JP4591686B2 - Multilayer reflector - Google Patents

Multilayer reflector Download PDF

Info

Publication number
JP4591686B2
JP4591686B2 JP2005028049A JP2005028049A JP4591686B2 JP 4591686 B2 JP4591686 B2 JP 4591686B2 JP 2005028049 A JP2005028049 A JP 2005028049A JP 2005028049 A JP2005028049 A JP 2005028049A JP 4591686 B2 JP4591686 B2 JP 4591686B2
Authority
JP
Japan
Prior art keywords
light
exposure
multilayer
mirror
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005028049A
Other languages
Japanese (ja)
Other versions
JP2006216783A (en
Inventor
毅治 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005028049A priority Critical patent/JP4591686B2/en
Publication of JP2006216783A publication Critical patent/JP2006216783A/en
Application granted granted Critical
Publication of JP4591686B2 publication Critical patent/JP4591686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、EUV露光装置(極端紫外線露光装置とも呼ばれ、本明細書、及び特許請求の範囲においては、波長が15nm未満の紫外線を用いた露光装置をいう)に使用するのに好適な多層膜反射鏡、及びこの多層膜反射鏡を有するEUV露光装置に関するものである。   The present invention is a multilayer suitable for use in an EUV exposure apparatus (also referred to as an extreme ultraviolet exposure apparatus, and in the present specification and claims, refers to an exposure apparatus using ultraviolet light having a wavelength of less than 15 nm). The present invention relates to a film reflecting mirror and an EUV exposure apparatus having the multilayer film reflecting mirror.

近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、従来の紫外線に代えてこれより短い波長(11〜14nm)のEUV光を使用した投影リソグラフィ技術が開発されている(例えば、D.Tichenor, et al, SPIE 2437 (1995) 292:非特許文献1参照)。この技術は、最近ではEUV(Extreme UltraViolet)リソグラフィと呼ばれており、従来の波長190nm程度の光線を用いた光リソグラフィでは実現不可能な、70nm以下の解像力を得られる技術として期待されている。   In recent years, with the miniaturization of semiconductor integrated circuits, EUV light having a shorter wavelength (11 to 14 nm) is used in place of conventional ultraviolet rays in order to improve the resolving power of an optical system limited by the diffraction limit of light. Projection lithography techniques have been developed (see, for example, D. Tichenor, et al, SPIE 2437 (1995) 292: Non-Patent Document 1). This technique is recently called EUV (Extreme UltraViolet) lithography, and is expected as a technique capable of obtaining a resolution of 70 nm or less, which cannot be realized by conventional optical lithography using light having a wavelength of about 190 nm.

EUV光の波長領域での物質の複素屈折率nは、n=1−δ−ik(iは複素記号)で表わされる。この屈折率の虚部kは極短紫外線の吸収を表す。δkは1に比べて非常に小さいため、この領域での屈折率は1に非常に近い。又、kは大きな値であるため、吸収率が大きくなる。したがって従来のレンズのような透過屈折型の光学素子を使用できず、反射を利用した光学系が使用される。   A complex refractive index n of a substance in a wavelength region of EUV light is represented by n = 1−δ−ik (i is a complex symbol). The imaginary part k of the refractive index represents absorption of ultrashort ultraviolet rays. Since δk is much smaller than 1, the refractive index in this region is very close to 1. Further, since k is a large value, the absorption rate is increased. Accordingly, a transmission / refraction type optical element such as a conventional lens cannot be used, and an optical system utilizing reflection is used.

EUV露光装置の概要を図8に示す。EUV光源31から放出されたEUV光32は、照明光学系33に入射し、コリメータミラーとして作用する凹面ミラー34を介してほぼ平行光束となり、一対のフライアイミラー35aおよび35bからなるオプティカルインテグレータ35に入射する。   An outline of the EUV exposure apparatus is shown in FIG. The EUV light 32 emitted from the EUV light source 31 enters the illumination optical system 33, becomes a substantially parallel light beam via a concave mirror 34 that acts as a collimator mirror, and enters an optical integrator 35 including a pair of fly-eye mirrors 35a and 35b. Incident.

こうして、第2フライアイミラー35bの反射面の近傍、すなわちオプティカルインテグレータ35の射出面の近傍には、所定の形状を有する実質的な面光源が形成される。実質的な面光源からの光は、平面ミラー36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する(円弧状の照明領域を形成するための開口板は図示を省略している)。照明されたマスクMのパターンからの光は、複数のミラー(図8では例示的に6つのミラーM1〜M6)からなる投影光学系PLを介して、ウエハW上にマスクパターンの像を形成する。   Thus, a substantial surface light source having a predetermined shape is formed in the vicinity of the reflecting surface of the second fly's eye mirror 35b, that is, in the vicinity of the exit surface of the optical integrator 35. Light from a substantial surface light source is deflected by the plane mirror 36 and then forms an elongated arc-shaped illumination area on the mask M (the aperture plate for forming the arc-shaped illumination area is not shown). ing). The light from the pattern of the illuminated mask M forms an image of the mask pattern on the wafer W via the projection optical system PL composed of a plurality of mirrors (six mirrors M1 to M6 in FIG. 8 exemplarily). .

なお、このようなミラーを使用した光学系では、投影露光に近軸光線を使用することができないので、全体の収差を一様として補正するために、リング状の投影露光フィールドを有している。このような、リング状の投影露光フィールドでは、30mm角程度のチップを一括で露光することはできないので、レチクルとウエハを同期スキャンさせて露光を行うようにされている。   An optical system using such a mirror cannot use paraxial rays for projection exposure, and therefore has a ring-shaped projection exposure field in order to correct the entire aberration as uniform. . In such a ring-shaped projection exposure field, a chip of about 30 mm square cannot be exposed at a time, so that exposure is performed by synchronously scanning the reticle and wafer.

このようなEUV露光装置に使用される反射鏡としては、基板の上に多層膜を形成し、界面での微弱な反射光を位相を合わせて多数重畳させて高い反射率を得る多層膜反射鏡が一般的に使用されている。   As a reflector used in such an EUV exposure apparatus, a multilayer film is formed on a substrate, and a multilayer film reflector that obtains a high reflectivity by superimposing a large number of weak reflected lights at the interface in phase. Is commonly used.

13.4nm付近の波長域では、モリブデン(Mo)層とシリコン(Si)層を交互に積層したMo/Si多層膜を用いると垂直入射で67.5%の反射率を得ることができ、波長11.3nm付近の波長域では、Mo層とベリリウム(Be)層を交互に積層したMo/Be多層膜を用いると垂直入射で70.2%の反射率を得ることができる(例えば、C. Montcalm、「Proceedings of SPIE」、1998年、第3331巻、p.42 :非特許文献2参照)。   In the wavelength region near 13.4 nm, when a Mo / Si multilayer film in which molybdenum (Mo) layers and silicon (Si) layers are alternately stacked is used, a reflectance of 67.5% can be obtained at normal incidence. In the wavelength region near 11.3 nm, when a Mo / Be multilayer film in which Mo layers and beryllium (Be) layers are alternately stacked is used, a reflectivity of 70.2% can be obtained at normal incidence (for example, C.I. Montcalm, “Proceedings of SPIE”, 1998, 3331, p. 42: see Non-Patent Document 2.

特開平11−312638号公報JP 11-312638 A 特開2000−56099号公報JP 2000-56099 A D.Tichenor, et al, SPIE 2437 (1995) 292D. Tichenor, et al, SPIE 2437 (1995) 292 C. Montcalm、「Proceedings of SPIE」、1998年、第3331巻、p.42C. Montcalm, “Proceedings of SPIE”, 1998, 3331, p.42

EUV光源31として、一般的に使用されているものは、レーザー光を励起光としてターゲット物質に照射し、ターゲット物質をプラズマ化し、そのときに発生するEUV光(露光光)を使用するものである。このようなEUV光源は、例えば(特許文献2)に記載されている。   What is generally used as the EUV light source 31 is one that irradiates a target material with laser light as excitation light, converts the target material into plasma, and uses EUV light (exposure light) generated at that time. . Such an EUV light source is described in, for example, (Patent Document 2).

露光光を発生させる手段としてレーザープラズマを用いる構造の露光装置では、発生した露光光と同一の光路で、励起光であるレーザー光(例えば、波長10600nm、1064nm、532nm、266nmなどの何れか)が各光学素子(ミラー等)に到達する。   In an exposure apparatus having a structure using laser plasma as means for generating exposure light, laser light (for example, any of wavelengths 10600 nm, 1064 nm, 532 nm, and 266 nm) is used as excitation light in the same optical path as the generated exposure light. Reach each optical element (mirror etc.).

このとき、到達したレーザー光の一部は各光学素子に吸収され、熱膨張による形状変化を誘発して結果的に結像性能に悪影響を及ぼす。特にEUV光を露光光として用いる露光装置では、各光学素子が真空中に保持されることから気体を介した熱交換が行なわれず、素子の温度上昇はより顕著に生じる。このような現象を回避するため、従来技術ではレーザー光の出力を抑えるなどの手段により各光学素子の温度上昇を防止してきた。   At this time, a part of the reached laser light is absorbed by each optical element and induces a shape change due to thermal expansion, resulting in an adverse effect on the imaging performance. In particular, in an exposure apparatus that uses EUV light as exposure light, since each optical element is held in a vacuum, heat exchange via gas is not performed, and the temperature of the element rises more remarkably. In order to avoid such a phenomenon, the prior art has prevented the temperature of each optical element from rising by means such as suppressing the output of laser light.

しかしながら露光装置を用いるリソグラフィープロセスでは、レーザー光出力を抑制すると、露光時間が長時間化し、スループットの低下に結びつくなどの問題点があった。   However, in a lithography process using an exposure apparatus, if the laser light output is suppressed, the exposure time becomes longer, leading to a decrease in throughput.

本発明はこのような事情に鑑みてなされたもので、露光に不必要であり、投影光学系を構成する反射鏡の熱膨張をもたらす励起光を、その手前で吸収することができる多層膜反射鏡、及びそれを使用したEUV露光装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and is a multilayer film reflection that is unnecessary for exposure and can absorb excitation light that causes thermal expansion of a reflecting mirror that constitutes a projection optical system. It is an object to provide a mirror and an EUV exposure apparatus using the mirror.

前記課題を解決するための第1の手段は、励起光によって露光光を励起し、当該露光光によって露光を行う露光装置に用いられる多層膜反射鏡であって、前記露光光に対して斜入射角15°以下で50%以上の反射率を有すると共に、前記励起光に対して50%以下の反射率を有し、前記多層膜が、表面側に配した露光光反射部分と基板側に配した励起光の反射防止部分を有することを特徴とする多層膜反射膜である。
A first means for solving the above-described problem is a multilayer film reflector used in an exposure apparatus that excites exposure light with excitation light and performs exposure with the exposure light, and is obliquely incident on the exposure light and has a reflectance of 50% or more corners than 15 °, the have a reflectance of 50% or less with respect to the excitation light, the multilayer film, distribution in the exposure light reflection portion and the substrate side arranged on the surface side a multilayer reflection film, characterized in that have a anti-reflective portion of the excitation light.

本手段は、露光光に対しては高い反射率を有するので、露光光を低い損失率で下流側の光学系に伝達することができる。又、励起光に対しては低い反射率を有するので、下流側の光学系に伝達される励起光が大幅に減少し、下流側の光学系が励起光により熱変形する量を小さく抑えることができる。   Since this means has a high reflectance with respect to the exposure light, the exposure light can be transmitted to the downstream optical system with a low loss rate. In addition, since the pumping light has a low reflectance, the pumping light transmitted to the downstream optical system is greatly reduced, and the amount of thermal deformation of the downstream optical system by the pumping light can be kept small. it can.

本手段においては、短波長である露光光は、表面側に配置された露光光反射部分により反射される。一方、長波長である励起光は、露光光反射部分を透過し、励起光の反射防止部分に到達して吸収されるので、励起光の反射が小さく抑えられる。   In this means, the exposure light having a short wavelength is reflected by the exposure light reflecting portion arranged on the surface side. On the other hand, since the excitation light having a long wavelength passes through the exposure light reflection portion and reaches the absorption prevention portion of the excitation light and is absorbed, reflection of the excitation light can be suppressed to a small value.

前記課題を解決するための第の手段は、前記第1の手段であって、前記露光光が波長15nm以下のEUV光であることを特徴とするものである。
Second means for solving the above problems, a first hand stage, it is characterized in that the exposure light is less EUV light wavelength 15 nm.

波長が15nm以下のEUV光を使用する露光装置は、特に微細なパターンの露光を行うものであり、光学系の熱変形を小さく抑える必要があるので、本手段を用いることが特に有効である。   An exposure apparatus that uses EUV light having a wavelength of 15 nm or less performs exposure of a particularly fine pattern, and since it is necessary to suppress thermal deformation of the optical system, it is particularly effective to use this means.

前記課題を解決するための第の手段は、前記第1の手段または第2の手段であって、前記励起光が波長150nm以上のレーザー光であることを特徴とするものである。
A third means for solving the problem is the first means or the second means , wherein the excitation light is laser light having a wavelength of 150 nm or more.

励起光が、波長が150nm以上のレーザー光である場合には、光学系に吸収されると熱変形を発生する割合が特に大きくなる。よって、本手段を用いることが特に有効である。   In the case where the excitation light is laser light having a wavelength of 150 nm or more, the rate of occurrence of thermal deformation becomes particularly large when absorbed by the optical system. Therefore, it is particularly effective to use this means.

前記課題を解決するための第の手段は、前記第1の手段から第の手段のうちいずれかの多層膜反射鏡を有することを特徴とするEUV露光装置である。 A fourth means for solving the above-mentioned problems is an EUV exposure apparatus characterized by including a multilayer mirror in any one of the first to third means.

本手段においては、投影光学系に入ってくる励起光を小さく抑えることができるので、投影光学系の熱変形を小さくでき、よって、正確な露光転写を行うことができる。   In this means, since the excitation light entering the projection optical system can be kept small, the thermal deformation of the projection optical system can be reduced, so that accurate exposure transfer can be performed.

本発明によれば、露光に不必要であり、投影光学系を構成する反射鏡の熱膨張をもたらす励起光を、その手前で吸収することができる多層膜反射鏡を提供することができる。   According to the present invention, it is possible to provide a multilayer-film reflective mirror that can absorb excitation light that is unnecessary for exposure and that causes thermal expansion of the reflective mirror constituting the projection optical system.

以下、本発明の実施例を説明する。図1は、本発明の実施例である多層膜反射鏡(平面鏡)の構成を示す図である。図1に示すように、石英からなる基板1の上に、励起光反射防止膜2が形成され、その上に露光光反射膜3が形成されている。
(実施例1)
波長が1064nmのYAGレーザー光(励起光)でプラズマを励起し、波長が13.5nmのEUV光を露光光として使用する場合の多層膜反射鏡を製作した。この多層膜反射鏡においては、入射光は13.5°の斜入射角で入射するものとして設計されたものである。
Examples of the present invention will be described below. FIG. 1 is a diagram showing the configuration of a multilayer-film reflective mirror (planar mirror) that is an embodiment of the present invention. As shown in FIG. 1, an excitation light antireflection film 2 is formed on a substrate 1 made of quartz, and an exposure light reflection film 3 is formed thereon.
Example 1
Plasma was excited by YAG laser light (excitation light) with a wavelength of 1064 nm, and a multilayer mirror was manufactured when EUV light with a wavelength of 13.5 nm was used as exposure light. In this multilayer reflector, the incident light is designed to be incident at an oblique incident angle of 13.5 °.

励起光反射防止膜2は、基板1側から順にMo(107nm)、SiO(402nm)、Si(11nm)、Mo(6nm)、Si(87nm)、SiO(177nm)の6層の膜構造を有しており、露光光反射膜3は、基板1側から順にMo(8nm)、Si(3nm)の2層構造を有している。 The excitation light antireflection film 2 has a six-layer film structure of Mo (107 nm), SiO 2 (402 nm), Si (11 nm), Mo (6 nm), Si (87 nm), and SiO 2 (177 nm) in this order from the substrate 1 side. The exposure light reflecting film 3 has a two-layer structure of Mo (8 nm) and Si (3 nm) in order from the substrate 1 side.

比較例として、基板上に基板側からMo(66nm)、Si(11nm)の2層構造からなる露光光反射膜のみを成膜した多層膜反射鏡を製作した。   As a comparative example, a multilayer film reflecting mirror was fabricated in which only an exposure light reflecting film having a two-layer structure of Mo (66 nm) and Si (11 nm) was formed on the substrate from the substrate side.

図2に、実施例1の多層膜反射鏡の露光光(波長13.5nm)に対する反射率の角度依存性、図3に、この多層膜反射鏡の、励起光(波長1064nm)に対する分光反射率を示す。一方、図4は比較例の多層膜反射鏡における励起光(波長1064nm)の分光反射率を示している。   FIG. 2 shows the angle dependence of the reflectance with respect to the exposure light (wavelength 13.5 nm) of the multilayer mirror of Example 1, and FIG. 3 shows the spectral reflectance with respect to the excitation light (wavelength 1064 nm) of this multilayer mirror. Show. On the other hand, FIG. 4 shows the spectral reflectance of excitation light (wavelength 1064 nm) in the multilayer mirror of the comparative example.

図2から、この多層膜反射鏡の斜入射角13.5°における露光光の反射率は、74%程度で十分高いことが分かる。斜入射角が17.5°以下では、反射率は50%以上となっている。又、図3と図4を比較すると、波長が1064nmの励起光の反射率は、実施例1の多層膜反射鏡の場合24%、比較例の多層膜反射鏡の場合64%程度であり、本実施の形態の多層膜反射鏡においては、従来の多層膜反射鏡の1/3近くまで低下していることが分かる。
(実施例2)
波長が266nmのレーザー光(励起光)でプラズマを励起し、波長が13.5nmのEUV光を露光光として使用する場合の多層膜反射鏡を製作した。この多層膜反射鏡においては、入射光は13.5°の斜入射角で入射するものとして設計されたものである。
From FIG. 2, it can be seen that the reflectance of the exposure light at an oblique incident angle of 13.5 ° of this multilayer mirror is sufficiently high at about 74%. When the oblique incident angle is 17.5 ° or less, the reflectance is 50% or more. Further, comparing FIG. 3 with FIG. 4, the reflectance of the excitation light having a wavelength of 1064 nm is about 24% in the case of the multilayer reflector of Example 1, and about 64% in the case of the multilayer reflector of the comparative example. It can be seen that the multilayer mirror of the present embodiment is reduced to almost 1/3 of the conventional multilayer mirror.
(Example 2)
Plasma was excited by a laser beam (excitation light) having a wavelength of 266 nm, and a multilayer mirror was manufactured when EUV light having a wavelength of 13.5 nm was used as exposure light. In this multilayer reflector, the incident light is designed to be incident at an oblique incident angle of 13.5 °.

励起光反射防止膜2は、基板1側から順にHfO(33nm)、SiO(4nm)、MgF(66nm)の4層の膜構造を有しており、露光光反射膜3は、基板1側から順にMo(5nm)、Si(2nm)の2層構造を有している。 The excitation light reflection preventing film 2 has a four-layer film structure of HfO 2 (33 nm), SiO 2 (4 nm), and MgF 2 (66 nm) in this order from the substrate 1 side. It has a two-layer structure of Mo (5 nm) and Si (2 nm) in order from the first side.

比較例として、基板上に基板側からMo(66nm)、Si(11nm)の2層構造からなる露光光反射膜のみを成膜した多層膜反射鏡を製作した。   As a comparative example, a multilayer film reflecting mirror was fabricated in which only an exposure light reflecting film having a two-layer structure of Mo (66 nm) and Si (11 nm) was formed on the substrate from the substrate side.

図5に、実施例1の多層膜反射鏡の露光光(波長13.5nm)に対する反射率の角度依存性、図6に、この多層膜反射鏡の、励起光(波長266nm)に対する分光反射率を示す。一方、図7は比較例の多層膜反射鏡における励起光(波長266nm)の分光反射率を示している。   FIG. 5 shows the angle dependence of the reflectance with respect to the exposure light (wavelength 13.5 nm) of the multilayer mirror of Example 1, and FIG. 6 shows the spectral reflectance with respect to the excitation light (wavelength 266 nm) of this multilayer mirror. Show. On the other hand, FIG. 7 shows the spectral reflectance of the excitation light (wavelength 266 nm) in the multilayer mirror of the comparative example.

図5から、この多層膜反射鏡の斜入射角13.5°における露光光の反射率は、60%程度で十分高いことが分かる。斜入射角が15°以下では、反射率は50%以上となっている。又、図6と図7を比較すると、波長が266nmの励起光の反射率は、実施例2の多層膜反射鏡の場合40%、比較例の多層膜反射鏡の場合63%程度であり、実施例2の多層膜反射鏡においては、従来の多層膜反射鏡の2/3近くまで低下していることが分かる。
(発明の実施の形態)
本発明の実施の形態であるEUV露光装置は、図8に示した従来のEUV露光装置の構成と基本的に同じであるが、本実施の形態においては、平面ミラー36として、本発明に係る多層膜反射鏡を使用している。このように、比較的精度を要しない照明光学系における反射鏡として、本発明の多層膜反射鏡を使用することにより、高精度を要する投影光学系の反射ミラー(M1〜M6)に入射する露光光を減少させ、投影光学系のミラーの熱変形を小さく抑えることができる。よって、露光精度の低下を抑えることができる。
From FIG. 5, it can be seen that the reflectance of the exposure light at an oblique incident angle of 13.5 ° of this multilayer mirror is sufficiently high at about 60%. When the oblique incident angle is 15 ° or less, the reflectance is 50% or more. Further, comparing FIG. 6 with FIG. 7, the reflectance of the excitation light having a wavelength of 266 nm is about 40% in the case of the multilayer reflector of Example 2 and about 63% in the case of the multilayer reflector of the comparative example. It can be seen that the multilayer mirror of Example 2 is lowered to about 2/3 of the conventional multilayer mirror.
(Embodiment of the Invention)
The EUV exposure apparatus according to the embodiment of the present invention is basically the same as the configuration of the conventional EUV exposure apparatus shown in FIG. 8, but in the present embodiment, the plane mirror 36 is used as the plane mirror 36 according to the present invention. A multilayer reflector is used. Thus, by using the multilayer film reflecting mirror of the present invention as a reflecting mirror in an illumination optical system that does not require relatively high accuracy, exposure that enters the reflecting mirror (M1 to M6) of the projection optical system that requires high accuracy is possible. Light can be reduced, and thermal deformation of the mirrors of the projection optical system can be kept small. Therefore, a decrease in exposure accuracy can be suppressed.

本発明の実施例に係る多層膜反射鏡の構成を示す概略図である。It is the schematic which shows the structure of the multilayer film reflective mirror which concerns on the Example of this invention. 本発明の第1実施例に係る多層膜反射鏡の露光光に対する反射率を示す概略図である。It is the schematic which shows the reflectance with respect to the exposure light of the multilayer film reflective mirror which concerns on 1st Example of this invention. 本発明の第1実施例に係る多層膜反射鏡の励起光に対する反射率を示すを示す概略図である。It is the schematic which shows the reflectance with respect to the excitation light of the multilayer film reflective mirror which concerns on 1st Example of this invention. 比較例の多層膜反射鏡の励起光に対する反射率を示す概略図である。It is the schematic which shows the reflectance with respect to the excitation light of the multilayer film reflective mirror of a comparative example. 本発明の第2実施例に係る多層膜反射鏡の露光光に対する反射率を示す概略図である。It is the schematic which shows the reflectance with respect to the exposure light of the multilayer film reflective mirror which concerns on 2nd Example of this invention. 本発明の第2実施例に係る多層膜反射鏡の励起光に対する反射率を示すを示す概略図である。It is the schematic which shows the reflectance with respect to the excitation light of the multilayer film reflective mirror which concerns on 2nd Example of this invention. 比較例の多層膜反射鏡の励起光に対する反射率を示す概略図である。It is the schematic which shows the reflectance with respect to the excitation light of the multilayer film reflective mirror of a comparative example. EUV露光装置の概要を示す図である。It is a figure which shows the outline | summary of an EUV exposure apparatus.

符号の説明Explanation of symbols

1…基板、2…励起光反射防止膜、3…露光光反射膜
DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Excitation light reflection prevention film, 3 ... Exposure light reflection film

Claims (4)

励起光によって露光光を励起し、当該露光光によって露光を行う露光装置に用いられる多層膜反射鏡であって、前記露光光に対して斜入射角15°以下で50%以上の反射率を有すると共に、前記励起光に対して50%以下の反射率を有し、前記多層膜が、表面側に配した露光光反射部分と基板側に配した励起光の反射防止部分を有することを特徴とする多層膜反射膜。 A multilayer film reflector used in an exposure apparatus that excites exposure light with excitation light and performs exposure with the exposure light, and has a reflectance of 50% or more at an oblique incident angle of 15 ° or less with respect to the exposure light. together, characterized in that the have a reflectance of 50% or less with respect to the excitation light, the multilayer film is to have a anti-reflection portion of excitation light arranged in the exposure light reflection portion and the substrate side arranged on the surface side A multilayer reflective film. 前記露光光が波長15nm以下のEUV光であることを特徴とする請求項に記載の多層膜反射膜。 2. The multilayer film according to claim 1 , wherein the exposure light is EUV light having a wavelength of 15 nm or less. 前記励起光が波長150nm以上のレーザー光であることを特徴とする請求項1または2に記載の多層膜反射膜。 Multilayer reflection film according to claim 1 or 2, wherein the excitation light is laser light of a wavelength equal to or more than 150 nm. 請求項1から請求項のうちいずれか1項に記載の多層膜反射鏡を有することを特徴とするEUV露光装置。 EUV exposure apparatus characterized by having a multilayer reflector according to any one of claims 1 to 3.
JP2005028049A 2005-02-03 2005-02-03 Multilayer reflector Expired - Fee Related JP4591686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028049A JP4591686B2 (en) 2005-02-03 2005-02-03 Multilayer reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028049A JP4591686B2 (en) 2005-02-03 2005-02-03 Multilayer reflector

Publications (2)

Publication Number Publication Date
JP2006216783A JP2006216783A (en) 2006-08-17
JP4591686B2 true JP4591686B2 (en) 2010-12-01

Family

ID=36979737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028049A Expired - Fee Related JP4591686B2 (en) 2005-02-03 2005-02-03 Multilayer reflector

Country Status (1)

Country Link
JP (1) JP4591686B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152037A (en) * 2006-12-18 2008-07-03 Nikon Corp Optical element, exposure apparatus and method for manufacturing device
NL1036469A1 (en) * 2008-02-27 2009-08-31 Asml Netherlands Bv Optical element, lithographic apparatus including such an optical element, device manufacturing method, and device manufactured.
NL2003299A (en) * 2008-08-28 2010-03-11 Asml Netherlands Bv Spectral purity filter and lithographic apparatus.
JP2013538433A (en) * 2010-03-24 2013-10-10 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and spectral purity filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921900A (en) * 1995-07-04 1997-01-21 Canon Inc Lighting system, exposure device and microscope device using the system, and device production
JP2004119541A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Mirror for aligner, and reflection mask therefor, as well as aligner and method for forming pattern
JP2006235595A (en) * 2004-12-30 2006-09-07 Asml Netherlands Bv Optical element, lithographic system including such an optical element, device manufacturing method and device manufactured by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921900A (en) * 1995-07-04 1997-01-21 Canon Inc Lighting system, exposure device and microscope device using the system, and device production
JP2004119541A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Mirror for aligner, and reflection mask therefor, as well as aligner and method for forming pattern
JP2006235595A (en) * 2004-12-30 2006-09-07 Asml Netherlands Bv Optical element, lithographic system including such an optical element, device manufacturing method and device manufactured by the method

Also Published As

Publication number Publication date
JP2006216783A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP6420864B2 (en) Spectral purity filters, radiation systems, and collectors
TWI528116B (en) Method of forming a spectral purity filter
JP2008270739A (en) Optical device, multilayer film reflecting mirror, aligner, and method of manufacturing device
JP6346915B2 (en) Reflective photomask and reflective mask blank
TWI724186B (en) Pellicle structures and methods of fabricating thereof
US20100259744A1 (en) Spectral filter, lithographic apparatus including such a spectral filter, device manufacturing method, and device manufactured thereby
JP2002118058A (en) Projection aligner and projection exposure method
JP4591686B2 (en) Multilayer reflector
JP2010199503A (en) Optical element, exposure apparatus, and device manufacturing method
TWI446365B (en) Projection optical system, exposure device, and method of manufacturing semiconductor device
JP2007108194A (en) Method for manufacturing multilayer film mirror, method for manufacturing optical system, exposure device, and method for manufacturing device
KR101625934B1 (en) Multilayer mirror and lithographic apparatus
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
JP2010272677A (en) Optical element, exposure apparatus, and device manufacturing method
JP2006194764A (en) Multilayer reflection mirror and exposure system
KR20150104160A (en) Euv mirror and optical system comprising euv mirror
JP2010107596A (en) Reflection type projection optical system, exposure device, and method of manufacturing device
JP2007088237A (en) Multilayer reflector and euv exposure apparatus
JP2005308629A (en) Miller unit and manufacturing method therefor
JP3958261B2 (en) Optical system adjustment method
JP5158331B2 (en) EUV exposure equipment
JP2008152037A (en) Optical element, exposure apparatus and method for manufacturing device
JP3870118B2 (en) Imaging optical system, exposure apparatus having the optical system, and aberration reduction method
JP5305938B2 (en) Exposure apparatus, light source apparatus, and device manufacturing method
JP2006179630A (en) Multilayer reflector and euv exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees