JP2009052159A - Method for heat-treating cellulosic material or molded article thereof - Google Patents

Method for heat-treating cellulosic material or molded article thereof Download PDF

Info

Publication number
JP2009052159A
JP2009052159A JP2007218476A JP2007218476A JP2009052159A JP 2009052159 A JP2009052159 A JP 2009052159A JP 2007218476 A JP2007218476 A JP 2007218476A JP 2007218476 A JP2007218476 A JP 2007218476A JP 2009052159 A JP2009052159 A JP 2009052159A
Authority
JP
Japan
Prior art keywords
heat treatment
superheated steam
heat
treatment method
cellulosic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007218476A
Other languages
Japanese (ja)
Inventor
Takaharu Maehara
隆玄 前原
Katsunori Ono
勝則 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007218476A priority Critical patent/JP2009052159A/en
Publication of JP2009052159A publication Critical patent/JP2009052159A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for heat-treating a cellulosic material or a molded article thereof to stabilize the shape by using a continuous heat-treating method capable of carrying out the treatment at a normal pressure without using a chemical, and capable of carrying out excellent shape-stabilizing treatment of the cellulose. <P>SOLUTION: The method for heat-treating the cellulosic material or the molded article thereof uses superheated steam in the heat-treating step of the cellulosic material or the molded article thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はセルロース系材料又はその成形体の形態安定性を付与する方法に関する。   The present invention relates to a method for imparting shape stability of a cellulosic material or a molded body thereof.

セルロース系材料又はその成形体は、一般に形態安定性が悪く、吸湿処理、乾燥処理により収縮し易い。特に、セルロース系繊維からなる布帛などは、形態安定性が悪く、洗濯を繰り返すうちにしわがより易く、プリーツ加工を施したものも洗濯によって容易に消失されるという欠点がある。
これらの問題を改善する方法として、特許文献1では、形態安定性の向上を付与するために、高温高圧水蒸気処理による熱処理方法が提案されている。しかし、この方法は、絶対圧力4kgf/cm以上の高圧処理を必要とする為、高圧容器を用いたバッチ式処理が中心であり、生産効率が低く、連続的に高効率で熱処理する方法が求められている。さらに、高圧容器を用いた高圧処理を必要とするため、高額な設備と高度な運転管理が必要であった。また、セルロース形態安定化処理として、樹脂加工法や、ホルマリンなどの薬剤を用いる薬剤法があるが、強度の低下や風合いの低下、薬剤の残留などの問題が生じやすい。
Cellulose-based materials or molded articles thereof are generally poor in form stability and easily contract by moisture absorption treatment and drying treatment. In particular, fabrics made of cellulosic fibers have the disadvantage that they are poor in form stability, are more likely to wrinkle as washing is repeated, and those that have been subjected to pleating are easily lost by washing.
As a method for improving these problems, Patent Document 1 proposes a heat treatment method using high-temperature and high-pressure steam treatment in order to impart improvement in form stability. However, since this method requires high-pressure treatment with an absolute pressure of 4 kgf / cm 2 or more, batch-type treatment using a high-pressure vessel is the center, production efficiency is low, and there is a method of continuously heat-treating with high efficiency. It has been demanded. Furthermore, since high-pressure processing using a high-pressure vessel is required, expensive equipment and advanced operation management are required. Cellulose morphology stabilization treatment includes a resin processing method and a drug method using a drug such as formalin. However, problems such as a decrease in strength, a decrease in texture, and a drug residue are likely to occur.

更に、例えばセルロース系繊維の熱処理を例にあげると、セルロース系繊維を一旦、チーズやコーン等の仮巻き状態で熱処理する必要があり、その為に、チーズやコーン等の内外層への均一な熱処理が得にくく、形態安定の内外層の差や、染色の差を生じやすいなどの品質上の問題が生じやすいという問題があった。
特許文献2には、過熱水蒸気を用いた織物の連続染色加工方法及び装置が開示されているが、染色工程で染料を織物に固定化する目的で、過熱水蒸気を使用することが提案されているが、セルロース材料の形態安定化を目的とするものではない。
この様な観点から、セルロース系材料又はその成形体の形態安定化を目的とした熱処理方法において、薬剤を用いることなく、常圧で処理でき、さらに、連続的な熱処理方法を用いて、セルロースの優れた形態安定化処理が図れる方法が望まれている。
Furthermore, for example, when heat treatment of cellulosic fibers is taken as an example, it is necessary to heat the cellulosic fibers once in a temporary winding state such as cheese or corn, and for that purpose, uniform to the inner and outer layers of cheese or corn or the like. There was a problem that heat treatment was difficult to obtain, and quality problems such as a difference in form-stable inner and outer layers and a difference in dyeing were likely to occur.
Patent Document 2 discloses a continuous dyeing processing method and apparatus for fabric using superheated steam, but it is proposed to use superheated steam for the purpose of fixing the dye to the fabric in the dyeing process. However, it is not intended to stabilize the morphology of the cellulose material.
From such a point of view, in the heat treatment method aimed at stabilizing the morphology of the cellulosic material or molded article thereof, it can be treated at normal pressure without using a chemical, and further, by using a continuous heat treatment method, There is a demand for a method capable of achieving excellent shape stabilization processing.

