自体が変形しやすくなり、測定に影響が出る恐れがあるため、好ましくない。   An interposition member 30 has a rectangular plate shape with a predetermined thickness D, and its upper surface is bonded to the outer bottom surface of the case 21 of the sensor 20 and its lower surface is bonded to the surface of the measurement object 10. Further, the interposition member 30 is made of a polymer material having absorption characteristics near the resonance frequency of the sensor 20. The JIS / A hardness of the polymer material used in the present embodiment is a value in the range of 30-60. If the JIS / A hardness is less than 30, the material is too soft and the mounting position of the sensor gradually shifts (cold flow), or when the strength is insufficient and a large acceleration is applied, it is greatly deformed or destroyed. It is not preferable because it is lost. On the other hand, when the JIS / A hardness exceeds 60, the vibration absorbing ability is reduced and the effect is reduced, which is not preferable. Further, the thickness D of the interposition member 30 is preferably set to a value within the range of 0.5 mm to 30 mm. That is, if the thickness D is 0.5 mm or less, the volume of the polymer material becomes too small and vibration absorption performance may be insufficient, and if the thickness D is 30 mm or more, vibration is originally measured. The sensor may be too far away from the desired site, making it impossible to achieve the desired purpose, and when a large acceleration is applied, the polymer material itself tends to be deformed, which may affect the measurement. Absent.

上記構成のセンサ取付け構造は、加速度センサや振動センサなどのセンサ本体22を有するセンサ20で機械や車両などの測定対象物10に発生する振動を計測する際、センサ20の共振周波数付近に振動吸収特性を持つ高分子材料からなる介在部材30を介して測定対象物10にセンサ20を接着することによって取り付けているので、測定対象物10の任意の箇所に簡単に取り付けることができるため、取付箇所の制約を受けることがない。さらに、介在部材30によってセンサ20(センサ本体22)に入力する共振周波数の振動を効果的に遮断しているので、共振による弊害を除去することができ、精度の良い測定が可能になる。   The sensor mounting structure configured as described above absorbs vibration near the resonance frequency of the sensor 20 when measuring the vibration generated in the measurement object 10 such as a machine or vehicle by the sensor 20 having the sensor body 22 such as an acceleration sensor or a vibration sensor. Since the sensor 20 is attached by adhering to the measurement object 10 via the intervening member 30 made of a polymer material having characteristics, it can be easily attached to an arbitrary place of the measurement object 10, so There are no restrictions. Further, since the vibration of the resonance frequency input to the sensor 20 (sensor body 22) is effectively cut off by the interposition member 30, the harmful effect due to the resonance can be eliminated and accurate measurement can be performed.

具体的には、例えばセンサ20の共振周波数が1kHzであれば、0℃付近にガラス転移温度Tgを持つ高分子材料、例えばSBRなどの合成ゴムからなる介在部材30を介して取り付ける。高分子材料が吸収できる振動の周波数とこの高分子材料のガラス転移温度Tgとの関係は温度−周波数換算則から求めることができ、共振周波数が高周波になればなるほどガラス転移温度Tgの低い高分子材料からなる介在部材30を使用する。尚、温度−周波数換算則については、「新版ゴム技術の基礎(日本ゴム協会編)P78−P79」等に記載されている。   Specifically, for example, if the resonance frequency of the sensor 20 is 1 kHz, the sensor 20 is attached via an interposition member 30 made of a polymer material having a glass transition temperature Tg near 0 ° C., for example, synthetic rubber such as SBR. The relationship between the vibration frequency that can be absorbed by the polymer material and the glass transition temperature Tg of the polymer material can be obtained from the temperature-frequency conversion law. The higher the resonance frequency, the lower the glass transition temperature Tg. An intervening member 30 made of a material is used. The temperature-frequency conversion rule is described in “Basics of New Rubber Technology (Edited by Japan Rubber Association) P78-P79” and the like.

ガラス転移温度Tgはほぼ高分子材料の種類によって決まるので、吸収したい振動周波数の帯域幅が広い場合は、その周波数帯域の上限周波数と下限周波数或いはそれらの周波数付近にガラス転移温度Tgを持つ2種類の互いに非相容な高分子材料を任意の割合(例えば50:50)で混合することで所望の振動吸収性能が得られる。なお、高分子材料の振動吸収特性は使用温度によって若干シフトするため、介在部材30の振動吸収特性をセンサ20の共振周波数の帯域幅よりも広く設定することが望ましい。   Since the glass transition temperature Tg is almost determined by the type of polymer material, when the bandwidth of the vibration frequency to be absorbed is wide, there are two types having the glass transition temperature Tg at or near the upper limit frequency and lower limit frequency of the frequency band. The desired vibration absorbing performance can be obtained by mixing the mutually incompatible polymer materials in an arbitrary ratio (for example, 50:50). In addition, since the vibration absorption characteristic of the polymer material slightly shifts depending on the use temperature, it is desirable to set the vibration absorption characteristic of the interposition member 30 wider than the resonance frequency bandwidth of the sensor 20.

低周波領域は高分子材料では常温付近の物性に相当するので、測定対象物10が発生する振動をセンサ20に効率的に伝達するには、高分子材料の常温付近の損失係数tanδは低い方が望ましい。具体的には数Hz付近に相当する25℃の損失係数tanδは0.3以下が望ましく、さらに好ましくは0.2以下が望ましい。   Since the low-frequency region corresponds to a physical property near normal temperature in the polymer material, the loss factor tanδ near the normal temperature of the polymer material is lower in order to efficiently transmit the vibration generated by the measurement object 10 to the sensor 20. Is desirable. Specifically, the loss coefficient tanδ at 25 ° C. corresponding to around several Hz is desirably 0.3 or less, and more desirably 0.2 or less.

また、センサ20としては、その共振周波数が測定したい振動の周波数領域から十分高く離れているものを使用することが好ましい。例えば、センサ20によって測定する振動の周波数が1kHzであれば、センサ20の共振周波数は2kHz以上の周波数であることが好ましい。   Further, as the sensor 20, it is preferable to use a sensor whose resonance frequency is sufficiently high away from the vibration frequency region to be measured. For example, if the vibration frequency measured by the sensor 20 is 1 kHz, the resonance frequency of the sensor 20 is preferably 2 kHz or more.

次に、上記高分子材料に関する実施例と比較例について説明する。   Next, examples and comparative examples relating to the polymer material will be described.

図2は本発明の第1実施形態における高分子材料の実施例を説明する図である。図には実施例1〜5及び比較例1,2においてそれぞれ異なる高分子材料を用いて介在部材30を形成したときの、ガラス転移温度Tg、カーボン配合量、JIS・A硬度、部材厚さ、並びに振動吸収特性の実験結果を表している。   FIG. 2 is a diagram for explaining an example of the polymer material in the first embodiment of the present invention. In the figure, when the interposition member 30 is formed using different polymer materials in Examples 1 to 5 and Comparative Examples 1 and 2, the glass transition temperature Tg, the carbon blending amount, the JIS / A hardness, the member thickness, In addition, experimental results of vibration absorption characteristics are shown.

カーボン配合量(重量部)はポリマー100に対するカーボンの配合量である。JIS・A硬度はJIS・K6253に準拠して測定している。また、振動吸収特性実験では、各実施例の材料からなる介在部材30に加速度センサを貼り付け、1Gのサイン波を入力したときの出力レベルを次の範囲で分類している。すなわち、◎印は振動減衰レベルが10dB以上、○印は振動減衰レベルが3〜10dB、△印は振動減衰レベルが3dB以下であることをそれぞれ表している。   The carbon blending amount (parts by weight) is the blending amount of carbon with respect to the polymer 100. JIS / A hardness is measured in accordance with JIS / K6253. In the vibration absorption characteristic experiment, an acceleration sensor is attached to the interposition member 30 made of the material of each example, and the output level when a 1G sine wave is input is classified in the following range. That is, ◎ indicates that the vibration attenuation level is 10 dB or more, ◯ indicates that the vibration attenuation level is 3 to 10 dB, and Δ indicates that the vibration attenuation level is 3 dB or less.

実施例1は、高分子材料としてブタジエンゴム(BR)を用い、カーボン配合量を30部として部材厚さを10mmとしたもので、ガラス転移温度Tgは約−100℃、JIS・A硬度は40である。この材料の振動吸収特性実験結果では、加振周波数が5Hz,50Hz,500Hz,3000Hzにおいて振動減衰レベルが3dB以下であり、加振周波数が10kHzにおいて振動減衰レベルが3〜10dBであり、加振周波数が50kHzにおいて振動減衰レベルが10dB以上であった。   In Example 1, butadiene rubber (BR) was used as the polymer material, the carbon content was 30 parts, and the member thickness was 10 mm. The glass transition temperature Tg was about −100 ° C., and the JIS / A hardness was 40. It is. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 3 dB or less at an excitation frequency of 5 Hz, 50 Hz, 500 Hz, and 3000 Hz, the vibration attenuation level is 3 to 10 dB at an excitation frequency of 10 kHz, and the excitation frequency. However, the vibration attenuation level was 10 dB or more at 50 kHz.

実施例2は、高分子材料として天然ゴム(NR)を用い、カーボン配合量を20部として部材厚さを10mmとしたもので、ガラス転移温度Tgは約−60℃、JIS・A硬度は43である。この材料の振動吸収特性実験結果では、加振周波数が5Hz,50Hz,500Hzにおいて振動減衰レベルが3dB以下であり、加振周波数が3000Hzにおいて振動減衰レベルが3〜10dBであり、加振周波数が10kHzにおいて振動減衰レベルが10dB以上であり、加振周波数が50kHzにおいて振動減衰レベルが3dB以下であった。   In Example 2, natural rubber (NR) was used as the polymer material, the carbon content was 20 parts, and the member thickness was 10 mm. The glass transition temperature Tg was about −60 ° C., and the JIS / A hardness was 43. It is. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 3 dB or less at an excitation frequency of 5 Hz, 50 Hz, and 500 Hz, the vibration attenuation level is 3 to 10 dB at an excitation frequency of 3000 Hz, and the excitation frequency is 10 kHz. The vibration attenuation level was 10 dB or more, and the vibration attenuation level was 3 dB or less at an excitation frequency of 50 kHz.

実施例3は、高分子材料としてブチルゴム(IIR)を用い、カーボン配合量を30部として部材厚さを10mmとしたもので、ガラス転移温度Tgは約−35℃、JIS・A硬度は45である。この材料の振動吸収特性実験結果では、加振周波数が5Hz,50Hzにおいて振動減衰レベルが3dB以下であり、加振周波数が500Hz,3000Hz,10kHzにおいて振動減衰レベルが10dB以上であり、加振周波数が50kHzにおいて振動減衰レベルが3〜10dBであった。   In Example 3, butyl rubber (IIR) was used as the polymer material, the carbon content was 30 parts, and the member thickness was 10 mm. The glass transition temperature Tg was about −35 ° C., and the JIS / A hardness was 45. is there. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 3 dB or less at the excitation frequency of 5 Hz and 50 Hz, the vibration attenuation level is 10 dB or more at the excitation frequency of 500 Hz, 3000 Hz, and 10 kHz, and the excitation frequency is The vibration attenuation level was 3 to 10 dB at 50 kHz.

実施例4は、高分子材料としてノルボルネンゴム(NOR)を用い、カーボン配合量を30部として部材厚さを10mmとしたもので、ガラス転移温度Tgは約30℃、JIS・A硬度は30である。この材料の振動吸収特性実験結果では、加振周波数が5Hzにおいて振動減衰レベルが10dB以上であり、加振周波数が50Hzにおいて振動減衰レベルが3〜10dBであり、加振周波数が500Hz,3000Hz,10kHz,50kHzにおいて振動減衰レベルが3dB以下であった。   Example 4 uses norbornene rubber (NOR) as a polymer material, has a carbon blending amount of 30 parts and a member thickness of 10 mm, has a glass transition temperature Tg of about 30 ° C. and a JIS / A hardness of 30. is there. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 10 dB or more at an excitation frequency of 5 Hz, the vibration attenuation level is 3 to 10 dB at an excitation frequency of 50 Hz, and the excitation frequencies are 500 Hz, 3000 Hz, and 10 kHz. At 50 kHz, the vibration attenuation level was 3 dB or less.

実施例5は、高分子材料としてスチレン−ブタジエンブロック共重合体(SBS)を用い、カーボン未配合として部材厚さを10mmとしたもので、ガラス転移温度Tgは約−40℃、JIS・A硬度は45である。この材料の振動吸収特性実験結果では、加振周波数が5Hz,50Hz,500Hzにおいて振動減衰レベルが3dB以下であり、加振周波数が3000Hz,10kHzにおいて振動減衰レベルが3〜10dBであり、加振周波数が50kHzにおいて振動減衰レベルが3dB以下であった。   Example 5 uses a styrene-butadiene block copolymer (SBS) as a polymer material, has a carbon thickness of 10 mm, and has a glass transition temperature Tg of about −40 ° C., JIS / A hardness. Is 45. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 3 dB or less at the excitation frequency of 5 Hz, 50 Hz, 500 Hz, the vibration attenuation level is 3 to 10 dB at the excitation frequency of 3000 Hz, 10 kHz, and the excitation frequency. However, the vibration attenuation level was 3 dB or less at 50 kHz.

比較例1は、高分子材料としてブチルゴム(IIR)を用い、カーボン配合量を50部として部材厚さを10mmとしたもので、ガラス転移温度Tgは約−35℃、JIS・A硬度は62である。この材料の振動吸収特性実験結果では、加振周波数が5Hz,50Hz,500Hzにおいて振動減衰レベルが3dB以下であり、加振周波数が3000Hzにおいて振動減衰レベルが3〜10dBであり、加振周波数が10kHz,50kHzにおいて振動減衰レベルが3dB以下であった。   In Comparative Example 1, butyl rubber (IIR) was used as the polymer material, the carbon content was 50 parts, and the member thickness was 10 mm. The glass transition temperature Tg was about −35 ° C., and the JIS / A hardness was 62. is there. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 3 dB or less at an excitation frequency of 5 Hz, 50 Hz, and 500 Hz, the vibration attenuation level is 3 to 10 dB at an excitation frequency of 3000 Hz, and the excitation frequency is 10 kHz. At 50 kHz, the vibration attenuation level was 3 dB or less.

比較例2は、高分子材料としてブチルゴム(IIR)を用い、カーボン配合量を30部として部材厚さを0.3mmとしたもので、ガラス転移温度Tgは約−35℃、JIS・A硬度は45である。この材料の振動吸収特性実験結果では、加振周波数が5Hz,50Hz,500Hzにおいて振動減衰レベルが3dB以下であり、加振周波数が3000Hzにおいて振動減衰レベルが3〜10dBであり、加振周波数が10kHz,50kHzにおいて振動減衰レベルが3dB以下であった。   In Comparative Example 2, butyl rubber (IIR) was used as the polymer material, the carbon content was 30 parts, and the member thickness was 0.3 mm. The glass transition temperature Tg was about −35 ° C., and the JIS / A hardness was 45. As a result of the vibration absorption characteristic experiment of this material, the vibration attenuation level is 3 dB or less at an excitation frequency of 5 Hz, 50 Hz, and 500 Hz, the vibration attenuation level is 3 to 10 dB at an excitation frequency of 3000 Hz, and the excitation frequency is 10 kHz. At 50 kHz, the vibration attenuation level was 3 dB or less.

上記のように実施例1〜5では各高分子材料のガラス転移温度Tgが低温であれば高周波の振動を吸収しており、ガラス転移温度Tgが低温であれば低周波の振動を吸収しており、所望のフィルタ効果が得られていることがわかる。特に実施例3のブチルゴムは、高分子材料本来の損失が大きいので、特に良好な振動吸収効果を得ることができた。   As described above, in Examples 1 to 5, high-frequency vibrations are absorbed if the glass transition temperature Tg of each polymer material is low, and low-frequency vibrations are absorbed if the glass transition temperature Tg is low. It can be seen that a desired filter effect is obtained. In particular, the butyl rubber of Example 3 has a large loss inherent to the polymer material, so that a particularly good vibration absorbing effect can be obtained.

また、比較例1では、高分子材料のJIS・A硬度が好適範囲内の値よりも高い値を有する高分子材料を用いたので、振動吸収効果が小さくなっていることがわかる。   Further, in Comparative Example 1, it is understood that the vibration absorption effect is small because the polymer material has a JIS · A hardness of the polymer material higher than a value within the preferred range.

また、比較例2では、部材厚さが好適範囲内の値よりも薄い介在部材を用いたので、振動吸収効果が小さくなっていることがわかる。   Moreover, in the comparative example 2, since the interposed member whose member thickness is thinner than the value within a suitable range was used, it turns out that the vibration absorption effect is small.

次に、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention will be described.

図3は本発明の第2実施形態のセンサ取付構造を示す図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。   FIG. 3 is a view showing a sensor mounting structure according to the second embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態では、第1実施形態と同様の高分子材料からなるケース21Bを有するセンサ20Bを備えると共に、介在部材30を除去した。また、ケース21Bの底面が測定対象物10の表面に接着されて、センサ20Bが測定対象物10に固定されている。また、ケース21Bの底面の厚さD2は0.5mmに設定されている。   In the second embodiment, the sensor 20B having the case 21B made of the same polymer material as in the first embodiment is provided, and the interposition member 30 is removed. Further, the bottom surface of the case 21 </ b> B is adhered to the surface of the measurement object 10, and the sensor 20 </ b> B is fixed to the measurement object 10. Further, the thickness D2 of the bottom surface of the case 21B is set to 0.5 mm.

このようにセンサ20Bのケース21Bを上記の高分子材料によって形成しても、加速度センサや振動センサなどのセンサ本体22を有するセンサ20Bで機械や車両などの測定対象物10に発生する振動を計測する際、センサ20Bの共振周波数付近に振動吸収特性を持つ高分子材料からなるケース21Bを介して測定対象物10にセンサ20Bを接着することによって取り付けているので、測定対象物10の任意の箇所に簡単に取り付けることができるため、取付箇所の制約を受けることがない。さらに、ケース21Bによってセンサ20B(センサ本体22)に入力する共振周波数の振動を効果的に遮断しているので、共振による弊害を除去することができ、精度の良い測定が可能になる。   Thus, even if the case 21B of the sensor 20B is formed of the above-described polymer material, the vibration generated in the measurement object 10 such as a machine or a vehicle is measured by the sensor 20B having the sensor body 22 such as an acceleration sensor or a vibration sensor. In this case, since the sensor 20B is attached to the measurement object 10 via the case 21B made of a polymer material having vibration absorption characteristics near the resonance frequency of the sensor 20B, any part of the measurement object 10 is attached. Since it can be easily attached to, it is not subject to restrictions on the attachment location. Further, since the vibration of the resonance frequency input to the sensor 20B (sensor body 22) is effectively cut off by the case 21B, the adverse effects due to the resonance can be eliminated, and accurate measurement can be performed.

尚、本実施形態ではケース21Bの全体を上記高分子材料によって形成したが、少なくともケース21Bの一部、すなわち測定対象物10に接触する部位のみを上記高分子材料によって形成しても、上記と同様の効果を得ることができる。   In the present embodiment, the entire case 21B is formed of the polymer material. However, even if at least a part of the case 21B, that is, only a portion that contacts the measurement object 10 is formed of the polymer material, Similar effects can be obtained.

次に、本発明の第3実施形態を説明する。   Next, a third embodiment of the present invention will be described.

図4は本発明の第3実施形態のセンサ取付構造を示す図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。   FIG. 4 is a view showing a sensor mounting structure according to a third embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第3実施形態では、第1実施形態におけるケース21を除去したセンサ20Cを介在部材30を介して測定対象物10に装着している。すなわち、センサ20Cの支持部材24の底面が介在部材30の上面に接着され、介在部材30の下面が測定対象物10の表面に接着されている。   In the third embodiment, the sensor 20 </ b> C from which the case 21 in the first embodiment is removed is attached to the measurement object 10 via the interposed member 30. That is, the bottom surface of the support member 24 of the sensor 20 </ b> C is bonded to the upper surface of the interposed member 30, and the lower surface of the interposed member 30 is bonded to the surface of the measurement object 10.

このようにケースを持たないセンサ20Cを上記の高分子材料からなる介在部材30を挟んで測定対象物10に固定しても、加速度センサや振動センサなどのセンサ本体22を有するセンサ20Cで機械や車両などの測定対象物10に発生する振動を計測する際、センサ20Cの共振周波数付近に振動吸収特性を持つ高分子材料からなる介在部材30を介して測定対象物10にセンサ20Cを接着して取り付けているので、測定対象物10の任意の箇所に簡単に取り付けることができるため、取付箇所の制約を受けることがない。さらに、介在部材30によってセンサ20Cに入力する共振周波数の振動を効果的に遮断しているので、共振による弊害を除去することができ、精度の良い測定が可能になる。   Even if the sensor 20C having no case is fixed to the measurement object 10 with the intervening member 30 made of the polymer material interposed therebetween, the sensor 20C having the sensor body 22 such as an acceleration sensor or a vibration sensor can When measuring the vibration generated in the measurement object 10 such as a vehicle, the sensor 20C is adhered to the measurement object 10 via the interposition member 30 made of a polymer material having vibration absorption characteristics near the resonance frequency of the sensor 20C. Since it is attached, it can be easily attached to an arbitrary location of the measurement object 10, so that there is no restriction on the attachment location. Furthermore, since the vibration of the resonance frequency input to the sensor 20C is effectively cut off by the interposition member 30, the harmful effects due to resonance can be eliminated, and accurate measurement can be performed.

次に、本発明の第4実施形態を説明する。   Next, a fourth embodiment of the present invention will be described.

図5は本発明の第4実施形態のセンサ取付構造を示す図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。   FIG. 5 is a view showing a sensor mounting structure according to a fourth embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第4実施形態では、第1実施形態におけるケース21を除去すると共に上記高分子材料からなる支持部材24Bを備えたセンサ20Dを測定対象物10に装着している。すなわち、センサ20Dは、振動センサや加速度センサからなるセンサ本体22がその上面に半田付けされたセンサ基板23を備え、このセンサ基板23の下面には上記高分子材料からなる複数の支持部材24Bの上面が接着され、支持部材24Bの下面は測定対象物10の表面に接着されている。これにより、センサ22Dは測定対象物10に固定されている。   In the fourth embodiment, the case 21 in the first embodiment is removed, and the sensor 20D including the support member 24B made of the polymer material is attached to the measurement object 10. That is, the sensor 20D includes a sensor substrate 23 in which a sensor main body 22 made of a vibration sensor or an acceleration sensor is soldered to the upper surface, and the lower surface of the sensor substrate 23 has a plurality of support members 24B made of the polymer material. The upper surface is bonded, and the lower surface of the support member 24B is bonded to the surface of the measurement object 10. Thereby, the sensor 22D is fixed to the measurement object 10.

このようにセンサ20Dのセンサ基板23を上記高分子材料からなる支持部材24Bによって測定対象物10に固定しても、加速度センサや振動センサなどのセンサ本体22を有するセンサ20Dで機械や車両などの測定対象物10に発生する振動を計測する際、センサ20Dの共振周波数付近に振動吸収特性を持つ高分子材料からなる支持部材24Bを介して測定対象物10にセンサ20Dを接着して取り付けているので、測定対象物10の任意の箇所に簡単に取り付けることができるため、取付箇所の制約を受けることがない。さらに、支持部材24Bによってセンサ20Dに入力する共振周波数の振動を効果的に遮断しているので、共振による弊害を除去することができ、精度の良い測定が可能になる。   Thus, even if the sensor substrate 23 of the sensor 20D is fixed to the measurement object 10 by the support member 24B made of the polymer material, the sensor 20D having the sensor main body 22 such as an acceleration sensor or a vibration sensor can be used for a machine or a vehicle. When measuring the vibration generated in the measurement object 10, the sensor 20D is attached to the measurement object 10 via a support member 24B made of a polymer material having vibration absorption characteristics near the resonance frequency of the sensor 20D. Therefore, since it can be easily attached to an arbitrary portion of the measurement object 10, there is no restriction on the attachment portion. Furthermore, since the vibration of the resonance frequency input to the sensor 20D is effectively cut off by the support member 24B, the harmful effects due to resonance can be eliminated, and accurate measurement can be performed.

本発明の第1実施形態のセンサ取付構造を示す図The figure which shows the sensor attachment structure of 1st Embodiment of this invention. 本発明の第1実施形態における高分子材料の実施例を説明する図The figure explaining the Example of the polymeric material in 1st Embodiment of this invention 本発明の第2実施形態のセンサ取付構造を示す図The figure which shows the sensor attachment structure of 2nd Embodiment of this invention. 本発明の第3実施形態のセンサ取付構造を示す図The figure which shows the sensor attachment structure of 3rd Embodiment of this invention. 本発明の第4実施形態のセンサ取付構造を示す図The figure which shows the sensor attachment structure of 4th Embodiment of this invention.

符号の説明Explanation of symbols

10…測定対象物、20,20B,20C,20D…センサ、21,21B…ケース、22…センサ本体,23…センサ基板、24,24B…支持部材、30…介在部材。   DESCRIPTION OF SYMBOLS 10 ... Measurement object, 20, 20B, 20C, 20D ... Sensor, 21, 21B ... Case, 22 ... Sensor main body, 23 ... Sensor substrate, 24, 24B ... Support member, 30 ... Interposition member.

Claims (6)

測定対象物に発生する振動を測定するセンサを前記測定対象物に取り付けるセンサ取付構造において、
前記センサが持つ共振周波数を含む所定の周波数帯域内に、温度−周波数換算則により得られるガラス転移温度(Tg)を有する高分子材料からなる部材が、前記センサに装着されて前記センサと前記測定対象物の間に介在され、該高分子材料からなる部材が前記測定対象物に接着されている
ことを特徴とするセンサ取付構造。
In a sensor mounting structure for mounting a sensor for measuring vibration generated on a measurement object to the measurement object,
A member made of a polymer material having a glass transition temperature (Tg) obtained by a temperature-frequency conversion rule within a predetermined frequency band including a resonance frequency of the sensor is attached to the sensor, and the sensor and the measurement A sensor mounting structure, characterized in that a member made of the polymer material is interposed between objects and bonded to the object to be measured.
前記高分子材料からなる部材の厚みが0.5mm〜30mmの範囲内の値に設定されている
ことを特徴とする請求項1に記載のセンサ取付構造。
The sensor mounting structure according to claim 1, wherein a thickness of the member made of the polymer material is set to a value within a range of 0.5 mm to 30 mm.
前記高分子材料のJIS・A硬度が30〜60の範囲内の値であることを特徴とする請求項1又は請求項2に記載のセンサ取付構造。   3. The sensor mounting structure according to claim 1, wherein the polymer material has a JIS · A hardness within a range of 30 to 60. 4. 前記センサのケースの一部又は全部が前記高分子材料で形成されていることを特徴とする請求項1乃至請求項3の何れかに記載のセンサ取付構造。   The sensor mounting structure according to any one of claims 1 to 3, wherein a part or all of the case of the sensor is formed of the polymer material. 前記高分子材料の25℃における損失係数tanδが0.3以下であることを特徴とする請求項1乃至請求項4の何れかに記載のセンサ取付構造。   The sensor attachment structure according to any one of claims 1 to 4, wherein a loss coefficient tanδ at 25 ° C of the polymer material is 0.3 or less. 前記高分子材料の25℃における損失係数tanδが0.2以下であることを特徴とする請求項1乃至請求項4の何れかに記載のセンサ取付構造。   The sensor attachment structure according to any one of claims 1 to 4, wherein a loss coefficient tanδ at 25 ° C of the polymer material is 0.2 or less.
JP2007222251A 2007-08-29 2007-08-29 Sensor fixing structure Pending JP2009053142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222251A JP2009053142A (en) 2007-08-29 2007-08-29 Sensor fixing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222251A JP2009053142A (en) 2007-08-29 2007-08-29 Sensor fixing structure

Publications (1)

Publication Number Publication Date
JP2009053142A true JP2009053142A (en) 2009-03-12

Family

ID=40504329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222251A Pending JP2009053142A (en) 2007-08-29 2007-08-29 Sensor fixing structure

Country Status (1)

Country Link
JP (1) JP2009053142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018432A (en) * 2014-07-09 2016-02-01 ローム株式会社 User interface device
CN109738169A (en) * 2018-11-28 2019-05-10 浙江未来技术研究院(嘉兴) It is a kind of by fastening structure connect structural member between tightening state detection method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182260A (en) * 1994-10-05 1996-07-12 Matsushita Electric Ind Co Ltd Damping material for small-sized motor
JPH09145738A (en) * 1995-11-27 1997-06-06 Matsushita Electric Ind Co Ltd Method for mounting acceleration sensor and acceleration sensor
JP2001264067A (en) * 2000-03-16 2001-09-26 Ngk Insulators Ltd Vibrating type gyroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182260A (en) * 1994-10-05 1996-07-12 Matsushita Electric Ind Co Ltd Damping material for small-sized motor
JPH09145738A (en) * 1995-11-27 1997-06-06 Matsushita Electric Ind Co Ltd Method for mounting acceleration sensor and acceleration sensor
JP2001264067A (en) * 2000-03-16 2001-09-26 Ngk Insulators Ltd Vibrating type gyroscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018432A (en) * 2014-07-09 2016-02-01 ローム株式会社 User interface device
CN109738169A (en) * 2018-11-28 2019-05-10 浙江未来技术研究院(嘉兴) It is a kind of by fastening structure connect structural member between tightening state detection method and system
CN109738169B (en) * 2018-11-28 2020-07-07 浙江未来技术研究院(嘉兴) Method and system for detecting fastening state between structural members connected through fastening structure

Similar Documents

Publication Publication Date Title
KR101239306B1 (en) Ultrasonic sensor and fabrication method thereof
EP1962552A1 (en) Ultrasonic transducer
US8056880B2 (en) Electronic apparatus
JP2007212174A (en) Angular velocity sensor device
JP2009053142A (en) Sensor fixing structure
JP2004276809A (en) Vehicular wheel
EP1434462A2 (en) Vibration propagation suppressing structure
US20200295481A1 (en) Printed circuit board mounting arrangement
JP2007198477A (en) Dynamic damper and electronic device
US20230131440A1 (en) Microphone Device with a Closed Housing and a Membrane
JP2005026817A (en) On-board speaker apparatus and door panel
US20050066724A1 (en) Acceleration sensor unit
JP2009133625A (en) Acceleration sensor
JP2004294419A (en) Sensor device
KR101942704B1 (en) Sensor, sensor unit, and method for producing a sensor unit
JP4280659B2 (en) Microphone device
JP2005036762A (en) Mounting member and mounting structure for pump
JP2006064067A (en) Liquid sealed type engine mount
JPH09145738A (en) Method for mounting acceleration sensor and acceleration sensor
JPH1137831A (en) Fitting construction of compressive load sensor
JP2004331070A (en) Retractor and housing for retractor
JP2004239617A (en) Sensor device
JP4901771B2 (en) Sound equipment
JP4389768B2 (en) In-vehicle device
KR100680827B1 (en) System for decreasing sound pressure indoor of vehicle using engine mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904