JP2009053083A - Pressure sensing device and pressure sensing system - Google Patents

Pressure sensing device and pressure sensing system Download PDF

Info

Publication number
JP2009053083A
JP2009053083A JP2007220889A JP2007220889A JP2009053083A JP 2009053083 A JP2009053083 A JP 2009053083A JP 2007220889 A JP2007220889 A JP 2007220889A JP 2007220889 A JP2007220889 A JP 2007220889A JP 2009053083 A JP2009053083 A JP 2009053083A
Authority
JP
Japan
Prior art keywords
pressure
fluctuation
clogging
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007220889A
Other languages
Japanese (ja)
Other versions
JP5012324B2 (en
Inventor
Hiroki Yoshino
広樹 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007220889A priority Critical patent/JP5012324B2/en
Publication of JP2009053083A publication Critical patent/JP2009053083A/en
Application granted granted Critical
Publication of JP5012324B2 publication Critical patent/JP5012324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure sensing device and a pressure sensing system capable of detecting clogging of a connecting pipe, at low cost and at a high sensitivity. <P>SOLUTION: A differential-pressure/pressure transmitter 2 as a pressure detector, is provided with connecting pipes 6a, 6b connected to mutually different positions of a pipe 4, wherein a fluid X flows, a sensor unit 11 for detecting a static pressure and the differential pressure between the pressure inside the connecting pipe 6a and the pressure inside the connecting pipe 6b, and a detection part 19 for detecting clogging of at least one of the connecting pipes 6a, 6b, based on the magnitude of the ratio between fluctuation of the differential pressure and that of the static pressure detected by the sensor unit 11. Specifically, the detection part 19 finds the dispersion or the average value of the ratios between fluctuations in the differential pressure and fluctuations of the static pressure, and by comparing these values with predetermined thresholds, or the like, diagnoses the existence of the clogging of at least the one of the connecting pipes 6a, 6b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧力検出器及び圧力検出システムに関する。   The present invention relates to a pressure detector and a pressure detection system.

圧力検出器の一種に、流体が流れる配管の途中にオリフィスプレート等の絞り機構を設け、絞り機構の上流側の圧力(高圧側圧力)と下流側の圧力(低圧側圧力)とを検出し、これらの差圧を示す差圧信号と静圧を示す静圧信号とを求める圧力検出器がある。この種の圧力検出器は、絞り機構の上流側に位置して配管に接続された導圧管と下流側に位置して配管に接続される導圧管とを備えており、この導圧管を伝う流体の圧力を検出することで、上記の高圧側圧力と低圧側圧力とを検出する。   One type of pressure detector is provided with a throttle mechanism such as an orifice plate in the middle of a pipe through which fluid flows, and detects the pressure on the upstream side (high pressure side pressure) and the pressure on the downstream side (low pressure side pressure) of the throttle mechanism, There is a pressure detector for obtaining a differential pressure signal indicating the differential pressure and a static pressure signal indicating the static pressure. This type of pressure detector includes a pressure guiding pipe that is located upstream of the throttle mechanism and connected to the pipe, and a pressure guiding pipe that is located downstream and connected to the pipe, and the fluid that passes through the pressure guiding pipe By detecting this pressure, the high pressure side pressure and the low pressure side pressure are detected.

圧力検出器で求められた差圧信号及び静圧信号は、アナログ伝送路又はディジタル伝送路を介してホストコンピュータに送信される。尚、従来の圧力検出器の詳細については、例えば以下の特許文献1〜9を参照されたい。
特開2006−329846号公報 特開2006−105707号公報 特開2005−274501号公報 特開2006−329847号公報 特開2004−354280号公報 特開2004−294175号公報 特開2004−132817号公報 米国特許第6654697号明細書 米国特許第6907383号明細書
The differential pressure signal and the static pressure signal obtained by the pressure detector are transmitted to the host computer via an analog transmission line or a digital transmission line. For details of the conventional pressure detector, refer to, for example, the following Patent Documents 1 to 9.
JP 2006-329846 A JP 2006-105707 A JP 2005-274501 A JP 2006-329847 A JP 2004-354280 A JP 2004-294175 A JP 2004-132817 A US Pat. No. 6,654,697 US Pat. No. 6,907,383

ところで、上記の圧力検出器において、原油等の粘度が高い流体が配管内を流れる場合、不純物/固形物等の多い流体が配管内を流れる場合、或いは配管内を流れる流体が低外気温により凝固するものである場合には、導圧管に詰まりが生ずる虞がある。導圧管に詰まりが生ずると、圧力検出器では配管内を流れる流体の高圧側圧力や低圧側圧力が検出される訳ではなく詰まりが生じた導圧管内の圧力が検出されてしまい、圧力検出器で求められる差圧信号及び静圧信号が無意味な値になってしまう。   By the way, in the pressure detector described above, when a fluid having a high viscosity such as crude oil flows in the pipe, a fluid having a large amount of impurities / solids flows in the pipe, or the fluid flowing in the pipe is solidified by a low outside air temperature. If this is the case, the pressure guiding tube may be clogged. When the pressure guiding tube is clogged, the pressure detector does not detect the high pressure side pressure or the low pressure side pressure of the fluid flowing in the pipe, but detects the pressure inside the pressure guiding tube where the clogging has occurred. Thus, the differential pressure signal and the static pressure signal obtained in step 1 become meaningless values.

従来、導圧管の詰まりの検出は、正常運転状態からの変化を捉えるといった熟練作業員の経験や勘に頼る部分が大きかったが、近年では導圧管の詰まりを自動的に検出する方法が提案されている。例えば、上記の特許文献8には、差圧値等のプロセス値のスペクトル密度の計算結果の変化や、前回検出結果との自己相関係数の計算結果の変化から導圧管の詰まりを自動的に検出する方法が開示されている。また、上記の特許文献2には、差圧信号の微小変化量の分散比と、静圧信号の微小変化量の分散比とをそれぞれ算出して導圧管の詰まりを自動的に検出する方法が開示されている。   Conventionally, detection of clogged pressure tubes has been largely dependent on the experience and intuition of skilled workers, such as capturing changes from normal operating conditions, but in recent years a method for automatically detecting clogged pressure tubes has been proposed. ing. For example, in Patent Document 8 described above, clogging of a pressure guiding tube is automatically performed based on a change in a calculation result of a spectral density of a process value such as a differential pressure value and a change in a calculation result of an autocorrelation coefficient with a previous detection result. A method of detecting is disclosed. Further, in the above-mentioned Patent Document 2, there is a method for automatically detecting clogging of a pressure guiding tube by calculating a dispersion ratio of a minute change amount of a differential pressure signal and a dispersion ratio of a minute change amount of a static pressure signal. It is disclosed.

しかしながら、上記の特許文献8に開示された方法では、FFT(Fast Fourier Transform:高速フーリエ変換)等の演算を行う必要があるため、高速且つ大規模のディジタル回路やサンプリングのためのメモリが必要となり圧力検出器のコストが上昇するという問題がある。また、圧力検出器の設置場所は危険性雰囲気内であることが多く、エネルギー制限を受けるため大規模な回路は不向きである。更に、近年では電池で駆動可能な程度の低消費電力が求められており、FFT等の回路を用いる場合には、高速処理と低消費電力及び小型化とを両立する必要があるという問題がある。   However, in the method disclosed in Patent Document 8, it is necessary to perform an operation such as FFT (Fast Fourier Transform), so that a high-speed and large-scale digital circuit and a memory for sampling are required. There is a problem that the cost of the pressure detector increases. In addition, the installation location of the pressure detector is often in a hazardous atmosphere, and a large-scale circuit is not suitable because it is restricted by energy. Furthermore, in recent years, low power consumption that can be driven by a battery has been demanded, and when using a circuit such as FFT, there is a problem that it is necessary to achieve both high-speed processing, low power consumption, and downsizing. .

また、上記の特許文献2に開示された方法では、特許文献8のような大規模なディジタル回路を必須とする訳ではない。しかしながら、特許文献2では、短時間カウンタと長時間カウンタの2種類で測定される差圧信号の微小時間変化量(時間微分)の分散の比と、静圧信号の微小時間変化量(時間微分)の分散の比をそれぞれ計算し、更に、差圧信号の2回微分値の分散の比と、静圧信号の2回微分値の分散の比を計算しており、ハードウェア的にもソフトウェア的にも冗長である。   Further, the method disclosed in Patent Document 2 does not necessarily require a large-scale digital circuit as in Patent Document 8. However, in Patent Document 2, the dispersion ratio of the minute time change (time derivative) of the differential pressure signal measured by the two types of the short time counter and the long time counter and the minute time change (time derivative) of the static pressure signal. ), And the variance ratio of the second derivative of the differential pressure signal and the variance of the second derivative of the static pressure signal are calculated. This is also redundant.

本発明は上記事情に鑑みてなされたものであり、導圧管の詰まりを安価に高感度で検出することができる圧力検出器及び圧力検出システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pressure detector and a pressure detection system that can detect clogging of a pressure guiding tube at low cost with high sensitivity.

上記課題を解決するために、本発明の圧力検出器は、流体(X)が流れる配管(4)の互いに異なる位置に接続された第1,第2導圧管(6a,6b)と、当該第1導圧管内の圧力と当該第2導圧管内の圧力との差圧及び静圧を検出するセンサ(11)とを備える圧力検出器(2)において、前記センサで検出される前記差圧の揺動と前記静圧の揺動との比の大きさに基づいて、前記第1,第2導圧管の少なくとも一方の詰まりを検知する検知部(19)を備えることを特徴としている。
この発明によると、流体が流れる配管の互いに異なる位置に接続された第1,第2導圧管内の圧力の差圧及び静圧がセンサで検出され、このセンサで検出された差圧の揺動と静圧の揺動との比の大きさに基づいて、第1,第2導圧管の少なくとも一方の詰まりが検知部で検知される。
また、本発明の圧力検出器は、前記検知部が、前記差圧の揺動と前記静圧の揺動との比の平均値及び分散の値の少なくとも一方を求める計算部(19a)と、前記計算部で求められた値と所定の閾値とを比較することで前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断する診断部(19b)とを備えることを特徴としている。
また、本発明の圧力検出器は、前記検知部が、前記差圧の揺動と前記静圧の揺動との比の平均値及び分散の値の少なくとも一方を求める計算部(19a)と、前記計算部で求められた現在の値と前記計算部で過去に求められた値との比較、又は前記計算部で求められた値の変化の傾向から前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断する診断部(19b)とを備えることを特徴としている。
また、本発明の圧力検出器は、前記診断部が、前記計算部で求められた値と複数の閾値とを比較して前記第1,第2導圧管の少なくとも一方の詰まりの程度を診断し、前記診断部で診断された詰まりの程度を示す情報を表示する表示部(17)を備えることを特徴としている。
更に、本発明の圧力検出器は、前記センサの検出結果及び前記計算部の計算結果の少なくとも一方を、上位の管理装置に伝達する通信部(18)を備えることを特徴としている。
本発明の圧力検出システムは、流体(X)が流れる配管(4)に設置される圧力検出器(2)と、当該圧力検出器を管理する管理装置(3)とを備える圧力検出システム(1)において、前記圧力検出器として、上記の本発明による圧力検出器を備えており、前記管理装置は、前記圧力検出器から伝達される前記センサの検出結果から、前記差圧の揺動と前記静圧の揺動との比の平均値及び分散の値の少なくとも一方を求め、当該値を用いて前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断することを特徴としている。
また、本発明の圧力検出システムは、流体(X)が流れる配管(4)に設置される圧力検出器(2)と、当該圧力検出器を管理する管理装置(3)とを備える圧力検出システム(1)において、前記圧力検出器として、上記の本発明による圧力検出器を備えており、前記管理装置は、前記圧力検出器から伝達される前記計算部の計算結果の変化の傾向から前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断することを特徴としている。
In order to solve the above problems, a pressure detector of the present invention includes first and second pressure guiding pipes (6a, 6b) connected to different positions of a pipe (4) through which a fluid (X) flows, and the first In a pressure detector (2) comprising a sensor (11) for detecting a differential pressure and a static pressure between a pressure in one pressure guiding tube and a pressure in the second pressure guiding tube, the pressure difference detected by the sensor A detection unit (19) for detecting clogging of at least one of the first and second pressure guiding pipes based on the ratio of the swing and the swing of the static pressure is provided.
According to the present invention, the differential pressure and static pressure in the first and second pressure guiding pipes connected to different positions of the pipe through which the fluid flows are detected by the sensor, and the fluctuation of the differential pressure detected by the sensor is detected. Based on the ratio of the ratio of the vibration to the static pressure, at least one of the first and second pressure guiding tubes is detected by the detection unit.
Further, in the pressure detector of the present invention, the detection unit calculates a calculation unit (19a) for obtaining at least one of an average value and a dispersion value of a ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure, A diagnostic unit (19b) is provided for diagnosing the presence or absence of clogging of at least one of the first and second pressure guiding pipes by comparing a value obtained by the calculation unit with a predetermined threshold value.
Further, in the pressure detector of the present invention, the detection unit calculates a calculation unit (19a) for obtaining at least one of an average value and a dispersion value of a ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure, At least one of the first and second pressure guiding pipes from a comparison between a current value obtained by the calculation unit and a value obtained in the past by the calculation unit, or a tendency of a change in the value obtained by the calculation unit. And a diagnosis unit (19b) for diagnosing the presence or absence of clogging.
In the pressure detector of the present invention, the diagnosis unit diagnoses the degree of clogging of at least one of the first and second pressure guiding pipes by comparing a value obtained by the calculation unit with a plurality of threshold values. A display unit (17) for displaying information indicating the degree of clogging diagnosed by the diagnostic unit is provided.
Furthermore, the pressure detector of the present invention includes a communication unit (18) for transmitting at least one of the detection result of the sensor and the calculation result of the calculation unit to a higher-level management device.
The pressure detection system of the present invention includes a pressure detector (2) installed in a pipe (4) through which a fluid (X) flows, and a management device (3) that manages the pressure detector (1). ), The pressure detector according to the present invention is provided as the pressure detector, and the management device detects the fluctuation of the differential pressure and the fluctuation from the detection result of the sensor transmitted from the pressure detector. It is characterized in that at least one of an average value and a dispersion value with respect to the fluctuation of the static pressure is obtained, and the presence or absence of clogging of at least one of the first and second pressure guiding pipes is diagnosed using the value.
Moreover, the pressure detection system of this invention is a pressure detection system provided with the pressure detector (2) installed in the piping (4) through which the fluid (X) flows, and the management apparatus (3) which manages the said pressure detector. In (1), the pressure detector according to the present invention is provided as the pressure detector, and the management device is configured to change the calculation result of the calculation unit transmitted from the pressure detector. It is characterized by diagnosing the presence or absence of clogging of at least one of the first and second pressure guiding tubes.

本発明によれば、流体が流れる配管の互いに異なる位置に接続された第1,第2導圧管内の圧力の差圧及び静圧をセンサで検出し、検出された差圧の揺動と静圧の揺動との比の大きさに基づいて、第1,第2導圧管の少なくとも一方の詰まりを検知しており、従来のように、大規模なディジタル回路等が不要であるため、第1,第2導圧管の詰まりを安価に高感度で検出することができるという効果がある。   According to the present invention, the differential pressure and static pressure in the first and second pressure guiding pipes connected to different positions of the pipe through which the fluid flows are detected by the sensor, and the detected differential pressure fluctuation and static pressure are detected. Since clogging of at least one of the first and second pressure guiding pipes is detected on the basis of the ratio of the pressure fluctuation, and a conventional large-scale digital circuit is not required, There is an effect that the clogging of the first and second pressure guiding pipes can be detected at low cost with high sensitivity.

以下、図面を参照して本発明の一実施形態による圧力検出器及び圧力検出システムについて詳細に説明する。図1は、本発明の一実施形態による圧力検出システムの概要を示す図である。図1に示す通り、本実施形態の圧力検出システム1は、差圧圧力伝送器2(圧力検出器)とホストコンピュータ3(管理装置)とを備える。尚、差圧圧力伝送器2とホストコンピュータ3とは、有線又は無線のアナログ伝送路又はディジタル伝送路(図示省略)を介して相互に接続されている。   Hereinafter, a pressure detector and a pressure detection system according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an outline of a pressure detection system according to an embodiment of the present invention. As shown in FIG. 1, the pressure detection system 1 of this embodiment includes a differential pressure transmitter 2 (pressure detector) and a host computer 3 (management device). The differential pressure transmitter 2 and the host computer 3 are connected to each other via a wired or wireless analog transmission line or digital transmission line (not shown).

差圧圧力伝送器2は、流体Xが流れる配管4に設置されている。この差圧圧力伝送器2は、配管4内に設置されたオリフィス5(絞り機構:図2参照)の上流側の配管4に接続された導圧管6a(第1導圧管)と、下流側の配管4に接続された導圧管6b(第2導圧管)とを備えており、導圧管6a,6b内の圧力の差圧及び静圧を検出する。差圧圧力伝送器2は、図1に示す通り、上記の静圧及び差圧以外に流体Xの温度や質量流量の検出も可能である。   The differential pressure transmitter 2 is installed in a pipe 4 through which the fluid X flows. This differential pressure transmitter 2 includes a pressure guiding pipe 6a (first pressure guiding pipe) connected to a pipe 4 on the upstream side of an orifice 5 (throttle mechanism: see FIG. 2) installed in the pipe 4, and a downstream side. A pressure guiding pipe 6b (second pressure guiding pipe) connected to the pipe 4 is provided, and a differential pressure and a static pressure in the pressure guiding pipes 6a and 6b are detected. As shown in FIG. 1, the differential pressure transmitter 2 can detect the temperature and mass flow rate of the fluid X in addition to the static pressure and the differential pressure.

図2は、差圧圧力伝送器2の内部構成を示すブロック図である。図2に示す通り、差圧圧力伝送器2は、センサ部11、周波数カウンタ12、発振回路13、中央処理装置(MPU:Micro Processing Unit)14、RAM(Random Access Memory)15、EEPROM(Electrically Erasable Programmable Read Only Memory)16、表示部17、通信部18、及びROM(Read Only Memory)20を備える。センサ部11は、シリコンレゾナントセンサの振動子21a、トランス22a、アンプ23a、及び駆動回路24aからなる第1センサ部11aと、シリコンレゾナントセンサの振動子21b、トランス22b、アンプ23b、及び駆動回路24bからなる第2センサ部11bとを備える。   FIG. 2 is a block diagram showing an internal configuration of the differential pressure transmitter 2. As shown in FIG. As shown in FIG. 2, the differential pressure transmitter 2 includes a sensor unit 11, a frequency counter 12, an oscillation circuit 13, a central processing unit (MPU: Micro Processing Unit) 14, a RAM (Random Access Memory) 15, an EEPROM (Electrically Erasable). A Programmable Read Only Memory (16), a display unit 17, a communication unit 18, and a ROM (Read Only Memory) 20 are provided. The sensor unit 11 includes a first sensor unit 11a including a resonator 21a, a transformer 22a, an amplifier 23a, and a drive circuit 24a of a silicon resonant sensor, and a vibrator 21b, a transformer 22b, an amplifier 23b, and a drive circuit 24b of a silicon resonant sensor. The 2nd sensor part 11b which consists of.

図3は、シリコンレゾナントセンサが形成されたセンサチップの構成を示す図であって、(a)は斜視図であり、(b)は(a)中のA−A線に沿った断面矢視図である。図3に示す通り、センサチップ30は、シリコンによって形成された略直方体の形状であって、その底面30bの中央部に凹部31が形成されていることによりセンサチップ30の表面30a側の中央部がダイアフラム32とされている。図3(a)に示す通り、振動子21aはセンサチップ30の表面30a上であってダイアフラム32の端部に取り付けられており、振動子21bは同表面30a上であってダイアフラム32の中央部に取り付けられている。   3A and 3B are diagrams illustrating a configuration of a sensor chip on which a silicon resonant sensor is formed, in which FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along line AA in FIG. FIG. As shown in FIG. 3, the sensor chip 30 has a substantially rectangular parallelepiped shape formed of silicon, and a recess 31 is formed at the center of the bottom surface 30 b of the sensor chip 30, so that the center of the sensor chip 30 on the surface 30 a side. Is the diaphragm 32. As shown in FIG. 3A, the vibrator 21 a is attached to the end of the diaphragm 32 on the surface 30 a of the sensor chip 30, and the vibrator 21 b is on the surface 30 a and the center part of the diaphragm 32. Is attached.

センサチップ30の表面30aには、振動子21aに接続された一対の配線が紙面に沿う上下方向にそれぞれ延びており、対をなす一方の配線の端部に励振端子33が設けられ、対をなす他方の配線の端部に検出端子34が設けられている。同様に、センサチップ30の表面30aには、振動子21bに接続された一対の配線が紙面に沿う上下方向にそれぞれ延びており、対をなす一方の配線の端部に励振端子35が設けられ、対をなす他方の配線の端部に検出端子36が設けられている。励振端子33は図2中の駆動回路24aに接続されており、検出端子34は図2中のトランス22aに接続されている。同様に、励振端子35は図2中の駆動回路24bに接続されており、検出端子36は図2中のトランス22bに接続されている。   On the surface 30a of the sensor chip 30, a pair of wires connected to the vibrator 21a extend in the vertical direction along the plane of the paper, and an excitation terminal 33 is provided at the end of one of the wires forming the pair. A detection terminal 34 is provided at the end of the other wiring. Similarly, on the surface 30a of the sensor chip 30, a pair of wirings connected to the vibrator 21b extend in the vertical direction along the paper surface, and an excitation terminal 35 is provided at the end of one of the paired wirings. The detection terminal 36 is provided at the end of the other wiring pair. The excitation terminal 33 is connected to the drive circuit 24a in FIG. 2, and the detection terminal 34 is connected to the transformer 22a in FIG. Similarly, the excitation terminal 35 is connected to the drive circuit 24b in FIG. 2, and the detection terminal 36 is connected to the transformer 22b in FIG.

以上の構成のシリコンレゾナントセンサに対して、図3(a)の紙面に沿う上方向又は下方向から磁界が印加されており、振動子21a,21bに電流を流せば振動子21a,21bが所定の固有振動数で振動する。第1センサ部11aに設けられたトランス22a、アンプ23a、及び駆動回路24aは振動子21aをその固有振動数で振動させるための回路であり、第2センサ部11bに設けられたトランス22b、アンプ23b、及び駆動回路24bは振動子21bをその固有振動数で振動させるための回路である。   A magnetic field is applied to the silicon resonant sensor having the above configuration from above or below along the paper surface of FIG. 3A, and when a current is passed through the vibrators 21a and 21b, the vibrators 21a and 21b are predetermined. Vibrates at the natural frequency of. The transformer 22a, amplifier 23a, and drive circuit 24a provided in the first sensor unit 11a are circuits for vibrating the vibrator 21a at its natural frequency. The transformer 22b, amplifier provided in the second sensor unit 11b 23b and the drive circuit 24b are circuits for vibrating the vibrator 21b at its natural frequency.

また、図3に示すセンサチップ30の表面30a側には導圧管6aを介した流体が導かれ、裏面30b側(凹部31内)には導圧管6bを介した流体が導かれる。このため、導圧管6a,6b内の圧力の差に応じてダイアフラム32に歪が生ずると、振動子21a,21bが伸縮又は圧縮を受けて自身の張力が変化し、振動子21a,21bの固有振動数が以下の(1)式に示す通り変化する。   Further, the fluid through the pressure guiding tube 6a is guided to the front surface 30a side of the sensor chip 30 shown in FIG. 3, and the fluid through the pressure guiding tube 6b is guided to the back surface 30b side (inside the recess 31). For this reason, when the diaphragm 32 is distorted in accordance with the pressure difference in the pressure guiding pipes 6a and 6b, the vibrators 21a and 21b are stretched or compressed to change their own tension, and the inherent vibration of the vibrators 21a and 21b. The frequency changes as shown in the following equation (1).

Figure 2009053083
但し、上記(1)式中の各変数は以下の通りである。
f :固有振動数
E :シリコンのヤング率
ρ :シリコンの密度
l :振動子の長さ
h :振動子の厚さ
ε :張力
ε :初期張力
εdp:差圧による張力変化
εsp:静圧による張力変化
尚、ε=ε+εdp+εspなる関係がある。
Figure 2009053083
However, each variable in the above equation (1) is as follows.
f: the natural frequency E: Young's modulus of silicon [rho: density of the silicon l: length of the transducer h: thickness of the vibrator epsilon: Tension epsilon 0: initial tension epsilon dp: tension change due to the differential pressure epsilon sp: static Tension change due to pressure Note that there is a relationship of ε = ε 0 + ε dp + ε sp .

ここで、図3に示す通り、振動子21aはダイアフラム32の端部に取り付けられており、振動子21bはダイアフラム32の中央部に取り付けられている。このため、振動子21a,21bの固有振動数の変化はダイアフラム32の歪み量に応じてそれぞれ異なったものになる。本実施形態では、振動子21a,21bの各々の固有振動数の変化を検出することにより、導圧管6a,6b内の圧力の差圧及び静圧を検出している。   Here, as shown in FIG. 3, the vibrator 21 a is attached to the end of the diaphragm 32, and the vibrator 21 b is attached to the center of the diaphragm 32. For this reason, changes in the natural frequencies of the vibrators 21 a and 21 b are different depending on the amount of distortion of the diaphragm 32. In the present embodiment, the differential pressure and static pressure in the pressure guiding tubes 6a and 6b are detected by detecting changes in the natural frequencies of the vibrators 21a and 21b.

尚、導圧管6a,6bの固有振動数が変化した場合には、第1センサ部11aに設けられたトランス22a、アンプ23a、及び駆動回路24aは変化後の固有振動数で振動子21aを駆動し、第2センサ部11bに設けられたトランス22b、アンプ23b、及び駆動回路24bは変化後の固有振動数で振動子21bを駆動する。このため、駆動回路24a,24bは、振動子21a,21bの固有振動数を示す信号(振動子21a,21bを駆動する信号)を周波数カウンタ12に出力する。   When the natural frequency of the pressure guiding pipes 6a and 6b changes, the transformer 22a, the amplifier 23a, and the drive circuit 24a provided in the first sensor unit 11a drive the vibrator 21a with the changed natural frequency. The transformer 22b, the amplifier 23b, and the drive circuit 24b provided in the second sensor unit 11b drive the vibrator 21b at the natural frequency after the change. For this reason, the drive circuits 24a and 24b output signals (signals for driving the vibrators 21a and 21b) indicating the natural frequencies of the vibrators 21a and 21b to the frequency counter 12.

周波数カウンタ12は、発振回路13から出力される基準クロックを用いて第1センサ部11a,11bから出力される信号をそれぞれサンプリングし、各々の信号のパルス数をカウントする。ここで、周波数カウンタ12のサンプリング周期は数十msec程度である。発振回路13は、周波数カウンタ12及びMPU14に対して所定の周波数の基準クロックを供給する。MPU14は、発振回路13から供給される基準クロックに同期して動作し、差圧圧力伝送器2の動作を統括的に制御する。また、MPU14は、ROM20に格納されたプログラムを読み出して実行することにより検知部19をソフトウェア的に実現する。尚、ROM20は、MPU14に内蔵されていても、外部に設けられていても良い。   The frequency counter 12 samples the signals output from the first sensor units 11a and 11b using the reference clock output from the oscillation circuit 13, and counts the number of pulses of each signal. Here, the sampling period of the frequency counter 12 is about several tens of msec. The oscillation circuit 13 supplies a reference clock having a predetermined frequency to the frequency counter 12 and the MPU 14. The MPU 14 operates in synchronization with the reference clock supplied from the oscillation circuit 13 and comprehensively controls the operation of the differential pressure transmitter 2. Further, the MPU 14 implements the detection unit 19 by software by reading and executing a program stored in the ROM 20. The ROM 20 may be built in the MPU 14 or provided outside.

検知部19は、データ収集計算部19a(計算部)と診断部19bとからなり、周波数カウンタ12でカウントされたパルス数から振動子21a,21bの固有振動数を求めるとともに、上記(1)式から導圧管6a,6b内の圧力の差圧及び静圧を求め、これらの微小時間変化(以下、揺動という)の比の大きさに基づいて導圧管6a,6bの少なくとも一方の詰まりを検知する。尚、以下の説明では、振動子21aの固有振動数をfとし、振動子21bの固有振動数をfとする The detection unit 19 includes a data collection calculation unit 19a (calculation unit) and a diagnosis unit 19b. The detection unit 19 obtains the natural frequency of the transducers 21a and 21b from the number of pulses counted by the frequency counter 12, and the above equation (1). The pressure differential pressure and the static pressure in the pressure guiding pipes 6a and 6b are obtained from the above, and clogging of at least one of the pressure guiding pipes 6a and 6b is detected based on the ratio of these minute time changes (hereinafter referred to as oscillation). To do. In the following description, the natural frequency of the vibrator 21a and f c, the natural frequency of the vibrator 21b to f r

データ収集計算部19aは、周波数カウンタ12でカウントされたパルス数から上記の固有振動数f,fを求めるとともに、上記(1)式から導圧管6a,6b内の圧力の差圧及び静圧を求め、更には導圧管6a,6b内の圧力の差圧の揺動と静圧の揺動との比の平均値及び分散の値の少なくとも一方を求める。具体的には、データ収集計算部19aは、周波数カウンタ12から出力されるパルス数から固有振動数f,fを求め、周波数カウンタ12のサンプリング周期毎に、導圧管6a,6b内の圧力の差圧を示す差圧信号x(i)と静圧を示す静圧信号y(i)とを以下の(2),(3)式を用いて求める。 Data acquisition calculating unit 19a is counted natural frequency of the pulse number f c the frequency counter 12, the seek f r, (1) impulse line 6a from the equation, the pressure within 6b differential pressure and static The pressure is obtained, and further, at least one of the average value and the dispersion value of the ratio of the fluctuation of the differential pressure between the pressure guide pipes 6a and 6b and the fluctuation of the static pressure is obtained. Specifically, the data acquisition calculating unit 19a is the natural frequency f c, the f r determined from the number of pulses output from the frequency counter 12, for each sampling period of the frequency counter 12, connecting pipe 6a, the pressure in 6b The differential pressure signal x (i) indicating the differential pressure and the static pressure signal y (i) indicating the static pressure are obtained using the following equations (2) and (3).

Figure 2009053083
Figure 2009053083
但し、上記(2),(3)式中におけるiは正の値(整数)をとる変数である。また、a,b,k,lは正の定数であり、c,mは定数である。尚、f(i),f(i)は、i番目のサンプリング時に求められた振動子21a,21bの固有振動数を意味する。
Figure 2009053083
Figure 2009053083
However, i in the above formulas (2) and (3) is a variable that takes a positive value (integer). Further, a, b, k, and l are positive constants, and c and m are constants. Note that f c (i) and f r (i) mean the natural frequencies of the vibrators 21a and 21b obtained at the i-th sampling.

また、データ収集計算部19aは、上記(2)式を用いて求めた差圧信号x(i)の揺動dx(i)を以下の(4)式を用いて求めるとともに、上記(3)式を用いて求めた静圧信号y(i)の揺動dy(i)を以下の(5)式を用いて求める。尚、本実施形態では、周波数カウンタ12のサンプリング周期が数十msec程度である。このため、差圧信号の揺動dx(i)は数十msec程度の微小時間における差圧の変化であり、静圧信号の揺動dy(i)は数十msec程度の微小時間における静圧の変化である。

Figure 2009053083
Figure 2009053083
Further, the data collection calculation unit 19a obtains the fluctuation dx (i) of the differential pressure signal x (i) obtained using the above equation (2) using the following equation (4), and the above (3). The fluctuation dy (i) of the static pressure signal y (i) obtained using the equation is obtained using the following equation (5). In the present embodiment, the sampling period of the frequency counter 12 is about several tens of msec. Therefore, the fluctuation dx (i) of the differential pressure signal is a change in the differential pressure in a minute time of about several tens of msec, and the fluctuation dy (i) of the static pressure signal is a static pressure in a minute time of about several tens of msec. Is a change.
Figure 2009053083
Figure 2009053083

ここで、差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)は、導圧管6a,6bの詰まりの度合いによって変化する。いま、差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)をシミュレーションによって求め、以下の(6)式で正規化してxy平面にプロットすると図4に示す結果が得られる。

Figure 2009053083
Here, the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal vary depending on the degree of clogging of the pressure guiding pipes 6a and 6b. Now, the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal are obtained by simulation, normalized by the following equation (6), and plotted on the xy plane, the result shown in FIG. 4 is obtained. It is done.
Figure 2009053083

図4は、差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)の変化を示すシミュレーション結果である。尚、図4に示すシミュレーション結果は、配管4を流れる流体が水の場合のものであって、開度を自由に設定することができるバルブを導圧管6aに取り付け、バルブの開度を調整することで得られたものである。尚、図4(a)は、導圧管に詰まりがない場合のシミュレーション結果であり、図4(b)は導圧管に軽度の詰まりがある場合のシミュレーション結果であり、図4(c)は導圧管が完全に詰まった場合のシミュレーション結果である。   FIG. 4 is a simulation result showing changes in the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal. The simulation results shown in FIG. 4 are for the case where the fluid flowing in the pipe 4 is water, and a valve whose opening degree can be freely set is attached to the pressure guiding pipe 6a to adjust the opening degree of the valve. It was obtained. 4A is a simulation result when the pressure guiding tube is not clogged, FIG. 4B is a simulation result when the pressure guiding tube is slightly clogged, and FIG. It is a simulation result when the pressure pipe is completely clogged.

図4(a)に示されている通り、詰まりがない場合には、差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)のプロット結果はほぼ円形になることが分かる。これに対し、図4(b),図4(c)を参照すると、詰まりの度合いがひどくなるにつれてグラフの上部及び下部のプロットが少なくなる反面、グラフの左部及び右部のプロットが密集しだす。つまり、この図4は、導圧管6a,6b内の圧力の差圧の揺動と静圧の揺動との比に基づく位相差が、導圧管6a,6bの詰まりの度合いに応じて変化することを表している。   As shown in FIG. 4A, when there is no clogging, the plotted result of the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal may be almost circular. I understand. On the other hand, referring to FIG. 4 (b) and FIG. 4 (c), the plots at the upper and lower parts of the graph decrease as the degree of clogging becomes worse, but the plots at the left and right parts of the graph start to be dense. . That is, in FIG. 4, the phase difference based on the ratio of the fluctuation of the differential pressure between the pressure guide pipes 6a and 6b and the fluctuation of the static pressure changes according to the degree of clogging of the pressure guide pipes 6a and 6b. Represents that.

以下の表1は、図4(a)〜図4(c)の各々の場合における差圧の揺動と静圧の揺動との比の平均値と分散の値を示す表である。

Figure 2009053083
Table 1 below is a table showing the average value and the dispersion value of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure in each case of FIGS. 4 (a) to 4 (c).
Figure 2009053083

この表1を参照すると、詰まりの度合いに応じて平均値及び分散の値が大きく変化することが分かる。具体的には、詰まりの度合いがひどくなるにつれて平均値は小さくなり、分散の値も小さくなっている。これは、図4に示す通り、詰まりの度合いがひどくなるにつれてプロットがグラフの左部及び右部に密集していくのと整合がとれる。以上から、差圧の揺動と静圧の揺動との比の平均値及び分散の値の少なくとも一方を用いれば、導圧管6a,6bの詰まりの有無を診断する上で好都合である。   Referring to Table 1, it can be seen that the average value and the variance value vary greatly depending on the degree of clogging. Specifically, as the degree of clogging increases, the average value decreases and the variance value also decreases. As shown in FIG. 4, this is consistent with the fact that the plots are concentrated on the left and right sides of the graph as the degree of clogging increases. From the above, using at least one of the average value and the dispersion value of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure is advantageous in diagnosing the presence or absence of clogging of the pressure guiding tubes 6a and 6b.

データ収集計算部19aは、過去に求めたN周期(Nは、2以上の整数)分の差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)を収集し、以下の(7)式を用いてある時点kにおける差圧の揺動と静圧の揺動との比の平均値avg_p(k)を求め、或いは、以下の(8)式を用いてある時点kにおける差圧の揺動と静圧の揺動との比の分散var_p(k)を求める。

Figure 2009053083
Figure 2009053083
The data collection calculation unit 19a collects the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal for N cycles (N is an integer of 2 or more) obtained in the past. The average value avg_p (k) of the ratio of the fluctuation of the differential pressure and the fluctuation of the static pressure at a certain time point k is obtained by using the following equation (7), or at a certain time point k using the following equation (8): The variance var_p (k) of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure is obtained.
Figure 2009053083
Figure 2009053083

尚、データ収集計算部19aは過去に求めた差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)をRAM15に記憶させる。これにより、データ収集計算部19aが過去の値をRAM15から読み出せば上記の平均値及び分散を求めることができる。この平均値及び分散の値もRAM15に記憶される。尚、これら平均値及び分散の算出は、周波数カウンタ12のサンプリング周期の毎周期行っても良く、所定の周期毎に行っても良い。   The data collection calculation unit 19a stores the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal obtained in the past in the RAM 15. Thereby, if the data collection calculation part 19a reads the past value from RAM15, said average value and dispersion | distribution can be calculated | required. The average value and the variance value are also stored in the RAM 15. The calculation of the average value and the variance may be performed every sampling cycle of the frequency counter 12, or may be performed every predetermined cycle.

診断部19bは、データ収集計算部19aが求めた値(平均値及び分散の値の少なくとも一方)と所定の閾値とを比較することで、導圧管6a,6bの少なくとも一方の詰まりの有無を診断する。或いは、診断部19bは、データ収集計算部19aで求められた現在の値(平均値及び分散の値の少なくとも一方)と過去に求められた値(平均値及び分散の値の少なくとも一方)とを比較し、又はデータ収集計算部19aで求められた値(平均値及び分散の値の少なくとも一方)の変化の傾向から導圧管6a,6bの少なくとも一方の詰まりの有無を診断する。   The diagnosis unit 19b diagnoses whether or not at least one of the pressure guiding tubes 6a and 6b is clogged by comparing the value (at least one of the average value and the variance value) obtained by the data collection calculation unit 19a with a predetermined threshold value. To do. Alternatively, the diagnosis unit 19b obtains the current value (at least one of the average value and the variance value) obtained by the data collection calculation unit 19a and the value obtained in the past (at least one of the average value and the variance value). The presence or absence of clogging of at least one of the pressure guiding pipes 6a and 6b is diagnosed based on a tendency of comparison or a change in a value (at least one of an average value and a dispersion value) obtained by the data collection calculation unit 19a.

例えば、診断部19bは、データ収集計算部19aが上記の(8)式を用いて求めた差圧の揺動と静圧の揺動との比の分散var_p(k)の値を、以下の表2に従って分類することで、導圧管6a,6bの詰まりの有無を診断する。

Figure 2009053083
For example, the diagnosis unit 19b calculates the value of the variance var_p (k) of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure obtained by the data collection calculation unit 19a using the above equation (8) as follows: By classifying according to Table 2, the presence or absence of clogging of the pressure guiding pipes 6a and 6b is diagnosed.
Figure 2009053083

つまり、上記の表2の例では、2つの閾値「1」,「0.01」を用い、分散var_p(k)の値が1以上であれば導圧管は正常(詰まり無し)と診断し、警報の分類を「正常」とする。また、分散var_p(k)の値が0.01よりも大きく且つ1よりも小さければ導圧管は詰まる傾向にあると診断し、警報の分類を「ワーニング(warning)」とする。更に、分散var_p(k)の値が0.01以下であれば導圧管は詰まっていると診断し、警報の分類を「アラーム(alarm)」とする。このように、詰まりの程度に応じて警報の種類を変えることができる。   That is, in the example of Table 2 above, two threshold values “1” and “0.01” are used, and if the value of dispersion var_p (k) is 1 or more, the pressure guiding tube is diagnosed as normal (no clogging), The alarm classification is “normal”. If the value of variance var_p (k) is larger than 0.01 and smaller than 1, it is diagnosed that the pressure guiding tube tends to be clogged, and the alarm classification is set to “warning”. Further, if the value of the variance var_p (k) is 0.01 or less, it is diagnosed that the pressure guiding tube is clogged, and the alarm classification is set to “alarm”. Thus, the type of alarm can be changed according to the degree of clogging.

尚、ここでは、差圧の揺動と静圧の揺動との比の分散var_p(k)の値と所定の閾値とを比較して診断する場合を例に挙げたが、差圧の揺動と静圧の揺動との比の平均値avg_p(k)と所定の閾値とを比較して同様の診断を行っても良い。或いは、診断の確度を向上させるために、分散var_p(k)の値及び平均値avg_p(k)の双方について所定の閾値とそれぞれ比較しても良い。   In this example, the case where diagnosis is made by comparing the value of the variance var_p (k) of the ratio of the fluctuation of the differential pressure and the fluctuation of the static pressure with a predetermined threshold is described. A similar diagnosis may be performed by comparing the average value avg_p (k) of the ratio of the dynamic and static pressure fluctuations with a predetermined threshold. Alternatively, in order to improve the accuracy of diagnosis, both the value of variance var_p (k) and the average value avg_p (k) may be compared with a predetermined threshold value.

また、診断部19bは、RAM15に記憶された平均値avg_p(k)及び分散var_p(k)の値から図5に示す回帰直線を計算することにより、これらの変化の傾向から導圧管6a,6bの詰まりの有無を診断する。図5は、診断部19bで求められる回帰直線の一例を示す図である。図5に示すグラフは横軸に時間をとり、縦軸に差圧の揺動と静圧の揺動との比の分散var_pの値をとっている。   Further, the diagnosis unit 19b calculates the regression line shown in FIG. 5 from the average value avg_p (k) and the variance var_p (k) stored in the RAM 15, so that the pressure guiding tubes 6a and 6b are calculated from the tendency of these changes. Diagnose the presence or absence of clogging. FIG. 5 is a diagram illustrating an example of a regression line obtained by the diagnosis unit 19b. In the graph shown in FIG. 5, the horizontal axis represents time, and the vertical axis represents the variance var_p of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure.

図5において、符号V1を付した記号「×」は時点k1のときに得られた分散の値(var_p(k1)の値)を示しており、符号V2を付した記号「×」は時点k2のときに得られた分散の値(var_p(k2)の値)を示している。同様に、符号V3を付した記号「×」は時点k3のときに得られた分散の値(var_p(k3)の値)を示しており、符号Vpを付した記号「×」は時点kpのときに得られた分散の値(var_p(kp)の値)を示している。尚、時点k1〜k3は過去の時点であり、時点kpは現在の時点(=t0)であるとする。これらの各時点k1〜kpの間隔は任意であって、サンプリング周期以上の任意の間隔に設定される。   In FIG. 5, the symbol “x” with the reference symbol V1 indicates the value of the variance (the value of var_p (k1)) obtained at the time point k1, and the symbol “×” with the reference symbol V2 indicates the time point k2. The dispersion value (value of var_p (k2)) obtained at the time is shown. Similarly, the symbol “x” with the symbol V3 indicates the value of the variance (the value of var_p (k3)) obtained at the time point k3, and the symbol “x” with the symbol Vp indicates the value at the time point kp. The dispersion value (var_p (kp) value) obtained sometimes is shown. Note that the time points k1 to k3 are past time points, and the time point kp is the current time point (= t0). The intervals between these time points k1 to kp are arbitrary, and are set to arbitrary intervals equal to or longer than the sampling period.

また、図5において、符号L1を付した直線は、上記の分散var_p(k1)〜var_p(kp)の値から求められた回帰直線である。尚、この回帰直線L1は、以下の式に示すとおり、任意の変数a,bを用いて時間tの関数として表すことができる。
var_p(t)=a・t+b
更に、図5中のグラフの縦軸に示されている数値「0.01」,「1」は、診断部19bが詰まりの診断に用いる閾値であって、表2に示した閾値と同様のものである。
In FIG. 5, a straight line with a symbol L <b> 1 is a regression line obtained from the values of the variances var_p (k <b> 1) to var_p (kp). The regression line L1 can be expressed as a function of time t using arbitrary variables a and b as shown in the following equation.
var_p (t) = a · t + b
Furthermore, numerical values “0.01” and “1” shown on the vertical axis of the graph in FIG. 5 are threshold values used by the diagnosis unit 19b to diagnose clogging, and are the same as the threshold values shown in Table 2. Is.

診断部19bは、上記の回帰直線L1を求めると、回帰直線L1と閾値「1」との交点C1を求め、分散の値が閾値「1」になるまでに要する予想到達時間T1(交点C1の時刻t1と現在時刻t0との差)を求める。同様に、診断部19bは、回帰直線L1と閾値「0.01」との交点C2を求め、分散の値が閾値「0.01」になるまでに要する予想到達時間T2(交点C2の時刻t2と現在時刻t0との差)を求める。これにより、分散の値の変化の傾向が求められ、導圧管6a,6bの詰まりの有無が予知又は早期診断される。   When the diagnosis unit 19b obtains the regression line L1, the diagnosis unit 19b obtains the intersection C1 between the regression line L1 and the threshold “1”, and the expected arrival time T1 (the intersection C1 of the intersection C1) required until the variance value becomes the threshold “1”. The difference between the time t1 and the current time t0) is obtained. Similarly, the diagnosis unit 19b obtains the intersection C2 between the regression line L1 and the threshold “0.01”, and the expected arrival time T2 (the time t2 of the intersection C2) required until the variance reaches the threshold “0.01”. And the difference between the current time t0). Thereby, the tendency of the change of the dispersion value is obtained, and the presence or absence of clogging of the pressure guiding pipes 6a and 6b is predicted or diagnosed early.

尚、ここでは、差圧の揺動と静圧の揺動との比の分散var_pの値の変化の傾向を用いて診断する場合を例に挙げたが、差圧の揺動と静圧の揺動との比の平均値avg_pの変化の傾向を用いて同様の診断を行っても良い。或いは、診断の確度を向上させるために、分散var_p(k)の値及び平均値avg_p(k)の双方について変化の傾向を求めて診断を行っても良い。   In this example, the case of diagnosing using the tendency of change in the value of variance var_p of the ratio of fluctuation of differential pressure to fluctuation of static pressure is taken as an example. A similar diagnosis may be performed using the tendency of change in the average value avg_p of the ratio to the oscillation. Alternatively, in order to improve the accuracy of diagnosis, diagnosis may be performed by determining the tendency of change for both the value of variance var_p (k) and the average value avg_p (k).

RAM15は、データ収集計算部19aが算出する差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)、差圧の揺動と静圧の揺動との比の平均値avg_p(k)及び分散var_p(k)、その他の各種値を一時的に記憶する。EEPROM16は、MPU14でのプログラムの実行に必要な振動子21a,21bの固有振動数f,f等を求めるために用いる各種変数や定数、診断部19bが診断に用いる閾値、その他の各種情報を記憶する。ROM20は、MPU14で実行される各種プログラム等を記憶する。 The RAM 15 is an average value of the differential pressure signal fluctuation dx (i) and the static pressure signal fluctuation dy (i) calculated by the data collection calculation unit 19a, and the ratio of the differential pressure fluctuation to the static pressure fluctuation. avg_p (k), variance var_p (k), and other various values are temporarily stored. The EEPROM 16 stores various variables and constants used for obtaining the natural frequencies f c and f r of the vibrators 21a and 21b necessary for program execution by the MPU 14, threshold values used for diagnosis by the diagnosis unit 19b, and other various information. Remember. The ROM 20 stores various programs executed by the MPU 14.

表示部17は、LCD(Liquid Crystal Display:液晶表示ディスプレイ)等の表示装置を備えており、検出された導圧管6a,6b内の圧力の差圧及び静圧、アラーム(詰まりの程度に応じて警報の種類が変わるアラーム)、その他の各種情報を表示する。通信部18は、図1に示すホストコンピュータ3との間で各種情報の通信を行う。具体的には、導圧管6a,6b内の圧力の差圧及び静圧の検出結果、差圧の揺動と静圧の揺動との比の平均値及び分散の値の少なくとも一方、又は診断部19bの診断結果を示す情報等をホストコンピュータ3に送信する。尚、この通信部18は、差圧圧力伝送器2とホストコンピュータ3との間の接続形態に応じた通信(有線通信、無線通信、アナログ信号を用いた通信、ディジタル信号を用いた通信)が可能である。   The display unit 17 includes a display device such as an LCD (Liquid Crystal Display), and the detected differential pressure and static pressure in the pressure guiding pipes 6a and 6b and an alarm (depending on the degree of clogging). Alarm that changes alarm type) and other various information. The communication unit 18 communicates various information with the host computer 3 shown in FIG. Specifically, at least one of the detection result of the differential pressure and the static pressure of the pressure in the pressure guiding pipes 6a and 6b, the average value of the fluctuation of the differential pressure and the fluctuation of the static pressure, and the value of dispersion, or diagnosis Information indicating the diagnosis result of the unit 19b is transmitted to the host computer 3. The communication unit 18 can perform communication (wired communication, wireless communication, communication using an analog signal, communication using a digital signal) according to the connection form between the differential pressure transmitter 2 and the host computer 3. Is possible.

ホストコンピュータ3は、差圧圧力伝送器2から送信される情報に基づいて、差圧圧力伝送器2の管理を行う。尚、一般的に、ホストコンピュータ3は、不図示の伝送路を介して複数の差圧圧力伝送器2と接続されており、これら複数の差圧圧力伝送器2を一元管理する。ここで、上述した通り、差圧圧力伝送器2は、導圧管6a,6b内の圧力の差圧の揺動及び静圧の揺動を求め、これらの比の平均値及び分散の値の少なくとも一方を算出し、閾値との比較等により、導圧管6a,6bの詰まりを自ら診断するものであった。しかしながら、かかる機能をホストコンピュータ3に設けてホストコンピュータ3が導圧管6a,6bの詰まりを診断しても良い。   The host computer 3 manages the differential pressure transmitter 2 based on information transmitted from the differential pressure transmitter 2. In general, the host computer 3 is connected to a plurality of differential pressure transmitters 2 via a transmission path (not shown), and centrally manages the plurality of differential pressure transmitters 2. Here, as described above, the differential pressure transmitter 2 obtains the fluctuation of the differential pressure and the fluctuation of the static pressure in the pressure guiding pipes 6a and 6b, and at least the average value of these ratios and the dispersion value. One of them was calculated, and the clogging of the pressure guiding pipes 6a and 6b was diagnosed by comparison with a threshold value or the like. However, such a function may be provided in the host computer 3 so that the host computer 3 can diagnose clogging of the pressure guiding pipes 6a and 6b.

つまり、差圧圧力伝送器2のMPU14で実現される検知部19をホストコンピュータ3で実現し、差圧圧力伝送器2から送信されてくる導圧管6a,6b内の圧力の差圧及び静圧の検出結果から差圧の揺動と静圧の揺動との比の平均値及び分散の値の少なくとも一方を求め、この値を用いて導圧管6a,6bの少なくとも一方の詰まりの有無を診断しても良い。或いは、差圧圧力伝送器2から送信されてくる差圧の揺動と静圧の揺動との比の平均値及び分散の値の少なくとも一方の変化の傾向から導圧管6a,6bの少なくとも一方の詰まりの有無を診断しても良い。   That is, the detection unit 19 realized by the MPU 14 of the differential pressure transmitter 2 is realized by the host computer 3, and the differential pressure and static pressure of the pressure in the pressure guiding pipes 6 a and 6 b transmitted from the differential pressure transmitter 2. From the detection result, at least one of the ratio of the differential pressure fluctuation and the static pressure fluctuation and the dispersion value are obtained, and the presence or absence of at least one of the pressure guiding pipes 6a and 6b is diagnosed using this value. You may do it. Alternatively, at least one of the pressure guiding pipes 6a and 6b is determined based on the tendency of change in at least one of the average value and the dispersion value of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure transmitted from the differential pressure transmitter 2. The presence or absence of clogging may be diagnosed.

次に、以上説明した差圧圧力伝送器2の動作について詳細に説明する。図6は、差圧圧力伝送器2で行われる処理を示すフローチャートである。図6に示す処理は、差圧圧力伝送器2の電源を投入することによって、或いは、ユーザがホストコンピュータ3を操作して差圧圧力伝送器2に対して明示的な動作開始の指示を行うことにより開始される。   Next, the operation of the differential pressure transmitter 2 described above will be described in detail. FIG. 6 is a flowchart showing processing performed in the differential pressure transmitter 2. The processing shown in FIG. 6 is performed by turning on the power of the differential pressure transmitter 2, or by operating the host computer 3 to instruct the differential pressure transmitter 2 to start the operation explicitly. Is started.

差圧圧力伝送器2の動作が開始されると、第1センサ部11aに設けられた駆動回路24a及び第2センサ部11bに設けられた駆動回路24bから駆動信号が出力され、これにより図3に示すセンサチップ30に設けられた振動子21a,21bが各々の固有周波数で振動する。そして、第1センサ部11a,11bからは振動子21a,21bの固有振動数を示す信号(振動子21a,21bを駆動する信号)が出力され、この信号が周波数カウンタ12に入力される。   When the operation of the differential pressure transmitter 2 is started, a drive signal is output from the drive circuit 24a provided in the first sensor unit 11a and the drive circuit 24b provided in the second sensor unit 11b. The vibrators 21a and 21b provided in the sensor chip 30 shown in FIG. Then, signals indicating the natural frequencies of the vibrators 21 a and 21 b (signals for driving the vibrators 21 a and 21 b) are output from the first sensor units 11 a and 11 b, and these signals are input to the frequency counter 12.

第1センサ部11a,11bからの信号が入力されると、周波数カウンタ12は発振回路13から出力される基準クロックを用いてこれらの信号をそれぞれサンプリングし、各々の信号のパルス数をカウントする。周波数カウンタ12でカウントされたパルス数は、MPU14に入力される。次いで、MPU14でソフトウェア的に実現されている検知部19のデータ収集計算部19aは、入力されるパルス数から振動子21a,21bの固有振動数f,fをそれぞれ求めるとともに、前述した(2),(3)式を用いて、周波数カウンタ12のサンプリング周期毎に、導圧管6a,6b内の圧力の差圧を示す差圧信号x(i)と静圧を示す静圧信号y(i)とを求めてRAM15に記憶させる(ステップS11)。 When the signals from the first sensor units 11a and 11b are input, the frequency counter 12 samples each of these signals using the reference clock output from the oscillation circuit 13, and counts the number of pulses of each signal. The number of pulses counted by the frequency counter 12 is input to the MPU 14. Next, the data collection calculation unit 19a of the detection unit 19 implemented in software by the MPU 14 obtains the natural frequencies f c and f r of the transducers 21a and 21b from the number of input pulses, respectively. 2) and (3), for each sampling period of the frequency counter 12, a differential pressure signal x (i) indicating the differential pressure between the pressure guide pipes 6a and 6b and a static pressure signal y ( i) is obtained and stored in the RAM 15 (step S11).

次に、データ収集計算部19aは、前述した(4),(5)式を用いて差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)をそれぞれ求めてRAM15に記憶させる(ステップS12)。尚、(4),(5)式を参照すると、揺動dx(i),dy(i)を求めるには過去の差圧信号x(i−1)及び静圧信号y(i−1)が必要になるが、最初に揺動dx(i),dy(i)を求める場合には、例えば上記の差圧信号x(i−1)及び静圧信号y(i−1)として所定の初期値をRAM15に記憶しておけば良い。そして、データ収集計算部19aは、差圧信号の揺動dx(i)と静圧信号の揺動dy(i)との比を算出してRAM15又はEEPROM16に記憶する(ステップS13)。   Next, the data collection calculation unit 19a obtains the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal by using the above-described equations (4) and (5), respectively, in the RAM 15. Store (step S12). Referring to equations (4) and (5), the past differential pressure signal x (i-1) and static pressure signal y (i-1) are used to obtain the swings dx (i) and dy (i). However, when the swings dx (i) and dy (i) are first obtained, for example, the above-described differential pressure signal x (i-1) and static pressure signal y (i-1) are predetermined. The initial value may be stored in the RAM 15. Then, the data collection calculation unit 19a calculates the ratio between the fluctuation dx (i) of the differential pressure signal and the fluctuation dy (i) of the static pressure signal and stores it in the RAM 15 or the EEPROM 16 (step S13).

次いで、データ収集計算部19aは、過去に求めたN周期分の差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)との比をRAM15又はEEPROM16から読み出し、前述した(7)式を用いてある時点kにおける差圧の揺動と静圧の揺動との比の平均値avg_p(k)を求め、或いは、前述した(8)式を用いてある時点kにおける差圧の揺動と静圧の揺動との比の分散var_p(k)を求める(ステップS14)。尚、平均値avg_p(k)及び分散var_p(k)は何れか一方のみを求めても良く、両方を求めても良い。算出されたこれらの値は、RAM15又はEEPROM16に記憶される。   Next, the data collection calculation unit 19a reads the ratio between the fluctuation dx (i) of the differential pressure signal for the N cycles obtained in the past and the fluctuation dy (i) of the static pressure signal from the RAM 15 or the EEPROM 16, and described above. The average value avg_p (k) of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure at a certain time point k is obtained using the equation (7), or at the certain time point k using the above-described equation (8). The variance var_p (k) of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure is obtained (step S14). Note that either one of the average value avg_p (k) and the variance var_p (k) may be obtained, or both may be obtained. These calculated values are stored in the RAM 15 or the EEPROM 16.

以上の処理が終了すると、検知部19の診断部19bは、データ収集計算部19aで求められた値を用いて導圧管6a,6bの詰まりの有無を診断する(ステップS15)。例えば、EEPROM16に記憶された閾値を読み出し、分散var_p(k)の値と読み出した閾値とを比較することにより、前述した表2に従って導圧管6a,6bの詰まりの有無を診断する。尚、かかる診断と同様の診断を平均値avg_p(k)に対してのみ行っても良く、平均値avg_p(k)と分散var_p(k)の値との双方に対して行っても良い。また、EEPROM16に記憶された過去の値を読み出し、図5に示した回帰直線と同様の回帰直線を算出して平均値及び分散の値の少なくとも一方の変化の傾向を求めて、導圧管6a,6bの詰まりの有無を診断しても良い。   When the above processing is completed, the diagnosis unit 19b of the detection unit 19 diagnoses whether or not the pressure guiding tubes 6a and 6b are clogged using the values obtained by the data collection calculation unit 19a (step S15). For example, by reading the threshold value stored in the EEPROM 16 and comparing the value of the variance var_p (k) with the read threshold value, the presence or absence of clogging of the pressure guiding tubes 6a and 6b is diagnosed according to Table 2 described above. Note that the same diagnosis as this diagnosis may be performed only on the average value avg_p (k), or may be performed on both the average value avg_p (k) and the value of the variance var_p (k). Further, the past values stored in the EEPROM 16 are read out, a regression line similar to the regression line shown in FIG. 5 is calculated, and a tendency of change in at least one of the average value and the dispersion value is obtained, and the pressure guiding pipes 6a, You may diagnose the presence or absence of clogging of 6b.

次に、以上の詰まり診断の結果、診断部19bにおいて導圧管6a,6bに詰まりが有るか否かが判断される(ステップS16)。導圧管6a,6bに詰まりがあると判断した場合(判断結果が「YES」の場合)には、検知部19は表2及び図5に示したワーニング又はアラームを示す情報を表示部17に出力して、これらを表示部17に表示させる。更に、検知部19は、このワーニング又はアラームを示す情報を通信部18を介してホストコンピュータ3へ伝送する(ステップS17)。以上の処理が終了した場合、及びステップS16で導圧管6a,6bに詰まりが無いと判断した場合(判断結果が「NO」の場合)には、処理はステップS12に戻る。   Next, as a result of the above clogging diagnosis, it is determined whether or not the pressure guiding pipes 6a and 6b are clogged in the diagnosis unit 19b (step S16). When it is determined that the pressure guiding pipes 6a and 6b are clogged (when the determination result is “YES”), the detection unit 19 outputs information indicating the warning or alarm shown in Table 2 and FIG. Then, these are displayed on the display unit 17. Further, the detection unit 19 transmits information indicating this warning or alarm to the host computer 3 via the communication unit 18 (step S17). When the above process is completed and when it is determined in step S16 that the pressure guiding pipes 6a and 6b are not clogged (when the determination result is “NO”), the process returns to step S12.

尚、図6に示すフローチャートでは、ステップS16で導圧管6a,6bに詰まりが有ると判断された場合に、ステップS17でワーニング又はアラームを示す情報を表示部17に表示させ、その後に一律にステップS12の処理に戻るようにしていた。しかしながら、アラームの場合には診断を停止させ、ワーニングの場合には診断を継続する等のように、ワーニング又はアラームに応じて処理を変えても良い。また、図6に示すフローチャートでは、ステップS16で導圧管6a,6bに詰まりが無いと判断された場合に、単にステップS12に戻っていたが、正常状態である表示を表示部17に対して行っても良い。   In the flowchart shown in FIG. 6, when it is determined in step S16 that the pressure guiding pipes 6a and 6b are clogged, information indicating a warning or an alarm is displayed on the display unit 17 in step S17, and then the steps are uniformly performed. Returning to the processing of S12. However, the processing may be changed according to the warning or alarm such that the diagnosis is stopped in the case of an alarm and the diagnosis is continued in the case of a warning. In the flowchart shown in FIG. 6, when it is determined in step S16 that the pressure guiding pipes 6a and 6b are not clogged, the process simply returns to step S12, but the display unit 17 displays a normal state. May be.

以上説明した通り、本実施形態によれば、導圧管6a,6b内の圧力の差圧の揺動と静圧の揺動とをそれぞれ算出し、これらの比の大きさに基づいて導圧管6a,6bの少なくとも一方の詰まりを検知しているため、導圧管6a,6bの詰まりを安価に高感度で検出することができる。具体的には、差圧の揺動と静圧の揺動との比の平均値及び分散を求め、所定の閾値との比較を行い、或いは、値の変化の傾向等を求めることで、詰まりの初期段階から導圧管6a,6bの詰まりを高い確度で検出することができる。これにより、ユーザは、実際に詰まりが始まる前又は完全に詰まりが発生する前に、導圧管6a,6bの調査、点検、保守という対応をとることができるため、プラントの運用を円滑に行うことが可能となる。更に、差圧圧力伝送器2に設けられる検知部19をホストコンピュータ3で実現すれば、既に設置されている差圧圧力伝送器2に手を加えることなく、導圧管6a,6bの詰まりを安価に高感度で検出することも可能になる。   As described above, according to the present embodiment, the fluctuation of the differential pressure between the pressure guide pipes 6a and 6b and the fluctuation of the static pressure are respectively calculated, and the pressure guide pipe 6a is calculated based on the magnitude of these ratios. , 6b is detected, the clogging of the pressure guiding tubes 6a, 6b can be detected at low cost with high sensitivity. More specifically, the average value and variance of the ratio of the fluctuation of the differential pressure and the fluctuation of the static pressure are obtained, compared with a predetermined threshold value, or the tendency of the change in value is obtained, thereby clogging. From this initial stage, clogging of the pressure guiding pipes 6a and 6b can be detected with high accuracy. Thus, the user can take measures such as investigation, inspection, and maintenance of the pressure guiding pipes 6a and 6b before clogging actually starts or before clogging completely occurs. Is possible. Furthermore, if the detection unit 19 provided in the differential pressure transmitter 2 is realized by the host computer 3, the pressure guiding pipes 6a, 6b can be clogged at low cost without modifying the already installed differential pressure transmitter 2. It is also possible to detect with high sensitivity.

以上、本発明の実施形態による圧力検出器及び圧力検出システムについて説明したが、本発明は上述した実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、導圧管6a,6b内の圧力の差圧及び静圧を検出することが可能なセンサチップ30を備える場合について説明したが、導圧管6a,6b内の圧力の差圧を検出するセンサと静圧を検出するセンサとを備える場合にも本発明を適用することができる。   As mentioned above, although the pressure detector and pressure detection system by embodiment of this invention were demonstrated, this invention is not restrict | limited to embodiment mentioned above, It can change freely within the scope of the present invention. For example, in the above embodiment, the case where the sensor chip 30 capable of detecting the differential pressure and the static pressure in the pressure guiding pipes 6a and 6b is described, but the differential pressure in the pressure guiding pipes 6a and 6b is described. The present invention can also be applied to a case where a sensor for detecting the pressure and a sensor for detecting a static pressure are provided.

図7は、差圧圧力伝送器の変形例の内部構成を示すブロック図である。図7に示す差圧圧力伝送器は、導圧管6a,6b内の圧力の差圧を検出する差圧センサ41、直接又は導圧管7を介して接続された配管4の静圧を検出する静圧センサ42、及び検知部43を備える。尚、検知部43は、図2に示す検知部19に相当するものである。尚、図7においては、差圧センサ41、静圧センサ42、及び検知部43以外の構成については図示を省略している。   FIG. 7 is a block diagram showing an internal configuration of a modified example of the differential pressure transmitter. The differential pressure transmitter shown in FIG. 7 includes a differential pressure sensor 41 that detects the differential pressure between the pressure guide pipes 6a and 6b, and a static pressure that detects the static pressure of the pipe 4 connected directly or via the pressure guide pipe 7. A pressure sensor 42 and a detection unit 43 are provided. The detection unit 43 corresponds to the detection unit 19 shown in FIG. In FIG. 7, the components other than the differential pressure sensor 41, the static pressure sensor 42, and the detection unit 43 are not shown.

検知部43は、データ収集部43a、計算部43b、及び診断部43cを備える。データ収集部43aは、差圧センサ41の検出結果と静圧センサ42の検出結果とを収集する。計算部43bは、データ収集部43aで収集された各種データを用いて、導圧管6a,6b内の圧力の差圧の揺動と配管4の静圧の揺動とをそれぞれ算出する。また、差圧の揺動と静圧の揺動との比の平均値及び分散を求める。診断部43cは、図2に示す診断部19bと同様のものであり、計算部43bの計算結果と所定の閾値との比較を行い、或いは、計算部43bの計算結果の変化の傾向等を求めることで、導圧管6a,6b,7の詰まりを検出する。   The detection unit 43 includes a data collection unit 43a, a calculation unit 43b, and a diagnosis unit 43c. The data collection unit 43 a collects the detection result of the differential pressure sensor 41 and the detection result of the static pressure sensor 42. The calculation unit 43b calculates the fluctuation of the differential pressure between the pressure guide pipes 6a and 6b and the fluctuation of the static pressure of the pipe 4 using the various data collected by the data collection unit 43a. Further, an average value and a variance of the ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure are obtained. The diagnosis unit 43c is the same as the diagnosis unit 19b shown in FIG. 2, and compares the calculation result of the calculation unit 43b with a predetermined threshold value, or obtains the tendency of the change in the calculation result of the calculation unit 43b. Thus, the clogging of the pressure guiding pipes 6a, 6b, and 7 is detected.

以上の構成の差圧圧力伝送器においても、導圧管6a,6b内の圧力の差圧の揺動と配管4の静圧の揺動とをそれぞれ算出し、これらの比の大きさに基づいて導圧管6a,6b,7の詰まりを検知しているため、導圧管の詰まりを安価に高感度で検出することができる。尚、図7に示す検知部43を差圧圧力伝送器に設けた構成でも良いが、この検知部43は差圧圧力伝送器を管理するホストコンピュータにも設けることも可能である。   Also in the differential pressure transmitter having the above-described configuration, the fluctuation of the pressure difference in the pressure guiding pipes 6a and 6b and the fluctuation of the static pressure of the pipe 4 are calculated, and based on the magnitude of these ratios. Since clogging of the pressure guiding pipes 6a, 6b, and 7 is detected, clogging of the pressure guiding pipe can be detected at low cost with high sensitivity. In addition, although the structure which provided the detection part 43 shown in FIG. 7 in the differential pressure transmitter may be sufficient, this detection part 43 can also be provided in the host computer which manages a differential pressure transmitter.

また、上記実施形態においては、配管4内に設置される絞り機構としてオリフィスを例に挙げて説明した。しかしながら、本発明はこれに限定されるものではなく、絞り機構としてノズルやベンチュリ管が設けられている場合にも本発明を適用することができる。   Moreover, in the said embodiment, the orifice was mentioned as an example and demonstrated as an aperture_diaphragm | restriction mechanism installed in the piping 4. In FIG. However, the present invention is not limited to this, and the present invention can also be applied when a nozzle or a venturi pipe is provided as a throttling mechanism.

本発明の一実施形態による圧力検出システムの概要を示す図である。It is a figure which shows the outline | summary of the pressure detection system by one Embodiment of this invention. 差圧圧力伝送器2の内部構成を示すブロック図である。3 is a block diagram showing an internal configuration of a differential pressure transmitter 2. FIG. シリコンレゾナントセンサが形成されたセンサチップの構成を示す図である。It is a figure which shows the structure of the sensor chip in which the silicon resonant sensor was formed. 差圧信号の揺動dx(i)及び静圧信号の揺動dy(i)の変化を示すシミュレーション結果である。It is a simulation result which shows the change of fluctuation | variation dx (i) of a differential pressure signal, and fluctuation | variation dy (i) of a static pressure signal. 診断部19bで求められる回帰直線の一例を示す図である。It is a figure which shows an example of the regression line calculated | required by the diagnostic part 19b. 差圧圧力伝送器2で行われる処理を示すフローチャートである。3 is a flowchart showing processing performed in a differential pressure transmitter 2. 差圧圧力伝送器の変形例の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the modification of a differential pressure transmitter.

符号の説明Explanation of symbols

1 圧力検出システム
2 差圧圧力伝送器
3 ホストコンピュータ
4 配管
6a,6b 導圧管
11 センサ部
17 表示部
18 通信部
19 検知部
19a データ収集計算部
19b 診断部
X 流体
DESCRIPTION OF SYMBOLS 1 Pressure detection system 2 Differential pressure transmitter 3 Host computer 4 Piping 6a, 6b Pressure guiding pipe 11 Sensor part 17 Display part 18 Communication part 19 Detection part 19a Data collection calculation part 19b Diagnosis part X Fluid

Claims (7)

流体が流れる配管の互いに異なる位置に接続された第1,第2導圧管と、当該第1導圧管内の圧力と当該第2導圧管内の圧力との差圧及び静圧を検出するセンサとを備える圧力検出器において、
前記センサで検出される前記差圧の揺動と前記静圧の揺動との比の大きさに基づいて、前記第1,第2導圧管の少なくとも一方の詰まりを検知する検知部を備えることを特徴とする圧力検出器。
A first and a second pressure guiding pipe connected to different positions of a pipe through which a fluid flows, and a sensor for detecting a differential pressure and a static pressure between the pressure in the first pressure guiding pipe and the pressure in the second pressure guiding pipe A pressure detector comprising:
A detector for detecting clogging of at least one of the first and second pressure guiding pipes based on a magnitude of a ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure detected by the sensor; A pressure detector.
前記検知部は、前記差圧の揺動と前記静圧の揺動との比の平均値及び分散の値の少なくとも一方を求める計算部と、
前記計算部で求められた値と所定の閾値とを比較することで前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断する診断部と
を備えることを特徴とする請求項1記載の圧力検出器。
The detection unit is a calculation unit for obtaining at least one of an average value and a dispersion value of the ratio of the fluctuation of the differential pressure and the fluctuation of the static pressure;
The diagnostic part which diagnoses the presence or absence of the clogging of at least one of the said 1st and 2nd pressure guiding pipe by comparing the value calculated | required in the said calculation part with a predetermined threshold value. Pressure detector.
前記検知部は、前記差圧の揺動と前記静圧の揺動との比の平均値及び分散の値の少なくとも一方を求める計算部と、
前記計算部で求められた現在の値と前記計算部で過去に求められた値との比較、又は前記計算部で求められた値の変化の傾向から前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断する診断部と
を備えることを特徴とする請求項1記載の圧力検出器。
The detection unit is a calculation unit for obtaining at least one of an average value and a dispersion value of the ratio of the fluctuation of the differential pressure and the fluctuation of the static pressure;
At least one of the first and second pressure guiding pipes from a comparison between a current value obtained by the calculation unit and a value obtained in the past by the calculation unit, or a tendency of a change in the value obtained by the calculation unit. The pressure detector according to claim 1, further comprising: a diagnosis unit that diagnoses the presence or absence of clogging.
前記診断部は、前記計算部で求められた値と複数の閾値とを比較して前記第1,第2導圧管の少なくとも一方の詰まりの程度を診断し、
前記診断部で診断された詰まりの程度を示す情報を表示する表示部を備えることを特徴とする請求項2記載の圧力検出器。
The diagnosis unit compares the value obtained by the calculation unit with a plurality of threshold values to diagnose the degree of clogging of at least one of the first and second pressure guiding tubes,
The pressure detector according to claim 2, further comprising a display unit that displays information indicating a degree of clogging diagnosed by the diagnostic unit.
前記センサの検出結果及び前記計算部の計算結果の少なくとも一方を、上位の管理装置に伝達する通信部を備えることを特徴とする請求項2から請求項4の何れか一項に記載の圧力検出器。   The pressure detection according to any one of claims 2 to 4, further comprising: a communication unit that transmits at least one of the detection result of the sensor and the calculation result of the calculation unit to a higher-level management device. vessel. 流体が流れる配管に設置される圧力検出器と、当該圧力検出器を管理する管理装置とを備える圧力検出システムにおいて、
前記圧力検出器として、請求項5記載の圧力検出器を備えており、
前記管理装置は、前記圧力検出器から伝達される前記センサの検出結果から、前記差圧の揺動と前記静圧の揺動との比の平均値及び分散の値の少なくとも一方を求め、当該値を用いて前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断することを特徴とする圧力検出システム。
In a pressure detection system comprising a pressure detector installed in a pipe through which a fluid flows, and a management device that manages the pressure detector,
The pressure detector includes the pressure detector according to claim 5,
The management device obtains at least one of an average value and a dispersion value of a ratio between the fluctuation of the differential pressure and the fluctuation of the static pressure from the detection result of the sensor transmitted from the pressure detector, A pressure detection system for diagnosing the presence or absence of clogging of at least one of the first and second pressure guiding pipes using a value.
流体が流れる配管に設置される圧力検出器と、当該圧力検出器を管理する管理装置とを備える圧力検出システムにおいて、
前記圧力検出器として、請求項5記載の圧力検出器を備えており、
前記管理装置は、前記圧力検出器から伝達される前記計算部の計算結果の変化の傾向から前記第1,第2導圧管の少なくとも一方の詰まりの有無を診断することを特徴とする圧力検出システム。
In a pressure detection system comprising a pressure detector installed in a pipe through which a fluid flows, and a management device that manages the pressure detector,
The pressure detector includes the pressure detector according to claim 5,
The management device diagnoses the presence or absence of clogging of at least one of the first and second pressure guiding pipes from the tendency of change in the calculation result of the calculation unit transmitted from the pressure detector. .
JP2007220889A 2007-08-28 2007-08-28 Pressure detector and pressure detection system Active JP5012324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220889A JP5012324B2 (en) 2007-08-28 2007-08-28 Pressure detector and pressure detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220889A JP5012324B2 (en) 2007-08-28 2007-08-28 Pressure detector and pressure detection system

Publications (2)

Publication Number Publication Date
JP2009053083A true JP2009053083A (en) 2009-03-12
JP5012324B2 JP5012324B2 (en) 2012-08-29

Family

ID=40504281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220889A Active JP5012324B2 (en) 2007-08-28 2007-08-28 Pressure detector and pressure detection system

Country Status (1)

Country Link
JP (1) JP5012324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207190B1 (en) 2009-12-21 2012-11-30 아즈빌주식회사 Apparatus and method for diagnosing clogging of pressure-introducing tube
JP2014507007A (en) * 2011-03-03 2014-03-20 ローズマウント インコーポレイテッド Differential pressure type flow measuring device
CN109597082A (en) * 2018-03-30 2019-04-09 郭春雷 A kind of retractable driving device towards water supply pipe blockage detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136386A (en) * 1994-11-10 1996-05-31 Yokogawa Electric Corp Apparatus for detecting clog of conduit
JP2007047012A (en) * 2005-08-10 2007-02-22 Yokogawa Electric Corp Differential pressure measuring device with clogging diagnosis mechanism of lead pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136386A (en) * 1994-11-10 1996-05-31 Yokogawa Electric Corp Apparatus for detecting clog of conduit
JP2007047012A (en) * 2005-08-10 2007-02-22 Yokogawa Electric Corp Differential pressure measuring device with clogging diagnosis mechanism of lead pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207190B1 (en) 2009-12-21 2012-11-30 아즈빌주식회사 Apparatus and method for diagnosing clogging of pressure-introducing tube
JP2014507007A (en) * 2011-03-03 2014-03-20 ローズマウント インコーポレイテッド Differential pressure type flow measuring device
CN109597082A (en) * 2018-03-30 2019-04-09 郭春雷 A kind of retractable driving device towards water supply pipe blockage detector

Also Published As

Publication number Publication date
JP5012324B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
CN105698903B (en) Method for providing a quality measure for meter verification results
CN101506629A (en) Flow measurement diagnostics
JP4970820B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
JP4960383B2 (en) Indication of wet gases using a process fluid differential pressure transmitter
JP6154069B2 (en) Differential pressure based flow measurement device with improved pitot tube configuration
RU2006105010A (en) DIAGNOSTICS OF THE PROCESS
US8631712B2 (en) Method for detecting plugging in a coriolis flow measuring device
US20080047362A1 (en) Method and device to determine the q factor for flow meters
JP2007078681A (en) Test method of mass flowmeter
Henry et al. Response of a Coriolis mass flow meter to step changes in flow rate
CN102654410A (en) Differential pressure based flow measurement
CN206208528U (en) Aero-engine vibration-testing apparatus
JP5012324B2 (en) Pressure detector and pressure detection system
CN108088406B (en) A kind of shock wave tests the speed with effective distance measurement method between pressure sensor
JP2009085769A (en) Apparatus for measuring fluid in pipe line, and system for diagnosing clogging in connecting pipe
JP2008262375A (en) Field device with function of outputting result of abnormality diagnosis and method of outputting result of abnormality diagnosis
CN115371777A (en) Monitoring and early warning method, device, system, equipment and medium of Coriolis flowmeter
JP4246417B2 (en) Magnet float level gauge fault diagnosis system
US11774275B2 (en) Method of proving multiple Coriolis flow meters integrated on a common platform
JP3629421B2 (en) Area type flow meter
JP4895177B2 (en) Vibrating transducer
KR101931686B1 (en) System for monitoring wall-thinning of pipe and method thereof
JP2001004418A (en) Gas meter
CN114222918A (en) Identification of liquid rheology from acoustic signals
JP4491834B2 (en) Pressure detector and clogging diagnosis method for pressure detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150