JP2009049433A - Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus - Google Patents

Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus Download PDF

Info

Publication number
JP2009049433A
JP2009049433A JP2008294164A JP2008294164A JP2009049433A JP 2009049433 A JP2009049433 A JP 2009049433A JP 2008294164 A JP2008294164 A JP 2008294164A JP 2008294164 A JP2008294164 A JP 2008294164A JP 2009049433 A JP2009049433 A JP 2009049433A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric layer
piezoelectric element
manufacturing
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008294164A
Other languages
Japanese (ja)
Inventor
Kinzan Ri
欣山 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008294164A priority Critical patent/JP2009049433A/en
Publication of JP2009049433A publication Critical patent/JP2009049433A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric element, having high breakdown voltage and long lifetime durability, and its manufacturing method; and to provide a liquid ejection head and its manufacturing process, and a liquid ejector. <P>SOLUTION: The method for manufacturing a piezoelectric element comprises: a step for forming the lower electrode on a substrate; a step for forming a piezoelectric layer on the lower electrode by forming a piezoelectric precursor film containing Pb, Zr and Ti, such that composition ratio after calcination becomes Pb/(Zr+Ti)=1.0 to 1.3 and at least one additive selected from among a group of manganese, nickel and strontium is added to the precursor film and then calcinating the piezoelectric precursor film at 650-750°C for 0.5-3 hours; and a step for forming an upper electrode on the piezoelectric layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、下電極、圧電体層及び上電極からなる圧電素子及びその製造方法に関し、特にノズル開口から液滴を吐出させる液体噴射ヘッド及びその製造方法並びに液体噴射装置に用いられる圧電素子に関する。   The present invention relates to a piezoelectric element including a lower electrode, a piezoelectric layer, and an upper electrode and a manufacturing method thereof, and more particularly to a liquid ejecting head that discharges liquid droplets from a nozzle opening, a manufacturing method thereof, and a piezoelectric element used in a liquid ejecting apparatus.

インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、この振動板を圧電素子により変形させて圧力発生室のインクを加圧してノズル開口からインク滴を吐出させるインクジェット式記録ヘッドが実用化されている。例えば、このようなインクジェット式記録ヘッドとしては、振動板の表面全体に亘って成膜技術により均一な圧電材料層を形成し、この圧電材料層をリソグラフィ法により圧力発生室に対応する形状に切り分けて各圧力発生室毎に独立するように圧電素子を形成したものがある。   A part of the pressure generation chamber communicating with the nozzle opening for discharging ink droplets is constituted by a vibration plate, and the vibration plate is deformed by a piezoelectric element to pressurize the ink in the pressure generation chamber to discharge ink droplets from the nozzle opening. Inkjet recording heads have been put into practical use. For example, in such an ink jet recording head, a uniform piezoelectric material layer is formed over the entire surface of the diaphragm by a film forming technique, and the piezoelectric material layer is cut into a shape corresponding to the pressure generating chamber by a lithography method. Some piezoelectric elements are formed so as to be independent for each pressure generating chamber.

また、このようなインクジェット式記録ヘッドに用いられる圧電素子として、圧電体層の組成物としてハロゲン系物質の含有量を規定することで、リーク電流を抑えて圧電体層の耐電圧を向上したものが提案されている(例えば、特許文献1参照)。   In addition, as a piezoelectric element used in such an ink jet recording head, by specifying the content of a halogen-based substance as a composition of the piezoelectric layer, the withstand voltage of the piezoelectric layer is improved by suppressing the leakage current Has been proposed (see, for example, Patent Document 1).

しかしながら、特許文献1では、圧電体層のリーク電流を抑えることができるものの、圧電体層の電気抵抗率の規定は行われていない。電気抵抗率が低いとリーク電流が大きくなり、圧電体層の耐久性が低下してしまうという問題がある。   However, in Patent Document 1, although the leakage current of the piezoelectric layer can be suppressed, the electrical resistivity of the piezoelectric layer is not defined. When the electrical resistivity is low, there is a problem that the leakage current increases and the durability of the piezoelectric layer is lowered.

なお、このような問題は、インクジェット式記録ヘッドに代表される液体噴射ヘッド及びその製造方法に限定されず、他の圧電素子及びその製造方法においても同様に存在する。   Such a problem is not limited to a liquid jet head typified by an ink jet recording head and a method for manufacturing the same, and similarly exists in other piezoelectric elements and methods for manufacturing the same.

特開2004−107181号公報(特許請求の範囲、第11頁)JP 2004-107181 A (claims, page 11)

本発明はこのような事情に鑑み、耐電圧が高く耐久寿命の長い圧電素子及びその製造方法、液体噴射ヘッド及びその製造方法並びに液体噴射装置を提供することを課題とする。   In view of such circumstances, it is an object of the present invention to provide a piezoelectric element having a high withstand voltage and a long durability life, a manufacturing method thereof, a liquid ejecting head, a manufacturing method thereof, and a liquid ejecting apparatus.

上記課題を解決する本発明の第1の態様は、基板上に下電極を形成する工程と、該下電極上にPb、Zr及びTiを含み、且つ、焼成後の組成比がPb/(Zr+Ti)=1.0〜1.3となると共にマンガン、ニッケル及びストロンチウムからなる群から選択される少なくとも1つの添加物を添加した圧電体前駆体膜を形成し、該圧電体前駆体膜を650〜750℃で、0.5〜3時間焼成することで圧電体層を形成する工程と、前記圧電体層上に上電極を形成する工程とを具備することを特徴とする圧電素子の製造方法にある。
かかる第1の態様では、過剰鉛を含有させると共に、焼成温度及び焼成時間を所定の温度、所定の時間にすることで、結晶性が良く、安定性の高い圧電素子を形成することができる。
また、所定の添加物を添加することで、所望の電気抵抗率及び耐電圧の圧電素子を得ることができると共に、耐久寿命を長くして信頼性を向上することができる。
A first aspect of the present invention that solves the above problems includes a step of forming a lower electrode on a substrate, Pb, Zr, and Ti on the lower electrode, and a composition ratio after firing is Pb / (Zr + Ti ) = 1.0 to 1.3 and at least one additive selected from the group consisting of manganese, nickel and strontium is added to form a piezoelectric precursor film, A method for manufacturing a piezoelectric element, comprising: a step of forming a piezoelectric layer by baking at 750 ° C. for 0.5 to 3 hours; and a step of forming an upper electrode on the piezoelectric layer. is there.
In the first aspect, a piezoelectric element with good crystallinity and high stability can be formed by containing excess lead and setting the firing temperature and firing time to a predetermined temperature and a predetermined time.
Moreover, by adding a predetermined additive, a piezoelectric element having a desired electrical resistivity and withstand voltage can be obtained, and the durability can be extended to improve the reliability.

本発明の第2の態様は、前記添加物の添加量が10mol%以下であることを特徴とする第1の態様の圧電素子の製造方法にある。
かかる第2の態様では、添加量を所定の量にすることで、過剰な添加物によって圧電素子の変位特性が劣化するのを防止することができる。
According to a second aspect of the present invention, there is provided the method for manufacturing a piezoelectric element according to the first aspect, wherein the additive is added in an amount of 10 mol% or less.
In the second aspect, by setting the addition amount to a predetermined amount, it is possible to prevent the displacement characteristics of the piezoelectric element from being deteriorated by an excessive additive.

本発明の第3の態様は、前記圧電体層を形成する工程では、複数の圧電体前駆体膜を焼成することで圧電体膜を形成する圧電体膜形成工程を繰り返し行って当該圧電体層を形成すると共に、各圧電体膜形成工程での前記圧電体膜の焼成時間が0.5時間以上で、且つ前記圧電体層の総焼成時間が3時間以内であることを特徴とする第1又は2の態様の圧電素子の製造方法にある。
かかる第3の態様では、所望の厚さの圧電体層を高精度に形成することができると共に、結晶性が良く、安定性の高い圧電体層を形成することができる。
According to a third aspect of the present invention, in the step of forming the piezoelectric layer, the piezoelectric layer is repeatedly formed by forming a piezoelectric film by firing a plurality of piezoelectric precursor films. The piezoelectric film firing time in each piezoelectric film forming step is 0.5 hour or more, and the total firing time of the piezoelectric layer is 3 hours or less. Or it exists in the manufacturing method of the piezoelectric element of 2 aspect.
In the third aspect, a piezoelectric layer having a desired thickness can be formed with high accuracy, and a piezoelectric layer with good crystallinity and high stability can be formed.

本発明の第4の態様は、第1〜3の何れかの態様の圧電素子の製造方法により製造することを特徴とする液体噴射ヘッドの製造方法にある。
かかる第4の態様では、耐久寿命を長くして信頼性を向上した液体噴射ヘッドを得ることができる。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a liquid ejecting head, which is manufactured by the method for manufacturing a piezoelectric element according to any one of the first to third aspects.
According to the fourth aspect, it is possible to obtain a liquid jet head that has a long durability life and improved reliability.

本発明の第5の態様は、基板上に設けられた下電極、圧電体層及び上電極からなり、且つ前記圧電体層が、マンガン、ニッケル及びストロンチウムからなる群から選択される少なくとも1つの添加物を有すると共に、当該圧電体層の電気抵抗率が20MΩ・cm以上であることを特徴とする圧電素子にある。
かかる第5の態様では、圧電体層の電気抵抗率を所定の値にすることで、耐電圧を向上することができると共に、耐久寿命を長くすることができる。
また、所定の添加物を添加することで、所望の電気抵抗率及び耐電圧の圧電素子を得ることができると共に、耐久寿命を長くして信頼性を向上することができる。
According to a fifth aspect of the present invention, there is provided at least one additive selected from the group consisting of a lower electrode, a piezoelectric layer and an upper electrode provided on a substrate, wherein the piezoelectric layer is made of manganese, nickel and strontium. The piezoelectric element is characterized in that the piezoelectric element layer has an electrical resistivity of 20 MΩ · cm or more.
In the fifth aspect, by setting the electrical resistivity of the piezoelectric layer to a predetermined value, the withstand voltage can be improved and the durability life can be extended.
Moreover, by adding a predetermined additive, a piezoelectric element having a desired electrical resistivity and withstand voltage can be obtained, and the durability can be extended to improve the reliability.

本発明の第6の態様は、前記圧電体層の耐電圧が900kV/cm以上であることを特徴とする第5の態様の圧電素子にある。
かかる第6の態様では、圧電体層の耐電圧を所定の値にすることで、耐久寿命を長くすることができ、信頼性を向上することができる。
A sixth aspect of the present invention is the piezoelectric element according to the fifth aspect, wherein the piezoelectric layer has a withstand voltage of 900 kV / cm or more.
In the sixth aspect, by setting the withstand voltage of the piezoelectric layer to a predetermined value, the durability life can be extended and the reliability can be improved.

本発明の第7の態様は、前記圧電体層のリーク電流が1×10-8A/cm2以下であることを特徴とする第5又は6の態様の圧電素子にある。
かかる第7の態様では、圧電体層のリーク電流を所定の値にすることで、耐久寿命を長くすることができ、信頼性を向上することができる。
According to a seventh aspect of the present invention, in the piezoelectric element according to the fifth or sixth aspect, the leakage current of the piezoelectric layer is 1 × 10 −8 A / cm 2 or less.
In the seventh aspect, by setting the leakage current of the piezoelectric layer to a predetermined value, the durability life can be extended and the reliability can be improved.

本発明の第8の態様は、前記圧電体層の比誘電率が750〜1500であることを特徴とする第5〜7の何れかの態様の圧電素子にある。
かかる第8の態様では、圧電体層の結晶性が大幅に向上する。したがって、変位特性に優れると共に、耐電圧が高く耐久寿命の長い圧電素子を提供することができる。
An eighth aspect of the present invention is the piezoelectric element according to any one of the fifth to seventh aspects, wherein the piezoelectric layer has a relative dielectric constant of 750 to 1500.
In the eighth aspect, the crystallinity of the piezoelectric layer is greatly improved. Therefore, it is possible to provide a piezoelectric element having excellent displacement characteristics and a high withstand voltage and a long durability life.

本発明の第9の態様は、前記圧電体層の抗電界が15〜30kV/cmであり且つ残留分極強度が10〜25μC/cm2であることを特徴とする第5〜8の何れかの態様の圧電素子にある。
かかる第9の態様では、圧電体層の結晶性がより優れたものとなり、圧電素子の変位特性及び耐久寿命がさらに向上する。
According to a ninth aspect of the present invention, in any one of the fifth to eighth aspects, the coercive electric field of the piezoelectric layer is 15 to 30 kV / cm and the remanent polarization strength is 10 to 25 μC / cm 2 . It exists in the piezoelectric element of an aspect.
In the ninth aspect, the crystallinity of the piezoelectric layer becomes better, and the displacement characteristics and the durability life of the piezoelectric element are further improved.

本発明の第10の態様は、基板上に設けられた下電極、圧電体層及び上電極からなり、且つ前記圧電体層が、マンガン、ニッケル及びストロンチウムからなる群から選択される少なくとも1つの添加物を有し、当該圧電体層の電気抵抗率が20MΩ・cm以上であると共に、リーク電流が1×10-8A/cm2以下で、且つ耐電圧が900kV/cm以上であることを特徴とする圧電素子にある。
かかる第10の態様では、圧電体層の電気抵抗率、リーク電流及び耐電圧を所定の値にすることで、耐久寿命を長くすることができ、信頼性を向上することができる。
また、所定の添加物を添加することで、所望の電気抵抗率及び耐電圧の圧電素子を得ることができると共に、耐久寿命を長くして信頼性を向上することができる。
According to a tenth aspect of the present invention, there is provided at least one additive selected from the group consisting of a lower electrode, a piezoelectric layer and an upper electrode provided on a substrate, wherein the piezoelectric layer is made of manganese, nickel and strontium. The piezoelectric layer has an electrical resistivity of 20 MΩ · cm or more, a leakage current of 1 × 10 −8 A / cm 2 or less, and a withstand voltage of 900 kV / cm or more. It is in the piezoelectric element.
In the tenth aspect, by setting the electrical resistivity, leakage current, and withstand voltage of the piezoelectric layer to predetermined values, the durability life can be extended and the reliability can be improved.
Moreover, by adding a predetermined additive, a piezoelectric element having a desired electrical resistivity and withstand voltage can be obtained, and the durability can be extended to improve the reliability.

本発明の第11の態様は、第5〜10の何れかの態様の圧電素子と、前記圧電素子が振動板を介して設けられると共にノズル開口に連通する圧力発生室が設けられた流路形成基板とを具備することを特徴とする液体噴射ヘッドにある。
かかる第11の態様では、耐久寿命を向上して信頼性を向上した液体噴射ヘッドを得ることができる。
According to an eleventh aspect of the present invention, there is provided a flow path including the piezoelectric element according to any one of the fifth to tenth aspects and a pressure generation chamber in which the piezoelectric element is provided via a vibration plate and communicates with a nozzle opening. A liquid jet head comprising a substrate.
In the eleventh aspect, it is possible to obtain a liquid jet head that has improved durability and improved reliability.

本発明の第12の態様は、第11の態様の液体噴射ヘッドを具備することを特徴とする液体噴射装置にある。
かかる第12の態様では、耐久寿命を向上して信頼性を向上した液体噴射装置を得ることができる。
According to a twelfth aspect of the present invention, there is provided a liquid ejecting apparatus including the liquid ejecting head according to the eleventh aspect.
In the twelfth aspect, it is possible to obtain a liquid ejecting apparatus that has improved durability and improved reliability.

以下に本発明を実施形態に基づいて詳細に説明する。
(実施形態1)
図1は、本発明の実施形態1に係るインクジェット式記録ヘッドの分解斜視図であり、図2は、図1の平面図及びそのA−A’断面図である。
Hereinafter, the present invention will be described in detail based on embodiments.
(Embodiment 1)
FIG. 1 is an exploded perspective view of the ink jet recording head according to the first embodiment of the present invention, and FIG. 2 is a plan view of FIG.

図示するように、流路形成基板10は、本実施形態ではシリコン単結晶基板からなり、その一方面には予め熱酸化により形成した二酸化シリコンからなる、厚さ0.5〜2μmの弾性膜50が形成されている。   As shown in the drawing, the flow path forming substrate 10 is made of a silicon single crystal substrate in the present embodiment, and one surface thereof is made of silicon dioxide previously formed by thermal oxidation, and has an elastic film 50 having a thickness of 0.5 to 2 μm. Is formed.

この流路形成基板10には、その他方面側から異方性エッチングすることにより、複数の隔壁11によって区画された圧力発生室12が並設され、その長手方向外側には、各圧力発生室12の共通のインク室となるリザーバ100の一部を構成する連通部13が形成され、各圧力発生室12の長手方向一端部とそれぞれインク供給路14を介して連通されている。インク供給路14は、圧力発生室12よりも狭い幅で形成されており、連通部13から圧力発生室12に流入するインクの流路抵抗を一定に保持している。   This flow path forming substrate 10 is provided with pressure generating chambers 12 partitioned by a plurality of partition walls 11 by anisotropic etching from the other side, and each pressure generating chamber 12 is disposed on the outer side in the longitudinal direction. A communication portion 13 constituting a part of the reservoir 100 serving as a common ink chamber is formed, and is communicated with one end portion in the longitudinal direction of each pressure generation chamber 12 via an ink supply path 14. The ink supply path 14 is formed with a narrower width than the pressure generation chamber 12, and maintains a constant flow path resistance of ink flowing into the pressure generation chamber 12 from the communication portion 13.

また、流路形成基板10の開口面側には、各圧力発生室12のインク供給路14とは反対側で連通するノズル開口21が穿設されたノズルプレート20が接着剤や熱溶着フィルム等を介して固着されている。なお、ノズルプレート20は、厚さが例えば、0.01〜1mmで、線膨張係数が300℃以下で、例えば2.5〜4.5[×10-6/℃]であるガラスセラミックス、又はステンレス鋼などからなる。ノズルプレート20は、一方の面で流路形成基板10の一面を全面的に覆い、シリコン単結晶基板を衝撃や外力から保護する補強板の役目も果たす。また、ノズルプレート20は、流路形成基板10と熱膨張係数が略同一の材料で形成するようにしてもよい。この場合には、流路形成基板10とノズルプレート20との熱による変形が略同一となるため、熱硬化性の接着剤等を用いて容易に接合することができる。 Further, a nozzle plate 20 having a nozzle opening 21 communicating with the side opposite to the ink supply path 14 of each pressure generating chamber 12 on the opening surface side of the flow path forming substrate 10 is an adhesive, a heat-welded film, or the like. It is fixed through. The nozzle plate 20 has a thickness of, for example, 0.01 to 1 mm and a linear expansion coefficient of 300 ° C. or lower, for example, 2.5 to 4.5 [× 10 −6 / ° C.], or Made of stainless steel. The nozzle plate 20 entirely covers one surface of the flow path forming substrate 10 on one surface, and also serves as a reinforcing plate that protects the silicon single crystal substrate from impact and external force. Further, the nozzle plate 20 may be formed of a material having substantially the same thermal expansion coefficient as that of the flow path forming substrate 10. In this case, since the deformation by heat of the flow path forming substrate 10 and the nozzle plate 20 is substantially the same, it can be easily joined using a thermosetting adhesive or the like.

一方、流路形成基板10の開口面とは反対側には、上述したように、二酸化シリコンからなり厚さが例えば、約1.0μmの弾性膜50が形成され、この弾性膜50上には、酸化ジルコニウム(ZrO2)等からなり厚さが例えば、約0.4μmの絶縁体膜55が積層形成されている。また、この絶縁体膜55上には、厚さが約0.1〜0.5μmの下電極膜60と、チタン酸ジルコン酸鉛(PZT)等からなり厚さが例えば、約1.0μmの圧電体層70と、金、白金又はイリジウム等からなり厚さが例えば、約0.05μmの上電極膜80とが、後述するプロセスで積層形成されて、圧電素子300を構成している。 On the other hand, an elastic film 50 made of silicon dioxide and having a thickness of, for example, about 1.0 μm is formed on the side opposite to the opening surface of the flow path forming substrate 10. An insulator film 55 made of zirconium oxide (ZrO 2 ) or the like and having a thickness of, for example, about 0.4 μm is laminated. Further, on the insulator film 55, the lower electrode film 60 having a thickness of about 0.1 to 0.5 μm and lead zirconate titanate (PZT) or the like has a thickness of about 1.0 μm, for example. The piezoelectric layer 300 and an upper electrode film 80 made of gold, platinum, iridium, or the like and having a thickness of, for example, about 0.05 μm are laminated by a process described later to constitute the piezoelectric element 300.

ここで、圧電素子300は、下電極膜60、圧電体層70及び上電極膜80を含む部分をいう。一般的には、圧電素子300の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12毎にパターニングして構成する。そして、ここではパターニングされた何れか一方の電極及び圧電体層70から構成され、両電極への電圧の印加により圧電歪みが生じる部分を圧電体能動部という。本実施形態では、下電極膜60は圧電素子300の共通電極とし、上電極膜80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆にしても支障はない。何れの場合においても、各圧力発生室12毎に圧電体能動部が形成されていることになる。また、ここでは、圧電素子300と当該圧電素子300の駆動により変位が生じる振動板とを合わせて圧電アクチュエータと称する。なお、上述した例では、弾性膜50、絶縁体膜55及び下電極膜60が振動板として作用する。   Here, the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80. In general, one electrode of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each pressure generating chamber 12. In addition, here, a portion that is configured by any one of the patterned electrodes and the piezoelectric layer 70 and in which piezoelectric distortion is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion. In this embodiment, the lower electrode film 60 is a common electrode of the piezoelectric element 300, and the upper electrode film 80 is an individual electrode of the piezoelectric element 300. However, there is no problem even if this is reversed for the convenience of the drive circuit and wiring. In any case, a piezoelectric active part is formed for each pressure generating chamber 12. Further, here, the piezoelectric element 300 and the vibration plate that is displaced by driving the piezoelectric element 300 are collectively referred to as a piezoelectric actuator. In the example described above, the elastic film 50, the insulator film 55, and the lower electrode film 60 function as a diaphragm.

なお、本実施形態の圧電体層70は、電気抵抗率が20MΩ・cm以上となっている。圧電体層70をこのような電気抵抗率にすることで、リーク電流が大きくなるのを防ぎ、圧電体層70の耐久寿命を延ばすことができる。このような圧電体層70のリーク電流は、1×10-8A/cm2以下が好ましい。また、圧電体層70の耐電圧は900kV/cm以上であるのが好ましい。圧電体層70をこのようなリーク電流及び耐電圧にすることで、圧電体層70の耐久寿命を延ばすことができる。 The piezoelectric layer 70 of the present embodiment has an electric resistivity of 20 MΩ · cm or more. By setting the piezoelectric layer 70 to such an electrical resistivity, an increase in leakage current can be prevented and the durable life of the piezoelectric layer 70 can be extended. The leakage current of the piezoelectric layer 70 is preferably 1 × 10 −8 A / cm 2 or less. The withstand voltage of the piezoelectric layer 70 is preferably 900 kV / cm or more. By setting the piezoelectric layer 70 to such a leakage current and withstand voltage, the durability life of the piezoelectric layer 70 can be extended.

また、このような圧電体層70は、比誘電率が750〜1500である。さらに、このような圧電体層70は、抗電界がEc=15〜30kV/cm(2Ec=30〜60kV/cm)であり且つ残留分極強度がPr=10〜25μC/cm2(2Pr=20〜50μC/cm2)という特性を有する。なお、圧電体層70の抗電界Ec及び残留分極強度Prは、例えば、図3に示すような圧電体層のヒステリシス曲線の2Ec及び2Prから求めた値である。 Such a piezoelectric layer 70 has a relative dielectric constant of 750 to 1500. Further, such a piezoelectric layer 70 has a coercive electric field of Ec = 15 to 30 kV / cm (2Ec = 30 to 60 kV / cm) and a residual polarization strength of Pr = 10 to 25 μC / cm 2 (2Pr = 20 to 50 μC / cm 2 ). The coercive electric field Ec and the remanent polarization strength Pr of the piezoelectric layer 70 are values obtained from 2Ec and 2Pr of the hysteresis curve of the piezoelectric layer as shown in FIG. 3, for example.

このような特性を有する圧電体層70は、極めて良好な圧電定数、具体的には、圧電定数d31が、150〜250pC/Nとなり、圧電素子300の変位特性が向上する。 The piezoelectric layer 70 having such characteristics has a very good piezoelectric constant, specifically, a piezoelectric constant d 31 of 150 to 250 pC / N, and the displacement characteristics of the piezoelectric element 300 are improved.

このような本実施形態の圧電体層70としては、下電極膜60上に形成される電気機械変換作用を示す強誘電性セラミックス材料からなるペロブスカイト構造の結晶膜が挙げられる。圧電体層70の材料としては、例えば、チタン酸ジルコン酸鉛(PZT)等の強誘電性圧電材料や、これに酸化ニオブ、酸化ニッケル又は酸化マグネシウム等の金属酸化物を添加したもの等が好適である。具体的には、チタン酸鉛(PbTiO3)、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3)、ジルコニウム酸鉛(PbZrO3)、チタン酸鉛ランタン((Pb,La),TiO3)ジルコン酸チタン酸鉛ランタン((Pb,La)(Zr,Ti)O3)又は、マグネシウムニオブ酸ジルコニウムチタン酸鉛(Pb(Zr,Ti)(Mg,Nb)O3)等を用いることができる。本実施形態では、圧電体層70として、Pb(鉛)、Zr(ジルコニウム)及びTi(チタン)を含む材料からなり、焼成後の組成比がPb/(Zr+Ti)=1.0〜1.3となるようにした。これにより、余剰鉛が粒界に集まってリーク電流が大きくなるのを防止して、所定のリーク電流にすることができる。 As such a piezoelectric layer 70 of the present embodiment, a perovskite structure crystal film made of a ferroelectric ceramic material having an electromechanical conversion effect formed on the lower electrode film 60 can be cited. As a material of the piezoelectric layer 70, for example, a ferroelectric piezoelectric material such as lead zirconate titanate (PZT) or a material obtained by adding a metal oxide such as niobium oxide, nickel oxide or magnesium oxide to the piezoelectric material is suitable. It is. Specifically, lead titanate (PbTiO 3 ), lead zirconate titanate (Pb (Zr, Ti) O 3 ), lead zirconate (PbZrO 3 ), lead lanthanum titanate ((Pb, La), TiO 3 ) ) Lead lanthanum zirconate titanate ((Pb, La) (Zr, Ti) O 3 ) or lead magnesium titanate zirconate titanate (Pb (Zr, Ti) (Mg, Nb) O 3 ) or the like is used. it can. In this embodiment, the piezoelectric layer 70 is made of a material containing Pb (lead), Zr (zirconium), and Ti (titanium), and the composition ratio after firing is Pb / (Zr + Ti) = 1.0 to 1.3. It was made to become. As a result, it is possible to prevent excess lead from gathering at the grain boundaries and increasing the leakage current, thereby obtaining a predetermined leakage current.

また、本実施形態の圧電体層70には、ニッケル(Ni)、マンガン(Mn)及びストロンチウム(Sr)から選択される少なくとも1つの添加物を添加することで、確実に圧電体層70の電気抵抗率、リーク電流、耐電圧、比誘電率、残留分極強度、抗電界及び圧電定数などを所定の値にすることができる。ニッケル(Ni)、マンガン(Mn)及びストロンチウム(Sr)から選択される少なくとも1つの添加物を添加することは、圧電体層70の電気抵抗率、リーク電流、耐電圧、比誘電率、残留分極強度、抗電界及び圧電定数などの値を所定の値にする1つの方法である。このような添加物の添加量としては、所定量、特に10mol%以下が好ましい。ここで「10mol%以下」としたのは、添加量を可及的に少なくすれば良いという意味ではなく、添加物の添加量が多いと圧電体層70の変位量が低下してしまうという理由から上限を決定したものである。   In addition, by adding at least one additive selected from nickel (Ni), manganese (Mn), and strontium (Sr) to the piezoelectric layer 70 of the present embodiment, the electrical property of the piezoelectric layer 70 can be reliably ensured. The resistivity, leak current, withstand voltage, relative dielectric constant, remanent polarization strength, coercive electric field, piezoelectric constant, and the like can be set to predetermined values. The addition of at least one additive selected from nickel (Ni), manganese (Mn), and strontium (Sr) causes the electrical resistivity, leakage current, withstand voltage, relative dielectric constant, and remanent polarization of the piezoelectric layer 70 to be added. This is one method of setting values such as strength, coercive electric field, and piezoelectric constant to predetermined values. The amount of such an additive is preferably a predetermined amount, particularly 10 mol% or less. Here, “less than or equal to 10 mol%” does not mean that the addition amount should be reduced as much as possible, but the reason that the displacement amount of the piezoelectric layer 70 is reduced when the addition amount of the additive is large. The upper limit is determined from

さらに、圧電体層70の厚さについては、製造工程でクラックが発生しない程度に厚さを抑え、且つ十分な変位特性を呈する程度に厚く形成する。例えば、本実施形態では、圧電体層70を1〜2μm前後の厚さで形成した。   Further, the thickness of the piezoelectric layer 70 is reduced to such a degree that cracks do not occur in the manufacturing process and is formed thick enough to exhibit sufficient displacement characteristics. For example, in this embodiment, the piezoelectric layer 70 is formed with a thickness of about 1 to 2 μm.

また、圧電素子300の個別電極である各上電極膜80には、インク供給路14側の端部近傍から引き出され、絶縁体膜55上まで延設される、例えば、金(Au)等からなるリード電極90が接続されている。   Further, each upper electrode film 80 that is an individual electrode of the piezoelectric element 300 is drawn from the vicinity of the end on the ink supply path 14 side and extended to the insulator film 55, for example, from gold (Au) or the like. Lead electrode 90 is connected.

このような圧電素子300が形成された流路形成基板10上、すなわち、下電極膜60、弾性膜50及びリード電極90上には、リザーバ100の少なくとも一部を構成するリザーバ部31を有する保護基板30が接着剤34を介して接合されている。このリザーバ部31は、本実施形態では、保護基板30を厚さ方向に貫通して圧力発生室12の幅方向に亘って形成されており、上述のように流路形成基板10の連通部13と連通されて各圧力発生室12の共通のインク室となるリザーバ100を構成している。   On the flow path forming substrate 10 on which such a piezoelectric element 300 is formed, that is, on the lower electrode film 60, the elastic film 50, and the lead electrode 90, a protection having a reservoir portion 31 constituting at least a part of the reservoir 100. The substrate 30 is bonded via an adhesive 34. In the present embodiment, the reservoir portion 31 is formed through the protective substrate 30 in the thickness direction and across the width direction of the pressure generation chamber 12. As described above, the communication portion 13 of the flow path forming substrate 10. The reservoir 100 is configured as a common ink chamber for the pressure generation chambers 12.

また、保護基板30の圧電素子300に対向する領域には、圧電素子300の運動を阻害しない程度の空間を有する圧電素子保持部32が設けられている。保護基板30は、圧電素子300の運動を阻害しない程度の空間を有していればよく、当該空間は密封されていても、密封されていなくてもよい。   A piezoelectric element holding portion 32 having a space that does not hinder the movement of the piezoelectric element 300 is provided in a region of the protective substrate 30 that faces the piezoelectric element 300. The protective substrate 30 only needs to have a space that does not hinder the movement of the piezoelectric element 300, and the space may be sealed or unsealed.

このような保護基板30としては、流路形成基板10の熱膨張率と略同一の材料、例えば、ガラス、セラミック材料等を用いることが好ましく、本実施形態では、流路形成基板10と同一材料のシリコン単結晶基板を用いて形成した。   As such a protective substrate 30, it is preferable to use substantially the same material as the coefficient of thermal expansion of the flow path forming substrate 10, for example, glass, ceramic material, etc. In this embodiment, the same material as the flow path forming substrate 10 is used. The silicon single crystal substrate was used.

また、保護基板30には、保護基板30を厚さ方向に貫通する貫通孔33が設けられている。そして、各圧電素子300から引き出されたリード電極90の端部近傍は、貫通孔33内に露出するように設けられている。   The protective substrate 30 is provided with a through hole 33 that penetrates the protective substrate 30 in the thickness direction. The vicinity of the end portion of the lead electrode 90 drawn from each piezoelectric element 300 is provided so as to be exposed in the through hole 33.

また、保護基板30上には、並設された圧電素子300を駆動するための駆動回路110が固定されている。この駆動回路110としては、例えば、回路基板や半導体集積回路(IC)等を用いることができる。そして、駆動回路110とリード電極90とは、ボンディングワイヤ等の導電性ワイヤからなる接続配線120を介して電気的に接続されている。   A driving circuit 110 for driving the piezoelectric elements 300 arranged in parallel is fixed on the protective substrate 30. As the drive circuit 110, for example, a circuit board, a semiconductor integrated circuit (IC), or the like can be used. The drive circuit 110 and the lead electrode 90 are electrically connected via a connection wiring 120 made of a conductive wire such as a bonding wire.

また、このような保護基板30上には、封止膜41及び固定板42とからなるコンプライアンス基板40が接合されている。ここで、封止膜41は、剛性が低く可撓性を有する材料(例えば、厚さが6μmのポリフェニレンサルファイド(PPS)フィルム)からなり、この封止膜41によってリザーバ部31の一方面が封止されている。また、固定板42は、金属等の硬質の材料(例えば、厚さが30μmのステンレス鋼(SUS)等)で形成される。この固定板42のリザーバ100に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、リザーバ100の一方面は可撓性を有する封止膜41のみで封止されている。   In addition, a compliance substrate 40 including a sealing film 41 and a fixing plate 42 is bonded onto the protective substrate 30. Here, the sealing film 41 is made of a material having low rigidity and flexibility (for example, a polyphenylene sulfide (PPS) film having a thickness of 6 μm), and the sealing film 41 seals one surface of the reservoir portion 31. It has been stopped. The fixing plate 42 is made of a hard material such as metal (for example, stainless steel (SUS) having a thickness of 30 μm). Since the region of the fixing plate 42 facing the reservoir 100 is an opening 43 that is completely removed in the thickness direction, one surface of the reservoir 100 is sealed only with a flexible sealing film 41. Has been.

また、このリザーバ100の長手方向略中央部外側のコンプライアンス基板40上には、リザーバ100にインクを供給するためのインク導入口44が形成されている。さらに、保護基板30には、インク導入口44とリザーバ100の側壁とを連通するインク導入路35が設けられている。   An ink introduction port 44 for supplying ink to the reservoir 100 is formed on the compliance substrate 40 on the outer side of the central portion of the reservoir 100 in the longitudinal direction. Further, the protective substrate 30 is provided with an ink introduction path 35 that allows the ink introduction port 44 and the side wall of the reservoir 100 to communicate with each other.

このような本実施形態のインクジェット式記録ヘッドでは、図示しない外部インク供給手段と接続したインク導入口44からインクを取り込み、リザーバ100からノズル開口21に至るまで内部をインクで満たした後、駆動回路からの記録信号に従い、圧力発生室12に対応するそれぞれの下電極膜60と上電極膜80との間に電圧を印加し、弾性膜50、下電極膜60及び圧電体層70をたわみ変形させることにより、各圧力発生室12内の圧力が高まりノズル開口21からインク滴が吐出する。   In such an ink jet recording head of this embodiment, ink is taken in from an ink introduction port 44 connected to an external ink supply means (not shown), and the interior is filled with ink from the reservoir 100 to the nozzle opening 21. In accordance with the recording signal from, a voltage is applied between each of the lower electrode film 60 and the upper electrode film 80 corresponding to the pressure generating chamber 12, and the elastic film 50, the lower electrode film 60, and the piezoelectric layer 70 are bent and deformed. As a result, the pressure in each pressure generating chamber 12 increases and ink droplets are ejected from the nozzle openings 21.

以下、このようなインクジェット式記録ヘッドの製造方法について、図4〜図6を参照して説明する。なお、図4〜図6は、圧力発生室12の長手方向の断面図である。まず、図4(a)に示すように、シリコン単結晶基板からなる流路形成基板10を約1100℃の拡散炉で熱酸化し、その表面に弾性膜50及び保護膜51となる二酸化シリコン膜52を形成する。次いで、図4(b)に示すように、弾性膜50(二酸化シリコン膜52)上に、ジルコニウム(Zr)層を形成後、例えば、500〜1200℃の拡散炉で熱酸化して酸化ジルコニウム(ZrO2)からなる絶縁体膜55を形成する。 Hereinafter, a method for manufacturing such an ink jet recording head will be described with reference to FIGS. 4 to 6 are sectional views of the pressure generating chamber 12 in the longitudinal direction. First, as shown in FIG. 4A, a flow path forming substrate 10 made of a silicon single crystal substrate is thermally oxidized in a diffusion furnace at about 1100 ° C., and a silicon dioxide film serving as an elastic film 50 and a protective film 51 on its surface. 52 is formed. Next, as shown in FIG. 4B, a zirconium (Zr) layer is formed on the elastic film 50 (silicon dioxide film 52), and then thermally oxidized in a diffusion furnace at 500 to 1200 ° C., for example, to form zirconium oxide ( An insulator film 55 made of ZrO 2 ) is formed.

次いで、図4(c)に示すように流路形成基板10の全面に亘ってイリジウム又は白金等を形成後、所定形状にパターニングすることで下電極膜60を形成する。   Next, as shown in FIG. 4C, after forming iridium, platinum or the like over the entire surface of the flow path forming substrate 10, the lower electrode film 60 is formed by patterning into a predetermined shape.

そして、下電極膜60上に圧電体層70を形成する。ここで、本実施形態では、金属有機物を触媒に溶解・分散したいわゆるゾルを塗布乾燥してゲル化し、さらに高温で焼成することで金属酸化物からなる圧電体層70を得る、いわゆるゾル−ゲル法を用いて圧電体層70を形成している。なお、圧電体層70の製造方法は、ゾル−ゲル法に限定されず、例えば、MOD(Metal-Organic Decomposition)法等を用いてもよい。   Then, the piezoelectric layer 70 is formed on the lower electrode film 60. Here, in the present embodiment, a so-called sol-gel is obtained in which a so-called sol in which a metal organic material is dissolved and dispersed in a catalyst is applied, dried, gelled, and further fired at a high temperature to obtain a piezoelectric layer 70 made of a metal oxide. The piezoelectric layer 70 is formed using the method. The method for manufacturing the piezoelectric layer 70 is not limited to the sol-gel method, and for example, a MOD (Metal-Organic Decomposition) method or the like may be used.

このような圧電体層70の材料としては、Pb、Zr及びTiを含むものであり、本実施形態では、チタン酸ジルコン酸鉛(PZT)で形成した。また、本実施形態の圧電体層70は、焼成後の組成比がPb/(Zr+Ti)=1.0〜1.3で形成されている。すなわち、圧電体層70には、余剰鉛が30%以下含有されていることになる。このように余剰鉛を30%以下含有させることでリーク電流が大きくなるのを防止している。さらに、圧電体層70には、マンガン(Mn)、ニッケル(Ni)及びストロンチウム(Sr)から選択される少なくとも1つの添加物を添加することで、電気抵抗率及び耐電圧が優れた圧電体層70を形成することができる。なお、この添加物は多すぎると圧電体層70の変位量が低下してしまうため、添加物の添加量としては、圧電体層70全体に対して10mol%以下とするのが好ましい。また、このようなマンガン、ニッケル及びストロンチウム等の添加物は、硝酸マンガン、硝酸ニッケル及び硝酸ストロンチウムをゾルに混ぜることで添加することができる。さらに、添加された添加物は、詳しくは後述するが、焼成により形成した圧電体層70中にも存在するものである。   The material of the piezoelectric layer 70 includes Pb, Zr and Ti. In this embodiment, the piezoelectric layer 70 is made of lead zirconate titanate (PZT). In addition, the piezoelectric layer 70 of the present embodiment is formed such that the composition ratio after firing is Pb / (Zr + Ti) = 1.0 to 1.3. That is, the piezoelectric layer 70 contains 30% or less of excess lead. Thus, the leakage current is prevented from increasing by containing 30% or less of excess lead. Furthermore, by adding at least one additive selected from manganese (Mn), nickel (Ni), and strontium (Sr) to the piezoelectric layer 70, the piezoelectric layer having excellent electrical resistivity and withstand voltage. 70 can be formed. If the amount of the additive is too large, the displacement amount of the piezoelectric layer 70 is reduced. Therefore, the additive amount is preferably 10 mol% or less with respect to the entire piezoelectric layer 70. Such additives such as manganese, nickel and strontium can be added by mixing manganese nitrate, nickel nitrate and strontium nitrate into the sol. Further, the added additive will be described later in detail, but is also present in the piezoelectric layer 70 formed by firing.

圧電体層70の具体的な形成手順としては、まず、図5(a)に示すように、下電極膜60上にPZT前駆体である圧電体前駆体膜71を成膜する。すなわち、下電極膜60が形成された流路形成基板10上に金属有機化合物を含むゾル(溶液)を塗布する(塗布工程)。   As a specific procedure for forming the piezoelectric layer 70, first, as shown in FIG. 5A, a piezoelectric precursor film 71 that is a PZT precursor is formed on the lower electrode film 60. That is, a sol (solution) containing a metal organic compound is applied onto the flow path forming substrate 10 on which the lower electrode film 60 is formed (application process).

次いで、この圧電体前駆体膜71を所定温度に加熱して一定時間乾燥させる。例えば、本実施形態では、圧電体前駆体膜71を170〜180℃で8〜30分保持することで乾燥することができる。また、乾燥工程での昇温レートは0.5〜1.5℃/secが好適である。なお、ここで言う「昇温レート」とは、加熱開始時の温度(室温)と到達温度との温度差の20%上昇した温度から、温度差の80%の温度に達するまでの温度の時間変化率と規定する。例えば、室温25℃から100℃まで50秒で昇温させた場合の昇温レートは、(100−25)×(0.8−0.2)/50=0.9[℃/sec]となる。   Next, the piezoelectric precursor film 71 is heated to a predetermined temperature and dried for a predetermined time. For example, in the present embodiment, the piezoelectric precursor film 71 can be dried by holding at 170 to 180 ° C. for 8 to 30 minutes. Moreover, 0.5-1.5 degreeC / sec is suitable for the temperature increase rate in a drying process. The “temperature increase rate” referred to here is the time from the temperature at which the temperature difference between the temperature at the start of heating (room temperature) and the attained temperature increases by 20% to the temperature at which the temperature difference reaches 80%. It is defined as the rate of change. For example, when the temperature is raised from room temperature 25 ° C. to 100 ° C. in 50 seconds, the rate of temperature rise is (100−25) × (0.8−0.2) /50=0.9 [° C./sec]. Become.

次に、乾燥した圧電体前駆体膜71を所定温度に加熱して一定時間保持することによって脱脂する。例えば、本実施形態では、圧電体前駆体膜71を300〜400℃程度の温度に加熱して約10〜30分保持することで脱脂した。なお、ここで言う脱脂とは、圧電体前駆体膜71に含まれる有機成分を、例えば、NO2、CO2、H2O等として離脱させることである。また、脱脂工程では、昇温レートを0.5〜1.5℃/secとするのが好ましい。 Next, the dried piezoelectric precursor film 71 is degreased by heating it to a predetermined temperature and holding it for a predetermined time. For example, in this embodiment, the piezoelectric precursor film 71 is degreased by heating to a temperature of about 300 to 400 ° C. and holding for about 10 to 30 minutes. The degreasing referred to here is to release the organic component contained in the piezoelectric precursor film 71 as, for example, NO 2 , CO 2 , H 2 O or the like. In the degreasing step, it is preferable that the temperature rising rate is 0.5 to 1.5 ° C./sec.

次に、図5(b)に示すように、圧電体前駆体膜71を所定温度に加熱して一定時間保持することによって結晶化させ、圧電体膜72を形成する(焼成工程)。焼成工程では、圧電体前駆体膜71を650〜750℃に加熱するのが好ましく、本実施形態では、680℃で30分加熱するようにした。また、焼成工程では、昇温レートを15℃/sec以下とするのが好ましい。このように、圧電体膜72を焼成により形成する際には、圧電体前駆体膜71を30分以上加熱するのが好ましい。これにより優れた特性の圧電体膜72を得ることができる。   Next, as shown in FIG. 5B, the piezoelectric precursor film 71 is crystallized by being heated to a predetermined temperature and held for a predetermined time to form a piezoelectric film 72 (firing step). In the firing step, the piezoelectric precursor film 71 is preferably heated to 650 to 750 ° C. In this embodiment, the piezoelectric precursor film 71 is heated at 680 ° C. for 30 minutes. In the firing step, it is preferable that the temperature rising rate is 15 ° C./sec or less. Thus, when the piezoelectric film 72 is formed by firing, it is preferable to heat the piezoelectric precursor film 71 for 30 minutes or more. Thereby, the piezoelectric film 72 having excellent characteristics can be obtained.

なお、このような乾燥工程、脱脂工程及び焼成工程で用いられる加熱装置としては、例えば、ホットプレートや、赤外線ランプの照射により加熱するRTP(Rapid Thermal Processing)装置などを用いることができる。   In addition, as a heating apparatus used in such a drying process, a degreasing process, and a baking process, for example, a hot plate, an RTP (Rapid Thermal Processing) apparatus that heats by irradiation with an infrared lamp, or the like can be used.

そして、上述した塗布工程、乾燥工程、脱脂工程及び焼成工程からなる圧電体膜形成工程を複数回、本実施形態では10回繰り返すことで、図5(c)に示すように10層の圧電体膜72からなる所定厚さの圧電体層70を形成する。例えば、ゾルの1回あたりの膜厚が0.1μm程度の場合には、圧電体層70全体の膜厚は約1.1μm程度となる。   Then, the piezoelectric film forming process including the coating process, the drying process, the degreasing process, and the baking process described above is repeated a plurality of times, 10 times in this embodiment, so that 10 layers of piezoelectric bodies are obtained as shown in FIG. A piezoelectric layer 70 having a predetermined thickness made of the film 72 is formed. For example, when the film thickness per sol is about 0.1 μm, the film thickness of the entire piezoelectric layer 70 is about 1.1 μm.

なお、実際には、1層目及び2層目の圧電体膜72は、それぞれ焼成することで形成し、その後3層目以降は、塗布工程、乾燥工程及び脱脂工程を2回行った後、2層ずつ焼成することで形成する。すなわち、10層の圧電体膜72からなる圧電体層70は、6回焼成することで形成することができる。そして、このような圧電体層70の総焼成時間は、3時間以下とするのが好ましい。これにより優れた特性の圧電体層70を形成することができる。   In practice, the first and second piezoelectric films 72 are formed by firing, and after the third and subsequent layers, the coating process, the drying process, and the degreasing process are performed twice. It is formed by firing two layers at a time. That is, the piezoelectric layer 70 composed of the ten piezoelectric films 72 can be formed by firing six times. The total firing time of the piezoelectric layer 70 is preferably 3 hours or less. Thereby, the piezoelectric layer 70 having excellent characteristics can be formed.

ここで、上述した製造方法において、添加物の添加量を変化させた場合の耐電圧、比誘電率及び電気抵抗率を測定した。この結果を下記表1に示す。   Here, in the manufacturing method described above, the withstand voltage, the relative dielectric constant, and the electrical resistivity when the additive amount was changed were measured. The results are shown in Table 1 below.

Figure 2009049433
Figure 2009049433

表1に示すように、圧電体層70に添加物を添加して形成することで、圧電体層70の電気抵抗率を20MΩ・cm以上で、且つ耐電圧を900kV/cm以上で形成することができ、圧電体層70の耐久寿命を延ばすことができる。また、添加物を添加したとしても、圧電体層70の比誘電率を750〜1500とすることができ、圧電体層70の結晶性を大幅に向上することができる。したがって、耐久寿命を延ばすことができる。   As shown in Table 1, by forming the piezoelectric layer 70 by adding an additive, the piezoelectric layer 70 is formed with an electric resistivity of 20 MΩ · cm or more and a withstand voltage of 900 kV / cm or more. Thus, the durable life of the piezoelectric layer 70 can be extended. Even if an additive is added, the dielectric constant of the piezoelectric layer 70 can be set to 750 to 1500, and the crystallinity of the piezoelectric layer 70 can be greatly improved. Therefore, the durability life can be extended.

また、本実施形態の圧電体層70の製造方法によって、圧電体層70のリーク電流を1×10-8A/cm2以下で形成することができる。このように圧電体層70のリーク電流にすることで、圧電体層70の耐久寿命を延ばすことができる。 Further, the leakage current of the piezoelectric layer 70 can be formed at 1 × 10 −8 A / cm 2 or less by the method for manufacturing the piezoelectric layer 70 of the present embodiment. By using the leakage current of the piezoelectric layer 70 in this way, the durability life of the piezoelectric layer 70 can be extended.

また、本実施形態の条件で圧電体層70を形成した場合、圧電体層70の抗電界Ecは、およそ15〜30kV/cmとなり且つ残留分極強度Prは、およそ10〜25μC/cm2となる。 Further, when the piezoelectric layer 70 is formed under the conditions of this embodiment, the coercive electric field Ec of the piezoelectric layer 70 is approximately 15 to 30 kV / cm and the remanent polarization strength Pr is approximately 10 to 25 μC / cm 2. .

そして、図5(a)〜図5(c)に示す工程によって圧電体層70を形成した後は、図6(a)に示すように、例えば、イリジウムからなる上電極膜80を流路形成基板10の全面に形成し、圧電体層70及び上電極膜80を、各圧力発生室12に対向する領域にパターニングして圧電素子300を形成する。   Then, after the piezoelectric layer 70 is formed by the steps shown in FIGS. 5A to 5C, the upper electrode film 80 made of, for example, iridium is formed as a flow path as shown in FIG. 6A. The piezoelectric element 300 is formed by patterning the piezoelectric layer 70 and the upper electrode film 80 on the entire surface of the substrate 10 in regions facing the pressure generating chambers 12.

このように形成した圧電体層70の圧電定数d31は、上述したように150〜250(pC/N)と高く、圧電素子300の変位特性が大幅に向上する。これにより、インク吐出特性を向上することができる。 The piezoelectric constant d 31 of the piezoelectric layer 70 thus formed is as high as 150 to 250 (pC / N) as described above, and the displacement characteristics of the piezoelectric element 300 are greatly improved. Thereby, ink discharge characteristics can be improved.

次に、リード電極90を形成する。具体的には、図6(b)に示すように、流路形成基板10の全面に亘って、例えば、金(Au)等からなるリード電極90を形成後、例えば、レジスト等からなるマスクパターン(図示なし)を介して各圧電素子300毎にパターニングすることで形成される。   Next, the lead electrode 90 is formed. Specifically, as shown in FIG. 6B, after forming the lead electrode 90 made of, for example, gold (Au) over the entire surface of the flow path forming substrate 10, for example, a mask pattern made of resist or the like. It is formed by patterning each piezoelectric element 300 via (not shown).

次に、図6(c)に示すように、パターニングされた複数の圧電素子300を保持する保護基板30を、流路形成基板10上に例えば接着剤34によって接合する。なお、保護基板30には、リザーバ部31、圧電素子保持部32等が予め形成されている。また、保護基板30は、例えば、400μm程度の厚さを有するシリコン単結晶基板からなり、保護基板30を接合することで流路形成基板10の剛性は著しく向上することになる。   Next, as shown in FIG. 6C, the protective substrate 30 that holds the plurality of patterned piezoelectric elements 300 is bonded onto the flow path forming substrate 10 with, for example, an adhesive 34. The protective substrate 30 is preliminarily formed with a reservoir portion 31, a piezoelectric element holding portion 32, and the like. Further, the protective substrate 30 is made of, for example, a silicon single crystal substrate having a thickness of about 400 μm, and the rigidity of the flow path forming substrate 10 is remarkably improved by bonding the protective substrate 30.

次に、図6(d)に示すように、流路形成基板10の圧電素子300が形成された面とは反対側の二酸化シリコン膜52を所定形状にパターニングすることで保護膜51を形成し、保護膜51をマスクとして流路形成基板10をKOH等のアルカリ溶液を用いた異方性エッチング(ウェットエッチング)することにより、流路形成基板10に圧力発生室12、連通部13及びインク供給路14等を形成する。   Next, as shown in FIG. 6D, the protective film 51 is formed by patterning the silicon dioxide film 52 on the opposite side of the surface on which the piezoelectric element 300 of the flow path forming substrate 10 is formed into a predetermined shape. Then, the flow path forming substrate 10 is anisotropically etched (wet etching) using an alkaline solution such as KOH by using the protective film 51 as a mask, whereby the pressure generating chamber 12, the communication portion 13, and the ink supply are supplied to the flow path forming substrate 10. A path 14 and the like are formed.

その後は、流路形成基板10の保護基板30とは反対側の面にノズル開口21が穿設されたノズルプレート20を接合すると共に、保護基板30にコンプライアンス基板40を接合することで、図1に示すようなインクジェット式記録ヘッドが形成される。   Thereafter, the nozzle plate 20 having the nozzle openings 21 formed on the surface of the flow path forming substrate 10 opposite to the protective substrate 30 is bonded, and the compliance substrate 40 is bonded to the protective substrate 30, so that FIG. An ink jet recording head as shown in FIG.

なお、実際には、上述した一連の膜形成及び異方性エッチングによって一枚のウェハ上に多数のチップを同時に形成し、プロセス終了後、図1に示すような一つのチップサイズの流路形成基板10毎に分割することでインクジェット式記録ヘッドが形成される。   In practice, a large number of chips are simultaneously formed on a single wafer by the above-described series of film formation and anisotropic etching, and after the process is completed, a single chip-sized flow path is formed as shown in FIG. An ink jet recording head is formed by dividing each substrate 10.

以上説明したように、本発明では、圧電素子300を構成する圧電体層70の電気抵抗率が20MΩ・cm以上であるようにした。これにより、圧電体層70の圧電定数d31が高くなるため圧電素子300の変位特性が向上する。また、圧電体層70の結晶性が向上することで、例えば、耐電圧が900kV/cm以上とすることができると共に、リーク電流が1×10-8A/cm2以下とすることができ、耐久寿命を大幅に延ばすことができる。 As described above, in the present invention, the electrical resistivity of the piezoelectric layer 70 constituting the piezoelectric element 300 is set to 20 MΩ · cm or more. As a result, the piezoelectric constant d 31 of the piezoelectric layer 70 is increased, so that the displacement characteristics of the piezoelectric element 300 are improved. Further, by improving the crystallinity of the piezoelectric layer 70, for example, the withstand voltage can be set to 900 kV / cm or more, and the leakage current can be set to 1 × 10 −8 A / cm 2 or less. Durability life can be greatly extended.

ここで、上述した特性を有する圧電体層を有する圧電素子のサンプルに所定の駆動パルスを300億回連続的に印加する耐久試験を行い、そのときの圧電素子の変位量及び変位低下率の変化を調べた結果を図7に示す。なお、サンプルの圧電素子は、圧電体層の厚さが1.5μm、下電極膜の厚さが200nm、上電極膜の厚さが50nmである。また、耐久試験で印加した駆動パルスは、電圧50V、周波数100kHzのsin波形であり、変位測定時に印加した駆動パルスは、電圧30V、周波数800Hzの台形波形である。   Here, an endurance test in which a predetermined drive pulse is continuously applied 30 billion times to a sample of a piezoelectric element having a piezoelectric layer having the above-described characteristics is performed, and changes in displacement amount and displacement reduction rate of the piezoelectric element at that time are performed. FIG. 7 shows the result of examination. The sample piezoelectric element has a piezoelectric layer thickness of 1.5 μm, a lower electrode film thickness of 200 nm, and an upper electrode film thickness of 50 nm. The drive pulse applied in the durability test is a sin waveform with a voltage of 50 V and a frequency of 100 kHz, and the drive pulse applied at the time of displacement measurement is a trapezoidal waveform with a voltage of 30 V and a frequency of 800 Hz.

図7に示すように、本発明に係る圧電素子は、耐久パルス数の増加に伴って変位量が低下、すなわち、変位低下率は増加するものの、駆動パルスを300億回印加した後でも、変位低下率は13.3%と極めて低く抑えられていた。この結果から明らかなように、本発明によれば、圧電素子(圧電体層)の耐久寿命は大幅に向上する。   As shown in FIG. 7, the piezoelectric element according to the present invention has a displacement amount that decreases with an increase in the number of endurance pulses, that is, the displacement decrease rate increases, but even after the drive pulse is applied 30 billion times, The rate of decrease was very low at 13.3%. As is apparent from this result, according to the present invention, the durable life of the piezoelectric element (piezoelectric layer) is significantly improved.

(他の実施形態)
以上、本発明の実施形態1を説明したが、インクジェット式記録ヘッドの基本的構成は上述したものに限定されるものではない。例えば、上述した実施形態1では、圧電体層をゾル−ゲル法又はMOD法により形成したが、特にこれに限定されず、例えば、圧電体層をスパッタ法によって形成するようにしてもよい。このように圧電体層をスパッタ法によって形成する場合には、圧電体前駆体膜を650〜750℃で、0.5〜3時間ポストアニールすればよい。
(Other embodiments)
The first embodiment of the present invention has been described above, but the basic configuration of the ink jet recording head is not limited to that described above. For example, in the first embodiment described above, the piezoelectric layer is formed by the sol-gel method or the MOD method. However, the present invention is not particularly limited thereto. For example, the piezoelectric layer may be formed by a sputtering method. When the piezoelectric layer is thus formed by sputtering, the piezoelectric precursor film may be post-annealed at 650 to 750 ° C. for 0.5 to 3 hours.

また、上述した実施形態1では、本発明の圧電素子300を構成する圧電体層70に、ニッケル(Ni)、マンガン(Mn)及びストロンチウム(Sr)から選択される少なくとも1つの添加物を添加するようにしたが、特にこれに限定されず、圧電体層70にニッケル(Ni)、マンガン(Mn)及びストロンチウム(Sr)等を添加しなくても、所望の特性の圧電体層70を得ることができる。   In Embodiment 1 described above, at least one additive selected from nickel (Ni), manganese (Mn), and strontium (Sr) is added to the piezoelectric layer 70 constituting the piezoelectric element 300 of the present invention. However, the present invention is not limited to this, and the piezoelectric layer 70 having desired characteristics can be obtained without adding nickel (Ni), manganese (Mn), strontium (Sr), or the like to the piezoelectric layer 70. Can do.

また、これら各実施形態のインクジェット式記録ヘッドは、インクカートリッジ等と連通するインク流路を具備する記録ヘッドユニットの一部を構成して、インクジェット式記録装置に搭載される。図6は、そのインクジェット式記録装置の一例を示す概略構成図である。   In addition, the ink jet recording heads of these embodiments constitute a part of a recording head unit having an ink flow path communicating with an ink cartridge or the like, and are mounted on the ink jet recording apparatus. FIG. 6 is a schematic configuration diagram illustrating an example of the ink jet recording apparatus.

図8に示すように、インクジェット式記録ヘッドを有する記録ヘッドユニット1A及び1Bは、インク供給手段を構成するカートリッジ2A及び2Bが着脱可能に設けられ、この記録ヘッドユニット1A及び1Bを搭載したキャリッジ3は、装置本体4に取り付けられたキャリッジ軸5に軸方向移動自在に設けられている。この記録ヘッドユニット1A及び1Bは、例えば、それぞれブラックインク組成物及びカラーインク組成物を吐出するものとしている。   As shown in FIG. 8, in the recording head units 1A and 1B having the ink jet recording head, cartridges 2A and 2B constituting ink supply means are detachably provided, and a carriage 3 on which the recording head units 1A and 1B are mounted. Is provided on a carriage shaft 5 attached to the apparatus body 4 so as to be movable in the axial direction. The recording head units 1A and 1B, for example, are configured to eject a black ink composition and a color ink composition, respectively.

そして、駆動モータ6の駆動力が図示しない複数の歯車およびタイミングベルト7を介してキャリッジ3に伝達されることで、記録ヘッドユニット1A及び1Bを搭載したキャリッジ3はキャリッジ軸5に沿って移動される。一方、装置本体4にはキャリッジ軸5に沿ってプラテン8が設けられており、図示しない給紙ローラなどにより給紙された紙等の記録媒体である記録シートSがプラテン8上を搬送されるようになっている。   The driving force of the driving motor 6 is transmitted to the carriage 3 via a plurality of gears and timing belt 7 (not shown), so that the carriage 3 on which the recording head units 1A and 1B are mounted is moved along the carriage shaft 5. The On the other hand, the apparatus body 4 is provided with a platen 8 along the carriage shaft 5, and a recording sheet S, which is a recording medium such as paper fed by a paper feed roller (not shown), is conveyed on the platen 8. It is like that.

なお、上述した実施形態1では、液体噴射ヘッドの一例としてインクジェット式記録ヘッドを挙げて説明したが、本発明は広く液体噴射ヘッド全般を対象としたものであり、インク以外の液体を噴射する液体噴射ヘッドにも勿論適用することができる。その他の液体噴射ヘッドとしては、例えば、プリンタ等の画像記録装置に用いられる各種の記録ヘッド、液晶ディスプレイ等のカラーフィルタの製造に用いられる色材噴射ヘッド、有機ELディスプレイ、FED(面発光ディスプレイ)等の電極形成に用いられる電極材料噴射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられる。   In the first embodiment described above, an ink jet recording head has been described as an example of a liquid ejecting head. However, the present invention is widely intended for all liquid ejecting heads, and is a liquid ejecting a liquid other than ink. Of course, the present invention can also be applied to an ejection head. Other liquid ejecting heads include, for example, various recording heads used in image recording apparatuses such as printers, color material ejecting heads used for manufacturing color filters such as liquid crystal displays, organic EL displays, and FEDs (surface emitting displays). Examples thereof include an electrode material ejection head used for electrode formation, a bioorganic matter ejection head used for biochip production, and the like.

実施形態1に係る記録ヘッドの概略構成を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating a schematic configuration of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの平面図及び断面図である。2A and 2B are a plan view and a cross-sectional view of the recording head according to the first embodiment. 圧電体層のヒステリシス曲線の一例を示す図である。It is a figure which shows an example of the hysteresis curve of a piezoelectric material layer. 実施形態1に係る記録ヘッドの製造方法を示す断面図である。FIG. 4 is a cross-sectional view illustrating the recording head manufacturing method according to the first embodiment. 実施形態1に係る記録ヘッドの製造方法を示す断面図である。FIG. 4 is a cross-sectional view illustrating the recording head manufacturing method according to the first embodiment. 実施形態1に係る記録ヘッドの製造方法を示す断面図である。FIG. 4 is a cross-sectional view illustrating the recording head manufacturing method according to the first embodiment. サンプルの圧電素子の変位量及び変位低下率を示すグラフである。It is a graph which shows the displacement amount and displacement reduction rate of a sample piezoelectric element. 一実施形態に係る記録装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of a recording apparatus according to an embodiment.

符号の説明Explanation of symbols

10…流路形成基板、12…圧力発生室、13…連通部、14…インク供給路、20…ノズルプレート、21…ノズル開口、30…保護基板、31…リザーバ部、32…圧電素子保持部、40…コンプライアンス基板、60…下電極膜、70…圧電体層、80…上電極膜、90…リード電極、100…リザーバ、110…駆動回路、120…接続配線、300…圧電素子。   DESCRIPTION OF SYMBOLS 10 ... Flow path formation board | substrate, 12 ... Pressure generating chamber, 13 ... Communication part, 14 ... Ink supply path, 20 ... Nozzle plate, 21 ... Nozzle opening, 30 ... Protection board, 31 ... Reservoir part, 32 ... Piezoelectric element holding part , 40 ... compliance substrate, 60 ... lower electrode film, 70 ... piezoelectric layer, 80 ... upper electrode film, 90 ... lead electrode, 100 ... reservoir, 110 ... drive circuit, 120 ... connection wiring, 300 ... piezoelectric element.

Claims (6)

下電極を形成する工程と、該下電極上にPb、Zr及びTiを含み、且つ焼成後の組成比がPb/(Zr+Ti)=1.0〜1.3となると共にマンガン、ニッケル及びストロンチウムからなる群から選択される少なくとも1つの添加物を添加した圧電体前駆体膜を形成し、該圧電体前駆体膜を650〜750℃で、0.5〜3時間焼成することで圧電体層を形成する工程と、前記圧電体層上に上電極を形成する工程とを具備することを特徴とする圧電素子の製造方法。   A step of forming a lower electrode, and Pb, Zr and Ti are included on the lower electrode, and the composition ratio after firing is Pb / (Zr + Ti) = 1.0 to 1.3 and from manganese, nickel and strontium A piezoelectric precursor film to which at least one additive selected from the group consisting of the above is added is formed, and the piezoelectric precursor film is baked at 650 to 750 ° C. for 0.5 to 3 hours to form a piezoelectric layer. A method of manufacturing a piezoelectric element, comprising: a step of forming; and a step of forming an upper electrode on the piezoelectric layer. 前記圧電体前駆体膜は、マンガン及びストロンチウムをともに添加されていることを特徴とする請求項1に記載の圧電素子の製造方法。   2. The method of manufacturing a piezoelectric element according to claim 1, wherein the piezoelectric precursor film is added with both manganese and strontium. 前記圧電体層を形成する工程では、前記添加物を添加量が10mol%以下となるように用意する工程と、用意した添加物を圧電体前駆体に添加する工程とを具備することを特徴とする請求項1又は2に記載の圧電素子の製造方法。   The step of forming the piezoelectric layer includes a step of preparing the additive so that the amount added is 10 mol% or less, and a step of adding the prepared additive to the piezoelectric precursor. A method for manufacturing a piezoelectric element according to claim 1 or 2. 前記圧電体層を形成する工程では、複数の圧電体前駆体膜を焼成することで圧電体膜を形成する圧電体膜形成工程を繰り返し行って当該圧電体層を形成すると共に、各圧電体膜形成工程での前記圧電体膜の焼成時間が0.5時間以上で、且つ前記圧電体層の総焼成時間が3時間以内であることを特徴とする請求項1〜3の何れかに記載の圧電素子の製造方法。   In the step of forming the piezoelectric layer, the piezoelectric layer is formed by repeatedly performing a piezoelectric layer forming step of forming a piezoelectric layer by firing a plurality of piezoelectric precursor layers. The firing time of the piezoelectric film in the forming step is 0.5 hours or more, and the total firing time of the piezoelectric layer is within 3 hours. A method for manufacturing a piezoelectric element. 請求項1〜4の何れかに記載の圧電素子の製造方法により圧電素子を製造する工程と、
液体流路を形成する工程と、を具備することを特徴とする液体噴射ヘッドの製造方法。
A step of manufacturing a piezoelectric element by the method for manufacturing a piezoelectric element according to claim 1,
Forming a liquid flow path, and a method of manufacturing a liquid ejecting head.
請求項5記載の製造方法により液体噴射ヘッドを製造する工程と、
前記液体噴射ヘッドを制御する制御部を前記圧電素子の前記下電極と前記上電極とに、電気的に接続する工程と、を具備することを特徴とする液体噴射装置の製造方法。
Producing a liquid jet head by the production method according to claim 5;
And a step of electrically connecting a control unit for controlling the liquid ejecting head to the lower electrode and the upper electrode of the piezoelectric element.
JP2008294164A 2005-03-22 2008-11-18 Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus Withdrawn JP2009049433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294164A JP2009049433A (en) 2005-03-22 2008-11-18 Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005081729 2005-03-22
JP2008294164A JP2009049433A (en) 2005-03-22 2008-11-18 Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005359118A Division JP5170356B2 (en) 2005-03-22 2005-12-13 Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus

Publications (1)

Publication Number Publication Date
JP2009049433A true JP2009049433A (en) 2009-03-05

Family

ID=37015747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294164A Withdrawn JP2009049433A (en) 2005-03-22 2008-11-18 Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus

Country Status (2)

Country Link
JP (1) JP2009049433A (en)
CN (2) CN100505357C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091234A (en) * 2009-10-23 2011-05-06 Seiko Epson Corp Liquid ejection head, liquid ejection device and actuator device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821566B2 (en) * 2006-11-08 2011-11-24 セイコーエプソン株式会社 Liquid discharge head
JP2017136724A (en) * 2016-02-02 2017-08-10 東芝テック株式会社 Ink jet head

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233733A (en) * 1998-02-13 1999-08-27 Toshiba Corp Electronic parts and its manufacture
WO1999045598A1 (en) * 1998-03-04 1999-09-10 Seiko Epson Corporation Piezoelectric device, ink-jet recording head, method fo manufacture, and printer
JP2001152360A (en) * 1999-11-25 2001-06-05 Ricoh Co Ltd Ceramic dielectric film forming method, multilayered structure of ceramic dielectric film/substrate, and electro-mechanical transducer
JP2003055045A (en) * 2001-08-23 2003-02-26 Murata Mfg Co Ltd Piezoelectric ceramic composition for multilayer piezoelectric element, multilayer piezoelectric element, method for producing multilayer piezoelectric element and multilayer piezoelectric device
JP2004031524A (en) * 2002-06-24 2004-01-29 Seiko Epson Corp Manufacturing method of piezoelectric element
JP2004107181A (en) * 2002-09-20 2004-04-08 Canon Inc Composition for forming piezoelectric element, method of manufacturing piezoelectric film, piezoelectric element and inkjet recording head
JP2004111835A (en) * 2002-09-20 2004-04-08 Canon Inc Method of manufacturing piezoelectric element, piezoelectric element, and ink jet recording head

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233733A (en) * 1998-02-13 1999-08-27 Toshiba Corp Electronic parts and its manufacture
WO1999045598A1 (en) * 1998-03-04 1999-09-10 Seiko Epson Corporation Piezoelectric device, ink-jet recording head, method fo manufacture, and printer
JP2001152360A (en) * 1999-11-25 2001-06-05 Ricoh Co Ltd Ceramic dielectric film forming method, multilayered structure of ceramic dielectric film/substrate, and electro-mechanical transducer
JP2003055045A (en) * 2001-08-23 2003-02-26 Murata Mfg Co Ltd Piezoelectric ceramic composition for multilayer piezoelectric element, multilayer piezoelectric element, method for producing multilayer piezoelectric element and multilayer piezoelectric device
JP2004031524A (en) * 2002-06-24 2004-01-29 Seiko Epson Corp Manufacturing method of piezoelectric element
JP2004107181A (en) * 2002-09-20 2004-04-08 Canon Inc Composition for forming piezoelectric element, method of manufacturing piezoelectric film, piezoelectric element and inkjet recording head
JP2004111835A (en) * 2002-09-20 2004-04-08 Canon Inc Method of manufacturing piezoelectric element, piezoelectric element, and ink jet recording head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091234A (en) * 2009-10-23 2011-05-06 Seiko Epson Corp Liquid ejection head, liquid ejection device and actuator device

Also Published As

Publication number Publication date
CN1838445A (en) 2006-09-27
CN100505357C (en) 2009-06-24
CN100479218C (en) 2009-04-15
CN1838444A (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP5170356B2 (en) Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus
JP5157157B2 (en) Actuator device, manufacturing method thereof, driving method thereof, and liquid jet head
JP2006245247A (en) Piezoelectric element and its fabrication process, liquid ejection head and its manufacturing process, and liquid ejector
JP2006278489A (en) Piezoelectric element, actuator, liquid ejection head and liquid ejector
JP2008091877A (en) Piezoelectric element, actuator device, liquid injection head, and liquid injection apparatus
JP2007281032A (en) Actuator device, liquid discharge head and liquid discharge device
JP5297576B2 (en) Piezoelectric element, actuator device, liquid jet head, and liquid jet device
JP2007019084A (en) Manufacturing method for piezoelectric element and manufacturing method for liquid injection head
JP2008284781A (en) Liquid ejection head, its manufacturing process, and liquid ejector
JP2007073931A (en) Actuator equipment, manufacturing method thereof, and liquid injection head and liquid injection equipment
JP2011046129A (en) Liquid injection head and liquid injection device using the same
JP5737540B2 (en) Piezoelectric element, liquid ejecting head, sensor and motor
US7514854B2 (en) Piezoelectric element, liquid-jet head using piezoelectric element and liquid-jet apparatus
JP2010201830A (en) Liquid injection head, liquid injecting device, and piezoelectric element
JP2006303425A (en) Piezoelectric element, liquid ejection head and liquid ejector
JP2009049433A (en) Piezoelectric element, liquid-jet head, method for manufacturing the same, and liquid-jet apparatus
JP2011091234A (en) Liquid ejection head, liquid ejection device and actuator device
JP5344143B2 (en) Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
JP2006245248A (en) Piezoelectric element and its fabrication process, liquid ejection head and its manufacturing process, and liquid ejector
JP2007173605A (en) Method of manufacturing piezoelectric element and method of manufacturing liquid jetting head
JP2007042949A (en) Method of manufacturing piezoelectric element and piezoelectric element as well as liquid injection head and liquid injection device
JP2009016589A (en) Piezoelectric element, manufacturing method thereof, actuator device, liquid jetting head, and liquid jetting device
JP2007035883A (en) Actuator device, its manufacturing method, and head and device for liquid injection
JP2005260003A (en) Manufacturing method of actuator device and liquid injector
JP2006021392A (en) Actuator apparatus and its manufacturing method, and liquid jet apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120712