特開2001−164459号公報JP 2001-16459 A 特開2007−9353号公報JP 2007-9353 A

本発明は上記従来の問題を解決し、セルロース系材料又はその成形体に形態安定性の向上を付与する為に、常圧で連続的に熱処理する方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for continuously heat-treating at a normal pressure in order to impart improvement in shape stability to a cellulosic material or a molded product thereof.

本発明者等は、上記課題を解決するため、セルロース系材料又はその成形体の形態安定性を付与する為に、過熱水蒸気を用いた熱処理方法を見出し、この方法により、熱源として常圧で使用でき、連続的に熱処理できる本発明の熱処理方法の完成に至った。
即ち、本発明は以下の通りである。
(1)セルロース系材料又はその成形体の熱処理工程において、過熱水蒸気を用いることを特徴とする熱処理方法。
(2)前記過熱水蒸気の温度が130〜250℃であることを特徴とする上記(1)に記載の熱処理方法。
(3)前記過熱水蒸気の温度が170〜200℃であることを特徴とする上記(1)に記載の熱処理方法。
(4)前記セルロース系材料又はその成形体において、セルロースの混率が40重量%以上であることを特徴とする上記(1)〜(3)のいずれかに記載の熱処理方法。
(5)前記セルロース系材料又はその成形体の熱処理工程前に該セルロース系材料又はその成形体の水分率を調整する工程を含むことを特徴とする上記(1)〜(4)のいずれかに記載の熱処理方法。
In order to solve the above-mentioned problems, the present inventors have found a heat treatment method using superheated steam in order to impart the form stability of the cellulosic material or its molded product, and this method can be used at normal pressure as a heat source. The heat treatment method of the present invention that can be continuously heat treated has been completed.
That is, the present invention is as follows.
(1) A heat treatment method using superheated steam in a heat treatment step of a cellulosic material or a molded body thereof.
(2) The heat treatment method according to (1) above, wherein the temperature of the superheated steam is 130 to 250 ° C.
(3) The heat treatment method according to (1) above, wherein the temperature of the superheated steam is 170 to 200 ° C.
(4) The heat treatment method according to any one of the above (1) to (3), wherein the cellulose-based material or the molded body thereof has a cellulose mixing ratio of 40% by weight or more.
(5) In any one of the above (1) to (4), the method includes a step of adjusting the moisture content of the cellulosic material or molded body thereof before the heat treatment step of the cellulosic material or molded body thereof. The heat treatment method as described.

(6)前記水分率を調整する工程において、該水分率が5重量%以上であることを特徴とする上記(5)に記載の熱処理方法。
(7)過熱水蒸気発生工程と、該過熱水蒸気を熱源とする熱処理工程とを有し、常圧下、バッチ式で、熱処理することを特徴とする上記(1)〜(6)のいずれかに記載の熱処理方法。
(8)過熱水蒸気発生工程と、該過熱水蒸気を熱源とする熱処理工程とを有し、常圧下、連続的に、熱処理することを特徴とする上記(1)〜(6)のいずれかに記載の熱処理方法。
(9)前記セルロース系材料が繊維状物、フィルム状物、粒子状物、多孔質状物、又は中空糸条物であることを特徴とする上記(1)〜(8)のいずれかに記載の熱処理方法。
(10)前記成形体が、織物、編物、不織布、又はそれらの複合物であることを特徴とする上記(1)〜(8)のいずれかに記載の熱処理方法。
(11)前記過熱水蒸気が、空気を含まない状態であることを特徴とする上記(1)〜(10)のいずれかに記載の熱処理方法。
(6) The heat treatment method according to (5) above, wherein in the step of adjusting the moisture content, the moisture content is 5% by weight or more.
(7) The method according to any one of (1) to (6) above, wherein the method comprises a superheated steam generation step and a heat treatment step using the superheated steam as a heat source, and the heat treatment is performed in a batch mode under normal pressure. Heat treatment method.
(8) The method according to any one of (1) to (6), wherein the method includes a superheated steam generation step and a heat treatment step using the superheated steam as a heat source, and the heat treatment is continuously performed under normal pressure. Heat treatment method.
(9) The cellulosic material is any one of (1) to (8) above, wherein the cellulosic material is a fibrous material, a film material, a particulate material, a porous material, or a hollow fiber material. Heat treatment method.
(10) The heat treatment method according to any one of (1) to (8), wherein the molded body is a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof.
(11) The heat treatment method according to any one of (1) to (10), wherein the superheated steam is in a state not containing air.

本発明の過熱水蒸気による熱処理方法を用いることにより、セルロース系材料又はその成形体の優れた形態安定性を得ることができ、さらに、以下のとおりの効果も有する。
(1)過熱水蒸気を熱源とするので、常圧で、連続的な熱処理方法が可能となる。
(2)高価な高圧容器設備等を用いることなく、安価な常圧設備による熱処理が可能となる。
(3)特に、セルロース系繊維の場合、繊維材料を一旦チーズやコーン等の仮巻き状態にせずに、そのまま繊維状の形態で熱処理できるので、均一な形態安定加工の付与が可能となる。
更に、その形態安定化したセルロース系繊維を、熱に弱いナイロン、ポリエステル等の合成繊維等の異種繊維に混用でき、形態安定化性の高い混用品を容易に得ることが可能となる。
(4)セルロース系繊維について本発明の熱処理を施した場合、熱水収縮率が3%以下の優れた収縮性能を有する繊維とすることが可能となる。
(5)過熱水蒸気中に、空気を殆ど含まない無酸素状態に近い雰囲気下での熱処理が可能となり、酸化を抑制した処理が可能となる。
By using the heat treatment method with superheated steam according to the present invention, excellent shape stability of the cellulosic material or the molded product thereof can be obtained, and the following effects are also obtained.
(1) Since superheated steam is used as a heat source, a continuous heat treatment method can be performed at normal pressure.
(2) Heat treatment with inexpensive normal pressure equipment is possible without using expensive high-pressure vessel equipment or the like.
(3) In particular, in the case of cellulosic fibers, since the fiber material can be heat-treated in a fibrous form as it is without being temporarily wound into a cheese, corn, or the like, it is possible to impart uniform shape-stabilization.
Further, the cell-based fiber whose form has been stabilized can be mixed with dissimilar fibers such as synthetic fibers such as nylon and polyester that are weak against heat, and a mixed product with high form-stabilization can be easily obtained.
(4) When the heat treatment of the present invention is applied to the cellulosic fiber, it becomes possible to obtain a fiber having excellent shrinkage performance with a hot water shrinkage of 3% or less.
(5) Heat treatment can be performed in an atmosphere close to an oxygen-free state in which almost no air is contained in the superheated steam, thereby enabling treatment with suppressed oxidation.

本発明の特徴は、セルロース系材料又はその成形体の熱処理工程において、過熱水蒸気を用いて、常圧で、しかも連続的に熱処理することを特徴とした処理方法である。この方法を用いることで、セルロース系材料又はその成形体の優れた形態安定性を得ることができる。
本発明において、セルロース系材料とは、綿、麻等の天然セルロース材料や、銅アンモニアレーヨン、ビスコースレーヨン、ポリノジック等の再生セルロース材料、テンセル等の精製セルロース材料を示す。再生セルロース材料は、天然セルロース材料に比較して、結晶化度が低く、構造的に緻密性が弱く、過熱水蒸気処理の効果が及びやすく、好ましい態様である。
A feature of the present invention is a processing method characterized in that in a heat treatment step of a cellulosic material or a molded product thereof, superheated steam is used for continuous heat treatment at normal pressure. By using this method, excellent shape stability of the cellulosic material or a molded body thereof can be obtained.
In the present invention, the cellulose material refers to natural cellulose materials such as cotton and hemp, regenerated cellulose materials such as copper ammonia rayon, viscose rayon and polynosic, and purified cellulose materials such as tencel. The regenerated cellulose material has a lower crystallinity than the natural cellulose material, has a structurally weak denseness, and is easy to achieve the effect of the superheated steam treatment, which is a preferable embodiment.

各材料において、セルロース含有量が40wt%以上が好ましく、より好ましくは60
wt%以上、特に好ましくは、80wt%以上である。形状としては、繊維状物、フィルム状物、粒子状物、多孔質状物、または中空糸条物であることが好ましく、より好ましくは繊維状物、フィルム状物、または粒子状物である。
本発明のセルロース系材料は、形態安定性に優れ、熱可塑性合成繊維材料など混用した場合、材料全体の形態安定性が更に向上し、好ましい。
セルロースの繊維状物としては、マルチフィラメントヤーン、紡績糸、モノフィラメント、が挙げられ、繊度は20〜200dtexの範囲が好ましく、更に好ましくは30〜150dtexである。単糸繊度は、0.5〜3dtex/fが好ましく、更に好ましくは1.0〜2.0dtex/fである。
In each material, the cellulose content is preferably 40 wt% or more, more preferably 60%.
wt% or more, particularly preferably 80 wt% or more. The shape is preferably a fibrous material, a film-like material, a particulate material, a porous material, or a hollow fiber material, more preferably a fibrous material, a film-like material, or a particulate material.
The cellulosic material of the present invention is excellent in form stability, and when mixed with a thermoplastic synthetic fiber material or the like, the form stability of the whole material is further improved, which is preferable.
Examples of cellulose fibrous materials include multifilament yarns, spun yarns, and monofilaments, and the fineness is preferably in the range of 20 to 200 dtex, more preferably 30 to 150 dtex. The single yarn fineness is preferably 0.5 to 3 dtex / f, more preferably 1.0 to 2.0 dtex / f.

本発明のセルロース系材料の成形体とは、セルロース系材料から構成される、織物、編物、不織布、又はそれらの複合物であることが好ましい。特に、セルロース系繊維から構成される織物、編物、不織布、又はそれらの複合物が好ましく、より好ましくは、再生セルロース繊維からなる成形体である。
本発明のセルロース系材料の成形体において、セルロース系材料同士を混用した織物、編物、不織布、又はそれらの複合物を含み、また、セルロース系材料と異種材料を混用した織物、編物、不織布、又はそれらの複合物も含む。各成形体において、セルロース含有量が40wt%以上が好ましく、より好ましくは60wt%以上、特に好ましくは、80wt%以上である。
例えば、織物においてセルロース系繊維と合成繊維を複合したものや、フィルムにおいてはセルロース系フィルムに異種材料を複合したものや、粒子やチップ等においてはセルロース系粒子或いはチップ等と異種材料を複合したものが挙げられる。
The molded article of the cellulose material of the present invention is preferably a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof composed of the cellulose-based material. In particular, a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof composed of cellulosic fibers is preferable, and a molded body composed of regenerated cellulose fibers is more preferable.
The molded article of the cellulosic material of the present invention includes a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof obtained by mixing cellulosic materials, and a woven fabric, a knitted fabric, a nonwoven fabric, or a mixture of a cellulosic material and a different material. These composites are also included. In each molded article, the cellulose content is preferably 40 wt% or more, more preferably 60 wt% or more, and particularly preferably 80 wt% or more.
For example, composites of cellulosic fibers and synthetic fibers in woven fabrics, composites of cellulose-based films and dissimilar materials in films, and composites of dissimilar materials with cellulose-based particles or chips in particles and chips Is mentioned.

本発明で用いる過熱水蒸気とは、飽和した乾き蒸気を、常圧で更に加熱したものであり、水を主成分とする、空気を殆ど含まない、無酸素状態に近い気体であることが好ましい。したがって、過熱水蒸気中には、酸素が殆ど無く,これを熱源にする熱加工処理においては、酸化を抑制する効果がある。
セルロース系材料は、高圧状態で水蒸気処理すると、セルロース自身の酸化が生じやすく、水酸基が酸化されて、酸化官能基が増加したり、黄色に変色したりする傾向を有する。特に、結晶性の低い再生セルロースにおいては、この傾向が強く、高圧水蒸気による滅菌処理での黄変化現象は、この酸化が原因とされている。本発明の過熱水蒸気による熱処理においては、この様なセルロースの酸化劣化を防止でき、優れた形態安定効果を有する。
The superheated steam used in the present invention is a gas obtained by further heating saturated dry steam at normal pressure, and is preferably a gas containing water as a main component and containing almost no air and in an oxygen-free state. Therefore, there is almost no oxygen in the superheated steam, and there is an effect of suppressing oxidation in the thermal processing using this as a heat source.
When the cellulosic material is steam-treated in a high-pressure state, the cellulose itself is easily oxidized, and the hydroxyl group is oxidized, and the oxidized functional group tends to increase or the color changes to yellow. This tendency is particularly strong in regenerated cellulose having low crystallinity, and this yellowing phenomenon in the sterilization treatment with high-pressure steam is caused by this oxidation. In the heat treatment with superheated steam of the present invention, such oxidative degradation of cellulose can be prevented, and an excellent shape stabilizing effect is obtained.

本発明における熱処理工程において、過熱水蒸気装置の設置例を図1に示す。
本発明においては、過熱水蒸気発生工程と、該過熱水蒸気を熱源とする熱処理工程とを有し、常圧下で、バッチ式または、連続式で、熱処理することができるが、連続式での熱処理が効率的生産の面から、より好ましい態様である。
図1のように、過熱水蒸気を用いて、熱処理する場合、熱処理工程前に水分率を調整する脱水部や注水部をもたせるのが好ましく、連続的に熱処理する場合の水分付与は更に好ましい。過熱水蒸気発生装置の設置位置は、熱処理する対象物によって適宜設定され、熱処理工程の上流部、下流部或いは中間部に決めることができる。
セルロース系材料又はその成形体の形態安定性の向上を図るには、熱処理前のセルロース系材料又はその成形体の水分率と過熱水蒸気の処理温度、処理時間が重要な因子となる。
FIG. 1 shows an installation example of a superheated steam apparatus in the heat treatment step of the present invention.
In the present invention, it has a superheated steam generation step and a heat treatment step using the superheated steam as a heat source, and it can be heat-treated in a batch type or a continuous type under normal pressure. This is a more preferred embodiment from the viewpoint of efficient production.
As shown in FIG. 1, when heat treatment is performed using superheated steam, it is preferable to provide a dehydration part or a water injection part for adjusting the moisture content before the heat treatment process, and it is more preferable to provide moisture in the case of continuous heat treatment. The installation position of the superheated steam generator is appropriately set depending on the object to be heat-treated, and can be determined in the upstream part, the downstream part, or the intermediate part of the heat treatment process.
In order to improve the shape stability of the cellulosic material or molded product thereof, the moisture content of the cellulosic material or molded product before heat treatment, the treatment temperature of superheated steam, and the treatment time are important factors.

セルロース系材料又はその成形体の熱処理前の水分付与率について、以下に説明する
本発明においては、熱処理前に、対象物に対し、予め水分を5重量%以上付与することが好ましく、より好ましくは50〜90重量%水分を付与することである。
上記の、所定の水分率にコントロールするには、過剰に水分が付与されたセルロース系
材料又はその成形体を、遠心脱水やプレス脱水等で水分調整しても良いし、一度、過剰脱水した後や乾燥した後に所定の水分を付与しても良い。
後述の実施例での表1に示した通り、実施例2と実施例6との対比において、水分率を5重量%から70重量%に変えると、Wet伸縮率(糸長方向の形態安定性評価)が、比較例1が−1.5%、実施例2が−1.1%、実施例6が−0.8%の値であり、水分を多くした条件では、形態安定性が良好となるという効果を有する。同様な効果は、実施例1と実施例5の対比からもいえる。
In the present invention described below, the moisture application rate before the heat treatment of the cellulosic material or the molded body thereof, it is preferable to give 5% by weight or more of moisture to the object in advance before the heat treatment, more preferably. 50 to 90% by weight of moisture.
In order to control the above-described predetermined moisture content, the moisture content of the cellulosic material to which moisture is excessively added or the molded body thereof may be adjusted by centrifugal dehydration, press dehydration, etc. Alternatively, predetermined moisture may be applied after drying.
As shown in Table 1 in the examples described later, when the moisture content was changed from 5% by weight to 70% by weight in the comparison between Example 2 and Example 6, the wet stretch ratio (morphological stability in the yarn length direction) Evaluation) is -1.5% in Comparative Example 1, -1.1% in Example 2, and -0.8% in Example 6, and the form stability is good under the condition of increasing moisture. It has the effect of becoming. The same effect can be said from the comparison between Example 1 and Example 5.

次に、過熱水蒸気の処理温度とその効果について、説明する。
本発明における過熱水蒸気の処理温度は、101℃以上とし、130℃〜250℃が好ましく、より好ましくは170℃〜200℃とする。
後述の実施例での表1に示した通り、実施例5と実施例6の比較では、熱処理時間30分の条件で、処理温度を130℃から170℃にすると、比較例1対比においてWet伸縮率(糸長方向の形態安定評価)が、比較例1が−1.5%、実施例5が−1.0%、実施例6が−0.8%の値であり、温度を高くした場合の方が、形態安定性が良好であるといえる。表2の実施例10と実施例11の比較では、処理温度を150℃から170℃にすると、比較例2対比において同様の効果が見られる。
Next, the processing temperature of superheated steam and its effect will be described.
The processing temperature of superheated steam in the present invention is 101 ° C or higher, preferably 130 ° C to 250 ° C, more preferably 170 ° C to 200 ° C.
As shown in Table 1 in Examples described later, in the comparison between Example 5 and Example 6, when the treatment temperature was changed from 130 ° C. to 170 ° C. under the condition of the heat treatment time of 30 minutes, the wet expansion and contraction was compared with that in Comparative Example 1. The rate (form stability evaluation in the yarn length direction) was -1.5% in Comparative Example 1, -1.0% in Example 5, and -0.8% in Example 6, and the temperature was increased. It can be said that the case has better shape stability. In the comparison between Example 10 and Example 11 in Table 2, when the processing temperature is changed from 150 ° C. to 170 ° C., the same effect is seen in comparison with Comparative Example 2.

次に、過熱水蒸気の処理時間の効果について説明する.
本発明における過熱水蒸気の処理時間は,処理温度を考慮し最適な時間を設定するが、通常1〜60分、好ましくは10〜30分である。表1の実施例3と実施例4の比較では、処理時間を5分間から10分間にすると、比較例1対比においてWet伸縮率(糸長方向の形態安定評価)が、比較例1が−1.5%、実施例3が−1.0%、実施例4が−0.9%であり、処理時間が長い方が形態安定性が良好であるといえる。表2の実施例9と実施例11の比較では、処理時間を5分間から20分間にすると、比較例2対比において寸法変化C法が、比較例2が2.5%(たて)/2.6%(よこ)、実施例9が2.0%/2.0%、実施例11が1.5%/1.6%の値であり、より顕著な効果が見られる。
これらセルロース系材料又はその成形体の水分率と過熱水蒸気の処理温度、処理時間は複合的に作用するので、セルロース系材料及びその成形体の熱処理前の状態や経済性を考慮し、条件毎に設定する必要がある。
Next, the effect of the treatment time of superheated steam will be explained.
The treatment time of superheated steam in the present invention is set to an optimum time in consideration of the treatment temperature, but is usually 1 to 60 minutes, preferably 10 to 30 minutes. In the comparison between Example 3 and Example 4 in Table 1, when the treatment time is changed from 5 minutes to 10 minutes, the wet stretch ratio (form stability evaluation in the yarn length direction) is 1 in comparison with Comparative Example 1, and Comparative Example 1 is -1. 5%, Example 3 is -1.0%, and Example 4 is -0.9%. It can be said that the longer the processing time, the better the form stability. In the comparison between Example 9 and Example 11 in Table 2, when the treatment time was changed from 5 minutes to 20 minutes, the dimensional change C method compared to Comparative Example 2 and Comparative Example 2 was 2.5% (vertically) / 2. .6% (width), Example 9 has a value of 2.0% / 2.0%, and Example 11 has a value of 1.5% / 1.6%, showing a more remarkable effect.
Since the moisture content of these cellulosic materials or their molded products and the treatment temperature and treatment time of superheated steam work in combination, the conditions prior to heat treatment and economics of the cellulosic materials and their molded products are taken into account for each condition. Must be set.

本発明を実施例に基づいて説明するが、本発明は下記の実施例に制限されるものではない。尚、各特性値の測定法は下記の通りである。
(1)熱水収縮率(糸長方向の形態安定性評価)
乾燥したセルロース繊維を500mm採取し、100℃熱湯中に30分浸漬し、過剰な水分を取り除いたあとに20℃、65%RHに温湿度調節された部屋に24時間以上放置後、繊維長を計測し、熱水収縮率を算出する。
熱水収縮率(%)=100×±熱水処理前後の繊維長差(mm)/500(mm)
The present invention will be described based on examples, but the present invention is not limited to the following examples. In addition, the measuring method of each characteristic value is as follows.
(1) Hot water shrinkage (form stability evaluation in the yarn length direction)
Take 500 mm of dried cellulose fiber, immerse it in 100 ° C. hot water for 30 minutes, remove excess water, and leave it in a room controlled at 20 ° C. and 65% RH for 24 hours or more. Measure and calculate the hot water shrinkage.
Hot water shrinkage (%) = 100 × ± fiber length difference before and after hot water treatment (mm) / 500 (mm)

(2)Wet伸縮率(糸長方向の形態安定性評価)
乾燥されたセルロース繊維を20℃、65%RHに温湿度調節された部屋に16時間以上放置後、5〜6m採取する。Wet伸縮率測定機器の上下固定距離1000mmにセルロース繊維を取り付ける。取り付け治具下部に1〜7gの分銅を掛けて一定の張力が掛かるようにする。Wet伸縮測定機器をスタートすると、上部から3分間水滴が糸に伝わり、湿潤した時の繊維長を計測しWet伸縮率を算出する。
Wet伸縮率(%)=100×±伸縮した長さ(mm)/1000(mm)
(3)単糸径膨潤度(単糸径方向の形態安定性評価)
乾燥したセルロース繊維及びその集合体を20℃、65%RHに温湿度調節された部屋に16時間以上放置後、繊維長数mmを切り取り、顕微鏡で繊維直径を計測する。更に過剰
な水を付与し湿潤させたのちに顕微鏡にて繊維直径を計測し、単糸径膨潤度を算出する。単糸径膨潤度=水付与後の繊維直径/水付与前の繊維直径
(2) Wet stretch rate (form stability evaluation in the yarn length direction)
The dried cellulose fiber is allowed to stand for 16 hours or more in a room whose temperature and humidity are adjusted to 20 ° C. and 65% RH, and then 5 to 6 m is collected. Cellulose fibers are attached to a fixed stretch distance of 1000 mm on a wet stretch rate measuring instrument. A weight of 1 to 7 g is applied to the lower part of the mounting jig so that a certain tension is applied. When the Wet stretch measurement device is started, water droplets are transferred to the yarn for 3 minutes from the top, and the fiber length when wet is measured to calculate the Wet stretch rate.
Wet stretch rate (%) = 100 × ± stretched length (mm) / 1000 (mm)
(3) Single yarn diameter swelling degree (Evaluation of form stability in the single yarn diameter direction)
The dried cellulose fibers and aggregates thereof are left in a room whose temperature and humidity are adjusted to 20 ° C. and 65% RH for 16 hours or more, and then the fiber length of several mm is cut out and the fiber diameter is measured with a microscope. Furthermore, after adding excess water and moistening, the fiber diameter is measured with a microscope, and the single yarn diameter swelling degree is calculated. Single yarn diameter swelling degree = fiber diameter after water application / fiber diameter before water application

[実施例1〜7]
過熱水蒸気の処理時間及び処理温度と、100%キュプラ繊維(銘柄オFB84dtex旭化成せんい社製)(全繊度84dtex、単糸繊度1.87dtex)を用い、処理前水分率を実施例1から6に設定して過熱水蒸気を用いた熱処理を行い、過熱水蒸気処理後の形態安定性を評価した。
また、実施例7に48wt%キュプラ繊維/52wt%エステル繊維の混率で構成されるエアー混繊糸型複合繊維の形態安定性も評価した。評価結果は表1に示した。
表1に示した通り、比較例1と実施例6において、熱水収縮率が3.6%から2.2%、Wet伸縮率が−1.5%から−0.8%、単糸径膨潤度が1.4から1.2へと形態安定性が向上した。
[比較例1]
実施例1〜6において、過熱水蒸気の熱処理を行う前の100%キュプラ繊維(銘柄オFB84dtex旭化成せんい社製)(全繊度84dtex、単糸繊度1.87dtex)比較例1として、評価結果を表1に示した。
[Examples 1-7]
Using the treatment time and treatment temperature of superheated steam and 100% cupra fiber (brand name FB84dtex, manufactured by Asahi Kasei Fibers) (total fineness 84dtex, single yarn fineness 1.87dtex), the moisture content before treatment was set to Examples 1 to 6. Then, heat treatment using superheated steam was performed, and the morphological stability after the superheated steam treatment was evaluated.
In addition, the form stability of the air mixed yarn type composite fiber composed of the blend ratio of 48 wt% cupra fiber / 52 wt% ester fiber in Example 7 was also evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, in Comparative Example 1 and Example 6, the hot water shrinkage rate was 3.6% to 2.2%, the wet stretch rate was -1.5% to -0.8%, and the single yarn diameter Morphological stability improved from a swelling degree of 1.4 to 1.2.
[Comparative Example 1]
In Examples 1 to 6, 100% cupra fiber (brand name: FB84 dtex, manufactured by Asahi Kasei Fibers Co., Ltd.) (total fineness: 84 dtex, single yarn fineness: 1.87 dtex) before performing heat treatment with superheated steam. It was shown to.

Figure 2009052159
Figure 2009052159

[実施例8〜11]
過熱水蒸気の処理条件と100%キュプラ繊維同士の布帛(経糸オFB84dtex:126本/吋、緯糸オFB84dtex:90本/吋の平織構造)をJIS規格の一般織物試験方法(JIS−L−1096)の寸法変化C法(タテヨコ収縮率%)を用いて、織物の形態安定性を評価した。評価結果を表2に示した。
表2に示した通り、比較例2と実施例11において、寸法変化C法がたて2.5%から1.5%へと収縮率が改善し、よこ2.6%から1.6%へと収縮率が改善し、タテヨコの形態安定性が向上した。
[比較例2]
実施例8〜11において、過熱水蒸気の熱処理を行う前の100%キュプラ繊維同士の布帛(経糸オFB84dtex:126本/吋、緯糸オFB84dtex:90本/吋の平織構造)を評価した。評価結果は表2に示した。
[Examples 8 to 11]
Treatment conditions of superheated steam and fabric of 100% cupra fibers (warp yarn FB84 dtex: 126 yarns / 吋, weft yarn FB84 dtex: 90 yarns / 吋 plain weave structure) JIS standard general textile testing method (JIS-L-1096) The morphological stability of the fabric was evaluated using the dimensional change C method (vertical shrinkage%). The evaluation results are shown in Table 2.
As shown in Table 2, in Comparative Example 2 and Example 11, the dimensional change C method improved the shrinkage from 2.5% to 1.5%, and from 2.6% to 1.6%. The shrinkage rate improved, and the morphological stability of the vertical was improved.
[Comparative Example 2]
In Examples 8 to 11, a fabric of 100% cupra fibers before performing heat treatment with superheated steam (a warp yarn FB84 dtex: 126 yarns / 吋, a weft yarn FB84 dtex: 90 yarns / 吋 plain weave structure) was evaluated. The evaluation results are shown in Table 2.

Figure 2009052159
Figure 2009052159

本発明の処理方法は、薬剤を用いることなく、常圧で処理でき連続的に高効率での熱処理が可能であり、セルロース系材料又はその成形体に形態安定性の向上にすぐれた効果を有するものである。   The treatment method of the present invention can be treated at normal pressure without using a chemical, and can be continuously heat-treated with high efficiency, and has an excellent effect on improving the form stability of the cellulosic material or its molded body. Is.

熱処理工程における過熱水蒸気装置の設置例Installation example of superheated steam equipment in heat treatment process

符号の説明Explanation of symbols

1・・・ボイラー
2・・・過熱水蒸気発生装置
3・・・原反
4・・・水付与工程
5・・・水分率調整用のプレス脱水工程
6・・・過熱水蒸気噴出しノズル
7・・・多段ローラー式熱処理工程
8・・・巻取り工程
DESCRIPTION OF SYMBOLS 1 ... Boiler 2 ... Superheated steam generator 3 ... Raw material 4 ... Water provision process 5 ... Press dehydration process 6 for moisture content adjustment 6 ... Superheated steam jet nozzle 7 ...・ Multi-stage roller heat treatment process 8 ... winding process

Claims (11)

セルロース系材料又はその成形体の熱処理工程において、過熱水蒸気を用いることを特徴とする熱処理方法。   A heat treatment method characterized by using superheated steam in a heat treatment step of a cellulosic material or a molded product thereof. 前記過熱水蒸気の温度が130〜250℃であることを特徴とする請求項1に記載の熱処理方法。   The heat treatment method according to claim 1, wherein the temperature of the superheated steam is 130 to 250 ° C. 前記過熱水蒸気の温度が170〜200℃であることを特徴とする請求項1に記載の熱処理方法。   The temperature of the said superheated steam is 170-200 degreeC, The heat processing method of Claim 1 characterized by the above-mentioned. 前記セルロース系材料又はその成形体において、セルロースの混率が40重量%以上であることを特徴とする請求項1〜3のいずれかに記載の熱処理方法。   The heat treatment method according to any one of claims 1 to 3, wherein a mixing ratio of cellulose is 40% by weight or more in the cellulosic material or a molded body thereof. 前記セルロース系材料又はその成形体の熱処理工程前に該セルロース系材料又はその成形体の水分率を調整する工程を含むことを特徴とする請求項1〜4のいずれかに記載の熱処理方法。   The heat treatment method according to any one of claims 1 to 4, further comprising a step of adjusting a moisture content of the cellulosic material or the molded body thereof before the heat treatment step of the cellulosic material or the molded body thereof. 前記水分率を調整する工程において、該水分率が5重量%以上であることを特徴とする請求項5に記載の熱処理方法。   6. The heat treatment method according to claim 5, wherein in the step of adjusting the moisture content, the moisture content is 5% by weight or more. 過熱水蒸気発生工程と、該過熱水蒸気を熱源とする熱処理工程とを有し、常圧下、バッチ式で、熱処理することを特徴とする請求項1〜6のいずれかに記載の熱処理方法。   The heat treatment method according to any one of claims 1 to 6, comprising a superheated steam generation step and a heat treatment step using the superheated steam as a heat source, and performing the heat treatment in a batch mode under normal pressure. 過熱水蒸気発生工程と、該過熱水蒸気を熱源とする熱処理工程とを有し、常圧下、連続的に、熱処理することを特徴とする請求項1〜6のいずれかに記載の熱処理方法。   The heat treatment method according to any one of claims 1 to 6, further comprising a superheated steam generation step and a heat treatment step using the superheated steam as a heat source, and performing the heat treatment continuously under normal pressure. 前記セルロース系材料が繊維状物、フィルム状物、粒子状物、多孔質状物、又は中空糸条物であることを特徴とする請求項1〜8のいずれかに記載の熱処理方法。   The heat treatment method according to claim 1, wherein the cellulosic material is a fibrous material, a film-like material, a particulate material, a porous material, or a hollow fiber material. 前記成形体が、織物、編物、不織布、又はそれらの複合物であることを特徴とする請求項1〜8のいずれかに記載の熱処理方法。   The heat treatment method according to claim 1, wherein the molded body is a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof. 前記過熱水蒸気が、空気を含まない状態であることを特徴とする請求項1〜10のいずれかに記載の熱処理方法。   The heat treatment method according to claim 1, wherein the superheated steam does not contain air.
JP2007218476A 2007-08-24 2007-08-24 Method for heat-treating cellulosic material or molded article thereof Pending JP2009052159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218476A JP2009052159A (en) 2007-08-24 2007-08-24 Method for heat-treating cellulosic material or molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218476A JP2009052159A (en) 2007-08-24 2007-08-24 Method for heat-treating cellulosic material or molded article thereof

Publications (1)

Publication Number Publication Date
JP2009052159A true JP2009052159A (en) 2009-03-12

Family

ID=40503474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218476A Pending JP2009052159A (en) 2007-08-24 2007-08-24 Method for heat-treating cellulosic material or molded article thereof

Country Status (1)

Country Link
JP (1) JP2009052159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132966A1 (en) * 2011-03-25 2012-10-04 ユニ・チャーム株式会社 Manufacturing method for nonwoven fabric
CN102899770A (en) * 2012-09-26 2013-01-30 泰安市金飞虹织造有限公司 Fibrilia stretching and refining processor
JP2016132147A (en) * 2015-01-19 2016-07-25 株式会社トッパン・コスモ Method for producing foam laminate sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352867A (en) * 1991-05-23 1992-12-07 Asahi Chem Ind Co Ltd Modification of cellulosic fiber
JPH0931830A (en) * 1995-07-18 1997-02-04 Hisaka Works Ltd Shape-stabilizing treatment of textile product and apparatus therefor
JPH0931831A (en) * 1995-07-18 1997-02-04 Hisaka Works Ltd Shape-stabilizing treatment of textile product and apparatus therefor
JP2003221774A (en) 2002-01-30 2003-08-08 Yoshinobu Kozuka Method and apparatus for finishing of fiber product
JP2007276283A (en) * 2006-04-07 2007-10-25 Futamura Chemical Co Ltd Method for manufacturing film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352867A (en) * 1991-05-23 1992-12-07 Asahi Chem Ind Co Ltd Modification of cellulosic fiber
JPH0931830A (en) * 1995-07-18 1997-02-04 Hisaka Works Ltd Shape-stabilizing treatment of textile product and apparatus therefor
JPH0931831A (en) * 1995-07-18 1997-02-04 Hisaka Works Ltd Shape-stabilizing treatment of textile product and apparatus therefor
JP2003221774A (en) 2002-01-30 2003-08-08 Yoshinobu Kozuka Method and apparatus for finishing of fiber product
JP2007276283A (en) * 2006-04-07 2007-10-25 Futamura Chemical Co Ltd Method for manufacturing film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132966A1 (en) * 2011-03-25 2012-10-04 ユニ・チャーム株式会社 Manufacturing method for nonwoven fabric
JP2012202004A (en) * 2011-03-25 2012-10-22 Uni Charm Corp Method for producing nonwoven fabric
CN102899770A (en) * 2012-09-26 2013-01-30 泰安市金飞虹织造有限公司 Fibrilia stretching and refining processor
JP2016132147A (en) * 2015-01-19 2016-07-25 株式会社トッパン・コスモ Method for producing foam laminate sheet

Similar Documents

Publication Publication Date Title
KR0128256B1 (en) Technical woven fabric with adjusted air permeability and high ageing resistance process for its manufacture
US20070031664A1 (en) Fiber yarn and fabric using the same
JP2008510079A (en) Stretch fabric with improved heat setting properties
CN107217372A (en) A kind of manufacture method of household textile lining
JP2013209756A (en) High-density woven fabric and method for producing the same
JP2009052159A (en) Method for heat-treating cellulosic material or molded article thereof
CN107012563B (en) A kind of down-proof fabric containing acid fiber by polylactic
TW550322B (en) Process for treating knits containing polyester bicomponent fibers
CN108239882B (en) Down-proof fabric slashing size and slashing method
CN107075739B (en) Lyocell crimped fiber
JP4117546B2 (en) Elastic composite spun yarn fabric, product using the same, and method for producing the same
CN106758154B (en) Synthetic fabrics and its size fast and stable method
JP2007126777A (en) Pleated ticking having excellent down-proof property and method for producing the same
US3120095A (en) Method of making high bulk yarns
JP4074709B2 (en) Acetate composite entangled yarn and method for producing the same
JP2004211252A (en) Elastic conjugate yarn and method for producing the same yarn
KR101073157B1 (en) Process of producing washable protein-fiber textiles and washable protein-fiber textiles thereby
KR20100067172A (en) Mothod for manufacturing multi-textured yarn and fabfic having smooth out wrinkles easilyits
CN107700031A (en) A kind of production technology of Anti-static textile fabric
KR20190080240A (en) Processing method for improving morphological stability of silk fabric
JP3863051B2 (en) Polyester spotted yarn
KR101565132B1 (en) Process for manufacturing a carbonized cotton
JP4815685B2 (en) Polyamide multifilament package for high density fabrics
SU1386681A1 (en) Method of producing material of chemical fibre or blend of natural and chemical fibre
JP2728856B2 (en) Method for producing wool fabric with high elasticity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130423

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130607