JP2009053124A - Contact member and its manufacturing method - Google Patents

Contact member and its manufacturing method Download PDF

Info

Publication number
JP2009053124A
JP2009053124A JP2007221961A JP2007221961A JP2009053124A JP 2009053124 A JP2009053124 A JP 2009053124A JP 2007221961 A JP2007221961 A JP 2007221961A JP 2007221961 A JP2007221961 A JP 2007221961A JP 2009053124 A JP2009053124 A JP 2009053124A
Authority
JP
Japan
Prior art keywords
udd
noble metal
contact member
thin film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007221961A
Other languages
Japanese (ja)
Other versions
JP5238202B2 (en
Inventor
Gubarevich Tatiana Mikhailovna
ミハイロブナ グバレビッチ タチアナ
Tadamasa Fujimura
忠正 藤村
Mitsushi Otagawa
充司 太田川
Shuji Yamamoto
修二 山本
Shigeru Shiozaki
茂 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankei Giken Kogyo Co Ltd
Vision Development Co Ltd
Original Assignee
Sankei Giken Kogyo Co Ltd
Vision Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Giken Kogyo Co Ltd, Vision Development Co Ltd filed Critical Sankei Giken Kogyo Co Ltd
Priority to JP2007221961A priority Critical patent/JP5238202B2/en
Publication of JP2009053124A publication Critical patent/JP2009053124A/en
Application granted granted Critical
Publication of JP5238202B2 publication Critical patent/JP5238202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a durable contact member with improved tribology, especially improved abrasion resistance and to manufacture such a contact member simply/at low cost, with regard to the contact member, such as a probe pin, a contact pin used for detecting or evaluating electric properties of various types of electric equipment and circuits, for example, and its manufacturing method. <P>SOLUTION: In the contact member made by forming a noble metal thin film layer 13 on the surface of a base material 10, super-distribution nano diamond particles with particle size of 2-200 nm are distributed in the grain boundary of the noble metal thin film layer 13 at the ratio of 0.1-2.0 wt.%. When manufacturing such a contact member, the nano diamond particles are distributed in a plating liquid for electroplating, and the nano diamond particles are co-precipitated on the surface of the base material together with noble metals. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば各種の電気機器や回路等の電気特性を検出もしくは評価する場合などに用いるプローブピンやコンタクトピン等の接点部材およびその製造方法に関する。   The present invention relates to a contact member such as a probe pin and a contact pin used for detecting or evaluating electric characteristics of various electric devices and circuits, and a method for manufacturing the same.

最近、ナノテクノロジーの進歩による、集積回路の超微細化技術はBGA(Ball Grid Array)、CSP(Chip Scale Package)パッケージのソルダーボールピッチの狭小化を進めている。更に、フリップチップ、マルチチップモジュール等の技術進歩により、ウェファーレベルの集積回路の電気特性評価技術が求められている。これら狭ピッチのICテスト技術に応じるため、プローブピンやコンタクトピンの微細加工技術が要求されてきている。   Recently, with the advancement of nanotechnology, ultra-miniaturization technology of integrated circuits has been proceeding with narrowing of the solder ball pitch of BGA (Ball Grid Array) and CSP (Chip Scale Package) packages. Furthermore, due to technological advances such as flip chip and multi-chip modules, there is a need for a technique for evaluating electrical characteristics of wafer level integrated circuits. In order to comply with these narrow-pitch IC test technologies, fine processing technologies for probe pins and contact pins have been required.

実際、例えばマイクロプローブピンにあっては、内径0.1mm程度の細管の中に、長さ1mm以下のプランジャやバネおよびターミナル等を挿入し、先端をかしめてマイクロプローブピンを作っている。このようなマイクロプローブピンは、数百本単位で、ソケットハウジングに装着され、IC等の電気端子に繰り返し接触させて数十万回の電気測定を行う場合などに使われている。   Actually, for example, in the case of a microprobe pin, a microprobe pin is made by inserting a plunger, a spring, a terminal or the like having a length of 1 mm or less into a thin tube having an inner diameter of about 0.1 mm and caulking the tip. Such microprobe pins are mounted on a socket housing in units of several hundreds, and are used when performing electrical measurements several hundred thousand times by repeatedly contacting an electrical terminal such as an IC.

このようなプローブピンは、なるべく電気抵抗を少なくするのが望ましく最近は下記特許文献1,2のようにプローブピン等の接点部材の表面に金メッキ等の貴金属メッキを施すことが提案されている。しかし、上記のような貴金属メッキは柔らかく、またメッキ品質のバラツキ等により繰り返し測定中に摩耗して評価ミスが生じたり、測定不能となってソケットハウジングを再構築しなければならない等の不具合を生じ、生産性に支障を来たしていた。   It is desirable to reduce the electrical resistance of such a probe pin as much as possible. Recently, it has been proposed that the surface of a contact member such as a probe pin is plated with a noble metal such as gold plating as described in Patent Documents 1 and 2 below. However, the precious metal plating as described above is soft, and wears during repeated measurement due to variations in plating quality, etc., resulting in an evaluation error or inability to measure and the socket housing must be rebuilt. , Had a hindrance to productivity.

特に、上記のようなプローブピンを接触させる電気端子は、最近いわゆる鉛フリーによって錫が使われるようになり、その錫製の端子にプローブピンを繰り返し接触させると、測定中にプローブ先端に錫が付着する。とりわけ、金メッキした接点部材は柔らかいために摩耗が激しく、その摩耗した箇所に錫が付着しやすい。そのため、計測不良を起こす等の問題があった。   In particular, the electrical terminal that contacts the probe pin as described above has recently been used with so-called lead-free tin, and when the probe pin is repeatedly brought into contact with the terminal made of tin, tin will be attached to the probe tip during measurement. Adhere to. In particular, the gold-plated contact member is soft and therefore wears heavily, and tin tends to adhere to the worn portion. For this reason, there are problems such as measurement failure.

特許第3551411号公報Japanese Patent No. 3551411 特開2005−241362号公報JP 2005-241362 A

本発明は上記従来の問題点に鑑みて提案されたもので、プローブピン等の接点部材のトライボロジー特性、特に耐摩耗性を向上させて耐久性のよい接点部材を提供すること、およびそのような接点部材を容易・安価に製造することのできる接点部材の製造方法を提供することを目的とする。   The present invention has been proposed in view of the above-mentioned conventional problems, and provides a contact member with good durability by improving the tribological characteristics of contact members such as probe pins, particularly wear resistance, and such It is an object of the present invention to provide a contact member manufacturing method capable of easily and inexpensively manufacturing a contact member.

上記の目的を達成するために本発明による接点部材およびその製造方法は、以下の構成としたものである。すなわち、本発明による接点部材は、基材の表面に貴金属薄膜層を形成してなる接点部材において、上記貴金属薄膜層の結晶粒界中に粒径が2〜200nmの超分散ナノダイヤモンド粒子を0.01〜2.0重量%の割合で分散させたことを特徴とする。   In order to achieve the above object, a contact member and a manufacturing method thereof according to the present invention are configured as follows. That is, the contact member according to the present invention is a contact member in which a noble metal thin film layer is formed on the surface of a base material, and ultradispersed nanodiamond particles having a particle size of 2 to 200 nm are included in the crystal grain boundaries of the noble metal thin film layer. Dispersed at a ratio of 0.01 to 2.0% by weight.

上記貴金属薄膜層を構成する貴金属としては、例えばAu、Pt、Ag、Pd、Rh、Ruのいずれかの金属単体またはいずれかの金属を主体とした合金を用いることができる。上記貴金属薄膜層の厚さは、0.1〜5μmの範囲内に形成するとよい。上記基材と貴金属薄膜層との間には、必要に応じて平滑層または拡散防止層もしくはその両方を設けるようにしてもよい。   As the noble metal constituting the noble metal thin film layer, for example, a single metal of Au, Pt, Ag, Pd, Rh, or Ru or an alloy mainly composed of any metal can be used. The noble metal thin film layer may have a thickness in the range of 0.1 to 5 μm. You may make it provide a smooth layer, a diffusion prevention layer, or both between the said base material and a noble metal thin film layer as needed.

本発明による接点部材の製造方法は、基材の表面に電気メッキ(電解メッキ)により貴金属薄膜層を形成するようにした接点部材の製造方法において、上記電気メッキのメッキ液中に超分散ナノダイヤモンド粒子を分散させて該ナノダイヤモンド粒子を貴金属とともに上記基材表面に共析させるようにしたことを特徴とする。   The contact member manufacturing method according to the present invention is a contact member manufacturing method in which a noble metal thin film layer is formed on the surface of a substrate by electroplating (electrolytic plating). The nano-diamond particles are co-deposited with the noble metal on the surface of the base material by dispersing the particles.

この場合、上記超分散ナノダイヤモンド粒子を貴金属とともに基材表面に共析させる際の上記メッキ液中の電流密度を制御することによって、所定粒径のナノダイヤモンド粒子を選択的に共析させることができる。例えば、上記電気メッキのメッキ液中に粒径が2〜500nmの超分散ナノダイヤモンド粒子をメッキ液1リットル当たり0.1〜30g、好ましくは0.5〜20gの濃度で分散させ、上記電流密度を0.02〜1.0A/dm好ましくは、0.05〜0.5A/dmの範囲内に設定すれば、粒径2〜200nmのナノダイヤモンド粒子を選択的に共析させることができる。 In this case, by controlling the current density in the plating solution when the ultradispersed nanodiamond particles together with the noble metal are co-deposited on the substrate surface, the nanodiamond particles having a predetermined particle diameter can be selectively eutectoid. it can. For example, ultra-dispersed nanodiamond particles having a particle size of 2 to 500 nm are dispersed in the electroplating solution at a concentration of 0.1 to 30 g, preferably 0.5 to 20 g per liter of the plating solution, and the current density is Of 0.02 to 1.0 A / dm 2, preferably, nanodiamond particles having a particle diameter of 2 to 200 nm can be selectively co-deposited within a range of 0.05 to 0.5 A / dm 2. it can.

上記のように本発明による接点部材は、基材表面に形成した貴金属薄膜層の結晶粒界中に粒径が2〜200nmの超分散ナノダイヤモンド粒子を0.01〜2.0重量%の割合で分散させたことによって、上記接点部材の貴金属薄膜層のトライボロジー特性、特に耐摩耗性が向上し、耐久性のよい接点部材を提供することが可能となる。   As described above, the contact member according to the present invention has a ratio of 0.01 to 2.0% by weight of ultradispersed nanodiamond particles having a particle size of 2 to 200 nm in the crystal grain boundary of the noble metal thin film layer formed on the substrate surface. Thus, the tribological characteristics of the noble metal thin film layer of the contact member, particularly the wear resistance, can be improved, and a contact member with good durability can be provided.

また本発明による接点部材の製造方法は、上記のように基材の表面に電気メッキにより貴金属薄膜層を形成する際に、上記電気メッキのメッキ液中に超分散ナノダイヤモンド粒子を分散させて該ナノダイヤモンド粒子を貴金属とともに上記基材表面に共析させるようにしたので、上記貴金属薄膜層内にナノダイヤモンド粒子を均一に分散した状態で良好に析出させることが可能となり、トライボロジー特性、特に耐摩耗性のよい接点部材を容易・安価に製造することができる。   Also, the method for producing a contact member according to the present invention comprises dispersing the ultra-dispersed nanodiamond particles in the plating solution for electroplating when the noble metal thin film layer is formed on the surface of the substrate by electroplating as described above. Since the nanodiamond particles are co-deposited with the noble metal on the surface of the base material, it is possible to deposit the nanodiamond particles in a uniformly dispersed state in the noble metal thin film layer, and the tribological characteristics, particularly wear resistance. Can be manufactured easily and inexpensively.

以下、本発明による接点部材およびその製造方法を図に示す実施形態に基づいて具体的に説明する。   Hereinafter, the contact member and the manufacturing method thereof according to the present invention will be specifically described based on embodiments shown in the drawings.

〔接点部材〕
図1は本発明による接点部材の一実施形態を示すもので、(a)はその接点部材の一部切り欠き正面図、(b)は(a)におけるb部の部分拡大断面図である。
[Contact members]
1A and 1B show an embodiment of a contact member according to the present invention. FIG. 1A is a partially cutaway front view of the contact member, and FIG. 1B is a partially enlarged sectional view of a portion b in FIG.

本実施形態は、接点部材として、IC等の集積回路の電気特性を評価するためのプローブピン、特にマイクロプローブピンに適用したもので、そのプローブピン1は図1(a)に示すように案内筒体2内に進退可能に設けられ、その案内筒体2内に設けた圧縮コイルばね3によって上記プローブピン1の下端1a側が案内筒体2の下端開口から常時突出するように構成されている。そのプローブピン1の下端1aを、図に省略した端子等に繰り返し接触させて電気的特性等を測定するもので、その下端1aは本実施形態においては王冠(クラウン)状に形成されているが、半球状、カップ状、円錐状、フラット状、その他各種の形状のものにも適用可能である。   In the present embodiment, the contact member is applied to a probe pin for evaluating the electrical characteristics of an integrated circuit such as an IC, in particular, a micro probe pin. The probe pin 1 is guided as shown in FIG. It is provided in the cylinder 2 so as to be able to advance and retreat, and the lower end 1 a side of the probe pin 1 is configured to always protrude from the lower end opening of the guide cylinder 2 by a compression coil spring 3 provided in the guide cylinder 2. . The lower end 1a of the probe pin 1 is repeatedly brought into contact with a terminal or the like not shown in the drawing to measure the electrical characteristics and the like, and the lower end 1a is formed in a crown shape in this embodiment. , Hemispherical, cup-shaped, conical, flat, and other various shapes.

また上記プローブピン1は、図1(b)に示すように基材10の表面に平滑層11と拡散防止層12を介して貴金属薄膜層13を設けた構成であり、その貴金属薄膜層13の結晶粒界中に超分散ダイヤモンド粒子(Ultra Dispersed Diamonds)、特に超分散ナノダイヤモンド粒子が分散されている。なお、本発明で言う超分散ナノダイヤモンド粒子とは、爆発合成法、静圧合成法、気相法等で人工的に作られたダイヤモンド構造を有する粒子あるいは膜を、焼結、粉砕、化学処理、分級等の工程を経て、数ナノメートルから数百ナノメートルのサイズにし、且つ化学処理によって表面層に、水酸基、カルボキシル基、スルホン酸基等の官能基を持たせることにより、ゼータ電位を有し、水溶液に均一に分散する、ダイヤモンド構造を有するナノオーダの微粒子のことを言う。以下本書ではナノダイヤモンドをも含めて超分散ダイヤモンド粒子を、適時簡略化してUDDと記載する。   Further, the probe pin 1 has a configuration in which a noble metal thin film layer 13 is provided on the surface of a base material 10 via a smoothing layer 11 and a diffusion prevention layer 12 as shown in FIG. Ultra-dispersed diamond particles (particularly ultra-dispersed nanodiamond particles) are dispersed in the grain boundaries. The ultra-dispersed nanodiamond particles referred to in the present invention are particles or films having a diamond structure artificially produced by an explosion synthesis method, a static pressure synthesis method, a gas phase method, or the like, sintered, pulverized, and chemically treated. Through a process such as classification, a zeta potential can be obtained by making the surface layer a functional group such as a hydroxyl group, a carboxyl group, or a sulfonic acid group by chemical treatment to have a size of several nanometers to several hundred nanometers. It refers to nano-order fine particles having a diamond structure that are uniformly dispersed in an aqueous solution. Hereinafter, in this document, ultra-dispersed diamond particles including nano-diamonds will be simplified as appropriate and described as UDD.

上記の基材10としては、例えばベリリウム銅、リン青銅、金属鋼材等を用いることができる。本実施形態においてはベリリウム銅よりなる丸棒状の基材が用いられ、その太さは適宜であるが、本実施形態においては直径約0.3mmの太さに形成されている。また本実施形態においては上記基材10の表面全面に、前記の平滑層11と拡散防止層12およびUDDを分散させた貴金属薄膜層13とを順に積層した構成である。   As said base material 10, beryllium copper, phosphor bronze, a metal steel material etc. can be used, for example. In this embodiment, a round bar-shaped base material made of beryllium copper is used, and the thickness thereof is appropriate, but in this embodiment, it is formed to a thickness of about 0.3 mm in diameter. In the present embodiment, the smooth layer 11, the diffusion prevention layer 12, and the noble metal thin film layer 13 in which UDD is dispersed are sequentially laminated on the entire surface of the base material 10.

上記平滑層11は、基材10の表面に上記貴金属薄膜層13を形成するに先立って、基材10の表面を平滑化させるために必要に応じて設けるもので、その平滑層11の材質や形成手段は適宜であるが、本実施形態においては基材10の表面に金属メッキ(無電解メッキ)、特にニッケルメッキを施すことによって形成したものである。上記平滑層11の厚さは適宜であるが、例えば1〜5μm程度の厚さに形成すればよい。   Prior to forming the noble metal thin film layer 13 on the surface of the base material 10, the smooth layer 11 is provided as necessary to smooth the surface of the base material 10. The forming means is appropriate, but in this embodiment, the surface of the substrate 10 is formed by performing metal plating (electroless plating), particularly nickel plating. Although the thickness of the smooth layer 11 is appropriate, it may be formed to a thickness of about 1 to 5 μm, for example.

また上記拡散防止層12は、プローブピン等の接点部材として使用中に生じる金属間化合物の生成による貴金属薄膜層13の層構造の劣化を防ぐために必要に応じて設けるもので、その拡散防止層12の材質や形成手段は適宜であるが、本実施形態においては、上記平滑層11の表面に金属メッキ、特にパラジウムメッキを施すことによって形成したものである。上記拡散防止層12厚さは適宜であるが、例えば0.1〜2μm程度の厚さに形成すればよい。なお、上記平滑層11と拡散防止層12とは、場合によっては1つの層、例えば1つの金属メッキ層によって兼用させることもできる。   The diffusion prevention layer 12 is provided as necessary to prevent deterioration of the layer structure of the noble metal thin film layer 13 due to generation of an intermetallic compound generated during use as a contact member such as a probe pin. In the present embodiment, the surface of the smooth layer 11 is formed by metal plating, particularly palladium plating. Although the thickness of the diffusion preventing layer 12 is appropriate, for example, it may be formed to a thickness of about 0.1 to 2 μm. Note that the smooth layer 11 and the diffusion preventing layer 12 may be combined with one layer, for example, one metal plating layer in some cases.

上記貴金属薄膜層13は、主としてプローブピン等の接点部材として使用する際の導電性を高めて内部抵抗を低減させるために設けるもので、その貴金属薄膜層13の材質や形成手段は適宜であるが、本実施形態においては上記拡散防止層12の表面に貴金属メッキを施すことによって形成したものである。上記の貴金属としては、例えばAu、Pt、Ag、Pd、Rh、Ruのいずれかの金属単体またはいずれかの金属を主体とした合金を用いることができる。その中でも金または金合金が好適であり、その金合金としては、例えば90重量%以上の金を含む金・コバルト合金や金・ニッケル合金等を使用することができる。   The noble metal thin film layer 13 is provided mainly to increase the conductivity when used as a contact member such as a probe pin and reduce the internal resistance. The material and forming means of the noble metal thin film layer 13 are appropriate. In this embodiment, the surface of the diffusion preventing layer 12 is formed by applying noble metal plating. As the noble metal, for example, a single metal of Au, Pt, Ag, Pd, Rh, or Ru, or an alloy mainly composed of any metal can be used. Among them, gold or a gold alloy is preferable, and as the gold alloy, for example, a gold / cobalt alloy or a gold / nickel alloy containing 90% by weight or more of gold can be used.

上記貴金属薄膜層13の結晶粒界中には、前述のようにUDDを分散させるもので、そのUDDとしては例えば爆発合成法等で生成されたものを用いることができる。そのUDDは、内殻はダイヤモンド構造、外殻はカーボン非結晶となっており、そのカーボン非結晶層に様々な官能基を修飾することができる。また上記のUDDを分散した貴金属薄膜層は、粒度分布が狭い超微粒ナノダイヤモンド(UDD)粉体、及び、このUDDがゼータ電位を有することにより分散安定性に優れる水性懸濁液を用い、電解メッキ法により達成することができる。   In the crystal grain boundary of the noble metal thin film layer 13, UDD is dispersed as described above, and as the UDD, for example, one generated by an explosion synthesis method or the like can be used. The UDD has a diamond structure in the inner shell and an amorphous carbon in the outer shell, and various functional groups can be modified in the amorphous carbon layer. In addition, the noble metal thin film layer in which the UDD is dispersed uses an ultrafine nanodiamond (UDD) powder having a narrow particle size distribution, and an aqueous suspension having excellent dispersion stability due to the UDD having a zeta potential. This can be achieved by a plating method.

上記UDDの粒径は、2〜200nmの範囲のものを用いる。なお、本発明で言うUDDの粒径とは、UDDが単体で存在している場合には、そのUDD単体の粒径を言い、凝集体として存在している場合には、そのUDD凝集体全体の粒径を言う。上記UDDの粒径を、上記の範囲としたのは、粒径が2nm未満であると、小さすぎて耐摩耗性を向上させる効果が少なく、粒径が200nmを超えると、大きすぎて却って摩耗しやすくなるおそれがあるからである。またUDDの貴金属メッキ結晶粒界に対する重量割合は0.01〜2.0重量%とし、より好ましくは0.02〜1.5重量%とするのが望ましい。UDDの重量割合があまり少ないと、耐摩耗性を向上させる効果が少なく、あまり多すぎても、その割に耐摩耗性はさほど向上せず不経済だからである。   The UDD has a particle size in the range of 2 to 200 nm. The UDD particle size referred to in the present invention means the particle size of UDD alone when UDD is present alone, and the entire UDD aggregate when it exists as an aggregate. The particle size of The particle size of the UDD is in the above range because if the particle size is less than 2 nm, the effect of improving wear resistance is too small, and if the particle size exceeds 200 nm, it is too large and wears. This is because it may be easy to do. The weight ratio of UDD to the noble metal plating crystal grain boundary is preferably 0.01 to 2.0% by weight, more preferably 0.02 to 1.5% by weight. This is because if the weight ratio of UDD is too small, the effect of improving the wear resistance is small, and even if it is too much, the wear resistance is not so much improved and it is uneconomical.

本発明のUDDを分散した貴金属薄膜層の厚さは適宜であるが、好ましくは100nm(0.10μm)〜5000nm(5.0μm)とし、より好ましくは300nm(0.30μm)〜2000nm(2.0μm)とするのが望ましい。貴金属薄膜層の厚さがあまり薄いと、それよりも大きなUDDが共析した場合に、層の機械的強度を強めることなく、逆に、層中へのUDDの保持が難しくなるため、摺動中に層から離脱しやすくなり、離脱したUDDは研磨剤として働くため逆効果となる。一方、厚い貴金属薄膜層、例えば5.0μmを超えるものも、長時間メッキや電鋳を施すことによって形成可能であるが、あまり厚いと時間がかかってコストが嵩むだけでなく、その割に効果が少なく、コスト削減や環境保全等の観点から余り厚くすることは必ずしも得策とは言えないからである。なお、上記の層厚は、例えばSEM画像を撮影して、その画像を解析すれば容易に計測することができる。   Although the thickness of the noble metal thin film layer in which the UDD of the present invention is dispersed is appropriate, it is preferably 100 nm (0.10 μm) to 5000 nm (5.0 μm), more preferably 300 nm (0.30 μm) to 2000 nm (2. 0 μm) is desirable. If the thickness of the noble metal thin film layer is too thin, if UDD larger than that is co-deposited, it will be difficult to maintain UDD in the layer without increasing the mechanical strength of the layer. It becomes easy to detach | leave from a layer inside, and since the detach | leaved UDD acts as an abrasive | polishing agent, it becomes a reverse effect. On the other hand, a thick noble metal thin film layer, for example, one having a thickness exceeding 5.0 μm can be formed by plating or electroforming for a long time. However, if it is too thick, it takes time and costs increase. This is because it is not always a good idea to make it too thick from the viewpoints of cost reduction and environmental conservation. The above layer thickness can be easily measured by, for example, taking an SEM image and analyzing the image.

本発明のUDDを分散した貴金属薄膜層を構成する前記の貴金属は、UDDを電解メッキ法によりUDDの共析サイズと共析位置を簡単に制御することができ、かつUDDを含ませることによりトライボロジー特性、特に耐摩耗性強度が著しく改善されるのでプローブピン等の接点部材として実用的である。   The above-mentioned noble metal constituting the noble metal thin film layer in which UDD is dispersed according to the present invention can easily control the UDD eutectoid size and eutectoid position by electrolytic plating, and can include tribology by including UDD. Since the characteristics, particularly the wear resistance strength, are remarkably improved, it is practical as a contact member such as a probe pin.

このUDDは、貴金属薄膜層に均一に充分に分散しているので外観上ほとんどその存在を目視できず、ほとんど触知することができない。そのため電気導電性、耐食性等の機能物性を劣化させず、トライボロジー特性を改善することができる。   Since this UDD is uniformly and sufficiently dispersed in the noble metal thin film layer, its appearance can hardly be visually confirmed and hardly touched. Therefore, tribological characteristics can be improved without deteriorating functional properties such as electrical conductivity and corrosion resistance.

〔接点部材の製造方法〕
次に、上記のようなプローブピン等の接点部材の製造方法を具体的に説明する。前記図1に示すようなプローブピン等の接点部材を製造するには、前記貴金属薄膜層13を電気メッキで形成する際のメッキ液中にUDDを分散させて該UDDを貴金属とともに上記基材表面に共析させればよい。
[Method of manufacturing contact member]
Next, a method for manufacturing the contact member such as the probe pin as described above will be specifically described. In order to manufacture a contact member such as a probe pin as shown in FIG. 1, UDD is dispersed in a plating solution when the noble metal thin film layer 13 is formed by electroplating, and the UDD together with the noble metal is formed on the surface of the base material. To eutectoid.

上記の電気メッキとしては、電解メッキ、及び電鋳等であってもよく、メッキ液には、UDDを均一に分散させた水性懸濁液を使用するのが好ましい。UDDは基本的な利点として、懸濁液、特に水性懸濁液とした場合に優れた分散安定性を示す。   The electroplating may be electrolytic plating, electroforming, or the like, and it is preferable to use an aqueous suspension in which UDD is uniformly dispersed as the plating solution. As a basic advantage, UDD exhibits excellent dispersion stability when used as a suspension, particularly an aqueous suspension.

上記のUDD水性懸濁液におけるメッキ液1リットル当たりUDDの濃度は、0.1〜30g、好ましくは0.5〜20g程度になるように加えるのが望ましい。このようなUDD濃度は、本発明で好ましく使用されるUDD懸濁液の上記濃度からみて、非常に簡単に調整可能であることが明らかである。   The concentration of UDD per liter of the plating solution in the UDD aqueous suspension is preferably 0.1 to 30 g, preferably about 0.5 to 20 g. It is clear that such a UDD concentration can be adjusted very easily in view of the above-mentioned concentration of the UDD suspension preferably used in the present invention.

上記メッキ液は、低濃度の場合、メッキ処理中に電極近傍に発生するガス泡によってもUDDの沈殿が回避され、またメッキ処理中に通常施される撹拌によっても沈殿がより確実に回避される。メッキ層の厚さは、メッキ条件、メッキ層の使用目的および基材の材質等にもよるが、通常は前述のように0.1〜5μmの範囲、好ましくは0.3〜2.0μmの範囲であり、例えば電解メッキでは金メッキの場合0.1〜1μm程度である。   When the concentration of the plating solution is low, precipitation of UDD is avoided by gas bubbles generated in the vicinity of the electrode during the plating process, and precipitation is more reliably avoided by agitation usually applied during the plating process. . The thickness of the plating layer depends on the plating conditions, the purpose of use of the plating layer and the material of the substrate, but is usually in the range of 0.1 to 5 μm, preferably 0.3 to 2.0 μm as described above. For example, in the case of gold plating in the case of electrolytic plating, it is about 0.1 to 1 μm.

通常、メッキ液にUDDを添加する場合、UDD水性懸濁液を使用する。UDDはゼータ電位を保持するため、水溶液中に分散する。そのため、UDD水性懸濁液中への界面活性剤の添加は、必要不可欠でない。本発明で好ましく使用されるUDD水性懸濁液は、例えば、典型的には電解メッキに好適に使用することができ、UDDとメッキ液の分散性が良ければ、メッキ液中への界面活性剤は必要ない。なお、UDDとメッキ液の分散性が良くない場合は、適正な界面活性剤を選ぶことによりメッキ液中でのUDDの分散安定性を保持することができる。   Usually, when UDD is added to the plating solution, a UDD aqueous suspension is used. UDD is dispersed in an aqueous solution to maintain a zeta potential. Therefore, the addition of a surfactant into the UDD aqueous suspension is not essential. The UDD aqueous suspension preferably used in the present invention can typically be suitably used for, for example, electroplating. If the dispersibility of UDD and plating solution is good, a surfactant in the plating solution is used. Is not necessary. If the dispersibility between UDD and plating solution is not good, the dispersion stability of UDD in the plating solution can be maintained by selecting an appropriate surfactant.

メッキ液1リットル当たりのUDDの添加量は、0.1〜30g、好ましくは0.5〜20gである。UDDの濃度があまり低いと、メッキ貴金属膜の特性を改善するに充分な量のUDDを貴金属薄膜層中に含有させることが困難であり、濃度があまり高いと、コストがかかる割に性能が出ないからである。   The amount of UDD added per liter of plating solution is 0.1 to 30 g, preferably 0.5 to 20 g. If the concentration of UDD is too low, it is difficult to contain an amount of UDD sufficient to improve the characteristics of the plated noble metal film in the noble metal thin film layer. Because there is no.

また上記UDDを貴金属とともに基材表面に共析させる際の上記メッキ液中の電流密度を制御することによって、所定粒径のUDDを選択的に共析させることができる。具体的には例えば上記メッキ液中に粒径が2〜500nmの超分散ナノダイヤモンド粒子をメッキ液1リットル当たり0.1〜30g、好ましくは0.5〜20gの濃度で分散させ、上記電流密度を0.02〜1.0A/dm、好ましくは、0.05〜0.5A/dmの範囲内で制御することによって、粒径2〜200nmのナノダイヤモンド粒子を選択的に共析させることができる。上記の電流密度を0.02〜1.0A/dm、好ましくは、0.05〜0.5A/dmの範囲内としたのは、0.02A/dm未満であると、メッキ液中の電場が弱くなってUDD析出サイズのコントロールができなくなり、0.5A/dmを超えると、電場が強すぎて200nm以上のUDDが析出する確率が高くなる。1.0A/dmを超えると、過剰電流がメッキ浴に流れることにより、メッキ液が壊れたり、メッキ層が異常析出するからである。 Further, by controlling the current density in the plating solution when the UDD is co-deposited on the substrate surface together with the noble metal, UDD having a predetermined particle size can be selectively co-deposited. Specifically, for example, ultra-dispersed nanodiamond particles having a particle size of 2 to 500 nm are dispersed in the plating solution at a concentration of 0.1 to 30 g, preferably 0.5 to 20 g per liter of the plating solution, and the current density is set. In the range of 0.02 to 1.0 A / dm 2 , preferably 0.05 to 0.5 A / dm 2 , thereby selectively eutecting nanodiamond particles having a particle diameter of 2 to 200 nm. be able to. When the current density is within the range of 0.02 to 1.0 A / dm 2 , preferably 0.05 to 0.5 A / dm 2 , the plating solution is less than 0.02 A / dm 2 The electric field inside becomes weak and it becomes impossible to control the UDD deposition size. When the electric field exceeds 0.5 A / dm 2 , the electric field is too strong and the probability that UDD of 200 nm or more is deposited increases. This is because if the current exceeds 1.0 A / dm 2 , an excessive current flows into the plating bath, so that the plating solution is broken or the plating layer is abnormally deposited.

以下、前記図1に示すようなプローブピンを製造する場合を想定した具体的な実施例および実際にコンタクトピンを製造した具体的な実施例について説明する。   Hereinafter, a specific embodiment assuming the case of manufacturing a probe pin as shown in FIG. 1 and a specific embodiment actually manufacturing a contact pin will be described.

なお、上記接点部材の貴金属薄膜層13を形成するメッキ液には、前記のようなUDD濃度、すなわち、メッキ液1リットル当たり0.1〜30g、好ましくは0.5〜20gの濃度になるようにUDDを添加する。本発明の典型的な1リットルのメッキ液中におけるUDD濃度は、金メッキの場合、実用的には1g以上であることが好ましい。   The plating solution for forming the noble metal thin film layer 13 of the contact member has a UDD concentration as described above, that is, a concentration of 0.1 to 30 g, preferably 0.5 to 20 g per liter of the plating solution. Add UDD. In the case of gold plating, the UDD concentration in a typical 1 liter plating solution of the present invention is preferably 1 g or more practically.

〔実施例1〕
前記図1に示すようなプローブピンを製造する場合を想定して前記基材10と同材質の金属板よりなる基板の表面に、平滑層を形成した後、UDDを分散してなる貴金属薄膜層を形成した。なお、前記図1における拡散防止層12は省略した。上記貴金属薄膜層内に分散させるUDDとしては、爆発合成法で生成されたナノサイズの超分散ダイヤモンド粒子を使用した。
[Example 1]
A noble metal thin film layer in which UDD is dispersed after a smooth layer is formed on the surface of a substrate made of a metal plate made of the same material as that of the base material 10 in the case of manufacturing a probe pin as shown in FIG. Formed. The diffusion preventing layer 12 in FIG. 1 is omitted. As UDD to be dispersed in the noble metal thin film layer, nano-sized super-dispersed diamond particles produced by an explosion synthesis method were used.

上記UDDの単一粒子の中心は非常に硬いダイヤモンド核(SP3構造)であり、その周囲はカーボン非結晶(SP2構造)となっている。このUDDは爆発合成後、化学洗浄され、カーボン非結晶の外殻に、様々な官能基(例えばカルボルシル基、エステル基等)を修飾することができる。この官能基によりゼータ電位を有し、UDDは親水性を示し、水分散が可能となる。   The center of the single particle of the UDD is a very hard diamond nucleus (SP3 structure), and the periphery thereof is a carbon amorphous (SP2 structure). This UDD is chemically washed after the explosion synthesis, and various functional groups (for example, carbolsyl group, ester group, etc.) can be modified on the carbon non-crystalline outer shell. This functional group has a zeta potential, UDD exhibits hydrophilicity and can be dispersed in water.

図2はUDD水分散中のpHとゼータ電位との関係を示す。一般にゼータ電位は水溶液中で、±30mV以上あれば安定に分散できるといわれている。当該UDDのゼータ電位は、pH7付近の0を境にpHの低い方では、約+30mV,pHの高い方では、約−40mVを示し、酸性側、アルカリ側でUDDは安定に水分散できることがわかる。   FIG. 2 shows the relationship between pH and Zeta potential during UDD water dispersion. In general, it is said that the zeta potential can be stably dispersed if it is ± 30 mV or more in an aqueous solution. The UDD has a zeta potential of about +30 mV when the pH is low at 0 near pH 7 and about -40 mV when the pH is high, indicating that the UDD can stably disperse water on the acidic side and the alkaline side. .

上記UDDの縣濁水溶液(5重量%)を、下記の組成を有する光沢厚付純金メッキ液に添加し、UDD濃度が0〜30g/Lの範囲内で所定量添加した複数種類のUDD添加金メッキ液を作成した。上記の光沢厚付純金メッキ液のpHは4.0であった。
KAu(CN): 15g/L、
HO・HO: 14g/L、
CH・HO: 36g/L
A plurality of kinds of UDD-added gold platings, wherein the above-mentioned suspended aqueous solution of UDD (5% by weight) is added to a glossy pure gold plating solution having the following composition and added in a predetermined amount within a UDD concentration range of 0 to 30 g / L. A liquid was created. The pH of the glossy pure gold plating solution was 4.0.
KAu (CN) 2 : 15 g / L,
K 3 C 6 HO 7 · H 2 O: 14 g / L,
H 3 CH 5 O 7 · H 2 O: 36g / L

上記金メッキ液にUDDを添加後、そのUDD添加金メッキ液を超音波ホモジナイザーにかけて金メッキ液内のUDDを更に解砕して分散させた。   After adding UDD to the gold plating solution, the UDD-added gold plating solution was subjected to an ultrasonic homogenizer to further disintegrate and disperse the UDD in the gold plating solution.

一方、基板としては前述のように前記図1の基材10と同材質のベリリウム銅を用い、その基板を脱脂処理してアルカリ洗浄したのち活性化処理を行った。その基板の表面には予め無電解Niメッキ液で、90℃、10分間のメッキ処理を行って平滑層を形成した。その平滑層の厚さは、2〜3μm程度であった。上記基板の表面は当初非常に荒れていたが、上記平滑層によってかなり平滑になった。上記平滑層を形成した後は、洗浄して5%HClによる活性化処理を行ったのち再び洗浄した。   On the other hand, as described above, beryllium copper made of the same material as the base material 10 of FIG. 1 was used as described above, and the substrate was degreased and washed with alkali, and then activated. On the surface of the substrate, a smoothing layer was formed in advance by plating with an electroless Ni plating solution at 90 ° C. for 10 minutes. The thickness of the smooth layer was about 2 to 3 μm. Although the surface of the substrate was very rough at first, it was considerably smoothened by the smooth layer. After the smooth layer was formed, it was washed and subjected to activation treatment with 5% HCl, and then washed again.

上記のようにして予め表面に平滑層を形成した基板に、前記のUDD添加金メッキ液を用いてUDD共析金メッキを施すもので、その際の陽極には、チタンメッシュに白金を2μmメッキした電極を使用し、陰極には上記平滑層を形成した基板を取付けた。メッキ条件としては、メッキ液中の電流密度を0.05A/dmとした場合と、0.5A/dmにした場合の2種類について実施し、電極間距離は40mm、メッキ液温度は50℃に設定した。メッキ時間15分でメッキ厚約1μmの金メッキよりなる貴金属薄膜層を上記平滑層の上に形成した。その際、金錯体イオン、プラスのゼータ電位を持つUDDは、陰極側に引き付けられ、UDDは金メッキ層の中に均一に共析させることができた。 A substrate having a smooth layer formed in advance as described above is subjected to UDD eutectoid gold plating using the above-mentioned UDD-added gold plating solution, and an anode in which platinum is plated on a titanium mesh at a thickness of 2 μm. The substrate on which the smooth layer was formed was attached to the cathode. As the plating conditions, two kinds of cases were carried out: the case where the current density in the plating solution was 0.05 A / dm 2 and the case where the current density was 0.5 A / dm 2. The distance between the electrodes was 40 mm, and the plating solution temperature was 50. Set to ° C. A noble metal thin film layer made of gold plating having a plating thickness of about 1 μm was formed on the smooth layer with a plating time of 15 minutes. At that time, the UDD having a gold complex ion and a positive zeta potential was attracted to the cathode side, and the UDD could be co-deposited in the gold plating layer.

下記表1は上記貴金属薄膜層を形成する際の金メッキ液中のUDD添加量と貴金属薄膜層(金メッキ層)中の炭素濃度の関係を示すものである。なお、上記炭素濃度の測定方法としては、今回実験で行ったサンプルの基板と平滑層を、過硫酸アンモニウム溶液で溶かし、貴金属薄膜層だけにした。またUDD濃度が0〜30g/Lの範囲内で所定量添加した複数種類のUDD添加金メッキ液を用いた場合の各貴金属薄膜層を燃焼式炭素濃度測定装置で炭素含有量の微量分析を行った。   Table 1 below shows the relationship between the amount of UDD added in the gold plating solution and the carbon concentration in the noble metal thin film layer (gold plating layer) when the noble metal thin film layer is formed. The carbon concentration was measured by dissolving the sample substrate and the smooth layer in the experiment this time with an ammonium persulfate solution to form only a noble metal thin film layer. Further, a trace amount analysis of carbon content was performed on each noble metal thin film layer using a combustion type carbon concentration measuring device when a plurality of types of UDD-added gold plating solutions added with a predetermined amount within a range of 0 to 30 g / L of UDD concentration were used. .

上記表1からも明らかなように、UDDの添加量が増えるに従って炭素濃度は増加し、UDD濃度が0.1g/Lで、貴金属薄膜層中の炭素濃度は、約0.01重量%、0.5g/Lで、約0.02重量%、20g/Lで、約1.5重量%、30g/Lでは、約2.0重量%を検出した。この測定された炭素濃度は、UDD含有量と等価である。   As apparent from Table 1 above, the carbon concentration increases as the amount of UDD added increases, the UDD concentration is 0.1 g / L, and the carbon concentration in the noble metal thin film layer is about 0.01% by weight, 0%. About 0.02% by weight at 0.5 g / L, about 1.5% by weight at 20 g / L, and about 2.0% by weight at 30 g / L were detected. This measured carbon concentration is equivalent to the UDD content.

図3はUDD添加濃度が1.9g/L、電流密度が0.05A/dmで銅基板上に金メッキした層の、9万倍のFE−SEM反射電子像による断面写真である。白いマトリックスの部分が金メッキ、黒い点がカーボンつまりUDDを示す。反射電子像で撮っているため、白いマトリックス上の濃淡は1つ1つの金結晶粒子であり、数ナノから数十ナノメートルのUDDが、主に金の結晶粒界に偏析していることがわかる。そのUDD粒径サイズは、UDDのサイズが最大でも50nm以下であり、多くは10nm以下で存在し、それらが層中の結晶粒界上に均一に分散していた。 FIG. 3 is a cross-sectional photograph of a layer plated with gold on a copper substrate with a UDD addition concentration of 1.9 g / L and a current density of 0.05 A / dm 2 by a FE-SEM backscattered electron image at a magnification of 90,000 times. The white matrix portion is gold-plated, and the black dots are carbon or UDD. Since it is taken with a backscattered electron image, the shade on the white matrix is each gold crystal particle, and UDD of several nanometers to several tens of nanometers is mainly segregated at the grain boundary of gold. Recognize. The UDD grain size was 50 nm or less at most, and many were present at 10 nm or less, and they were uniformly dispersed on the grain boundaries in the layer.

図4はUDD添加濃度が1.9g/L、電流密度が0.5A/dmでベリリウム銅基板上に金メッキした層の5万倍のFE−SEM反射電子像による断面写真である。UDD粒径サイズは、UDDのサイズが最大でも200nm以下であり、結晶粒界ではなく、1つの大きな結晶粒子として層中に存在していた。 FIG. 4 is a cross-sectional photograph of a FE-SEM backscattered electron image of 50,000 times that of a gold-plated layer on a beryllium copper substrate with a UDD addition concentration of 1.9 g / L and a current density of 0.5 A / dm 2 . The UDD grain size was 200 nm or less at maximum, and was present in the layer as one large crystal grain, not a grain boundary.

図3、図4の写真を、画像解析式粒度分布測定プログラムを用いて、貴金属薄膜層中に共析しているUDD粒子の粒度分布を測定した。粒度の大きさは、粒子が円形でなく、いびつな形状をしているため、同等面積の円に変換し、その直径を粒の大きさとした。   Using the image analysis type particle size distribution measurement program, the particle size distribution of UDD particles co-deposited in the noble metal thin film layer was measured from the photographs in FIGS. The size of the particle size was changed to a circle of the same area because the particle was not circular but in an irregular shape, and its diameter was taken as the size of the particle.

図5、図6はそれぞれ電流密度0.05A/dm、0.5A/dmでメッキした層中のUDDサイズの分布状態を求めたグラフである。横軸がUDD粒子の直径(ナノメータ単位)、縦軸が、粒子の数を示す。低電流密度でメッキしたほうが、より微小なUDDが、析出できることがわかる。 FIG. 5 and FIG. 6 are graphs obtained by determining the UDD size distribution in layers plated at current densities of 0.05 A / dm 2 and 0.5 A / dm 2 , respectively. The horizontal axis indicates the UDD particle diameter (in nanometers), and the vertical axis indicates the number of particles. It can be seen that finer UDD can be deposited by plating at a lower current density.

低電流密度で小さなUDDを選択的に共析できる理由は、メッキ液中には、微細な一次粒子、凝集した大きな二次粒子がプラスに帯電したゼータ電位を持って分散しているが、アノード、カソード間の電界が小さいと、運動量の大きい粒子を、カソード側へ引き付けるだけの力がないため、選択的に小さなUDDだけがカソード側へ移動する。メッキの成長時、結晶成長の核になれないUDDは異物として結晶粒界へ押し出されるので、微細なUDDが結晶粒界へ偏析することになる。その結晶粒界に偏析したUDDは、メッキ層に応力等の負荷が掛かった場合、結晶粒同士のアンカー効果となって、結晶粒界すべりを阻止するため、機械強度が増加する。   The reason why small UDD can be selectively co-deposited at a low current density is that fine primary particles and agglomerated secondary particles are dispersed with a positively charged zeta potential in the plating solution. When the electric field between the cathodes is small, there is not enough force to attract particles with a large momentum to the cathode side, so that only a small UDD moves selectively to the cathode side. During plating growth, UDD that cannot be the nucleus of crystal growth is pushed out as a foreign substance to the crystal grain boundary, so that fine UDD is segregated to the crystal grain boundary. The UDD segregated at the crystal grain boundary becomes an anchor effect between the crystal grains when a load such as stress is applied to the plating layer, and prevents the crystal grain boundary from sliding, thereby increasing the mechanical strength.

下記表2は電流密度を0.05A/dmとし、金メッキ液へのUDDの添加量(添加濃度)を種々異ならせたときのUDD共析金メッキ層の(111)面、(200)面の回折強度比を示す。メッキではない通常バルクの金の回折強度比(下記表1における標準状態)では、(111):(200)=100:52である。それに対して、UDDを添加していない金メッキの回折強度比は、(111):(200)=8:100である。このことよりUDDを添加していない金メッキ層は、(200)面に強く配向していることがわかる。UDDを添加していくと、(111)のピークが強くなり、UDD添加濃度30g/Lでは(111):(200)強度比は逆転し、標準の金組織に近づいていることがわかる。 Table 2 below shows the (111) plane and (200) plane of the UDD eutectoid gold plating layer when the current density is 0.05 A / dm 2 and the addition amount (addition concentration) of UDD to the gold plating solution is varied. The diffraction intensity ratio is shown. In the diffraction intensity ratio of normal bulk gold that is not plated (standard state in Table 1 below), (111) :( 200) = 100: 52. On the other hand, the diffraction intensity ratio of the gold plating not added with UDD is (111) :( 200) = 8: 100. This shows that the gold plating layer not added with UDD is strongly oriented in the (200) plane. As UDD is added, the peak of (111) becomes stronger, and at the UDD addition concentration of 30 g / L, the (111) :( 200) intensity ratio is reversed, and it can be seen that the standard gold structure is approached.

UDDを添加しない場合の貴金属薄膜層は、(200)面に配向性が強い層だが、UDDを添加していくと、(111)面の強度が強くなり、標準の金バルクの結晶構造に近くなっていく。これは、UDDを添加することによって、貴金属薄膜層の結晶構造が多結晶化し微細になっていることを意味する。この結晶が微細化することにより、貴金属薄膜層の機械的強度が増加する。   When no UDD is added, the noble metal thin film layer is a layer with a strong orientation on the (200) plane, but when UDD is added, the strength of the (111) plane increases and is close to the standard gold bulk crystal structure. It will become. This means that by adding UDD, the crystal structure of the noble metal thin film layer becomes polycrystalline and fine. As the crystal becomes finer, the mechanical strength of the noble metal thin film layer increases.

しかしながら、耐摩耗特性に対するUDDの量に最適値があり、UDD量を添加しすぎると、逆に耐摩耗性が劣化していく傾向がある。これは、摩耗中に発生する摩耗粉の中にUDDが存在するため、これが逆に研磨剤として働くためである。   However, there is an optimum value for the amount of UDD with respect to the wear resistance, and if the amount of UDD is excessively added, the wear resistance tends to deteriorate. This is because UDD exists in the wear powder generated during wear, and this acts as an abrasive on the contrary.

図7は金メッキ液1リットル当たりのUDD添加量(g/L)と金メッキ層のX線解析ピークの半値幅との関係を示すもので、同図でUDD添加量と、強度比の強い(200)回折ピークの半値幅の変化を見ると、UDDを添加していない金メッキ層の半値幅は、0.56°であるが、添加量が多くなると、半値幅が減少していることがわかる。半値幅が小さくなることは、結晶欠陥が少なくなることを意味する。金メッキ層の金の結晶組織、構造がUDD添加によって結晶欠陥が少なくなる原因は、UDDの微細な一次粒子が、金結晶形成での核となり、結晶組織や構造を変化させる役割をしているためである。金結晶形成での核となれなかったUDDは、金結晶成長時に異物として結晶粒界に排出され、結晶粒界に析出する。   FIG. 7 shows the relationship between the UDD addition amount per liter of gold plating solution (g / L) and the half-value width of the X-ray analysis peak of the gold plating layer. In FIG. ) Looking at the change in the half-value width of the diffraction peak, it can be seen that the half-value width of the gold plating layer not added with UDD is 0.56 °, but the half-value width decreases as the addition amount increases. A reduction in the half width means that crystal defects are reduced. The reason why the gold crystal structure and structure of the gold plating layer are reduced in crystal defects due to the addition of UDD is that the fine primary particles of UDD serve as nuclei in the formation of gold crystals and change the crystal structure and structure. It is. UDD which could not be a nucleus in gold crystal formation is discharged as a foreign substance to the crystal grain boundary during the gold crystal growth, and is precipitated at the crystal grain boundary.

下記表3は基板に平滑層としてニッケルメッキを施した後、UDDをメッキ液1リットル当たり0〜30g/Lの範囲内で添加して電流密度0.05A/dmで形成したUDD含有金メッキ層よりなる各貴金属薄膜層13のUDD含有量と耐摩耗比を示すものである。その耐摩耗比は、上記各貴金属薄膜層13のボールオンディスクによる耐摩耗性特性を測定して、UDDを添加しない耐摩耗性特性との比、すなわちUDDを添加しない耐摩耗性特性を1として、それとの比率を表したものである。ボールオンディスクの評価条件は、ボールが3/16インチアルミナボール、荷重1N、回転スピード50mm/sで2万5千回回転させ、耐摩耗性は、この試験によってできた摩耗痕の幅、深さを正確に非接触型光干渉法で測定し、摩耗痕のボリュームを算出して評価した。 Table 3 below shows a UDD-containing gold plating layer formed at a current density of 0.05 A / dm 2 by adding UDD within a range of 0 to 30 g / L per liter of plating solution after nickel plating as a smooth layer on the substrate. The UDD content and the wear resistance ratio of each noble metal thin film layer 13 are shown. The wear resistance ratio is determined by measuring the wear resistance characteristics of each of the noble metal thin film layers 13 by ball-on-disk, and taking the ratio to the wear resistance characteristics without adding UDD, that is, the wear resistance characteristics without adding UDD as 1. , And the ratio with it. The evaluation conditions of the ball-on-disk were as follows: the ball was rotated 25,000 times at a 3/16 inch alumina ball, a load of 1 N, and a rotation speed of 50 mm / s. The thickness was accurately measured by non-contact optical interferometry, and the volume of the wear scar was calculated and evaluated.

上記表3からも明らかなように貴金属薄膜層中のUDDの含有量は、前記表1と同様にUDD添加量が増えるに従って増大した。一方、耐摩耗比は、UDD添加量が0.1g/Lで、UDDを添加しない場合よりも僅かながら良くなり、UDD添加量が0.5g/Lで、UDDを添加しない場合の2倍の耐摩耗性向上の効果が見られた。さらにUDD添加量を増やすと、耐摩耗性が更に向上し、UDDを8.3g/L添加して形成したUDD含有金メッキ層よりなる貴金属薄膜層の耐摩耗性は、UDDを添加していない場合の約23倍向上した。   As is clear from Table 3 above, the UDD content in the noble metal thin film layer increased as the UDD addition amount increased as in Table 1 above. On the other hand, the wear resistance ratio is slightly better than when UDD is added at 0.1 g / L, which is twice as much as when UDD is added at 0.5 g / L and UDD is not added. The effect of improving wear resistance was observed. When the UDD addition amount is further increased, the wear resistance is further improved, and the wear resistance of the noble metal thin film layer made of the UDD-containing gold plating layer formed by adding 8.3 g / L of UDD is obtained when UDD is not added. It was improved about 23 times.

しかしながら、UDDを8.3g/Lを超えて更に添加した場合、UDD含有量は増加するが、耐摩耗特性は悪くなっていき、20g/Lで耐摩耗比は2倍、30g/Lで耐摩耗比は1.5倍となり、更にUDDの添加量を増やすと、UDD含有量は増加するが、耐摩耗比は更に低下することが分かった。UDD添加量に最適値がある理由は、UDD添加量が多くなりすぎると、貴金属薄膜層が摩耗する際に発生する摩耗粉に含まれるUDDの量が増加し、これが逆に研磨剤のような働きをするためと考えられる。   However, when UDD is further added in excess of 8.3 g / L, the UDD content increases, but the wear resistance property deteriorates. At 20 g / L, the wear resistance ratio is doubled, and the resistance is 30 g / L. The wear ratio was 1.5 times, and it was found that when the addition amount of UDD was further increased, the UDD content was increased, but the wear resistance ratio was further lowered. The reason why there is an optimum value for the added amount of UDD is that if the added amount of UDD becomes too large, the amount of UDD contained in the wear powder generated when the noble metal thin film layer is worn increases. It is thought to work.

下記表4は電流密度を0.5A/dmとした以外は前記表3とほぼ様の要領で形成したUDD含有金メッキ層よりなる各貴金属薄膜層13のUDD含有量と耐摩耗比を示すものである。 Table 4 below shows the UDD content and wear resistance ratio of each noble metal thin film layer 13 made of a UDD-containing gold plating layer formed in substantially the same manner as in Table 3 except that the current density was 0.5 A / dm 2. It is.

上記表4においても前記表3と同様にUDD添加量が増えるに従って貴金属薄膜層中のUDD含有量が増大し、耐摩耗比も前記表3と同じような特性を示した。特に、耐摩耗比は、UDD添加量が0.1g/Lで、UDDを添加しない場合よりも僅かながら良くなり、UDD添加量が0.5g/LでUDDを添加しない場合の約1.5倍の耐摩耗性の向上効果が見られた。さらにUDD添加量を増やすと、耐摩耗性が更に向上し、UDD添加量が14.4g/Lのときの耐摩耗性は、UDDを添加していない金メッキ層に対して、約7倍特性が向上した。   Also in Table 4, the UDD content in the noble metal thin film layer increased as the UDD addition amount increased as in Table 3, and the wear resistance ratio showed the same characteristics as in Table 3. In particular, the wear resistance ratio is slightly better than when UDD is added at 0.1 g / L, and about 1.5 when UDD is added at 0.5 g / L and UDD is not added. Doubled improvement in wear resistance was observed. When the UDD addition amount is further increased, the wear resistance is further improved, and the wear resistance when the UDD addition amount is 14.4 g / L is about 7 times that of the gold plating layer to which no UDD is added. Improved.

しかし、この場合も、14.4g/Lを超えて更にUDDの添加量を増やすと、UDD含有量は増加するが、耐摩耗特性は次第に低下していき、20g/Lで耐摩耗比は1.7倍、30g/Lで1.3倍となり、さらにUDDの添加量を増やすと、UDD含有量は増加するが、耐摩耗比は更に低下することが分かった。このようにUDD添加量に最適値がある理由は、前記と同様にUDD添加量が多くなりすぎると、貴金属薄膜層が摩耗する際に発生する摩耗粉に含まれるUDDの量が増加し、これが逆に研磨剤のような働きをするためと考えられる。   However, in this case as well, if the addition amount of UDD is further increased beyond 14.4 g / L, the UDD content increases, but the wear resistance gradually decreases, and the wear resistance ratio is 1 at 20 g / L. It was found that when the addition amount of UDD was further increased, the UDD content was increased, but the wear resistance ratio was further decreased. As described above, the reason why there is an optimum value for the UDD addition amount is that if the UDD addition amount is too large as described above, the amount of UDD contained in the wear powder generated when the noble metal thin film layer is worn increases. On the contrary, it is considered to work like an abrasive.

上記のように、いずれも金メッキ層の耐摩耗性はUDDを添加しない、すなわちUDDを共析させないものよりも、共析させた方が向上した。また、電流密度を小さくして、微細なUDDだけを金メッキ層の結晶粒界に均等に析出させた方が、電流密度を大きくして、凝集した大きなUDDを共析させるよりも金メッキ層の機械的強度は増加し、耐摩耗性もより高めることができることが分かった。また、UDD添加量を最適値を超えて増加した場合には、耐摩耗特性は次第に低下することも分かった。   As described above, the wear resistance of the gold-plated layer was improved by eutectoid rather than by adding UDD, that is, by not causing UDD to eutect. In addition, when the current density is reduced and only fine UDDs are evenly deposited on the crystal grain boundaries of the gold plating layer, the current density is increased and the mechanical properties of the gold plating layer are increased rather than eutecting large agglomerated UDDs. It was found that the mechanical strength can be increased and the wear resistance can be further improved. It was also found that when the UDD addition amount was increased beyond the optimum value, the wear resistance characteristics gradually decreased.

図8は基板に電流密度0.05A/dmで貴金属薄膜層としてUDDを添加しない場合とUDD添加量を異ならせて金メッキを施したときのメッキ液1リットル当たりのUDD添加量(g/L)と摩擦係数との関係を示すもので、UDDを添加しない場合よりもUDDを添加した方が摩擦係数が低くなり、UDD添加量が増加するほど摩擦係数が低下することが分かる。このことから、例えば端子等に接触させた状態で摺動させるような接点部材にあっては、摺動抵抗が軽減されて操作性や摺動安定性等を向上させることが可能となる。 FIG. 8 shows the amount of UDD added per liter of plating solution (g / L) when gold plating is applied to the substrate when the current density is 0.05 A / dm 2 and UDD is not added as a noble metal thin film layer. ) And the coefficient of friction, it can be seen that the coefficient of friction is lower when UDD is added than when UDD is not added, and the coefficient of friction decreases as the amount of UDD added increases. For this reason, for example, in a contact member that is slid in contact with a terminal or the like, sliding resistance is reduced, and operability, sliding stability, and the like can be improved.

なお、上記実施例は、前記図1に示すようなプローブピンを製造する場合を想定して前記基材10と同材質の金属板よりなる基板の表面に、UDDを分散してなる貴金属薄膜層を形成したものであるが、上記の結果からも明らかなように前記図1に示すようなプローブピンはもとより、コンタクトピン、その他の接点部材を構成する基材に、上記のようなUDDを分散してなる貴金属薄膜層を形成した場合にも同様の特性が得られ、接点部材のトライボロジー特性、特に耐摩耗性や摺動性能ひいては耐久性等を大幅に向上させることができるものである。   In addition, the said Example assumes the case where the probe pin as shown in the said FIG. 1 is manufactured, Noble metal thin film layer which disperse | distributes UDD on the surface of the board | substrate which consists of a metal plate of the same material as the said base material 10. As is clear from the above results, the UDD as described above is dispersed not only in the probe pins as shown in FIG. 1 but also in the base material constituting the contact pins and other contact members. When the noble metal thin film layer is formed, the same characteristics can be obtained, and the tribological characteristics of the contact member, in particular, the wear resistance, sliding performance, and durability can be greatly improved.

〔実施例2〕
本実施例においては実際に使用されているコンタクトピンを基材としてにUDD共析金メッキよりなる貴金属薄膜層を形成した。そのコンタクトピンとしては、図9に示すようなサンユー工業株式会社製L型コンタクトピン20を用いた。その材質はベリリウム銅であり、図中の寸法Lは3.8mm、Hは2.6mm、図で前後方向の厚さtは0.15mmのものを用いた。上記コンタクトピン20の表面全面に前記図1と同様の平滑層11とを形成した後、その表面にUDD共析金メッキよりなる貴金属薄膜層13を形成した。なお、前記図1における拡散防止層12は省略した。
[Example 2]
In this example, a noble metal thin film layer made of UDD eutectoid gold plating was formed using a contact pin actually used as a base material. As the contact pin, an L-type contact pin 20 manufactured by Sanyu Kogyo Co., Ltd. as shown in FIG. 9 was used. The material used was beryllium copper, and the dimension L in the figure was 3.8 mm, H was 2.6 mm, and the thickness t in the front-rear direction in the figure was 0.15 mm. After the smooth layer 11 similar to that shown in FIG. 1 was formed on the entire surface of the contact pin 20, a noble metal thin film layer 13 made of UDD eutectoid gold plating was formed on the surface. The diffusion preventing layer 12 in FIG. 1 is omitted.

前記実施例1と同様のUDDの縣濁水溶液(5重量%)を下記の組成を有する光沢厚付純金メッキ液に添加し、UDD濃度が8.3g/LのUDD添加金メッキ液を作成した。上記の光沢厚付純金メッキ液のpHは4.0であった。
KAu(CN): 15g/L、
HO・HO: 14g/L、
CH・HO: 36g/L
The same UDD suspended aqueous solution (5% by weight) as in Example 1 was added to a glossy pure gold plating solution having the following composition to prepare a UDD-added gold plating solution having a UDD concentration of 8.3 g / L. The pH of the glossy pure gold plating solution was 4.0.
KAu (CN) 2 : 15 g / L,
K 3 C 6 HO 7 · H 2 O: 14 g / L,
H 3 CH 5 O 7 · H 2 O: 36g / L

上記金メッキ液にUDDを添加後、そのUDD添加金メッキ液を超音波ホモジナイザーにかけて金メッキ液内のUDDを更に解砕して分散させた。   After adding UDD to the gold plating solution, the UDD-added gold plating solution was subjected to an ultrasonic homogenizer to further disintegrate and disperse the UDD in the gold plating solution.

次に、基材としての上記コンタクトピンをアセトン洗浄したのち活性化処理を行い、化学ニッケルメッキに90℃、10分浸漬させて厚さ2〜3μmのニッケルメッキよりなる平滑層を形成した。その後、洗浄して活性化処理したのちストライク金メッキ液に漬け、温度40℃、電流密度5A/dmで30秒間電解メッキを施して厚さ数十nmのストライク金メッキよりなる拡散防止層を形成した。その後、前記のUDDを添加した金メッキ液で、温度55℃、電流密度0.05A/dmで15分間電解メッキを行い厚さ約1μmのUDDが共析した金メッキよりなる貴金属薄膜層を形成した。その後水洗して乾燥させた。 Next, the contact pin as the base material was washed with acetone and then activated, and immersed in chemical nickel plating at 90 ° C. for 10 minutes to form a smooth layer made of nickel plating having a thickness of 2 to 3 μm. Then, after washing and activation treatment, it was immersed in a strike gold plating solution and subjected to electrolytic plating at a temperature of 40 ° C. and a current density of 5 A / dm 2 for 30 seconds to form a diffusion prevention layer made of strike gold plating having a thickness of several tens of nm. . Thereafter, with the gold plating solution to which UDD was added, electrolytic plating was performed at a temperature of 55 ° C. and a current density of 0.05 A / dm 2 for 15 minutes to form a noble metal thin film layer made of gold plating in which UDD having a thickness of about 1 μm was co-deposited. . Thereafter, it was washed with water and dried.

上記のようにして作製したUDD共析金メッキよりなる貴金属薄膜層を有するコンタクトピンをテストサンプル(a)として耐摩耗耐久評価を行った。測定装置としては、モータ式耐久試験機を用い、前記図9のコンタクトピン20の端部接触部20aを2往復/秒のスピードで鋼材ブロック面についた金バンプ(不図示)に接触させるコンタクト試験を行った。上記テストサンプル(a)に対する比較サンプルとして、(b)硬質金メッキ、(c)通常金メッキ、(d)ロジウムメッキを上記テストサンプルと同様のコンタクトピンに施したものを用いた。これらのサンプルは、各5個ずつを1つの評価用ハウジングに組み込んでコンタクト試験を行った。   Wear resistance durability evaluation was performed using a contact pin having a noble metal thin film layer made of UDD eutectoid gold plating produced as described above as a test sample (a). As a measuring device, a contact test using a motor type endurance tester in which the end contact portion 20a of the contact pin 20 in FIG. 9 is brought into contact with a gold bump (not shown) on the steel block surface at a speed of 2 reciprocations / second. Went. As a comparative sample with respect to the test sample (a), a contact pin similar to that used in the test sample was used (b) hard gold plating, (c) normal gold plating, and (d) rhodium plating. Each of these samples was incorporated into one evaluation housing, and a contact test was conducted.

その際、接触抵抗、接触荷重は、試験中モニターし、一定のコンタクト回数毎に、レーザー顕微鏡を用いて、各コンタクトピン20の接触部20aの表面の摩耗状況を調べた。また摩耗試験によって相手材の金バンプも摩耗するため、5万回ごとにコンタクト位置をずらした。   At that time, the contact resistance and the contact load were monitored during the test, and the wear state of the surface of the contact portion 20a of each contact pin 20 was examined using a laser microscope for every fixed number of contacts. In addition, the gold bumps of the mating material were also worn by the wear test, so the contact position was shifted every 50,000 times.

図10は上記各サンプル(a)〜(d)の接触部20aにおける試験前の表面状態を示す光学顕微鏡写真、図11は荷重50gfで摩耗試験を10万回行った後の上記各接触部20aの光学顕微鏡写真である。これらの写真およびグラフからわかるように、硬質金メッキ、金メッキ、ロジウムメッキよりなる比較サンプル(b)〜(d)は、メッキが剥離し、基材が摩耗しているのに対し、UDD添加金メッキよりなる本発明のサンプル(a)は殆ど摩耗しなかった。   FIG. 10 is an optical micrograph showing the surface state before the test in the contact portion 20a of each of the samples (a) to (d), and FIG. 11 is the contact portion 20a after the wear test is performed 100,000 times with a load of 50 gf. It is an optical microscope photograph of. As can be seen from these photographs and graphs, the comparative samples (b) to (d) made of hard gold plating, gold plating, and rhodium plating are peeled off and the substrate is worn, whereas the UDD-added gold plating is used. The sample (a) of the present invention was hardly worn.

図12は荷重50gfで1000回、5000回、1万回、3万回、5万回、7万回、10万回のコンタクト試験を行った時点での各サンプル(a)〜(d)のそれぞれ5個の平均接触抵抗値を表したものである。このグラフからわかるように、比較サンプル(b)〜(d)と比べて、UDDを共析した金メッキよりなる貴金属薄膜層を有する本発明のサンプル(a)は10万回でも接触抵抗が安定していた。   FIG. 12 shows each sample (a) to (d) at the time when the contact test was performed 1000 times, 5000 times, 10,000 times, 30,000 times, 50,000 times, 70,000 times, and 100,000 times with a load of 50 gf. Each represents an average contact resistance value of 5 pieces. As can be seen from this graph, compared with the comparative samples (b) to (d), the contact resistance of the sample (a) of the present invention having a noble metal thin film layer made of gold plated with UDD eutectoid is stable even after 100,000 times. It was.

図13は荷重値を100gfにしたときの摩耗試験5万回後の上記各接触部20aの光学顕微鏡写真である。この結果も同じように、硬質金メッキ、金メッキ、ロジウムメッキよりなる比較サンプル(b)〜(d)は、いずれもメッキが剥離し、基材が完全に摩耗していたが、UDD添加金メッキよりなる本発明のサンプル(a)は部分的に摩耗しただけであった。   FIG. 13 is an optical micrograph of each contact portion 20a after 50,000 wear tests when the load value is 100 gf. Similarly, the comparative samples (b) to (d) made of hard gold plating, gold plating, and rhodium plating were all peeled off and the base material was completely worn, but were made of UDD-added gold plating. Sample (a) of the present invention was only partially worn.

図14は荷重100gfで1000回、5000回、1万回、3万回、5万回のコンタクト試験を行った時点での各サンプル(a)〜(d)のそれぞれ5個の平均接触抵抗を表したものである。このグラフからわかるように、比較サンプル(b)〜(d)と比べて、UDD共析金メッキよりなる貴金属薄膜層を有する本発明のサンプル(a)は5万回でも接触抵抗が安定していた。   FIG. 14 shows the average contact resistance of each of the samples (a) to (d) at the time when the contact test was performed 1000 times, 5000 times, 10,000 times, 30,000 times, and 50,000 times with a load of 100 gf. It is a representation. As can be seen from this graph, compared with the comparative samples (b) to (d), the contact resistance of the sample (a) of the present invention having a noble metal thin film layer made of UDD eutectoid gold plating was stable even after 50,000 times. .

以上のように本発明による接点部材およびその製造方法によれば、接点部材のトライボロジー特性、特に耐摩耗性を大幅に向上させることが可能となり、耐久性のよい接点部材を容易・安価に提供することが可能となるもので、プローブピンやコンタクトピン等に限らず各種の接点部材の耐摩耗性ひいては耐久性の向上に効果がある。従って、産業上も極めて有効に利用し得るものである。   As described above, according to the contact member and the manufacturing method thereof according to the present invention, it is possible to greatly improve the tribological characteristics of the contact member, particularly the wear resistance, and to provide a highly durable contact member easily and inexpensively. Therefore, it is effective not only for the probe pin and the contact pin but also for improving the wear resistance and various durability of various contact members. Therefore, it can be used very effectively industrially.

(a)は本発明による接点部材の一実施形態を示す正面図、(b)は(a)におけるb部の部分拡大断面図。(A) is a front view which shows one Embodiment of the contact member by this invention, (b) is the elements on larger scale of the b section in (a). UDDのゼータ電位とpHとの関係を示すグラフ。The graph which shows the relationship between the zeta potential of UDD and pH. 電流密度0.05A/dmで形成した金メッキ層中のUDDの分散状態を示す電子顕微鏡写真。The electron micrograph which shows the dispersion | distribution state of UDD in the gold plating layer formed with the current density of 0.05 A / dm < 2 >. 電流密度0.5A/dmで形成した金メッキ層中のUDDの分散状態を示す電子顕微鏡写真。The electron micrograph which shows the dispersion state of UDD in the gold plating layer formed with the current density of 0.5 A / dm < 2 >. 電流密度0.05A/dmで形成した金メッキ層中のUDDサイズの分散状態を示すグラフ。Graph showing the dispersion state of the UDD size of the current density of 0.05 A / dm 2 gold plating layer formed by. 電流密度0.5A/dmで形成した金メッキ層中のUDDサイズの分散状態を示すグラフ。The graph which shows the dispersion | distribution state of UDD size in the gold plating layer formed with the current density of 0.5 A / dm < 2 >. 金メッキ液へのUDD添加量と金メッキ層の半値幅の関係を示すグラフ。The graph which shows the relationship between the amount of UDD addition to a gold plating solution, and the half value width of a gold plating layer. 金メッキ液へのUDD添加量と電流密度0.5A/dmで形成した金メッキ層の摩擦係数との関係を示すグラフ。Graph showing the relationship between the friction coefficient of the UDD amount and the current density 0.5A / dm 2 gold plating layer formed by in gold plating solution. 実施例で用いたコンタクトピンの正面図。The front view of the contact pin used in the Example. コンタクトピンの接触部における試験前の表面状態を示す顕微鏡写真。The microscope picture which shows the surface state before the test in the contact part of a contact pin. 荷重50gfで10万回のコンタクト試験を行った後のコンタクトピン接触部の顕微鏡写真。The microscope picture of a contact pin contact part after performing a contact test 100,000 times with a load of 50 gf. 荷重50gfでコンタクト試験を行ったときのコンタクト回数と接触抵抗値との関係を示すグラフ。The graph which shows the relationship between the frequency | count of a contact and a contact resistance value when a contact test is done with a load of 50 gf. 荷重100gfで5万回のコンタクト試験を行った後のコンタクトピン接触部の顕微鏡写真。The microscope picture of a contact pin contact part after performing a contact test 50,000 times with a load of 100 gf. 荷重100gfでコンタクト試験を行ったときのコンタクト回数と接触抵抗値との関係を示すグラフ。The graph which shows the relationship between the frequency | count of a contact when a contact test is done by load 100gf, and a contact resistance value.

符号の説明Explanation of symbols

1 プローブピン(接点部材)
1a 下端
2 案内筒体
3 圧縮コイルばね
10 基材
11 平滑層
12 拡散防止層
13 貴金属薄膜層
20 コンタクトピン(接点部材)
20a 接触部
1 Probe pin (contact member)
DESCRIPTION OF SYMBOLS 1a Lower end 2 Guide cylinder 3 Compression coil spring 10 Base material 11 Smooth layer 12 Diffusion prevention layer 13 Noble metal thin film layer 20 Contact pin (contact member)
20a Contact part

Claims (7)

基材の表面に貴金属薄膜層を形成してなる接点部材において、上記貴金属薄膜層の結晶粒界中に粒径が2〜200nmの超分散ナノダイヤモンド粒子を0.01〜2.0重量%の割合で分散させたことを特徴とする接点部材。   In the contact member formed by forming a noble metal thin film layer on the surface of the base material, 0.01 to 2.0% by weight of ultradispersed nanodiamond particles having a particle size of 2 to 200 nm in the crystal grain boundaries of the noble metal thin film layer. A contact member characterized by being dispersed at a rate. 上記の貴金属薄膜層を構成する貴金属として、Au、Pt、Ag、Pd、Rh、Ruのいずれかの金属単体またはいずれかの金属を主体とした合金を用いてなる請求項1に記載の接点部材。   2. The contact member according to claim 1, wherein the noble metal constituting the noble metal thin film layer is made of a single metal of Au, Pt, Ag, Pd, Rh, or Ru or an alloy mainly composed of any of the metals. . 上記貴金属薄膜層の厚さを0.1〜5μmの範囲内に形成してなる請求項1〜3のいずれかに記載の接点部材。   The contact member according to claim 1, wherein a thickness of the noble metal thin film layer is formed within a range of 0.1 to 5 μm. 上記基材と貴金属薄膜層との間に、上記基材の表面粗さを平滑化させるための平滑層または/および拡散防止層を設けてなる請求項1〜3のいずれかに記載の接点部材。   The contact member according to any one of claims 1 to 3, wherein a smoothing layer and / or a diffusion prevention layer for smoothing the surface roughness of the base material is provided between the base material and the noble metal thin film layer. . 基材の表面に電気メッキにより貴金属薄膜層を形成するようにした接点部材の製造方法において、上記電気メッキのメッキ液中に超分散ナノダイヤモンド粒子を分散させて該ナノダイヤモンド粒子を貴金属とともに上記基材表面に共析させるようにしたことを特徴とする接点部材の製造方法。   In the method of manufacturing a contact member in which a noble metal thin film layer is formed on the surface of a substrate by electroplating, ultradispersed nanodiamond particles are dispersed in the electroplating plating solution, and the nanodiamond particles together with the noble metal are mixed with the base. A method for producing a contact member, wherein the material surface is eutectoid. 上記超分散ナノダイヤモンド粒子を貴金属とともに基材表面に共析させる際の上記メッキ液中の電流密度を制御して所定粒径のナノダイヤモンド粒子を選択的に共析させるようにした請求項5に記載の接点部材の製造方法。   6. The nano-diamond particles having a predetermined particle diameter are selectively co-deposited by controlling a current density in the plating solution when the ultra-dispersed nano-diamond particles are co-deposited on the substrate surface together with the noble metal. The manufacturing method of the contact member of description. 上記電気メッキのメッキ液中に粒径が2〜500nmの超分散ナノダイヤモンド粒子をメッキ液1リットル当たり0.1〜30gの濃度で分散させ、上記電流密度を0.02〜1.0A/dmの範囲内に設定して、粒径2〜200nmのナノダイヤモンド粒子を選択的に共析させるようにした請求項5または6に記載の接点部材の製造方法。 In the electroplating plating solution, ultra-dispersed nanodiamond particles having a particle diameter of 2 to 500 nm are dispersed at a concentration of 0.1 to 30 g per liter of the plating solution, and the current density is 0.02 to 1.0 A / dm. 7. The method for producing a contact member according to claim 5, wherein the nanodiamond particles having a particle diameter of 2 to 200 nm are selectively co-deposited within a range of 2 .
JP2007221961A 2007-08-29 2007-08-29 Contact member and manufacturing method thereof Expired - Fee Related JP5238202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221961A JP5238202B2 (en) 2007-08-29 2007-08-29 Contact member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221961A JP5238202B2 (en) 2007-08-29 2007-08-29 Contact member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009053124A true JP2009053124A (en) 2009-03-12
JP5238202B2 JP5238202B2 (en) 2013-07-17

Family

ID=40504317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221961A Expired - Fee Related JP5238202B2 (en) 2007-08-29 2007-08-29 Contact member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5238202B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117882A (en) * 2009-12-07 2011-06-16 Rika Denshi Co Ltd Contact probe
JP2015532318A (en) * 2012-09-28 2015-11-09 カルボデオン リミティド オサケユイチア Fluoropolymer coating
WO2019156007A1 (en) * 2018-02-08 2019-08-15 株式会社ダイセル Plating film
JP2019137915A (en) * 2018-02-08 2019-08-22 株式会社ダイセル Plating film having low contact resistance
JP2020029612A (en) * 2018-02-08 2020-02-27 株式会社ダイセル Glossy plating film
CN111699283A (en) * 2018-02-08 2020-09-22 株式会社大赛璐 Coating film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890812B1 (en) * 2016-09-29 2018-08-22 주식회사 아이에스시 Contact pin for test and contact device for test
CN107515149B (en) * 2017-08-28 2020-08-21 河南克拉钻石有限公司 Method for detecting granularity and surface characteristics of diamond micropowder by using flow cytometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123292A (en) * 1999-10-27 2001-05-08 Tsuneki Mekki Kogyo Kk Surface treatment structure, member for contact, slide, fitting and decoration, and manufacturing method of the same
JP2004018909A (en) * 2002-06-13 2004-01-22 Tadamasa Fujimura Metallic thin film layer in which hyperfine diamond particles are dispersed, metallic material having the thin film layer and method for producing them
JP2005241362A (en) * 2004-02-25 2005-09-08 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2006038641A (en) * 2004-07-27 2006-02-09 Sumitomo Electric Ind Ltd Contact probe
JP2006225730A (en) * 2005-02-18 2006-08-31 Nagaoka Univ Of Technology Material with plating film containing nano-diamond particle deposited thereon, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123292A (en) * 1999-10-27 2001-05-08 Tsuneki Mekki Kogyo Kk Surface treatment structure, member for contact, slide, fitting and decoration, and manufacturing method of the same
JP2004018909A (en) * 2002-06-13 2004-01-22 Tadamasa Fujimura Metallic thin film layer in which hyperfine diamond particles are dispersed, metallic material having the thin film layer and method for producing them
JP2005241362A (en) * 2004-02-25 2005-09-08 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2006038641A (en) * 2004-07-27 2006-02-09 Sumitomo Electric Ind Ltd Contact probe
JP2006225730A (en) * 2005-02-18 2006-08-31 Nagaoka Univ Of Technology Material with plating film containing nano-diamond particle deposited thereon, and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117882A (en) * 2009-12-07 2011-06-16 Rika Denshi Co Ltd Contact probe
JP2015532318A (en) * 2012-09-28 2015-11-09 カルボデオン リミティド オサケユイチア Fluoropolymer coating
WO2019156007A1 (en) * 2018-02-08 2019-08-15 株式会社ダイセル Plating film
JP2019137915A (en) * 2018-02-08 2019-08-22 株式会社ダイセル Plating film having low contact resistance
JP2020029612A (en) * 2018-02-08 2020-02-27 株式会社ダイセル Glossy plating film
CN111699283A (en) * 2018-02-08 2020-09-22 株式会社大赛璐 Coating film
JP7229779B2 (en) 2018-02-08 2023-02-28 株式会社ダイセル METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE
JP7232053B2 (en) 2018-02-08 2023-03-02 株式会社ダイセル Method for manufacturing glossy plating film
CN111699283B (en) * 2018-02-08 2024-04-19 株式会社大赛璐 Coating film

Also Published As

Publication number Publication date
JP5238202B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5238202B2 (en) Contact member and manufacturing method thereof
JP5010945B2 (en) Nanodiamond-noble metal composite thin film layer, composite metal material including the same, and fuel cell
US8012600B2 (en) Material for electric contact and method of producing the same
TWI674332B (en) Plating or coating method for producing metal-ceramic coating on a substrate
TW507309B (en) Probe pin for a probe card
JP2009282003A (en) Contact member
KR100594074B1 (en) Contact probe
US6274254B1 (en) Electrodeposited precious metal finishes having wear resistant particles therein
JP5077479B1 (en) Contacts and electronic parts using the same
JP3551411B2 (en) Contact member and method of manufacturing the same
JP4044926B2 (en) Surface treatment method and contact member
JP2006169609A5 (en)
JP6804574B2 (en) Composite plating material and its manufacturing method
JP2021119257A (en) Composite plated material and its manufacturing method
KR101034828B1 (en) Metal structure and method for producing thereof
JP2007187580A (en) Contact probe
JP2001116765A (en) Probe card pin
JP2008249449A (en) Probe needle and its manufacturing method
JP6045927B2 (en) Plating solution and plating material
JP2005068445A (en) Metallic member covered with metal
JP6487813B2 (en) Nickel tungsten alloy and contact probe
JP7172583B2 (en) Terminal materials for connectors
JP7341871B2 (en) Composite plating material and its manufacturing method
JP2012181045A (en) Vertical probe needle and manufacturing method therefor
JP4878438B2 (en) Probe needle and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees