JP2009052417A - Fuel injection control device of diesel engine and method of learning fuel injection quantity of diesel engine - Google Patents

Fuel injection control device of diesel engine and method of learning fuel injection quantity of diesel engine Download PDF

Info

Publication number
JP2009052417A
JP2009052417A JP2007217346A JP2007217346A JP2009052417A JP 2009052417 A JP2009052417 A JP 2009052417A JP 2007217346 A JP2007217346 A JP 2007217346A JP 2007217346 A JP2007217346 A JP 2007217346A JP 2009052417 A JP2009052417 A JP 2009052417A
Authority
JP
Japan
Prior art keywords
learning
amount
injection
adjustment gain
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007217346A
Other languages
Japanese (ja)
Other versions
JP4710888B2 (en
Inventor
Yuki Tarusawa
祐季 樽澤
Takayoshi Inaba
孝好 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007217346A priority Critical patent/JP4710888B2/en
Priority to DE102008041483.2A priority patent/DE102008041483B4/en
Publication of JP2009052417A publication Critical patent/JP2009052417A/en
Application granted granted Critical
Publication of JP4710888B2 publication Critical patent/JP4710888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device of a diesel engine enabling a reduction in a time requiring for completing a learning. <P>SOLUTION: An ECU instructs an injection for learning to an injector of a specific cylinder when the requirements for learning are satisfied (step S1), detects the rotational speed ω of an engine at that time, calculates a torque proportional amount Tp by calculating a rotational variation amount ▵ω, rotational speed rise amounts δ of cylinders, and their averaged value δx, and calculates the actual injection amount Qest of a fuel from the injector according to the torque proportional amount Tp (steps S2, S3). When an amount obtained by multiplying an adjustment gain k by the difference between the actual injection amount Qest and the injection amount Qtrg instructed to the injector is calculated as a final learned value (step S9), the adjustment gain k is variably set according to the TQ-Q sensitivity of the injector (steps S7, S8). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼル機関の噴射量学習を実施する燃料噴射制御装置,及び前記噴射量の学習方法に関する。   The present invention relates to a fuel injection control device that performs injection amount learning of a diesel engine and a method for learning the injection amount.

従来、ディーゼル機関では、燃焼騒音の低減やNOx(窒素酸化物)を抑制する手段として、メイン噴射に先立って極少量の燃料を噴射する所謂パイロット噴射を実施する方法が知られている。しかし、噴射量の指令値が小さいパイロット噴射を行う場合には、その効果(燃焼騒音の低減、NOxの抑制)を十分に発揮させるために、微量噴射精度の向上が要求される。微量噴射精度の向上を図るには、パイロット噴射に対する指令噴射量と実際に噴射された燃料量(以下、実噴射量と称す)とのずれを検出して補正する噴射量学習が必要となる。
しかし、実噴射量を車両走行中に直接計測することは困難であるため、従来、例えば実噴射量をA/F値(空燃比)や筒内圧等で常時代用検出する方法(特許文献1参照)や、ISC(アイドル回転速度制御)等の回転数フィードバックにおける補正量から噴射量ずれを補正する方法(特許文献2参照)などがあった。
Conventionally, in a diesel engine, a method of performing so-called pilot injection in which a very small amount of fuel is injected prior to main injection is known as means for reducing combustion noise and suppressing NOx (nitrogen oxide). However, when performing pilot injection with a small injection amount command value, it is required to improve the micro-injection accuracy in order to fully exhibit the effects (reduction of combustion noise, suppression of NOx). In order to improve the micro-injection accuracy, it is necessary to perform injection amount learning for detecting and correcting a deviation between the command injection amount for pilot injection and the actually injected fuel amount (hereinafter referred to as an actual injection amount).
However, since it is difficult to directly measure the actual injection amount while the vehicle is running, conventionally, for example, a method for detecting the actual injection amount with an A / F value (air-fuel ratio), an in-cylinder pressure or the like (see Patent Document 1). ) And a method of correcting the injection amount deviation from the correction amount in the rotational speed feedback such as ISC (idle rotational speed control) (see Patent Document 2).

ところが、特許文献1の方法では、一般的には車両に装備されていないA/Fセンサや筒内圧センサを使用するため追加装備が必要となり、大きくコストアップするという問題が生じる。また、特許文献2の方法では、エンジンの気筒間ばらつきや、例えばエアコンのような外部負荷等のエンジンの負荷要因が変動することから、エンジン回転数と噴射量との一義的な関係が崩れる場合がある。このような負荷要因の変動を加えた状態でバランスしている回転数と指令噴射量との関係から学習を行うため、高精度な噴射量学習が困難である。   However, in the method of Patent Document 1, since an A / F sensor or an in-cylinder pressure sensor that is generally not installed in a vehicle is used, additional equipment is required, resulting in a problem of significant cost increase. Further, in the method of Patent Document 2, the engine-to-cylinder variation and engine load factors such as an external load such as an air conditioner fluctuate, so that the unambiguous relationship between the engine speed and the injection amount is lost. There is. Since learning is performed from the relationship between the rotational speed and the command injection amount that are balanced in a state in which such a change in load factor is applied, it is difficult to perform highly accurate injection amount learning.

そこで、特許文献3においては、上記の問題を解決するため、インジェクタに対する指令噴射量がゼロ以下となる無噴射時に単発噴射を実施し、その単発噴射によって上昇するエンジン回転数の変化量(回転数上昇量δx)と、単発噴射を実施した時のエンジン回転数ω0との積をトルク比例量Tpとして算出し、トルク比例量Tpより算出した発生トルクから実噴射量を推定し、推定した実噴射量と指令噴射量との差を噴射量ずれとして検出することで、トルクセンサ等の追加装備を必要とせずに噴射量学習を高精度に行う方式が提案されている。
特開平11−294227号公報 特開2002−295291号公報 特開2005−36788号公報
Therefore, in Patent Document 3, in order to solve the above-described problem, a single injection is performed at the time of non-injection when the command injection amount to the injector is zero or less, and the amount of change in the engine speed (the number of rotations) that is increased by the single injection The product of the increase amount δx) and the engine speed ω0 when single injection is performed is calculated as a torque proportional amount Tp, the actual injection amount is estimated from the generated torque calculated from the torque proportional amount Tp, and the estimated actual injection A method has been proposed in which the injection amount learning is performed with high accuracy without detecting an additional equipment such as a torque sensor by detecting the difference between the amount and the command injection amount as an injection amount deviation.
JP 11-294227 A JP 2002-295291 A JP 2005-36788 A

しかしながら、特許文献3の方式について、学習が完了するまでの所要時間,すなわち学習の収束性を検討すると、その収束性は、インジェクタの噴射期間TQと噴射量Qとの感度(TQ−Q特性)の大小に応じて決まる。図7に示すように、線形をなすTQ−Q特性の傾きの大小が、インジェクタの感度の大小に対応する。   However, considering the time required for completing the learning, that is, the convergence of learning in the method of Patent Document 3, the convergence is determined by the sensitivity between the injection period TQ and the injection amount Q of the injector (TQ-Q characteristic). It depends on the size of. As shown in FIG. 7, the magnitude of the slope of the linear TQ-Q characteristic corresponds to the magnitude of the sensitivity of the injector.

図8は、感度が比較的小さいインジェクタについて学習を行う場合のプロセスを示す。図中に2点鎖線で示す直線が、インジェクタのスペックとして与えられているTQ−Q特性(特性マップ)であり、この特性マップを基準として学習を開始する。未学習状態の実噴射特性は実線で示している。
図8(a)に示すように、目標噴射量Qtrg.を期待して、特性マップに基づき噴射期間TQ1を与えた場合、実際の噴射量Q1がより大きな値であったとする。両者の差ΔQを補正するため、特性マップ上で噴射期間差ΔTQ1を学習値として得ると、次回の学習では噴射期間として(TQ1−ΔTQ1)を設定する。しかし、実噴射特性の感度が特性マップに比較して小さいため補正が不足する結果、実際の噴射量Q2はまだ大きく、噴射期間差ΔTQ2を学習値として得ることになる。以上のような学習パターンを繰り返すことで、学習が「真の学習量」に近づくように収束して行く。
FIG. 8 shows a process when learning is performed for an injector having a relatively low sensitivity. A straight line indicated by a two-dot chain line in the figure is a TQ-Q characteristic (characteristic map) given as an injector specification, and learning is started using this characteristic map as a reference. The actual injection characteristic in the unlearned state is indicated by a solid line.
As shown in FIG. 8A, when the target injection amount Qtrg. Is expected and the injection period TQ1 is given based on the characteristic map, it is assumed that the actual injection amount Q1 has a larger value. In order to correct the difference ΔQ between the two, if the injection period difference ΔTQ1 is obtained as a learning value on the characteristic map, (TQ1−ΔTQ1) is set as the injection period in the next learning. However, since the sensitivity of the actual injection characteristic is smaller than that of the characteristic map, the correction is insufficient. As a result, the actual injection amount Q2 is still large, and the injection period difference ΔTQ2 is obtained as the learning value. By repeating the learning pattern as described above, the learning converges so as to approach the “true learning amount”.

一方、図9に示すように、感度が比較的大きいインジェクタについて学習を行う場合は、(a)に示す最初の学習で得た学習値ΔTQ1を次回の学習に反映させると補正が過剰となり(過補正)、実際の噴射量Q2は特性マップを下回る[(b)参照]。このように、学習値の符号が反転するケースも含みながら学習が収束して行く。   On the other hand, as shown in FIG. 9, when learning is performed for an injector with relatively high sensitivity, if the learning value ΔTQ1 obtained in the first learning shown in (a) is reflected in the next learning, the correction becomes excessive (excessive). Correction), the actual injection amount Q2 falls below the characteristic map [see (b)]. Thus, learning converges including the case where the sign of the learning value is inverted.

このような学習については、一般に、許容される学習完了時間又は距離,或いは学習精度や、他の制御との間で生じる干渉を回避するための制限などから、学習の繰り返し回数に上限を設定することが一般的である(図10参照)。そして、図7に示すように、特性マップを基準とするTQ−Q感度のばらつきが比較的狭い範囲Aに収まっている場合は、範囲A内で感度が比較的小さい図11(a)のケース,範囲A内で感度が比較的大きい図11(b)のケースの何れも、許容される繰り返し回数に達する以前に、学習が完了することが期待できる。   For such learning, in general, an upper limit is set for the number of repetitions of learning from an allowable learning completion time or distance, or learning accuracy, or a restriction for avoiding interference with other controls. This is common (see FIG. 10). As shown in FIG. 7, when the variation in TQ-Q sensitivity based on the characteristic map is within a relatively narrow range A, the sensitivity is relatively small within the range A as shown in FIG. In any of the cases shown in FIG. 11B, which has a relatively high sensitivity within the range A, it can be expected that the learning is completed before the allowable number of repetitions is reached.

一方、図7に示すように、TQ−Q感度のばらつきが比較的広い範囲Bにおいては、範囲B内で感度が比較的小さい図12(a)のケースでは、各学習において得られる補正量が小さく、範囲Bで感度が比較的大きい図12(b)のケースでは、各学習において得られる補正量が大きく変化して振動するため、何れも許容繰り返し回数に達する以前に、学習の完了が期待できなくなる。特に後者のワーストケースでは、学習量が発散することで完了に至らないおそれもある。
以上のように、学習完了所要時間が長くなる場合は、時間的な効率が悪化するだけではなく、インジェクタが劣化したり、環境の違いや燃料の違いなどによる噴射量変化に対する検出能力が低下するなどの問題にも繋がり、総じて学習精度が悪化することになる。
On the other hand, as shown in FIG. 7, in the range B where the variation in the TQ-Q sensitivity is relatively wide, in the case of FIG. In the case of FIG. 12B, which is small and has relatively high sensitivity in the range B, the correction amount obtained in each learning greatly changes and vibrates, so that learning is expected to complete before reaching the allowable number of repetitions. become unable. Especially in the latter worst case, there is a possibility that the learning amount may not be completed due to the diverging amount.
As described above, when the time required for completion of learning becomes long, not only the time efficiency is deteriorated, but also the injector is deteriorated, or the detection ability for the change in the injection amount due to the difference in the environment or the difference in the fuel is lowered. As a result, the learning accuracy generally deteriorates.

本発明は、上記事情に鑑みて成されたもので、その目的は、インジェクタの感度が様々に異なる場合でも、学習完了所要時間の短縮を図ることが可能なディーゼル機関の燃料噴射制御装置,及びディーゼル機関の燃料噴射量学習方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide a fuel injection control device for a diesel engine capable of reducing the time required for completion of learning even when the sensitivity of the injectors varies, and It is to provide a fuel injection amount learning method for a diesel engine.

請求項1記載のディーゼル機関の燃料噴射制御装置によれば、学習条件が成立していると判定された場合に特定気筒のインジェクタに学習用噴射を指令し、その場合のディーゼル機関の回転速度を機関回転数として検出する。それから、学習用噴射を実施した場合と実施しなかった場合との機関回転数の変動量を回転数上昇量として算出し、その回転数上昇量を基に、インジェクタから実際に噴射された燃料の実噴射量を算出する。そして、噴射補正量算出手段が、算出された実噴射量とインジェクタに指令した指令噴射量との差に調整ゲインを乗じたものを噴射補正量として算出する場合に、調整ゲイン設定手段は、調整ゲインを、インジェクタにおける噴射期間に対する燃料噴射量の感度に応じて可変設定する。
即ち、上述したように、学習完了所要時間はインジェクタの感度の大小に応じて異なるため、噴射補正量を算出する場合に実噴射量と指令噴射量との差に乗じる調整ゲインを前記感度に応じて可変設定すれば、調整ゲインの最適化が可能となり、インジェクタの感度が様々に異なる場合でも、学習完了所要時間を適切に短縮することができる。
According to the fuel injection control device for a diesel engine according to claim 1, when it is determined that the learning condition is satisfied, the injection for learning is instructed to the injector of the specific cylinder, and the rotational speed of the diesel engine in that case is set. Detected as engine speed. Then, the fluctuation amount of the engine speed when the learning injection is performed and when it is not performed is calculated as the engine speed increase amount, and based on the engine speed increase amount, the fuel actually injected from the injector is calculated. The actual injection amount is calculated. When the injection correction amount calculation means calculates the injection correction amount by multiplying the difference between the calculated actual injection amount and the command injection amount commanded to the injector by the adjustment gain, the adjustment gain setting means The gain is variably set according to the sensitivity of the fuel injection amount with respect to the injection period in the injector.
That is, as described above, the learning completion time varies depending on the sensitivity of the injector, and therefore, when calculating the injection correction amount, an adjustment gain that multiplies the difference between the actual injection amount and the command injection amount is determined according to the sensitivity. If it is variably set, the adjustment gain can be optimized, and the time required for completion of learning can be shortened appropriately even when the sensitivity of the injector varies.

請求項2記載のディーゼル機関の燃料噴射制御装置によれば、噴射補正量算出手段が、実噴射量と指令噴射量との差が所定範囲外である間に学習処理を繰り返す場合、調整ゲイン設定手段は、学習処理の繰り返し回数をカウントし、その繰り返し回数が増加するのに応じて調整ゲインの絶対値が大きくなるように設定する。即ち、学習処理の繰り返し回数が多くなる場合は、インジェクタの感度が比較的小さいと推定されるため、調整ゲインの絶対値をより大きくすることで、学習結果の収束を早めることができる。   According to the fuel injection control device for a diesel engine according to claim 2, when the injection correction amount calculation means repeats the learning process while the difference between the actual injection amount and the command injection amount is outside the predetermined range, the adjustment gain setting is performed. The means counts the number of repetitions of the learning process, and sets the absolute value of the adjustment gain to increase as the number of repetitions increases. That is, when the number of repetitions of the learning process increases, it is estimated that the sensitivity of the injector is relatively small. Therefore, the convergence of the learning result can be accelerated by increasing the absolute value of the adjustment gain.

請求項3記載のディーゼル機関の燃料噴射制御装置によれば、調整ゲイン設定手段は、繰り返し回数が上限値を超えると、以降は調整ゲインを一定に維持する。即ち、学習処理をある程度繰り返しても学習結果が収束するに至らない場合には、燃料噴射の制御系に何らかの異常があると推定される。従って、そのようなケースでは、調整ゲインを変更せず一定に維持することで調整を停止する。   According to the fuel injection control device for a diesel engine according to the third aspect, when the number of repetitions exceeds the upper limit value, the adjustment gain setting means thereafter maintains the adjustment gain constant. That is, if the learning result does not converge even after repeating the learning process to some extent, it is estimated that there is some abnormality in the fuel injection control system. Therefore, in such a case, the adjustment is stopped by keeping the adjustment gain constant without changing it.

請求項4記載のディーゼル機関の燃料噴射制御装置によれば、調整ゲイン設定手段は、学習処理の繰り返し回数が所定の閾値を超えた時点から、調整ゲインの可変設定を開始する。すなわち、インジェクタの感度が比較的小さい場合と比較的大きい場合とを比較すれば、学習完了所要時間は前者の方が短いから、後者のケースについて調整ゲインを可変設定すれば、学習完了所要時間を有効に短縮することができる。そして、インジェクタの感度がある程度大きい場合は、前述したように学習結果は振動する傾向を示すため、学習処理をより多く繰り返すようになる。したがって、その繰り返し回数に基づいて、調整ゲインを初期値から変更するタイミングを適切に決定することができる。   According to the fuel injection control device for a diesel engine as set forth in claim 4, the adjustment gain setting means starts the variable setting of the adjustment gain when the number of repetitions of the learning process exceeds a predetermined threshold. That is, if the sensitivity of the injector is comparatively small and comparatively large, the learning completion time is shorter in the former. Therefore, if the adjustment gain is variably set in the latter case, the learning completion time is reduced. It can be shortened effectively. When the sensitivity of the injector is high to some extent, the learning result tends to vibrate as described above, so that the learning process is repeated more frequently. Therefore, it is possible to appropriately determine the timing for changing the adjustment gain from the initial value based on the number of repetitions.

請求項5記載のディーゼル機関の燃料噴射制御装置によれば、調整ゲイン設定手段は、前回と今回の最終噴射補正量の符号を比較し、双方の符号が一致するか又は異なるかに応じて調整ゲインの増減を設定する。即ち、前回と今回の最終噴射補正量の符号が一致する場合は、学習における補正量が不足している傾向にあり、逆に上記符号が異なる場合は、学習における補正量が過剰な傾向にあると推定される。従って、上記符号の一致,不一致に応じて調整ゲインの増減を設定すれば、学習の過程で与える補正量を最適化して、学習完了所要時間をより一層短縮することができる。   According to the fuel injection control device for a diesel engine according to claim 5, the adjustment gain setting means compares the sign of the last injection correction amount of the previous time with that of the current time, and adjusts according to whether the signs of both coincide or differ. Set gain increase / decrease. That is, when the sign of the last injection correction amount of the previous time coincides with the sign of the current injection, the correction amount in learning tends to be insufficient, and conversely, when the sign is different, the correction amount in learning tends to be excessive. It is estimated to be. Therefore, if the increase / decrease of the adjustment gain is set in accordance with the coincidence / non-coincidence of the codes, the correction amount given in the learning process can be optimized and the learning completion time can be further shortened.

以下、本発明の一実施例について図1乃至図6を参照して説明する。図6は、ディーゼル機関の燃料噴射システムを示す全体構成図である。燃料噴射システムは、例えば4気筒のディーゼル機関(以下、エンジン1と称す)に適用されるもので、高圧燃料を蓄えるコモンレール2と、燃料タンク3から汲み上げた燃料を加圧してコモンレール2に供給する燃料供給ポンプ4と、コモンレール2より供給される高圧燃料をエンジン1の気筒内(燃焼室1a)に噴射するインジェクタ5と、本システムを電子制御する電子制御ユニット(以下ECU(Electronic Control Unit)6と称す)とを備えている。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 6 is an overall configuration diagram showing a fuel injection system of a diesel engine. The fuel injection system is applied to, for example, a four-cylinder diesel engine (hereinafter referred to as engine 1). The common rail 2 that stores high-pressure fuel and the fuel pumped from the fuel tank 3 are pressurized and supplied to the common rail 2. A fuel supply pump 4, an injector 5 for injecting high-pressure fuel supplied from the common rail 2 into the cylinder (combustion chamber 1a) of the engine 1, and an electronic control unit (hereinafter referred to as ECU (Electronic Control Unit)) 6 for electronically controlling the system For example).

コモンレール2は、ECU6により目標レール圧が設定され、燃料供給ポンプ4から供給された高圧燃料を目標レール圧まで蓄圧する。このコモンレール2には、蓄圧された燃料圧力(以下、レール圧と称す)を検出してECU6に出力する圧力センサ7と、レール圧が予め設定された上限値を超えないように制限するプレッシャリミッタ8が取り付けられている。   The common rail 2 has a target rail pressure set by the ECU 6 and accumulates the high-pressure fuel supplied from the fuel supply pump 4 to the target rail pressure. The common rail 2 includes a pressure sensor 7 that detects accumulated fuel pressure (hereinafter referred to as rail pressure) and outputs it to the ECU 6, and a pressure limiter that limits the rail pressure so as not to exceed a preset upper limit value. 8 is attached.

燃料供給ポンプ4は、エンジン1に駆動されて回転するカム軸9と、このカム軸9に駆動されて燃料タンク3から燃料を汲み上げるフィードポンプ10と、カム軸9の回転に同期してシリンダ11内を往復運動するプランジャ12と、フィードポンプ10からシリンダ11内の加圧室13に吸入される燃料量を調量する電磁調量弁14とを有している。   The fuel supply pump 4 includes a camshaft 9 that is driven by the engine 1 to rotate, a feed pump 10 that is driven by the camshaft 9 to pump fuel from the fuel tank 3, and a cylinder 11 in synchronization with the rotation of the camshaft 9. It has a plunger 12 that reciprocates inside, and an electromagnetic metering valve 14 that regulates the amount of fuel drawn from the feed pump 10 into the pressurizing chamber 13 in the cylinder 11.

この燃料供給ポンプ4においては、プランジャ12がシリンダ11内を上死点から下死点に向かって移動する際に、フィードポンプ10より送り出された燃料が電磁調量弁14で調量され、吸入弁15を押し開いて加圧室13に吸入される。その後、プランジャ12がシリンダ11内を下死点から上死点へ向かって移動する際に、加圧室13の燃料がプランジャ12によって加圧され、その加圧された燃料が、吐出弁16を押し開いてコモンレール2に圧送される。   In the fuel supply pump 4, when the plunger 12 moves in the cylinder 11 from the top dead center toward the bottom dead center, the fuel delivered from the feed pump 10 is metered by the electromagnetic metering valve 14 and sucked. The valve 15 is pushed open and sucked into the pressurizing chamber 13. Thereafter, when the plunger 12 moves in the cylinder 11 from the bottom dead center to the top dead center, the fuel in the pressurizing chamber 13 is pressurized by the plunger 12, and the pressurized fuel passes through the discharge valve 16. Pushed open and pumped to the common rail 2.

インジェクタ5は、エンジン1の気筒毎に搭載され、それぞれ高圧配管17を介してコモンレール2に接続されている。このインジェクタ5は、ECU6の指令に基づいて作動する電磁弁5aと、この電磁弁5aへの通電時に燃料を噴射するノズル5bとを備える。
電磁弁5aは、コモンレール2の高圧燃料が印加される圧力室(図示せず)から低圧側に通じる低圧通路(図示せず)を開閉するもので、通電時に低圧通路を開放し、通電停止時に低圧通路を遮断する。
The injector 5 is mounted for each cylinder of the engine 1 and is connected to the common rail 2 via a high-pressure pipe 17. The injector 5 includes an electromagnetic valve 5a that operates based on a command from the ECU 6, and a nozzle 5b that injects fuel when the electromagnetic valve 5a is energized.
The solenoid valve 5a opens and closes a low-pressure passage (not shown) that leads from the pressure chamber (not shown) to which the high-pressure fuel of the common rail 2 is applied to the low-pressure side. Shut off the low pressure passage.

ノズル5bは、噴孔を開閉するニードル(図示せず)を内蔵し、圧力室の燃料圧力がニードルを閉弁方向(噴孔を閉じる方向)に付勢している。従って、電磁弁5aへの通電により低圧通路が開放されて圧力室の燃料圧力が低下すると、ニードルがノズル5b内を上昇して開弁する(噴孔を開く)ことにより、コモンレール2より供給された高圧燃料を噴孔より噴射する。一方、電磁弁5aへの通電停止により低圧通路が遮断されて、圧力室の燃料圧力が上昇すると、ニードルがノズル5b内を下降して閉弁することにより、噴射が終了する。   The nozzle 5b incorporates a needle (not shown) that opens and closes the nozzle hole, and the fuel pressure in the pressure chamber urges the needle in the valve closing direction (direction in which the nozzle hole is closed). Accordingly, when the low pressure passage is opened by energization of the electromagnetic valve 5a and the fuel pressure in the pressure chamber decreases, the needle rises in the nozzle 5b and opens (opens the nozzle hole), thereby being supplied from the common rail 2. High pressure fuel is injected from the nozzle hole. On the other hand, when the low pressure passage is blocked by stopping energization of the electromagnetic valve 5a and the fuel pressure in the pressure chamber rises, the needle descends in the nozzle 5b and closes, thereby terminating the injection.

ECU6は、エンジン回転数(1分間当たりの回転数,機関回転数)を検出する回転数センサ(回転数検出手段)18と、アクセル開度(エンジン負荷)を検出するアクセル開度センサ(図示せず)、及び前記レール圧を検出する圧力センサ7等が接続され、これらのセンサで検出されたセンサ情報に基づいて、コモンレール2の目標レール圧と、エンジン1の運転状態に適した噴射時期及び噴射量等を演算し、その演算結果に従って、燃料供給ポンプ4の電磁調量弁14及びインジェクタ5の電磁弁5aを電子制御する。   The ECU 6 includes a rotational speed sensor (rotational speed detection means) 18 that detects an engine rotational speed (rotational speed per minute, engine rotational speed), and an accelerator opening sensor (not shown) that detects an accelerator opening (engine load). And a pressure sensor 7 for detecting the rail pressure, etc., and based on sensor information detected by these sensors, the target rail pressure of the common rail 2 and the injection timing suitable for the operating state of the engine 1 and The injection amount and the like are calculated, and the electromagnetic metering valve 14 of the fuel supply pump 4 and the electromagnetic valve 5a of the injector 5 are electronically controlled according to the calculation result.

また、ECU6による噴射量制御(噴射時期及び噴射量の制御)では、メイン噴射に先立って極小量のパイロット噴射を実施する時に、そのパイロット噴射に対する噴射量学習を行っている。なお、ECU6は、本発明に係わる学習条件判定手段、学習用噴射指令手段、回転数上昇量算出手段、噴射量算出手段、噴射補正量算出手段、噴射量補正手段、調整ゲイン設定手段などの機能を有している。   Further, in the injection amount control (control of injection timing and injection amount) by the ECU 6, when performing the minimum amount of pilot injection prior to the main injection, the injection amount learning for the pilot injection is performed. The ECU 6 functions as a learning condition determination unit, a learning injection command unit, a rotation speed increase amount calculation unit, an injection amount calculation unit, an injection correction amount calculation unit, an injection amount correction unit, and an adjustment gain setting unit according to the present invention. have.

次に、本実施例の作用について図1乃至図5も参照して説明する。まず、ECU6が噴射量学習を実行する処理手順について、図1及び図2に示すフローチャートに基づき説明する。尚、学習処理の基本的部分は、特許文献3に開示されているものと同様である。ECU6は、所定の学習条件が成立している場合に、特定気筒のインジェクタ5に対し目量噴射量Qtrg.(指令噴射量,実際には噴射期間TQで決定)を与えて学習用の単発噴射を実施し(ステップS1)、その場合のエンジン1の状態変化量を各センサ等により検出する(ステップS2)。   Next, the operation of this embodiment will be described with reference to FIGS. First, a processing procedure in which the ECU 6 performs the injection amount learning will be described based on the flowcharts shown in FIGS. 1 and 2. The basic part of the learning process is the same as that disclosed in Patent Document 3. When a predetermined learning condition is satisfied, the ECU 6 gives a single-quantity injection amount Qtrg. (Command injection amount, actually determined by the injection period TQ) to the injector 5 of the specific cylinder, and single injection for learning. (Step S1), and the state change amount of the engine 1 in that case is detected by each sensor or the like (step S2).

ここでの状態変化量の検出とは、図5や、特許文献3における図4のフローチャートに示されているように、エンジン1の回転数ωの検出,気筒毎の回転数変動量Δω,回転数上昇量δの算出、並びにその平均値δxの算出やトルク比例量Tpの算出(Tp=δx・ω0)などである。また、図5は特許文献3の図1相当図であり、本実施例における学習処理の基本的内容を示す。この例では、学習用の単発噴射を実施した場合に、第3気筒について回転数変動量Δω3を算出している。   The detection of the state change amount here is detection of the rotational speed ω of the engine 1, the rotational speed fluctuation amount Δω for each cylinder, as shown in the flowchart of FIG. Calculation of the number increase amount δ, calculation of the average value δx, calculation of the torque proportional amount Tp (Tp = δx · ω0), and the like. FIG. 5 is a view corresponding to FIG. 1 of Patent Document 3 and shows the basic contents of the learning process in the present embodiment. In this example, when the single injection for learning is performed, the rotational speed fluctuation amount Δω3 is calculated for the third cylinder.

続くステップS3では、インジェクタ5の推定実噴射量Qest.を算出する。推定実噴射量Qest.は、トルク比例量が推定実噴射量Qest.の一次関数で表されるため(Tp=a・Qest.+b)その逆関数により算出される。次に、目量噴射量Qtrg.と推定実噴射量Qest.とのズレ量ΔQを算出すると(ステップS4)、そのズレ量ΔQが所定範囲A内にあるか、即ち、|ΔQ|≦A(学習完了判定値)であるか否かを判定する(ステップS5)。ここで、条件|ΔQ|≦Aが成立すれば(YES)、その時点で学習量が確定することになり(ステップS11)学習処理は終了する。
一方、ステップS5において|ΔQ|>Aであれば(NO)、学習処理の繰り返し回数を計数するためのカウンタnをカウントアップする(ステップS6)。それから、データばらつきパターンと学習量を算出する(ステップS7)。
In the subsequent step S3, an estimated actual injection amount Qest. Of the injector 5 is calculated. The estimated actual injection amount Qest. Is calculated by the inverse function because the torque proportional amount is represented by a linear function of the estimated actual injection amount Qest. (Tp = a · Qest. + B). Next, when a deviation amount ΔQ between the eye quantity injection amount Qtrg. And the estimated actual injection amount Qest. Is calculated (step S4), whether the deviation amount ΔQ is within a predetermined range A, that is, | ΔQ | ≦ A ( It is determined whether or not it is a learning completion determination value (step S5). If the condition | ΔQ | ≦ A is satisfied (YES), the learning amount is fixed at that time (step S11), and the learning process ends.
On the other hand, if | ΔQ |> A in step S5 (NO), the counter n for counting the number of repetitions of the learning process is counted up (step S6). Then, a data variation pattern and a learning amount are calculated (step S7).

ここで、ステップS7の処理について図2を参照して説明する。先ず、前回の学習量TQGoldをメモリに書き出して記憶させると(ステップS7_1)、ズレ量ΔQと、TQ−Q特性マップより、今回の学習量TQGを算出する(ステップS7_2)。そして、今回の学習量TQGと前回の学習量TQGoldの符号が同じか否かを判断し(ステップS7_3)、同じであれば(YES)学習ばらつきパターンPATを「1」にセットし(ステップS7_4)、双方の符合が異なれば(NO)学習ばらつきパターンPATを「2」にセットする(ステップS7_5)。
つまり、今回と前回の学習量の符号が同じであるということは、補正が「真の学習量」を超えることなくその値に収束する過程にあることを示す(補正不足)。一方、両者の符号が異なるということは、前回の補正が「真の学習量」を超えて過剰に行なわれたことを示す(過補正)。
Here, the process of step S7 will be described with reference to FIG. First, when the previous learning amount TQGold is written and stored in the memory (step S7_1), the current learning amount TQG is calculated from the deviation amount ΔQ and the TQ-Q characteristic map (step S7_2). Then, it is determined whether or not the signs of the current learning amount TQG and the previous learning amount TQGold are the same (step S7_3). If they are the same (YES), the learning variation pattern PAT is set to “1” (step S7_4). If the signs are different from each other (NO), the learning variation pattern PAT is set to “2” (step S7_5).
That is, the fact that the sign of the current learning amount and the previous learning amount are the same indicates that the correction is in the process of converging to that value without exceeding the “true learning amount” (insufficient correction). On the other hand, the fact that the signs of the two are different indicates that the previous correction was performed excessively beyond the “true learning amount” (overcorrection).

再び、図1を参照する。ステップS7に続くステップS8では、カウンタnが示す繰り返し回数と学習ばらつきパターンPATの値に応じて、調整ゲインkを決定する。調整ゲインkは、図3に示すテーブルにより決定する。図3(a),(b)は、夫々PAT=1,2の場合に対応し、PAT=1の場合、調整ゲインkは、初期値「1」からスタートし、繰り返し回数nがある程度増加した段階から漸増する。一方、PAT=2の場合、調整ゲインkは、初期値「1」からスタートして繰り返し回数nがある程度増加した段階から漸減するようになっている。   Reference is again made to FIG. In step S8 following step S7, the adjustment gain k is determined according to the number of repetitions indicated by the counter n and the value of the learning variation pattern PAT. The adjustment gain k is determined by the table shown in FIG. FIGS. 3A and 3B correspond to the cases of PAT = 1 and 2, respectively. When PAT = 1, the adjustment gain k starts from the initial value “1”, and the number of repetitions n increases to some extent. Increase gradually from the stage. On the other hand, when PAT = 2, the adjustment gain k starts from the initial value “1” and gradually decreases from the stage where the number of repetitions n has increased to some extent.

すなわち、何れの場合も繰り返し回数nについては閾値Nthが設定されており、繰り返し回数nが小さい(n≦Nth)の領域では、調整ゲインkは初期値「1」を維持するように設定されている。そして、(n>Nth)の領域から調整ゲインkを初期値「1」から増減させる。また、何れの場合も、繰り返し回数nについては上限Nlimが設定されており、上限Nlimに達した以降は、PAT=1の場合、調整ゲインkは最大値「1.7」で一定となり、PAT=2の場合、調整ゲインkは最小値「0.3」で一定となる。繰り返し回数nが上限Nlimに達するということは、学習をある程度繰り返しても補正が「真の学習量」に収束しないということであるから、制御系に何らかの異常があると推察される。従って、この場合は、学習処理を停止して異常報知を行うなどの処置を施すのが好ましい。   That is, in any case, the threshold Nth is set for the number of repetitions n, and the adjustment gain k is set to maintain the initial value “1” in the region where the number of repetitions n is small (n ≦ Nth). Yes. Then, the adjustment gain k is increased or decreased from the initial value “1” from the region (n> Nth). In any case, an upper limit Nlim is set for the number of repetitions n, and after reaching the upper limit Nlim, when PAT = 1, the adjustment gain k is constant at the maximum value “1.7”. In the case of = 2, the adjustment gain k is constant at the minimum value “0.3”. If the number of repetitions n reaches the upper limit Nlim, it means that the correction does not converge to the “true learning amount” even if learning is repeated to some extent, so it is assumed that there is some abnormality in the control system. Therefore, in this case, it is preferable to take measures such as stopping the learning process and notifying abnormality.

ステップS8において調整ゲインkが決定されると、ステップS7で算出した学習量TQGに調整ゲインkを乗じて最終学習量を算出する(ステップS9)。それから、最終学習量を次回の単発噴射指令に反映させて(ステップS10)、ステップS1に戻る。   When the adjustment gain k is determined in step S8, the final learning amount is calculated by multiplying the learning amount TQG calculated in step S7 by the adjustment gain k (step S9). Then, the final learning amount is reflected in the next single injection command (step S10), and the process returns to step S1.

図4は、以上のようにして調整ゲインkを可変設定した場合の効果を説明するものである。図中に破線で示すように、本実施例とは異なり学習処理に調整ゲインkを反映させない場合、インジェクタ5の感度が比較的大きく学習パターンが振動しているため、許容繰り返し回数Nlimに達するまで学習が完了しないケースがあるとする。この学習パターンについて本実施例のように調整ゲインkを反映させると、感度の大きさに応じた大きな値の調整ゲインkが作用する結果、実線で示すように学習がより速く収束するため、許容繰り返し回数Nlimに達する以前に学習が完了するように改善される。   FIG. 4 explains the effect when the adjustment gain k is variably set as described above. As indicated by a broken line in the figure, unlike the present embodiment, when the adjustment gain k is not reflected in the learning process, the sensitivity of the injector 5 is relatively large and the learning pattern vibrates, so that the allowable number of repetitions Nlim is reached. Suppose that there is a case where learning is not completed. When the adjustment gain k is reflected on this learning pattern as in the present embodiment, the adjustment gain k having a large value according to the sensitivity level acts. As a result, the learning converges faster as shown by the solid line. Improvement is made so that learning is completed before the number of repetitions Nlim is reached.

以上のように本実施例によれば、ECU6は、学習条件が成立している場合に特定気筒のインジェクタ5に学習用噴射を指令し、その場合のエンジン1の回転数ωを検出し、回転変動量Δω,各気筒の回転数上昇量δ,並びにその平均値δxを算出してトルク比例量Tpを算出し、そのトルク比例量Tpに基づきインジェクタ5からの燃料の実噴射量Qest.を算出する。そして、実噴射量Qest.とインジェクタ5に指令した噴射量Qtrg.との差に調整ゲインkを乗じたものを最終学習量として算出する場合に、その調整ゲインkを、インジェクタ5のTQ−Q感度に応じて可変設定するようにした。   As described above, according to this embodiment, the ECU 6 instructs the injector 5 for a specific cylinder to perform learning injection when the learning condition is satisfied, detects the rotational speed ω of the engine 1 in that case, and rotates the engine. The torque proportional amount Tp is calculated by calculating the fluctuation amount Δω, the rotational speed increase amount δ of each cylinder, and the average value δx thereof, and the actual fuel injection amount Qest. From the injector 5 is calculated based on the torque proportional amount Tp. To do. When the difference between the actual injection amount Qest. And the injection amount Qtrg. Commanded to the injector 5 is multiplied by the adjustment gain k, the adjustment gain k is calculated as TQ-Q of the injector 5. Variably set according to sensitivity.

即ち、学習完了所要時間はインジェクタ5の感度の大小に応じて異なるため、最終学習量を算出する場合に乗じる調整ゲインkを前記感度に応じて可変設定すれば、調整ゲインkの最適化が可能となり、インジェクタ5の感度が様々に異なる場合でも、学習完了所要時間を適切に短縮することができる。
そして、ECU6は、実噴射量Qest.と指令噴射量Qtrg.との差ΔQが所定範囲A外である間に学習処理を繰り返す場合、学習処理の繰り返し回数nをカウントし、その繰り返し回数nが増加するのに応じて調整ゲインkの絶対値が大きくなるように設定するので、インジェクタ5の感度に応じて学習結果の収束を早めることができる。
That is, the learning completion time varies depending on the sensitivity of the injector 5, so that the adjustment gain k can be optimized if the adjustment gain k to be multiplied when calculating the final learning amount is variably set according to the sensitivity. Thus, even when the sensitivity of the injector 5 varies, the time required for completion of learning can be shortened appropriately.
When the learning process is repeated while the difference ΔQ between the actual injection amount Qest. And the command injection amount Qtrg. Is outside the predetermined range A, the ECU 6 counts the number of repetitions n of the learning process, and the repetition number n is Since the absolute value of the adjustment gain k is set to increase as it increases, the convergence of the learning result can be accelerated according to the sensitivity of the injector 5.

更に、ECU6は、繰り返し回数nが上限値Nlimを超えると、以降は調整ゲインkを一定に維持するので、燃料噴射の制御系に何らかの異常があると推定される場合に、調整ゲインkを変更せず一定に維持して調整を停止する。加えて、繰り返し回数nが閾値Nthを超えた時点から調整ゲインkを初期値「1」より変更するので、インジェクタ5の感度が比較的大きいと推定される場合に調整ゲインkを可変設定して、学習完了所要時間を有効に短縮することができる。そして、インジェクタ5の感度がある程度大きい場合、学習結果は振動する傾向を示すため学習処理をより多く繰り返すので、繰り返し回数nに基づいて、調整ゲインkを初期値から変更するタイミングを適切に決定できる。
また、ECU6は、前回と今回の最終噴射補正量の符号を比較し、双方の符号が一致するか,異なるかに応じて調整ゲインkの増減を設定するので、学習の過程で与える補正量を最適化して、学習完了所要時間をより一層短縮することができる。
Further, since the ECU 6 keeps the adjustment gain k constant after the repetition number n exceeds the upper limit value Nlim, the ECU 6 changes the adjustment gain k when it is estimated that there is some abnormality in the fuel injection control system. Without adjustment, stop the adjustment. In addition, since the adjustment gain k is changed from the initial value “1” when the number of repetitions n exceeds the threshold value Nth, the adjustment gain k is variably set when the sensitivity of the injector 5 is estimated to be relatively high. The time required for completion of learning can be effectively shortened. When the sensitivity of the injector 5 is high to some extent, the learning result shows a tendency to vibrate, and the learning process is repeated more frequently. Therefore, the timing for changing the adjustment gain k from the initial value can be appropriately determined based on the number of repetitions n. .
Further, the ECU 6 compares the sign of the last injection correction amount of the previous time with that of the current time, and sets the increase / decrease of the adjustment gain k depending on whether the signs are the same or different. The time required for completion of learning can be further reduced by optimization.

本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、以下のような変形または拡張が可能である。
調整ゲインkは、学習処理の繰り返し回数nが比較的少ない領域において、初期値から変更するようにしても良い。
調整ゲインkの上限,下限は、適宜変更して設定すれば良い。
繰り返し回数nについて上限Nlimを設定したり、調整ゲインkに対して上限,下限を設定するのは、必要に応じて行えば良い。
前回と今回の学習量の符号について一致,不一致を判定し、その結果に応じて調整ゲインkの増減を設定する処理も、必要に応じて行えば良い。
調整ゲインkは、適当な関数を使用して演算により決定しても良い。
The present invention is not limited to the embodiments described above and shown in the drawings, and the following modifications or expansions are possible.
The adjustment gain k may be changed from the initial value in a region where the number of repetitions n of the learning process is relatively small.
The upper and lower limits of the adjustment gain k may be changed and set as appropriate.
The upper limit Nlim for the number of repetitions n and the upper limit and the lower limit for the adjustment gain k may be set as necessary.
A process of determining whether or not the signs of the previous and current learning amounts match and sets the increase / decrease of the adjustment gain k according to the result may be performed as necessary.
The adjustment gain k may be determined by calculation using an appropriate function.

本発明の一実施例であり、噴射量学習を実行する処理手順を示すフローチャートThe flowchart which is one Example of this invention, and shows the process sequence which performs injection amount learning 図1のステップS7の詳細を示すフローチャートThe flowchart which shows the detail of step S7 of FIG. 調整ゲインkを決定するためのテーブルを示す図The figure which shows the table for determining the adjustment gain k 学習パターンの一例を示す図Diagram showing an example of a learning pattern 噴射量学習の過程を示すタイミングチャートTiming chart showing the process of injection quantity learning ディーゼル機関の燃料噴射システムを示す全体構成図Overall configuration diagram showing the fuel injection system of a diesel engine インジェクタのTQ−Q特性感度のばらつきを説明する図The figure explaining the dispersion | variation in the TQ-Q characteristic sensitivity of an injector 従来の、感度が比較的小さい場合の学習過程を説明する図The figure explaining the learning process when the sensitivity is comparatively small 感度が比較的大きい場合の図8相当図Equivalent to FIG. 8 when sensitivity is relatively high 学習処理の繰り返し回数と学習完了時間との関係を示す図The figure which shows the relationship between the number of repetitions of learning processing, and learning completion time 感度のばらつき範囲が比較的狭い場合の学習パターンの一例を示す図The figure which shows an example of the learning pattern when the variation range of a sensitivity is comparatively narrow 感度のばらつき範囲が比較的広い場合の図11相当図FIG. 11 equivalent diagram when the sensitivity variation range is relatively wide

符号の説明Explanation of symbols

図面中、1はエンジン(ディーゼル機関)、2はコモンレール、5はインジェクタ、6はECU(学習条件判定手段,学習用噴射指令手段,回転数上昇量算出手段,噴射量算出手段,噴射補正量算出手段,噴射量補正手段,調整ゲイン設定手段)、18は回転数センサ(回転数検出手段)を示す。   In the drawings, 1 is an engine (diesel engine), 2 is a common rail, 5 is an injector, 6 is an ECU (learning condition determination means, learning injection command means, rotation speed increase amount calculation means, injection amount calculation means, injection correction amount calculation) Means, injection amount correction means, adjustment gain setting means), 18 denotes a rotation speed sensor (rotation speed detection means).

Claims (10)

ディーゼル機関の特定気筒におけるインジェクタについて、燃料の学習用噴射を実施するための学習条件が成立しているか否かを判定する学習条件判定手段と、
前記学習条件が成立していると判定された場合に、前記特定気筒のインジェクタに学習用噴射を指令する学習用噴射指令手段と、
前記ディーゼル機関の回転速度を機関回転数として検出する回転数検出手段と、
前記学習用噴射を実施した場合と実施しなかった場合との前記機関回転数の変動量を回転数上昇量として算出する回転数上昇量算出手段と、
算出された前記回転数上昇量を基に、前記インジェクタから実際に噴射された燃料の実噴射量を算出する噴射量算出手段と、
算出された前記実噴射量と前記インジェクタに指令した指令噴射量との差に、調整ゲインを乗じたものを噴射補正量として算出する噴射補正量算出手段と、
前記調整ゲインを、前記インジェクタにおける噴射期間に対する燃料噴射量の感度に応じて可変設定する調整ゲイン設定手段とを備えることを特徴とするディーゼル機関の燃料噴射制御装置。
Learning condition determination means for determining whether or not a learning condition for performing fuel learning injection is satisfied for an injector in a specific cylinder of a diesel engine;
A learning injection command means for commanding a learning injection to an injector of the specific cylinder when it is determined that the learning condition is satisfied;
A rotational speed detection means for detecting the rotational speed of the diesel engine as an engine rotational speed;
A rotational speed increase amount calculating means for calculating a fluctuation amount of the engine rotational speed when the learning injection is performed and when it is not performed as a rotational speed increase amount;
An injection amount calculating means for calculating an actual injection amount of fuel actually injected from the injector based on the calculated rotation speed increase amount;
An injection correction amount calculation means for calculating an injection correction amount by multiplying the difference between the calculated actual injection amount and the command injection amount commanded to the injector by an adjustment gain;
A fuel injection control device for a diesel engine, comprising: adjustment gain setting means for variably setting the adjustment gain in accordance with a sensitivity of a fuel injection amount with respect to an injection period in the injector.
前記噴射補正量算出手段は、前記実噴射量と前記指令噴射量との差が所定範囲外である間は学習処理を繰り返し、
前記調整ゲイン設定手段は、前記繰り返し回数をカウントすると共に、前記繰り返し回数が増加するのに応じて、前記調整ゲインの絶対値が大きくなるように設定することを特徴とする請求項1記載のディーゼル機関の燃料噴射制御装置。
The injection correction amount calculation means repeats the learning process while the difference between the actual injection amount and the command injection amount is outside a predetermined range,
The diesel engine according to claim 1, wherein the adjustment gain setting means counts the number of repetitions and sets the absolute value of the adjustment gain to increase as the number of repetitions increases. Engine fuel injection control device.
前記調整ゲイン設定手段は、前記繰り返し回数が上限値を超えた場合、以降は前記調整ゲインを一定に維持することを特徴とする請求項2記載のディーゼル機関の燃料噴射制御装置。   3. The fuel injection control device for a diesel engine according to claim 2, wherein, when the number of repetitions exceeds an upper limit value, the adjustment gain setting means maintains the adjustment gain constant thereafter. 前記調整ゲイン設定手段は、前記繰り返し回数が所定のしきい値を超えた時点から、前記調整ゲインの可変設定を開始することを特徴とする請求項2又は3記載のディーゼル機関の燃料噴射制御装置。   4. The fuel injection control device for a diesel engine according to claim 2, wherein the adjustment gain setting means starts the variable setting of the adjustment gain when the number of repetitions exceeds a predetermined threshold value. 5. . 前記調整ゲイン設定手段は、前回と今回の最終噴射補正量の符号を比較し、前記双方の符号が一致するか又は異なるかに応じて、前記調整ゲインの増減を設定することを特徴とする請求項2乃至4の何れかに記載のディーゼル機関の燃料噴射制御装置。   The adjustment gain setting means compares the sign of the last and current final injection correction amounts, and sets the increase / decrease of the adjustment gain according to whether the signs match or differ. Item 5. The fuel injection control device for a diesel engine according to any one of Items 2 to 4. ディーゼル機関の特定気筒におけるインジェクタについて、燃料の学習用噴射を実施するための学習条件が成立しているか否かを判定し、
前記学習条件が成立していると判定された場合に、前記特定気筒のインジェクタに学習用噴射を指令し、
前記ディーゼル機関の回転速度を機関回転数として検出し、
前記学習用噴射を実施した場合と実施しなかった場合との前記機関回転数の変動量を回転数上昇量として算出し、
算出された前記回転数上昇量を基に、前記インジェクタから実際に噴射された燃料の実噴射量を算出し、
算出された前記実噴射量と前記インジェクタに指令した指令噴射量との差に、調整ゲインを乗じたものを噴射補正量として算出し、
前記調整ゲインを、前記インジェクタにおける噴射期間に対する燃料噴射量の感度に応じて可変設定することを特徴とするディーゼル機関の燃料噴射量学習方法。
For the injector in a specific cylinder of the diesel engine, determine whether or not a learning condition for performing fuel learning injection is satisfied,
When it is determined that the learning condition is satisfied, the learning injection is commanded to the injector of the specific cylinder,
Detecting the rotational speed of the diesel engine as the engine speed,
Calculating the amount of fluctuation of the engine speed when the learning injection is performed and the case where it is not performed as the engine speed increase amount;
Based on the calculated rotation speed increase amount, the actual injection amount of the fuel actually injected from the injector is calculated,
A difference between the calculated actual injection amount and the command injection amount commanded to the injector multiplied by an adjustment gain is calculated as an injection correction amount;
A fuel injection amount learning method for a diesel engine, wherein the adjustment gain is variably set according to sensitivity of a fuel injection amount with respect to an injection period in the injector.
前記実噴射量と前記指令噴射量との差が所定範囲外である間は学習処理を繰り返し、
前記繰り返し回数をカウントすると共に、前記繰り返し回数が増加するのに応じて、前記調整ゲインの絶対値が大きくなるように設定することを特徴とする請求項6記載のディーゼル機関の燃料噴射量学習方法。
While the difference between the actual injection amount and the command injection amount is outside the predetermined range, the learning process is repeated,
7. The method for learning the fuel injection amount of a diesel engine according to claim 6, wherein the number of repetitions is counted and the absolute value of the adjustment gain is set to increase as the number of repetitions increases. .
前記繰り返し回数が上限値を超えると、以降は前記調整ゲインを一定に維持することを特徴とする請求項7記載のディーゼル機関の燃料噴射量学習方法。   8. The method for learning the fuel injection amount of a diesel engine according to claim 7, wherein when the number of repetitions exceeds an upper limit value, the adjustment gain is maintained constant thereafter. 前記繰り返し回数が所定のしきい値を超えた時点から、前記調整ゲインの可変設定を開始することを特徴とする請求項7又は8記載のディーゼル機関の燃料噴射量学習方法。   9. The method for learning the fuel injection amount of a diesel engine according to claim 7, wherein the adjustment gain is variably set when the number of repetitions exceeds a predetermined threshold value. 前回と今回の最終噴射補正量の符号を比較し、前記双方の符号が一致するか又は異なるかに応じて、前記調整ゲインの増減を設定することを特徴とする請求項7乃至9の何れかに記載のディーゼル機関の燃料噴射量学習方法。   10. The sign of the final injection correction amount of the previous time and that of the current time are compared, and the increase / decrease of the adjustment gain is set according to whether the signs of the both coincide or differ. The fuel injection amount learning method of the diesel engine as described in 2.
JP2007217346A 2007-08-23 2007-08-23 Diesel engine fuel injection control device and diesel engine fuel injection amount learning method Expired - Fee Related JP4710888B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007217346A JP4710888B2 (en) 2007-08-23 2007-08-23 Diesel engine fuel injection control device and diesel engine fuel injection amount learning method
DE102008041483.2A DE102008041483B4 (en) 2007-08-23 2008-08-22 METHOD AND SYSTEM FOR CONTROLLING AN INJECTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217346A JP4710888B2 (en) 2007-08-23 2007-08-23 Diesel engine fuel injection control device and diesel engine fuel injection amount learning method

Publications (2)

Publication Number Publication Date
JP2009052417A true JP2009052417A (en) 2009-03-12
JP4710888B2 JP4710888B2 (en) 2011-06-29

Family

ID=40384597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217346A Expired - Fee Related JP4710888B2 (en) 2007-08-23 2007-08-23 Diesel engine fuel injection control device and diesel engine fuel injection amount learning method

Country Status (2)

Country Link
JP (1) JP4710888B2 (en)
DE (1) DE102008041483B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900052A (en) * 2009-06-01 2010-12-01 株式会社电装 The fuel injection control system of internal-combustion engine
CN102787926A (en) * 2011-05-16 2012-11-21 罗伯特·博世有限公司 Method for operating nozzle
JP2015197073A (en) * 2014-04-01 2015-11-09 株式会社デンソー Internal combustion engine injection quantity learning device
CN113062812A (en) * 2021-04-26 2021-07-02 中国第一汽车股份有限公司 Engine safety monitoring and detecting method, device, medium and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261334A (en) * 2009-04-30 2010-11-18 Denso Corp Fuel injection control device
US9353699B2 (en) 2014-03-31 2016-05-31 Ford Global Technologies, Llc Rapid zero flow lubrication methods for a high pressure pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182290A (en) * 1997-12-17 1999-07-06 Toyota Motor Corp Fuel injection quantity control device for internal combustion engine
JP2005036788A (en) * 2003-06-27 2005-02-10 Denso Corp Injection-quantity control unit of diesel engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139613A (en) 1983-12-27 1985-07-24 Kao Corp Dispersion of antimicrobial agent and antimicrobial hair treatment composition
DE19809173A1 (en) 1998-03-04 1999-09-09 Bosch Gmbh Robert Method and device for controlling fuel injection
JP2002295291A (en) 2001-03-29 2002-10-09 Denso Corp Method for controlling idling rotation speed of internal combustion engine
JP4089600B2 (en) * 2003-11-21 2008-05-28 株式会社デンソー Injection quantity control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182290A (en) * 1997-12-17 1999-07-06 Toyota Motor Corp Fuel injection quantity control device for internal combustion engine
JP2005036788A (en) * 2003-06-27 2005-02-10 Denso Corp Injection-quantity control unit of diesel engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900052A (en) * 2009-06-01 2010-12-01 株式会社电装 The fuel injection control system of internal-combustion engine
JP2010275989A (en) * 2009-06-01 2010-12-09 Denso Corp Fuel injection control apparatus for internal combustion engine
US8433497B2 (en) 2009-06-01 2013-04-30 Denso Corporation Fuel injection control apparatus for internal combustion engines
CN102787926A (en) * 2011-05-16 2012-11-21 罗伯特·博世有限公司 Method for operating nozzle
CN102787926B (en) * 2011-05-16 2016-12-14 罗伯特·博世有限公司 For the method running nozzle
JP2015197073A (en) * 2014-04-01 2015-11-09 株式会社デンソー Internal combustion engine injection quantity learning device
CN113062812A (en) * 2021-04-26 2021-07-02 中国第一汽车股份有限公司 Engine safety monitoring and detecting method, device, medium and electronic equipment

Also Published As

Publication number Publication date
DE102008041483A1 (en) 2009-04-02
JP4710888B2 (en) 2011-06-29
DE102008041483B4 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4277677B2 (en) Injection quantity control device for diesel engine
JP4075774B2 (en) Injection quantity control device for diesel engine
JP4501974B2 (en) Fuel injection control device for internal combustion engine
JP4089600B2 (en) Injection quantity control device for internal combustion engine
US7664592B2 (en) Fuel injection control apparatus
JP4475205B2 (en) Control device for common rail fuel injection system
US8239118B2 (en) Method and system for controlling a high pressure pump, particularly for a diesel engine fuel injection system
JP4218496B2 (en) Injection quantity control device for internal combustion engine
JP4710888B2 (en) Diesel engine fuel injection control device and diesel engine fuel injection amount learning method
US20150112576A1 (en) Pump control apparatus for fuel supply system of fuel-injection engine
JP2017160916A (en) Control device of internal combustion engine
JP2009057853A (en) Fuel injection control device and fuel injection quantity learning method of internal combustion engine
US20070181095A1 (en) Fuel injection controller
JP4605182B2 (en) Pump control device and fuel injection system using the same
JP2015075025A (en) Internal combustion engine control device
JP2008274842A (en) Pressure reducing valve controller and fuel injection system using same
JP4529892B2 (en) Fuel injection control device for multi-cylinder engine
JP4840296B2 (en) Fuel injection control device for internal combustion engine
JP4492012B2 (en) Fuel injection device
JP5994677B2 (en) Fuel injection control device
JP6303992B2 (en) Fuel injection control device
JP6213351B2 (en) Injection amount learning device for internal combustion engine
JP5338650B2 (en) Accumulated fuel injection system
JP2011058390A (en) Fuel injection device of internal combustion engine for vehicle
JP2005299586A (en) Injection quantity controller of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R151 Written notification of patent or utility model registration

Ref document number: 4710888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees