JP2009052998A - Multilayer-film reflecting mirror, multilayer-film reflecting mask and extreme ultraviolet exposure system using them - Google Patents

Multilayer-film reflecting mirror, multilayer-film reflecting mask and extreme ultraviolet exposure system using them Download PDF

Info

Publication number
JP2009052998A
JP2009052998A JP2007219228A JP2007219228A JP2009052998A JP 2009052998 A JP2009052998 A JP 2009052998A JP 2007219228 A JP2007219228 A JP 2007219228A JP 2007219228 A JP2007219228 A JP 2007219228A JP 2009052998 A JP2009052998 A JP 2009052998A
Authority
JP
Japan
Prior art keywords
layer
multilayer
pair
thickness
film reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007219228A
Other languages
Japanese (ja)
Other versions
JP5158331B2 (en
Inventor
Nobuto Toyama
登山  伸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007219228A priority Critical patent/JP5158331B2/en
Publication of JP2009052998A publication Critical patent/JP2009052998A/en
Application granted granted Critical
Publication of JP5158331B2 publication Critical patent/JP5158331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer-film reflecting mirror which can improve the reflectance without having to increase the number of layers in a multilayer film. <P>SOLUTION: The multilayer-film reflecting mirror, where Mo-Si pair layers, having a main Mo layer made of Mo and an Si layer mainly made of Si, are stacked alternately on a base material, is such that the thickness of the Mo layer in the n-th Mo-Si pair layer from the first Mo-Si pair layer on the base material is set with the thickness set equal to that of the Si layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、13nm近傍のEUV光を用いたリソグラフィプロセスで用いられる多層膜反射鏡、多層膜反射マスク、及びそれらを用いたEUV露光装置に関する。   The present invention relates to a multilayer film reflecting mirror, a multilayer film reflecting mask, and an EUV exposure apparatus using them, which are used in a lithography process using EUV light near 13 nm.

近年、半導体集積回路の微細化に伴い、光の回折限界によって達成される光学系の解像度を向上させるために、従来の紫外線に代えてこれより短い波長(13nm近傍の波長)となるEUV光(EUV:Extreme Ultra Violet、極紫外線)を用いた露光技術が開発されている。このようなEUV光を用いたリソグラフィ技術によれば約5〜70nm のパターンサイズの露光が可能になるものと期待されている。   In recent years, with the miniaturization of semiconductor integrated circuits, in order to improve the resolution of the optical system achieved by the diffraction limit of light, EUV light (wavelength near 13 nm) is used instead of conventional ultraviolet rays (wavelength near 13 nm). An exposure technique using EUV (Extreme Ultra Violet) has been developed. Lithography technology using such EUV light is expected to enable exposure with a pattern size of about 5 to 70 nm.

リソグラフィ技術においては、使用する光の波長が短いほど解像力は高くなるが、波長が短くなるとレンズなどの光学品での吸収率が高まり、屈折光学系では縮小投影ができなくなる。すなわち、13nm近傍の波長領域の物質の屈折率は1 に近いため、従来のように透過屈折型光学素子を使用できず、反射型の光学素子が使用される。そこで、露光装置に用いられるマスクもまた、透過率確保等の観点から、通常反射型の光学素子となる。この際、各光学素子において高い反射率を達成するために、使用波長域での屈折率の高い物質と屈折率の低い物質とを基板上に交互に多数積層して形成された多層反射膜を用いることが一般的である。   In lithography technology, the shorter the wavelength of light used, the higher the resolution, but as the wavelength becomes shorter, the absorptance of an optical product such as a lens increases, and the refraction optical system cannot perform reduced projection. That is, since the refractive index of the substance in the wavelength region near 13 nm is close to 1, the transmission refractive optical element cannot be used as in the prior art, and the reflective optical element is used. Therefore, the mask used in the exposure apparatus is also a normal reflection type optical element from the viewpoint of ensuring transmittance. At this time, in order to achieve a high reflectance in each optical element, a multilayer reflective film formed by alternately laminating a large number of substances having a high refractive index and a substance having a low refractive index in the used wavelength range on the substrate. It is common to use.

このような多層反射膜を用いた光学素子としては、例えば、特許文献1(特開2007−140147号公報)に、基板表面にMoを主成分とする層とSiを主成分とする層を交互に周期的に成膜し、前記Siを主成分とする層上に拡散防止層を形成した構造を有するMo/Si多層膜を備える多層膜反射鏡であって、前記拡散防止層は、前記Siを主成分とする層が有する原子間空隙に入る最大の球の半径の80%以上の共有原子価半径を有する原子により構成されることを特徴とする多層膜反射鏡が開示されている。
特開2007−140147号公報
As an optical element using such a multilayer reflective film, for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-140147) discloses alternating layers of Mo and Si as main components on the substrate surface. A multilayer film reflector comprising a Mo / Si multilayer film having a structure in which a diffusion prevention layer is formed on a layer containing Si as a main component, wherein the diffusion prevention layer comprises the Si A multilayer film reflector is disclosed, which is composed of atoms having a shared valence radius of 80% or more of the radius of the largest sphere that enters the interatomic void of the layer containing as a main component.
JP 2007-140147 A

ところで、従来の多層膜反射鏡においては、Moを主成分とする厚さ2.8nmのMo層と、Siを主成分とする厚さ4.2nmのSi層を交互に周期的に40ペア層(計80層)成膜したものを用いるのが一般的であった。このような多層膜反射鏡を形成しても、MoとSiともにEUV光に対して吸収係数を持つため、理想的な40ペア層における反射率は71%ほどである。反射率が71%の多層膜反射鏡、多層膜反射マスクを用いた露光装置では最終的にウエハ上で露光に用いることができる光量は、光源のそれのおよそ10%程度となってしまう。   By the way, in the conventional multilayer mirror, a Mo layer having a thickness of 2.8 nm containing Mo as a main component and a Si layer having a thickness of 4.2 nm containing Si as a main component are periodically and alternately paired 40 pairs. In general, a total of 80 layers were used. Even when such a multilayer film reflecting mirror is formed, both Mo and Si have an absorption coefficient for EUV light, so the reflectance in an ideal 40 pair layer is about 71%. In an exposure apparatus using a multilayer film reflecting mirror and a multilayer film reflecting mask having a reflectance of 71%, the amount of light that can be finally used for exposure on the wafer is about 10% of that of the light source.

そこで、多層膜反射鏡、多層膜反射マスクの反射率を少しでも改善させることが求められている。多層膜のペア数を増加させれば反射率が向上することは認知されているが、ペア数を増やすには、Mo層とSi層をさらに製膜するためのプロセスが増やす必要がある。ところが、多層膜の製膜プロセスを増やせば増やすほど、コスト的な問題が生じることもさることながら、異物やボイドなどによる欠陥が生じる可能性が高まるので、多層膜の層数を増やすことによる反射率の向上には限界がある、という問題があった。   Therefore, it is required to improve the reflectivity of the multilayer film reflecting mirror and the multilayer film reflecting mask as much as possible. It is recognized that increasing the number of pairs of multilayer films improves the reflectivity, but in order to increase the number of pairs, it is necessary to increase the number of processes for further forming the Mo layer and the Si layer. However, as the number of multilayer film formation processes increases, the possibility of defects due to foreign matters and voids increases, as well as the cost problem, so the reflection by increasing the number of layers in the multilayer film There was a problem that the rate improvement was limited.

本発明は以上のような課題を解決するためのもので、請求項1に係る発明は、基材上にMoを主成分とするMo層とSiを主成分とするSi層とからなるMo-Siペア層を交互に設けた多層膜反射鏡であって、基材直上の第1番目のMo-Siペア層から第n番目のMo-Siペア層におけるMo層の厚さとSi層の厚さとが等しくなるように設定されることを特徴とする。   The present invention is to solve the above-mentioned problems, and the invention according to claim 1 is a Mo-- comprising a Mo layer containing Mo as a main component and a Si layer containing Si as a main component on a substrate. A multilayer mirror in which Si pair layers are alternately provided, and the thickness of the Mo layer and the thickness of the Si layer from the first Mo-Si pair layer to the nth Mo-Si pair layer immediately above the substrate Are set to be equal to each other.

また、請求項2に係る発明は、請求項1に記載の多層膜反射鏡であって、基材上に設けられる全てのMo-Siペア層数が40であり、9≦n≦18であることを特徴とする。   The invention according to claim 2 is the multilayer mirror according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40, and 9 ≦ n ≦ 18. It is characterized by that.

また、請求項3に係る発明は、請求項1に記載の多層膜反射鏡であって、基材上に設けられる全てのMo-Siペア層数が40であり、n=14であることを特徴とする。   The invention according to claim 3 is the multilayer film reflector according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40, and n = 14. Features.

また、請求項4に係る発明は、基材上にMoを主成分とするMo層とSiを主成分とするSi層とからなるMo-Siペア層を交互に設け、Mo-Siペア層上に吸収層を設けた多層膜反射マスクであって、基材直上の第1番目のMo-Siペア層から第n番目のMo-Siペア層におけるMo層の厚さとSi層の厚さとが等しくなるように設定されることを特徴とする。   According to a fourth aspect of the present invention, a Mo—Si pair layer composed of a Mo layer containing Mo as a main component and a Si layer containing Si as a main component is alternately provided on a base material. A multilayer film reflective mask provided with an absorption layer on the substrate, wherein the thickness of the Mo layer and the thickness of the Si layer in the first to Mo-Si pair layers immediately above the substrate are equal to each other. It is set so that it may become.

また、請求項5に係る発明は、請求項1に記載の多層膜反射マスクであって、基材上に設けられる全てのMo-Siペア層数が40であり、9≦n≦18であることを特徴とする。   The invention according to claim 5 is the multilayer film reflective mask according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40, and 9 ≦ n ≦ 18. It is characterized by that.

また、請求項6に係る発明は、請求項1に記載の多層膜反射マスクであって、基材上に設けられる全てのMo-Siペア層数が40であり、n=14であることを特徴とする。   The invention according to claim 6 is the multilayer film reflective mask according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40 and n = 14. Features.

また、請求項7に係る発明は、請求項1乃至請求項3記載の多層膜反射鏡又は請求項4乃至請求項6記載の多層膜反射マスクのいずれかを用いたことを特徴とするEUV露光装置。   The invention according to claim 7 is an EUV exposure characterized by using either the multilayer reflector according to claims 1 to 3 or the multilayer reflector according to claims 4 to 6. apparatus.

本発明の実施の形態に係る多層膜反射鏡、多層膜反射マスク及びそれらを用いたEUV露光装置によれば、多層膜の層数を増やすことなく反射率の向上を図ることが可能となり、リソグラフィにおいて効率的な露光プロセスを実現することができる。   According to the multilayer mirror, the multilayer reflective mask, and the EUV exposure apparatus using the multilayer mirror according to the embodiment of the present invention, it becomes possible to improve the reflectance without increasing the number of layers of the multilayer film. An efficient exposure process can be realized.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明の実施の形態に係る多層膜反射鏡、多層膜反射マスクを用いたEUV露光装置を模式的に示す図である。図1において、10はEUV光源、11は多層膜反射マスク、12、13は多層膜反射鏡、14はウエハをそれぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view schematically showing an EUV exposure apparatus using a multilayer film reflecting mirror and a multilayer film reflecting mask according to an embodiment of the present invention. In FIG. 1, 10 is an EUV light source, 11 is a multilayer film reflecting mask, 12 and 13 are multilayer film reflecting mirrors, and 14 is a wafer.

EUV光源10は、例えば、レーザープラズマ光源が用いられる。これは、真空容器中のターゲット材に高強度のパルスレーザー光を照射し、高温のプラズマを発生させる。当該プラズマから、例えば、波長13nm程度のEUV光が放射される。ターゲット材としては、金属膜、ガスジェット、液滴などが用いられる。放射されるEU V 光の平均強度を高くするためにはパルスレーザーの繰り返し周波数は高い方がよい。当該繰り返し周波数は、通常数kHzである。   As the EUV light source 10, for example, a laser plasma light source is used. This irradiates the target material in the vacuum vessel with high-intensity pulsed laser light to generate high-temperature plasma. For example, EUV light having a wavelength of about 13 nm is emitted from the plasma. As the target material, a metal film, a gas jet, a droplet, or the like is used. In order to increase the average intensity of the emitted EU V light, the repetition frequency of the pulse laser should be high. The repetition frequency is usually several kHz.

多層膜反射マスク11は、反射型マスクであり、その上には転写されるべき回路パターンが形成され、不図示のマスクステージにより支持及び駆動される。多層膜反射マスク11から発せれた回折光は、多層膜反射鏡12、13からなる投影光学系で反射されて被処理体であるウエハ14上に投影される。   The multilayer film reflective mask 11 is a reflective mask, on which a circuit pattern to be transferred is formed, and is supported and driven by a mask stage (not shown). Diffracted light emitted from the multilayer film reflecting mask 11 is reflected by a projection optical system including the multilayer film reflecting mirrors 12 and 13 and projected onto the wafer 14 that is the object to be processed.

ウエハ14は、半導体などの基板であり、不図示のウエハステージにチャッキングされ、XYZ方向に移動可能に構成される。   The wafer 14 is a substrate such as a semiconductor, and is configured to be chucked on a wafer stage (not shown) and movable in the XYZ directions.

EUV露光装置の投影光学系は、複数の多層膜反射鏡12、13(多層膜ミラー)を用いて、多層膜反射マスク11面上のパターンを像面に配されたウエハ14 上に縮小投影する。複数の多層膜反射鏡12、13の枚数は、本実施形態では2枚としているが、適宜必要枚数設けることができる。   The projection optical system of the EUV exposure apparatus uses a plurality of multilayer film reflecting mirrors 12 and 13 (multilayer film mirrors) to reduce and project the pattern on the surface of the multilayer film reflection mask 11 onto the wafer 14 arranged on the image plane. . The number of the multilayer mirrors 12 and 13 is two in this embodiment, but a necessary number can be provided as appropriate.

次に本発明の実施の形態に係る多層膜反射鏡12について説明する。図2は本発明の実施の形態に係る多層膜反射鏡を模式的に示す図である。図2において、100は超低膨張基材、101は厚さ3.5nmのMo層、102は厚さ3.5nmのSi層、111は厚さ2.8nmのMo層、112は厚さ4.2nmのSi層、201は第1Mo-Siペア層、202は第2Mo-Siペア層、・・・・・240は第40Mo-Siペア層をそれぞれ示している。   Next, the multilayer film reflecting mirror 12 according to the embodiment of the present invention will be described. FIG. 2 is a diagram schematically showing a multilayer-film reflective mirror according to the embodiment of the present invention. In FIG. 2, 100 is an ultra-low expansion substrate, 101 is a Mo layer having a thickness of 3.5 nm, 102 is a Si layer having a thickness of 3.5 nm, 111 is a Mo layer having a thickness of 2.8 nm, and 112 is a thickness of 4 .2 nm Si layer, 201 is a first Mo—Si pair layer, 202 is a second Mo—Si pair layer,... 240 is a 40th Mo—Si pair layer.

図2は、多層膜反射鏡12の断面図である。図2に示すように、多層膜反射鏡12は、高精度な形状に研磨された超低膨張基材100の基板 の表面にモリブデン(Mo)を主成分とする層(Mo層)とシリコン(Si)を主成分とする層(Si層)のMo-Siペア層が交互に周期的に成膜された構造となっている。   FIG. 2 is a cross-sectional view of the multilayer mirror 12. As shown in FIG. 2, the multilayer reflector 12 includes a layer (Mo layer) containing molybdenum (Mo) as a main component and silicon (Mo layer) on the surface of the substrate of the ultra-low expansion substrate 100 polished into a highly accurate shape. In this structure, the Mo—Si pair layers of Si (main layer) (Si layer) are alternately and periodically formed.

多層膜反射鏡12は、超低膨張基材100の基板から順に第1Mo-Siペア層201、第2Mo-Siペア層202、第3Mo-Siペア層203、第40Mo-Siペア層240と形成されるが、第1Mo-Siペア層201〜第14Mo-Siペア層214においては、Mo層101の厚さは3.5nmとされ、Si層102の厚さは3.5nmとされ、Mo層101とSi層102は等しくなるように製膜される。   The multilayer mirror 12 is formed with a first Mo—Si pair layer 201, a second Mo—Si pair layer 202, a third Mo—Si pair layer 203, and a 40th Mo—Si pair layer 240 in order from the substrate of the ultra-low expansion substrate 100. However, in the first Mo—Si pair layer 201 to the 14th Mo—Si pair layer 214, the thickness of the Mo layer 101 is 3.5 nm, the thickness of the Si layer 102 is 3.5 nm, and the Mo layer 101 and Si layer 102 are formed to be equal.

これに対して、第15Mo-Siペア層215〜第16Mo-Siペア層216においては、Mo層111の厚さは2.8nmとされ、Si層112の厚さは4.2nmとされ、Mo層111の厚さがSi層112の厚さより小さくなるように製膜される。   On the other hand, in the 15th Mo-Si pair layer 215 to the 16th Mo-Si pair layer 216, the thickness of the Mo layer 111 is 2.8 nm, the thickness of the Si layer 112 is 4.2 nm, and Mo The film is formed so that the thickness of the layer 111 is smaller than the thickness of the Si layer 112.

なお、第1から第40のどのMo-Siペア層においても、(Mo層101の厚さ)+(Si層の厚さ)=(EUV光の波長の1/2)となるように設定されている。   In any of the first to forty Mo-Si pair layers, (Mo layer 101 thickness) + (Si layer thickness) = (1/2 of the wavelength of EUV light). ing.

本実施形態では、超低膨張基材100の基板直上の第1Mo-Siペア層201〜第14Mo-Siペア層214において、Mo層101の厚さとSi層102の厚さと等しく設定されているが、本発明は必ずしもこれに限定されず、超低膨張基材100の基板直上の第1Mo-Siペア層201〜第nMo-Siペア層において、Mo層101の厚さとSi層102の厚さと等しく設定することができる。なお、ここで、全Mo-Siペア層数を40としたときにおいて、n=9〜n=18の値を採ることが好ましい。以下、その理由について説明する。   In the present embodiment, in the first Mo—Si pair layer 201 to the 14th Mo—Si pair layer 214 immediately above the substrate of the ultra-low expansion base material 100, the thickness of the Mo layer 101 and the thickness of the Si layer 102 are set equal. The present invention is not necessarily limited to this, and in the first Mo-Si pair layer 201 to the nMo-Si pair layer immediately above the substrate of the ultra-low expansion substrate 100, the thickness of the Mo layer 101 is equal to the thickness of the Si layer 102. Can be set. Here, when the total number of Mo—Si pair layers is 40, it is preferable to take a value of n = 9 to n = 18. The reason will be described below.

図3はMo層の厚さとSi層の厚さが等しいMo-Siペア層数と反射率との関係を示す図である。図3において、横軸は超低膨張基材100直上からの、(Mo層の厚さ)=(Si層の厚さ)であるMo-Siペア層の数nであり、縦軸は反射率が示されている。なお、図3における多層膜反射鏡12は、全Mo-Siペア層数が40のものである。図3に示されるように、9≦n≦18であるときに良好な反射率を得ることができ、特にn=14であるときに最もよい反射率を得ることができる。   FIG. 3 is a diagram showing the relationship between the number of Mo—Si pair layers in which the thickness of the Mo layer and the thickness of the Si layer are equal and the reflectance. In FIG. 3, the horizontal axis is the number n of Mo—Si pair layers from the top of the ultra-low expansion substrate 100 where (Mo layer thickness) = (Si layer thickness), and the vertical axis is the reflectance. It is shown. Note that the multilayer mirror 12 in FIG. 3 has a total number of Mo—Si pair layers of 40. As shown in FIG. 3, a good reflectance can be obtained when 9 ≦ n ≦ 18, and the best reflectance can be obtained particularly when n = 14.

以上のような構成によれば、Mo層の厚さとSi層の厚さをコントロールするのみで、Mo-Siペア層の層数を増やすことなく反射率の向上を図ることが可能となり、多層膜反鏡12、13を用いたEUV露光装置によればリソグラフィにおいて効率的な露光プロセスを実現することができる。   According to the configuration as described above, it is possible to improve the reflectance without increasing the number of Mo—Si pair layers only by controlling the thickness of the Mo layer and the thickness of the Si layer. According to the EUV exposure apparatus using the mirrors 12 and 13, an efficient exposure process can be realized in lithography.

次に本発明の実施の形態に係る多層膜反射マスクについて説明する。図4は本発明の実施の形態に係る多層膜反射マスク11を模式的に示す図である。図4において、100は超低膨張基材、101は厚さ3.5nmのMo層、102は厚さ3.5nmのSi層、111は厚さ2.8nmのMo層、112は厚さ4.2nmのSi層、201は第1Mo-Siペア層、202は第2Mo-Siペア層、・・・・・240は第40Mo-Siペア層をそれぞれ示している。以上の構成は先の多層膜反射鏡12の構成と同一である。   Next, the multilayer reflective mask according to the embodiment of the present invention will be described. FIG. 4 is a diagram schematically showing a multilayer reflective mask 11 according to the embodiment of the present invention. In FIG. 4, 100 is an ultra-low expansion substrate, 101 is a Mo layer having a thickness of 3.5 nm, 102 is a Si layer having a thickness of 3.5 nm, 111 is a Mo layer having a thickness of 2.8 nm, and 112 is a thickness of 4 .2 nm Si layer, 201 is a first Mo—Si pair layer, 202 is a second Mo—Si pair layer,... 240 is a 40th Mo—Si pair layer. The above configuration is the same as that of the multilayer reflector 12 described above.

多層膜反射マスク11が多層膜反射鏡12と異なる点は、最上のMo-Siペア層の上に、バッファ層301、吸収層300が構成されている点である。   The multilayer reflective mask 11 is different from the multilayer reflective mirror 12 in that a buffer layer 301 and an absorption layer 300 are formed on the uppermost Mo—Si pair layer.

多層膜反射マスク11の最上のMo-Siペア層の上に設けられたバッファ層301は、例えばRuやSiO2であり、吸収層300はTa、Cr、Ti、Nbやそれらの化合物などである。これらのバッファ層301、吸収層300は転写されるべき回路パターン状に形成されており、EUV光を吸収するように構成されている。 The buffer layer 301 provided on the uppermost Mo—Si pair layer of the multilayer reflective mask 11 is, for example, Ru or SiO 2 , and the absorption layer 300 is Ta, Cr, Ti, Nb, or a compound thereof. . These buffer layer 301 and absorption layer 300 are formed in a circuit pattern to be transferred, and are configured to absorb EUV light.

以上のよう構成の多層膜反射マスク11においても、図3において説明した多層膜反射鏡と同様の特性を期待することができる。そして、このような多層膜反射マスク11によれば、Mo層の厚さとSi層の厚さをコントロールするのみで、Mo-Siペア層の層数を増やすことなく反射率の向上を図ることが可能となり、多層膜反射マスク11を用いたEUV露光装置によればリソグラフィにおいて効率的な露光プロセスを実現することができる。   The multilayer reflective mask 11 having the above configuration can be expected to have the same characteristics as the multilayer reflective mirror described in FIG. And according to such a multilayer-film reflective mask 11, the reflectance can be improved without increasing the number of Mo—Si pair layers only by controlling the thickness of the Mo layer and the thickness of the Si layer. The EUV exposure apparatus using the multilayer film reflective mask 11 can realize an efficient exposure process in lithography.

本発明の実施の形態に係る多層膜反射鏡、多層膜反射マスクを用いたEUV露光装置を模式的に示す図である。It is a figure which shows typically the EUV exposure apparatus using the multilayer film reflective mirror and multilayer film reflective mask which concern on embodiment of this invention. 本発明の実施の形態に係る多層膜反射鏡を模式的に示す図である。It is a figure which shows typically the multilayer-film reflective mirror which concerns on embodiment of this invention. Mo層の厚さとSi層の厚さが等しいMo-Siペア層数と反射率との関係を示す図である。It is a figure which shows the relationship between the number of Mo-Si pair layers in which the thickness of Mo layer and the thickness of Si layer are equal, and a reflectance. 本発明の実施の形態に係る多層膜反射マスクを模式的に示す図である。It is a figure which shows typically the multilayer film reflective mask which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10・・・EUV光源、11・・・多層膜反射マスク、12、13・・・多層膜反射鏡、14・・・ウエハ、100・・超低膨張基材、101、111・・・Mo層、102、112・・・Si層、300・・・吸収層、301・・・バッファ層 DESCRIPTION OF SYMBOLS 10 ... EUV light source, 11 ... Multilayer reflective mask, 12, 13 ... Multilayer reflective mirror, 14 ... Wafer, 100 .. Ultra low expansion substrate, 101, 111 ... Mo layer 102, 112 ... Si layer, 300 ... absorbing layer, 301 ... buffer layer

Claims (7)

基材上にMoを主成分とするMo層とSiを主成分とするSi層とからなるMo-Siペア層を交互に設けた多層膜反射鏡であって、
基材直上の第1番目のMo-Siペア層から第n番目のMo-Siペア層におけるMo層の厚さとSi層の厚さとが等しくなるように設定されることを特徴とする多層膜反射鏡。
A multilayer reflector in which Mo-Si pair layers composed of Mo layers mainly composed of Mo and Si layers mainly composed of Si are alternately provided on a base material,
Multilayer film reflection characterized in that the thickness of the Mo layer and the thickness of the Si layer in the first to Mo-Si pair layers immediately above the base material are set to be equal to each other. mirror.
基材上に設けられる全てのMo-Siペア層数が40であり、9≦n≦18であることを特徴とする請求項1に記載の多層膜反射鏡。 The multilayer mirror according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40 and 9 ≦ n ≦ 18. 基材上に設けられる全てのMo-Siペア層数が40であり、n=14であることを特徴とする請求項1に記載の多層膜反射鏡。 The multilayer mirror according to claim 1, wherein the number of all Mo-Si pair layers provided on the substrate is 40, and n = 14. 基材上にMoを主成分とするMo層とSiを主成分とするSi層とからなるMo-Siペア層を交互に設け、Mo-Siペア層上に吸収層を設けた多層膜反射マスクであって、
基材直上の第1番目のMo-Siペア層から第n番目のMo-Siペア層におけるMo層の厚さとSi層の厚さとが等しくなるように設定されることを特徴とする多層膜反射マスク。
A multilayer reflective mask in which a Mo-Si pair layer composed of a Mo layer containing Mo as a main component and a Si layer containing Si as a main component is alternately provided on the substrate, and an absorption layer is provided on the Mo-Si pair layer. Because
Multilayer film reflection characterized in that the thickness of the Mo layer and the thickness of the Si layer in the first to Moth-Si pair layers immediately above the base material are set to be equal to each other. mask.
基材上に設けられる全てのMo-Siペア層数が40であり、9≦n≦18であることを特徴とする請求項1に記載の多層膜反射マスク。 2. The multilayer reflective mask according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40 and 9 ≦ n ≦ 18. 基材上に設けられる全てのMo-Siペア層数が40であり、n=14であることを特徴とする請求項1に記載の多層膜反射マスク。 2. The multilayer reflective mask according to claim 1, wherein the number of all Mo—Si pair layers provided on the substrate is 40 and n = 14. 請求項1乃至請求項3記載の多層膜反射鏡又は請求項4乃至請求項6の多層膜反射マスクのいずれかを用いたことを特徴とするEUV露光装置。 An EUV exposure apparatus using the multilayer film reflecting mirror according to any one of claims 1 to 3 or the multilayer film reflecting mask according to any one of claims 4 to 6.
JP2007219228A 2007-08-27 2007-08-27 EUV exposure equipment Active JP5158331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219228A JP5158331B2 (en) 2007-08-27 2007-08-27 EUV exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219228A JP5158331B2 (en) 2007-08-27 2007-08-27 EUV exposure equipment

Publications (2)

Publication Number Publication Date
JP2009052998A true JP2009052998A (en) 2009-03-12
JP5158331B2 JP5158331B2 (en) 2013-03-06

Family

ID=40504206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219228A Active JP5158331B2 (en) 2007-08-27 2007-08-27 EUV exposure equipment

Country Status (1)

Country Link
JP (1) JP5158331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118437A (en) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd Multilayer film reflection mirror, multilayer film reflection mask, and euv exposure device using those
DE102009017095A1 (en) * 2009-04-15 2010-10-28 Carl Zeiss Smt Ag Mirror for the EUV wavelength range, projection objective for microlithography with such a mirror and projection exposure apparatus for microlithography with such a projection objective
JP2012532467A (en) * 2009-07-10 2012-12-13 カール・ツァイス・エスエムティー・ゲーエムベーハー EUV wavelength region mirror, microlithographic projection objective lens including the mirror, and microlithography projection exposure apparatus including the objective lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297800A (en) * 1986-06-18 1987-12-24 キヤノン株式会社 Multilayer-film reflecting mirror for x-ray
JPS63161403A (en) * 1986-12-25 1988-07-05 Canon Inc Multilayered film reflection mirror for x ray and vacuum ultraviolet ray
JP2005515448A (en) * 2002-01-10 2005-05-26 オスミック、インコーポレイテッド Protective layer for multilayer bodies exposed to hard X-rays
JP2007057450A (en) * 2005-08-26 2007-03-08 Nikon Corp Multilayered film mirror and exposure system
JP2007163180A (en) * 2005-12-09 2007-06-28 Canon Inc Soft x-ray multilayer film mirror

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297800A (en) * 1986-06-18 1987-12-24 キヤノン株式会社 Multilayer-film reflecting mirror for x-ray
JPS63161403A (en) * 1986-12-25 1988-07-05 Canon Inc Multilayered film reflection mirror for x ray and vacuum ultraviolet ray
JP2005515448A (en) * 2002-01-10 2005-05-26 オスミック、インコーポレイテッド Protective layer for multilayer bodies exposed to hard X-rays
JP2007057450A (en) * 2005-08-26 2007-03-08 Nikon Corp Multilayered film mirror and exposure system
JP2007163180A (en) * 2005-12-09 2007-06-28 Canon Inc Soft x-ray multilayer film mirror

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118437A (en) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd Multilayer film reflection mirror, multilayer film reflection mask, and euv exposure device using those
DE102009017095A1 (en) * 2009-04-15 2010-10-28 Carl Zeiss Smt Ag Mirror for the EUV wavelength range, projection objective for microlithography with such a mirror and projection exposure apparatus for microlithography with such a projection objective
CN102395907A (en) * 2009-04-15 2012-03-28 卡尔蔡司Smt有限责任公司 Mirror for the EUV wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
JP2012532467A (en) * 2009-07-10 2012-12-13 カール・ツァイス・エスエムティー・ゲーエムベーハー EUV wavelength region mirror, microlithographic projection objective lens including the mirror, and microlithography projection exposure apparatus including the objective lens

Also Published As

Publication number Publication date
JP5158331B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4547329B2 (en) Lithographic spectral purity filter, lithographic apparatus and device manufacturing method
JP4320970B2 (en) Manufacturing method of multilayer mirror
JP6346915B2 (en) Reflective photomask and reflective mask blank
JPWO2008090988A1 (en) Optical element, exposure apparatus using the same, and device manufacturing method
KR20090094322A (en) Optical element, exposure unit utilizing the same and process for device production
KR20210105333A (en) Photomask having a reflective layer with non-reflective areas
JP2009071126A (en) Reflective photomask for extreme-ultraviolet ray and semiconductor device manufacturing method
JP2007057450A (en) Multilayered film mirror and exposure system
JP5158331B2 (en) EUV exposure equipment
TWI446365B (en) Projection optical system, exposure device, and method of manufacturing semiconductor device
KR102119439B1 (en) Euv mirror and optical system comprising euv mirror
JP2007140147A (en) Multilayer film reflection mirror and exposure device
TW201543137A (en) Photo-masks for lithography
JP2006194764A (en) Multilayer reflection mirror and exposure system
KR20110026463A (en) Multilayer mirror and lithographic apparatus
JP2007198784A (en) Multilayer-film reflecting mirror, method for manufacturing it, and exposure system
JP4591686B2 (en) Multilayer reflector
JP5552784B2 (en) Multilayer reflector
JP2007140105A (en) Multilayer film reflection mirror and exposure device
JP2010118437A (en) Multilayer film reflection mirror, multilayer film reflection mask, and euv exposure device using those
JP2005099571A (en) Multilayered film reflection mirror, film-deposition method of reflection multilayered film, film-deposition device and exposure device
JP4352977B2 (en) Multilayer reflector and EUV exposure apparatus
JP2008153395A (en) Multilayer film reflector, exposure apparatus, and semiconductor manufacturing method
JP2008152037A (en) Optical element, exposure apparatus and method for manufacturing device
JP2007059743A (en) Multilayer film reflector and aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5158331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3