JP2009047641A - Spectrometric apparatus - Google Patents
Spectrometric apparatus Download PDFInfo
- Publication number
- JP2009047641A JP2009047641A JP2007216050A JP2007216050A JP2009047641A JP 2009047641 A JP2009047641 A JP 2009047641A JP 2007216050 A JP2007216050 A JP 2007216050A JP 2007216050 A JP2007216050 A JP 2007216050A JP 2009047641 A JP2009047641 A JP 2009047641A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- waveguide
- opening
- spectroscopic device
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、測定対象に対して電磁波を照射し、その周波数応答特性を測定する分光装置の技術に関する。 The present invention relates to a technology of a spectroscopic device that irradiates a measurement object with electromagnetic waves and measures frequency response characteristics thereof.
分光装置は、ある物質に所定の周波数の電磁波を照射し、その物質が電磁波を吸収して物質内の構造や運動、電子,原子核などの状態や軌道などが遷移する現象を捉える装置であり、研究開発分野において、主に、物質やその状態を同定するために用いられている。分光装置の構成には、幾つかの種類が存在するが、以下にその一例を示す。 A spectroscopic device is a device that irradiates a substance with electromagnetic waves of a predetermined frequency, and that the substance absorbs the electromagnetic waves and captures the phenomenon in which the structure and motion of the substance, the state, orbits, etc. of electrons and nuclei transition, In the field of research and development, it is mainly used to identify substances and their states. There are several types of spectroscopic device configurations, and an example is shown below.
電磁波を発振し、且つその周波数を掃引することができる送信器と、その電磁波を受信してその受信強度を検知する受信器とを備え、送信器によって発射された電磁波を測定対象となる任意の物質に照射し、この物質を透過又は反射した電磁波を受信器で受信する系を構築する。そして、送信器の発振周波数を掃引し、受信器に入力される電磁波の受信強度を周波数毎に記録することにより、その物質の吸収スペクトルを得ることができる。 A transmitter capable of oscillating an electromagnetic wave and sweeping its frequency, and a receiver for receiving the electromagnetic wave and detecting the reception intensity thereof, and measuring an electromagnetic wave emitted by the transmitter as an object to be measured A system is constructed in which a substance is irradiated and an electromagnetic wave transmitted or reflected by the substance is received by a receiver. Then, by sweeping the oscillation frequency of the transmitter and recording the reception intensity of the electromagnetic wave input to the receiver for each frequency, an absorption spectrum of the substance can be obtained.
例えば、掃引した周波数範囲内に、物質が電磁波を吸収して物質内の構造や運動、電子、原子核などの状態が遷移できる周波数fが存在した場合、図13に示すスペクトルを得ることができる。周波数fでは、電磁波の伝搬損失や物質を透過又は反射する際の損失に加え、物質の状態遷移に伴う電磁波吸収による損失が存在するため、急峻に損失が増大する。この吸収は物質固有のものであるため、吸収が起こる周波数の有無やその大きさなどを調べることにより、電磁波が照射された物質やその状態を同定することが可能となる。 For example, in the swept frequency range, when there is a frequency f at which the substance can absorb electromagnetic waves and the state of structure, motion, electrons, nuclei, etc. in the substance can transition, the spectrum shown in FIG. 13 can be obtained. At the frequency f, in addition to the propagation loss of electromagnetic waves and the loss when transmitting or reflecting the substance, there is a loss due to electromagnetic wave absorption accompanying the state transition of the substance, so the loss increases sharply. Since this absorption is specific to the substance, it is possible to identify the substance irradiated with the electromagnetic wave and its state by examining the presence / absence of the frequency at which the absorption occurs and its magnitude.
物質の状態遷移に伴う吸収は一般的に微小である。そのため、送信器の出力が温度などによって不安定になることによる測定結果の変動や、装置外部から測定周波数近傍の周波数成分を持ったノイズが飛来することにより、物質の状態遷移の吸収を示す変動を測定することが困難となる。そのため、分光装置では、送信器及び受信器を安定に動作させ、且つ測定周波数以外の周波数成分を抑圧することにより、受信強度の測定誤差を低減することが求められる。 Absorption accompanying the state transition of a substance is generally minute. For this reason, fluctuations in measurement results due to the output of the transmitter becoming unstable due to temperature, etc., and fluctuations that indicate absorption of state transitions of substances due to the appearance of noise with frequency components near the measurement frequency from outside the device. It becomes difficult to measure. Therefore, the spectroscopic device is required to reduce the measurement error of the reception intensity by operating the transmitter and the receiver stably and suppressing the frequency components other than the measurement frequency.
例えば、近赤外線分光装置では、外来するノイズを防ぐため、測定対象となる試料をセルに封入して装置に設置する必要がある。また、温度変化によるデータ変動を抑制するため、装置が設置されている部屋そのものを空調によって恒温化し、且つ装置本体及びセルにも温度調整機能を備える必要がある(非特許文献1参照)。
しかしながら、上記解決法では装置規模が大きくなるため、装置コスト及び設置面積が多く必要となる問題がある。また、測定準備開始から測定までの時間が多く必要となり、簡易な測定には適さないという問題もあった。更に、これらの問題から、民生センサー用途などに対しての使用が困難であるという問題もあった。 However, since the above-described solution increases the device scale, there is a problem that a large device cost and a large installation area are required. In addition, a lot of time is required from the start of measurement preparation to measurement, and there is a problem that it is not suitable for simple measurement. Furthermore, due to these problems, there is a problem that it is difficult to use for consumer sensor applications.
本発明は、上記を鑑みてなされたものであり、簡易な構成で物質の周波数応答特性を測定可能な分光装置を提供すること課題とする。 The present invention has been made in view of the above, and an object thereof is to provide a spectroscopic device capable of measuring the frequency response characteristics of a substance with a simple configuration.
請求項1に記載の分光装置は、ある物質の周波数応答特性を測定する分光装置であって、所定の周波数の範囲で可変可能に電磁波の信号を発振する発振手段と、前記信号を第1の信号と第2の信号との2つに分配する分配手段と、前記第1の信号を導波する導波手段と、前記所定の周波数よりも小さい周波数特性を有する開口部を長手方向側面に備え、当該開口部を介して前記物質を装填し、前記第2の信号を導波する開口部付導波手段と、前記開口部付導波手段の短手方向に形成され、装填された前記物質が当該開口部付導波手段から流出することを封じる封止手段と、前記導波手段を介して導波された前記第1の信号を受信し、当該第1の信号の受信強度を測定する第1の受信手段と、前記開口部付導波手段を介して導波された前記第2の信号を受信し、当該第2の信号の受信強度を測定する第2の受信手段と、前記第1の受信手段と前記第2の受信手段とで測定された受信強度の差分を計算するデータ処理手段と、を有することを要旨とする。 The spectroscopic device according to claim 1 is a spectroscopic device that measures a frequency response characteristic of a substance, an oscillating unit that oscillates an electromagnetic wave signal variably within a predetermined frequency range, Distributing means for distributing the signal into two signals, a waveguide means for guiding the first signal, and an opening having a frequency characteristic smaller than the predetermined frequency is provided on the longitudinal side surface. , The substance loaded through the opening and guiding the second signal, and the substance formed and loaded in the short direction of the waveguide with the opening. Receiving the first signal guided through the waveguide means, and measuring the reception intensity of the first signal The first receiving means and the second wave guided through the opening-equipped waveguide means Data processing for receiving a signal and calculating a difference between reception strengths measured by the second reception means for measuring the reception strength of the second signal and the first reception means and the second reception means And a means.
本発明にあっては、所定の周波数の範囲で可変可能に電磁波の信号を発振する発振手段と、発振した信号を第1の信号と第2の信号との2つに分配する分配手段と、第1の信号を導波する導波手段と、先の所定の周波数よりも小さい周波数特性を有する開口部を長手方向側面に備え、この開口部を介して測定対象となる物質を装填し、第2の信号を導波する開口部付導波手段と、開口部付導波手段の短手方向に形成され、装填された物質が開口部付導波手段から流出することを封じる封止手段と、導波手段を介して導波された第1の信号を受信し、受信した第1の信号の受信強度を測定する第1の受信手段と、開口部付導波手段を介して導波された第2の信号を受信し、受信した第2の信号の受信強度を測定する第2の受信手段と、第1の受信手段と第2の受信手段とで測定された受信強度の差分を計算するデータ処理手段と、を備えた構成であり、導波手段を伝搬する信号を基準信号とし、この基準信号と測定対象となる物質を装填した開口部付導波手段を伝搬する信号とを比較することで、物質の周波数応答特性を測定するため、簡易な構成で物質の周波数応答特性を測定可能な分光装置を提供することができる。 In the present invention, an oscillating unit that oscillates an electromagnetic wave signal variably within a predetermined frequency range, a distributing unit that distributes the oscillated signal to two of a first signal and a second signal, A waveguide means for guiding the first signal and an opening having a frequency characteristic smaller than the predetermined frequency are provided on the side surface in the longitudinal direction, and a substance to be measured is loaded through the opening, A waveguide means with an opening that guides the signal of 2 and a sealing means that is formed in a short direction of the waveguide means with an opening and that prevents the loaded substance from flowing out of the waveguide means with an opening. Receiving the first signal guided through the waveguide means and measuring the reception intensity of the received first signal, and being guided through the waveguide means with an opening. Second receiving means for receiving the received second signal and measuring the received intensity of the received second signal; And a data processing means for calculating a difference in received intensity measured between the means and the second receiving means. A signal propagating through the waveguide means is used as a reference signal, and the reference signal and the measurement object A spectroscopic device capable of measuring a frequency response characteristic of a substance with a simple configuration is provided in order to measure the frequency response characteristic of the substance by comparing the signal propagating through the waveguide means with an opening loaded with the substance. be able to.
請求項2に記載の分光装置は、前記開口部の開閉を可能とする開閉手段を更に有することを要旨とする。
The gist of the spectroscopic device according to
本発明にあっては、開口部付導波手段の開口部の開閉を可能とする開閉手段を更に備えた構成であり、開閉手段を閉の状態にすることで、測定対象の物質を装填する前の第1の信号と第2の信号との差分を得ることができる。即ち、この差分を得ることにより、分光装置の構成に起因する影響を排除した正確な周波数応答特性を測定可能な分光装置を提供することができる。 In the present invention, the structure further includes opening / closing means that enables opening / closing of the opening of the waveguide means with opening, and the substance to be measured is loaded by closing the opening / closing means. The difference between the previous first signal and the second signal can be obtained. That is, by obtaining this difference, it is possible to provide a spectroscopic device capable of measuring an accurate frequency response characteristic that eliminates the influence caused by the configuration of the spectroscopic device.
請求項3に記載の分光装置は、前記導波手段を介して導波された前記第1の信号と、前記開口部付導波手段を介して導波された前記第2の信号との位相差を測定する位相差検知手段を更に有することを要旨とする。 The spectroscopic device according to claim 3, wherein the first signal guided through the waveguide unit and the second signal guided through the apertured waveguide unit. The gist is to further include a phase difference detecting means for measuring the phase difference.
本発明にあっては、導波手段を介して導波された第1の信号と、開口部付導波手段を介して導波された第2の信号との位相差を測定する位相差検知手段を更に備えた構成であり、測定対象の物質に対する吸収の周波数依存性を測定すると共に、位相差の測定により測定対象の物質の誘電率を求めることができるため、測定対象に対する情報量の増加により、測定対象の物質の同定をより正確に行うことができる。 In the present invention, the phase difference detection for measuring the phase difference between the first signal guided through the waveguide means and the second signal guided through the aperture-equipped waveguide means. In addition to measuring the frequency dependence of absorption for the substance to be measured and the dielectric constant of the substance to be measured by measuring the phase difference, the amount of information for the object to be measured is increased. Thus, the substance to be measured can be identified more accurately.
請求項4に記載の分光装置は、前記分光装置が、前記開口部を除いて、外気に対して気密封止された筐体の内部に配置されていることを要旨とする。 The gist of the spectroscopic device according to claim 4 is that the spectroscopic device is disposed inside a casing hermetically sealed with respect to outside air except for the opening.
本発明にあっては、分光装置が、開口部付導波手段の開口部を除いて、外気に対して気密封止された筐体の内部に配置されているため、測定系から外来する電磁波の影響を遮断することが可能となる。 In the present invention, since the spectroscopic device is disposed inside the casing that is hermetically sealed against the outside air except for the opening of the waveguide means with the opening, electromagnetic waves that are external from the measurement system It is possible to block the influence of
請求項5に記載の分光装置は、前記筐体の内部が、真空、又は前記発振手段で発振する信号の電磁波に対して吸収を持たない気体により充填されていることを要旨とする。 The gist of the spectroscopic device according to claim 5 is that the inside of the casing is filled with a vacuum or a gas that does not absorb electromagnetic waves of a signal oscillated by the oscillating means.
本発明によれば、簡易な構成で物質の周波数応答特性を測定可能な分光装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the spectrometer which can measure the frequency response characteristic of a substance with simple structure can be provided.
以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔第1の実施の形態〕
図1は、第1の実施の形態に係る分光装置の機能ブロックを示す機能ブロック図である。本実施の形態に係る分光装置1は、ある物質の周波数応答特性を測定する分光装置であって、所定の周波数の範囲で可変可能に電磁波の信号を発振する発振器11と、発振された信号を信号1と信号2との2つに分配する分配器12と、信号1を導波する導波管13と、信号2を導波する窓付導波管14と、窓付導波管14の短手方向に形成された封止材15,16と、導波管13を介して導波された信号1の受信強度を測定する第1受信器17と、窓付導波管14を介して導波された信号2の受信強度を測定する第2受信器18と、第1受信器17と第2受信器とで測定された受信強度の差分を計算するデータ処理部19とを備えた分光装置1であり、これら分光装置1を構成する各部は、窓付導波管14の側面に形成された開口部を除いて筐体20の内部に配置されている。
[First Embodiment]
FIG. 1 is a functional block diagram showing functional blocks of the spectroscopic device according to the first embodiment. A spectroscopic device 1 according to the present embodiment is a spectroscopic device that measures frequency response characteristics of a substance, and includes an
発振器11は、所定の周波数の電磁波を発振し、その周波数は、周波数f1から周波数f2までの範囲で可変可能とする機能を備える。このような発振器11は、例えば、導波管出力の電圧制御発振器などで実現することができる。
The
分配器12は、発振器11により発振された電磁波の信号を受け取り、信号1と信号2とに等電力分配し、それぞれの出力端子から出力する機能を備える。このような分配器12は、例えば、導波管による2分配器などで実現することができる。
The
導波管13は、分配器12から出力された信号1を伝搬して、第1受信器17に出力する機能を備える。
The
窓付導波管14は、分配器12から出力された信号2を伝搬して、第2受信器18に出力する機能を備える。この窓付導波管14の長手方向側面には、図1及び図2に示すように、カットオフ周波数が周波数f1及び周波数f2よりも十分に小さい開口部141(以降、単に「窓」と称する)が形成されている。カットオフ周波数とは、電磁波が導波管や孔を通過できる周波数の下限を意味している。この窓141のカットオフ周波数が、信号2が取り得る周波数f1から周波数f2の範囲よりも十分に小さいため、信号2は、窓付導波管14の窓141から外部に漏れ出すことは無い。従って、分光装置1は、この窓141を介することにより、窓付導波管14の内部の内気と外気との置換、即ち、測定対象となる物質を装填することを可能としている。
The waveguide with
封止材15は、分配器12と窓付導波管14との間に形成され、窓付導波管14の内部に装填された測定対象の物質が分配器12へ流出することを封じる機能を備える。このような封止材15は、例えば、誘電体などを用いることができる。誘電体は、図3に示すように、電磁波である信号2を通過することを可能とするものの、気体や液体の通過を防止する性質を備えており、この性質を用いることで、窓から窓付導波管14の内部に流入した外気が窓付導波管14以外の場所に流出することを防止可能とする。窓付導波管14と第2受信器18との間に形成された封止材16についても、同様の機能を備えている。
The sealing
ここで、分光装置1は、2分岐された一方の信号を気密封止された導波管13を伝搬させ、他方の信号を測定の対象となる気体中又は液体中を伝搬させ、その両方の受信強度を比較することで測定を行うので、測定誤差を低減するために、窓付導波管14の管の形状は、導波管13と同じ形状であることが望ましい。また、伝送経路長を信号1と信号2とで極力一致させるため、導波管13の長手方向の長さと、封止材15の厚さと窓付導波管14の長手方向の長さと封止材16の厚さとの合計の長さとを一致させることが望ましい。
Here, the spectroscopic device 1 propagates one of the two branched signals through the hermetically sealed
第1受信器17は、導波管13から出力された信号1を受信し、この信号1の受信強度を測定し、測定結果をデータ処理部19へ出力する機能を備える。また、第2受信器18は、封止材16を通過して窓付導波管14から出力された信号2を受信し、第1受信器17と同様に、この信号2の受信強度を測定し、測定結果をデータ処理部19へ出力する機能を備える。このような受信器は、例えば、ダイオードによる二乗検波器とA/Dコンバータとを用いることを実現可能である。
The
データ処理部19は、第1受信器17と第2受信器18とから出力された信号1と信号2との受信強度を受信し、その差分を計算して分光装置1の外部に出力する機能を備える。
The
筐体20は、金属材料により形成され、図1に示すように、発振器11,分配器12,導波管13,窓付導波管14,封止材15,封止材16,第1受信器17,第2受信器18,データ処理部19を格納し、窓付導波管14の窓141の部分以外を外気に対して気密封止する機能を備えている。筐体20の内部は、真空、若しくは周波数f1から周波数f2までの範囲の電磁波に対して特徴的な吸収を持たない気体で充填されていることが望ましい。
The
次に、本分光装置1の動作について説明する。最初に、発振器11が周波数fの電磁波を発振し、発振された電磁波の信号は、分配器12によって信号1と信号2とに分配される(ステップS101)。
Next, the operation of the spectrometer 1 will be described. First, the
そして、導波管13及び窓付導波管14を経て伝搬された信号1及び信号2は、第1受信器17及び第2受信器18によってそれぞれ受信され、その受信強度が測定される(ステップS102)。
The
データ処理部19は、第1受信器17及び第2受信器18から出力された信号1及び信号2の受信強度の差分を計算し、外部へ出力する(ステップS103)。
The
ステップS101〜ステップS103の動作を、発振器11の発振周波数をf1からf2まで掃引しながら行うことで測定を繰り返し行う(ステップS104)。
The measurement is repeated by performing the operations in steps S101 to S103 while sweeping the oscillation frequency of the
続いて、本分光装置1を用いた分光測定の手順について説明する。最初に、分光装置1を測定対象となる気体中に置く。なお、この気体は、所定の周波数の電磁波に対して吸収を持つ気体であるとする。そして、上記ステップS101〜ステップS104の動作により得られたグラフの一例を図4(a)に示す。 Subsequently, a procedure of spectroscopic measurement using the spectroscopic device 1 will be described. First, the spectroscopic device 1 is placed in a gas to be measured. This gas is assumed to be a gas that absorbs electromagnetic waves having a predetermined frequency. An example of the graph obtained by the operations in steps S101 to S104 is shown in FIG.
信号1は、測定対象となる気体から遮断された伝搬経路である導波管13を伝搬するため、吸収を持たない測定結果となる。ここで、信号1の受信強度が周波数によって一定でないのは、発振器1が発振する電磁波の強度、伝搬経路に依存する損失などが周波数によって一定ではないからである。信号2は、窓付導波管14を伝搬するため、測定対象となる気体中を伝搬する。そのため、信号2の受信強度は、信号1の受信強度に対して気体による吸収を重畳したものとなる。
Since the signal 1 propagates through the
故に、図4(b)に示すように、データ処理部19において信号1と信号2
との差分を計算することで、発振器1が発振する電磁波の強度、伝搬経路に依存する損失などに起因するグラフの歪みを補正した測定結果を得ることができる。
Therefore, as shown in FIG. 4B, in the
By calculating the difference from the above, it is possible to obtain a measurement result in which the distortion of the graph due to the intensity of the electromagnetic wave oscillated by the oscillator 1 and the loss depending on the propagation path is corrected.
上述したように、本分光装置を用いることで、簡易な構成で、発振器1が発振する電磁波の強度や伝搬経路の損失に起因する誤差を排除した測定対象の周波数応答特性を測定することができる。 As described above, by using this spectroscopic device, it is possible to measure the frequency response characteristics of the measurement target with a simple configuration and eliminating errors caused by the intensity of the electromagnetic wave oscillated by the oscillator 1 and the loss of the propagation path. .
なお、本実施の形態では、分配器12、封止材15,16は、導波管を用いた構成で説明したが、導波管を用いなくても同様の効果を得ることができることは言うまでも無い。例えば、分配器12は同軸線を用いた構成とし、この同軸線に対して導波管変換器を用いて導波管13及び窓付導波管14に接続する構成としてもよい。
In the present embodiment, the
また、本実施の形態では、窓付導波管14の一例として、図2では1つの窓を有する構成で説明したが、この窓は電磁波の伝搬を妨げることなく内気と外気との置換や測定対象の装填ができればよいので、置換や装填を効率よくおこなうために複数の窓を備えた構成であってもよい。
In the present embodiment, as an example of the
最後に、本実施の形態では、測定対象として気体を指定して説明したが、窓付導波管14の窓を介して置換や装填ができれば何でも測定可能であり、例えば、液体であってもよい。
Finally, in the present embodiment, the gas is specified as the measurement target. However, any gas can be measured as long as it can be replaced or loaded through the window of the
本実施の形態によれば、所定の周波数の範囲で可変可能に電磁波の信号を発振する発振器11と、発振した信号を信号1と信号2との2つに分配する分配器12と、信号1を導波する導波管13と、先の所定の周波数よりも小さい周波数特性を有する窓を長手方向側面に備え、この窓を介して測定対象となる物質を装填し、信号2を導波する窓付導波管14と、窓付導波管14の短手方向に形成され、装填された物質が窓付導波管14から流出することを封じる封止材15,16と、導波管13を介して導波された信号1を受信し、受信した信号1の受信強度を測定する第1受信器17と、窓付導波手段を介して導波された信号2を受信し、受信した信号2の受信強度を測定する第2受信器18と、第1受信器17と第2受信器18とで測定された受信強度の差分を計算するデータ処理部19と、を備えた構成であり、導波管13を伝搬する信号を基準信号とし、この基準信号と測定対象となる物質を装填した窓付導波管14を伝搬する信号とを比較することで、物質の周波数応答特性を測定するので、簡易な構成で物質の周波数応答特性を測定可能な分光装置1を提供することができる。
According to the present embodiment, an
〔第2の実施の形態〕
図5は、第2の実施の形態に係る分光装置の機能ブロックを示す機能ブロック図である。本実施の形態に係る分光装置1は、分光測定の前に装置の校正を行い、測定精度を更に向上するために、窓付導波管14の窓に開閉を可能とする開閉部21を更に備えた構成である。その他の構成は第1の実施の形態で説明したものと同様なので、ここでは重複説明を省略する。
[Second Embodiment]
FIG. 5 is a functional block diagram showing functional blocks of the spectroscopic device according to the second embodiment. The spectroscopic device 1 according to the present embodiment further includes an opening / closing portion 21 that can open and close the window of the waveguide with
分光装置1の初期状態は開閉部21が閉であり、更に、窓付導波管14の内部は、導波管13と同様に、真空、若しくは周波数f1から周波数f2までの範囲の電磁波に対して特徴的な吸収を持たない気体で充填されている。即ち、初期状態では、信号1と信号2はいずれも周波数f1から周波数f2までの範囲の電磁波に対して特徴的な吸収を持たない気体中を伝搬することになる。
In the initial state of the spectroscopic device 1, the opening / closing part 21 is closed, and the inside of the waveguide with
最初に、分光装置1を測定対象である気体中に置き、開閉部21が閉の状態で測定を行う。なお、この気体は、所定の周波数の電磁波に対して吸収を持つ気体であるとする。そして、この測定により得られたグラフの一例を図6(a)に示す。開閉部21が閉であるため、信号1と信号2との受信強度には特徴的な吸収は観測されていない。ここで、各々の受信強度が周波数によって一定でない理由は、第1の実施の形態で説明したものと同様の理由である。しかしながら、信号1と信号2との受信強度は厳密に一致しない。これは、窓付導波管14の窓141や封止材15,16の有無などにより、伝搬経路が厳密には一致しないからである。図6(b)に信号1と信号2との差分のグラフを示す。ここで示される差は、本実施の形態に係る分光装置の構成に起因するものである。
First, the spectroscopic device 1 is placed in the gas to be measured, and measurement is performed with the open / close unit 21 closed. This gas is assumed to be a gas that absorbs electromagnetic waves having a predetermined frequency. An example of the graph obtained by this measurement is shown in FIG. Since the open / close unit 21 is closed, no characteristic absorption is observed in the received intensity of the signal 1 and the
次に、分光装置1の開閉部21を開の状態で測定を行う。この測定により得られたグラフの一例を図7(a)に示す。信号1については、開閉部21を開としても伝搬経路中の気体は外気と置換されないため、図6(a)と同様の測定結果を示す。信号2は、窓付導波管14の窓141を介して置換された外気中を伝搬するため、特徴的な吸収が観測されている。信号1と信号2との差分を計算したグラフを図7(b)に示す。このグラフは、図6(b)に示した分光装置1の構成に起因する信号1と信号2との差と、測定対象となる気体の吸収特性とが重畳された結果となっている。よって、図7(b)で示す受信強度から図6(b)で示す受信強度を減ずることにより、分光装置1の構成に起因する信号1と信号2との差を排除することが可能となり、図8に示すように、測定対象となる気体の吸収特性のみを観測することができる。
Next, measurement is performed with the opening / closing part 21 of the spectroscopic device 1 being opened. An example of a graph obtained by this measurement is shown in FIG. For signal 1, even if the opening / closing part 21 is opened, the gas in the propagation path is not replaced with the outside air, so the measurement result is the same as in FIG. Since the
上述したように、本分光装置を用いることで、測定前に分光装置1の校正を行った後に分光測定をするため、吸収特性の頂点の周波数の値や、吸収が存在する周波数範囲の受信強度をより正確に測定することができ、測定対象の気体の同定を容易に行うことができる。 As described above, by using the present spectroscopic device, the spectroscopic measurement is performed after the spectroscopic device 1 is calibrated before the measurement. Therefore, the value of the frequency at the apex of the absorption characteristic or the reception intensity in the frequency range where the absorption exists. Can be measured more accurately, and the gas to be measured can be easily identified.
本実施の形態によれば、窓付導波管14の窓の開閉を可能とする開閉部21を更に備えた構成であり、開閉部21を閉の状態にすることで、測定対象の物質を装填する前の信号1と信号2との差分を得ることができる。即ち、この差分を得ることにより、分光装置1の構成に起因する影響を排除した正確な周波数応答特性を測定可能な分光装置1を提供することができる。
According to the present embodiment, the structure further includes the opening / closing part 21 that enables opening and closing of the window of the waveguide with
〔第3の実施の形態〕
図9は、第3の実施の形態に係る分光装置の機能ブロックを示す機能ブロック図である。本実施の形態に係る分光装置1は、導波管13を介して導波された信号1と、窓付導波管14を介して導波された信号2との位相差を測定する位相差検知部22を更に備えた構成である。その他の構成は第1の実施の形態で説明したものと同様なので、ここでは重複説明を省略する。
[Third Embodiment]
FIG. 9 is a functional block diagram showing functional blocks of the spectroscopic device according to the third embodiment. The spectroscopic device 1 according to the present embodiment is configured to measure the phase difference between the signal 1 guided through the
導波管13の内部に充填されている気体と、窓付導波管14の内部に装填された測定対象の気体との誘電率が等しく、且つ、導波管13の伝搬経路の長さと、封止材15の厚さと窓付導波管14の長手方向の長さと封止材16の厚さとの合計の伝搬経路の長さが等しいとき、位相差検知部22で測定される信号1と信号2との位相差は、図10に示すように、ほぼ0(ゼロ)になる。しかしながら、導波管13の内部の気体と窓付導波管14の内部の測定対象の気体の誘電率が異なる場合、信号1と信号2との位相差が変化する。例えば、測定対象の気体の誘電率が導波管13の内部の気体よりも大きい場合、位相差は図11に示すようになる。この性質を利用して、位相差検知部22で得られたグラフの傾きを調べることで、測定対象の気体の誘電率を求めることが可能となる。
The dielectric constant of the gas filled in the
上述したように、本分光装置を用いることで、測定対象の気体に対して、その吸収の周波数依存性と誘電率とを同時に測定することが可能となる。故に、測定対象に対する情報量が増えるので、測定対象の気体の同定を正確かつ容易に行うことができる。 As described above, by using this spectroscopic device, it is possible to simultaneously measure the frequency dependence of absorption and the dielectric constant of the gas to be measured. Therefore, since the amount of information for the measurement target increases, the measurement target gas can be identified accurately and easily.
なお、本実施の形態では、導波管13の内部に充填されている気体と、窓付導波管14の内部に装填された測定対象の気体との誘電率が等しく、且つ、導波管13の伝搬経路の長さと、封止材15の厚さと窓付導波管14の長手方向の長さと封止材16の厚さとの合計の伝搬経路の長さが等しいとき、位相差検知部22で測定される信号1と信号2との位相差を0(ゼロ)として説明したが、正確に0(ゼロ)でなくても誘電率の測定は可能である。例えば、導波管13の内部に充填されている気体と、測定対象の気体との誘電率が等しいときの位相差を求め、測定時の位相差から減ずることでも同様の効果を得ることができる。
In the present embodiment, the dielectric constant of the gas filled in the
本実施の形態によれば、導波管13を介して導波された信号1と、窓付導波管14を介して導波された信号2との位相差を測定する位相差検知部22を更に備えた構成であり、測定対象の物質に対する吸収の周波数依存性を測定すると共に、位相差の測定により測定対象の物質の誘電率を求めることができるので、測定対象に対する情報量の増加により、測定対象の物質の同定をより正確に行うことができる。
According to the present embodiment, the phase
〔第4の実施の形態〕
図12は、第4の実施の形態に係る分光装置の機能ブロックを示す機能ブロック図である。本実施の形態に係る分光装置1は、第2の実施の形態で説明した開閉部21と、第3の実施の形態で説明した位相差検知部22とを更に備えた構成である。開閉部21と位相差検知部22との動作や機能については、第2の実施の形態及び第3の実施の形態で説明したものと同様である。また、その他の構成は第1の実施の形態で説明したものと同様である。
[Fourth Embodiment]
FIG. 12 is a functional block diagram showing functional blocks of the spectroscopic device according to the fourth embodiment. The spectroscopic device 1 according to the present embodiment has a configuration further including the opening / closing unit 21 described in the second embodiment and the phase
従って、本分光装置を用いることで、測定前に分光装置1の校正を行った後に分光測定をするため、吸収特性の頂点の周波数の値や、吸収が存在する周波数範囲の受信強度をより正確に測定することができ、測定対象の気体の同定を容易に行うことができる。 Therefore, by using this spectroscopic device, the spectroscopic measurement is performed after the spectroscopic device 1 is calibrated before the measurement, so that the frequency value at the top of the absorption characteristic and the received intensity in the frequency range where the absorption exists can be more accurately determined. Therefore, the gas to be measured can be easily identified.
また、本分光装置を用いることで、測定対象の気体に対して、その吸収の周波数依存性と誘電率とを同時に測定することが可能となる。故に、測定対象に対する情報量が増えるので、測定対象の気体の同定を正確かつ容易に行うことができる。 In addition, by using this spectroscopic device, it is possible to simultaneously measure the frequency dependence of absorption and the dielectric constant of the gas to be measured. Therefore, since the amount of information for the measurement target increases, the measurement target gas can be identified accurately and easily.
最後に、本発明によれば、窓付導波管14の窓141を除き、発振器11、分配器12、導波管13、窓付導波管14、封止材15,16、第1受信器17、第2受信器18、データ処理部19、位相差検知部22の要素が1つの金属筐体に格納されているので、測定系から外来する電磁波の影響を遮断することが可能となり、装置規模を低減することができる。この装置規模の低減により、これまで困難であったセンサヘッドなどへの応用が可能となる。
Finally, according to the present invention, except for the window 141 of the waveguide with
また、本発明によれば、発振器11が発振する信号を2分岐し、気密封止された導波管を伝搬する信号を基準信号とし、この基準信号を測定対象となる気体中又は液体中に伝搬した信号とを比較するので、温度変化、経時変化などによって、発振器11の出力が変動しても、測定結果が変動することを防ぐことができる。
Further, according to the present invention, the signal oscillated by the
更に、本発明によれば、上述した構成により、装置全体を恒温とする必要がないので、従来技術に比べて温度調整機構などを省くことができ、装置に係るコストを低減することができる。また、温度が安定となるまでの待機時間も不要なので、測定の準備期間を短縮することができる。 Furthermore, according to the present invention, the above-described configuration does not require the entire apparatus to be kept at a constant temperature, so that a temperature adjustment mechanism or the like can be omitted as compared with the prior art, and the cost associated with the apparatus can be reduced. In addition, since a waiting time until the temperature becomes stable is unnecessary, the measurement preparation period can be shortened.
11…発振器
12…分配器
13…導波管
14…窓付導波管
141…開口部(窓)
15,16…封止材
17…第1受信器
18…第2受信器
19…データ処理部
20…筐体
21…開閉部
22…位相差検知部
S101〜S104…ステップ
DESCRIPTION OF
DESCRIPTION OF
Claims (5)
所定の周波数の範囲で可変可能に電磁波の信号を発振する発振手段と、
前記信号を第1の信号と第2の信号との2つに分配する分配手段と、
前記第1の信号を導波する導波手段と、
前記所定の周波数よりも小さい周波数特性を有する開口部を長手方向側面に備え、当該開口部を介して前記物質を装填し、前記第2の信号を導波する開口部付導波手段と、
前記開口部付導波手段の短手方向に形成され、装填された前記物質が当該開口部付導波手段から流出することを封じる封止手段と、
前記導波手段を介して導波された前記第1の信号を受信し、当該第1の信号の受信強度を測定する第1の受信手段と、
前記開口部付導波手段を介して導波された前記第2の信号を受信し、当該第2の信号の受信強度を測定する第2の受信手段と、
前記第1の受信手段と前記第2の受信手段とで測定された受信強度の差分を計算するデータ処理手段と、
を有することを特徴とする分光装置。 A spectroscopic device for measuring frequency response characteristics of a substance,
An oscillating means for oscillating an electromagnetic wave signal variably within a predetermined frequency range;
Distributing means for distributing the signal into two, a first signal and a second signal;
Waveguide means for guiding the first signal;
An opening having a frequency characteristic smaller than the predetermined frequency is provided on a side surface in the longitudinal direction, the substance is loaded through the opening, and the waveguide with the opening guides the second signal;
A sealing means that is formed in a short direction of the waveguide means with an opening and seals the loaded substance out of the waveguide means with an opening;
First receiving means for receiving the first signal guided through the waveguide means and measuring the reception intensity of the first signal;
Second receiving means for receiving the second signal guided through the waveguide means with an opening and measuring the reception intensity of the second signal;
Data processing means for calculating a difference in received intensity measured between the first receiving means and the second receiving means;
A spectroscopic device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007216050A JP2009047641A (en) | 2007-08-22 | 2007-08-22 | Spectrometric apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007216050A JP2009047641A (en) | 2007-08-22 | 2007-08-22 | Spectrometric apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009047641A true JP2009047641A (en) | 2009-03-05 |
Family
ID=40499991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007216050A Pending JP2009047641A (en) | 2007-08-22 | 2007-08-22 | Spectrometric apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009047641A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011168996A (en) * | 2010-02-17 | 2011-09-01 | Yasuda Engineering Kk | Equipment for controlling excavation direction of shield machine for jacking shield tunneling method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5056297A (en) * | 1973-09-14 | 1975-05-16 | ||
JPS63169543A (en) * | 1987-01-07 | 1988-07-13 | Nippon Glass Fiber Co Ltd | Detector for electrically conductive material in glass fiber |
JPH1183762A (en) * | 1997-09-08 | 1999-03-26 | Mitsubishi Heavy Ind Ltd | Moisture monitoring apparatus |
JPH11118732A (en) * | 1997-10-15 | 1999-04-30 | Tdk Corp | Method and apparatus for measuring electric characteristic |
JPH11166951A (en) * | 1997-12-04 | 1999-06-22 | Kanto Denshi Oyo Kaihatsu:Kk | Method and device for measuring dielectric constant |
JP2004354246A (en) * | 2003-05-29 | 2004-12-16 | Aisin Seiki Co Ltd | Reflection type terahertz spectrometry system and measuring method |
-
2007
- 2007-08-22 JP JP2007216050A patent/JP2009047641A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5056297A (en) * | 1973-09-14 | 1975-05-16 | ||
JPS63169543A (en) * | 1987-01-07 | 1988-07-13 | Nippon Glass Fiber Co Ltd | Detector for electrically conductive material in glass fiber |
JPH1183762A (en) * | 1997-09-08 | 1999-03-26 | Mitsubishi Heavy Ind Ltd | Moisture monitoring apparatus |
JPH11118732A (en) * | 1997-10-15 | 1999-04-30 | Tdk Corp | Method and apparatus for measuring electric characteristic |
JPH11166951A (en) * | 1997-12-04 | 1999-06-22 | Kanto Denshi Oyo Kaihatsu:Kk | Method and device for measuring dielectric constant |
JP2004354246A (en) * | 2003-05-29 | 2004-12-16 | Aisin Seiki Co Ltd | Reflection type terahertz spectrometry system and measuring method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011168996A (en) * | 2010-02-17 | 2011-09-01 | Yasuda Engineering Kk | Equipment for controlling excavation direction of shield machine for jacking shield tunneling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11112304B2 (en) | Spectrometer calibration | |
DK2698869T3 (en) | Microwave window and level measuring system operating according to the radar principle | |
US20120118042A1 (en) | Photoacoustic Spectrometer with Calculable Cell Constant for Quantitative Absorption Measurements of Pure Gases, Gaseous Mixtures, and Aerosols | |
US8847816B2 (en) | Calibration of a radar unit with device-specific correction curves | |
JP3139874B2 (en) | Densitometer | |
US9234905B2 (en) | Method of calibrating and calibration apparatus for a moisture concentration measurement apparatus | |
Bernier et al. | Precise determination of the refractive index of samples showing low transmission bands by THz time-domain spectroscopy | |
JP2006300925A (en) | Inspection device using electromagnetic wave | |
CN109085186B (en) | Microwave ranging method-based oil-water two-phase flow water holding rate detection device and method | |
WO2015186407A1 (en) | Gas measurement device and measurement method | |
US20180306704A1 (en) | Gas-detecting device with very high sensitivity based on a helmholtz resonator | |
US20160273946A1 (en) | Method and device for determining the velocity of a medium | |
CA2461328A1 (en) | A multiplexed type of spectrophone | |
JP2009047641A (en) | Spectrometric apparatus | |
KR101121056B1 (en) | An interferometor using gaussian beam antenna for plasma density diagnostics | |
CA3043429A1 (en) | Microwave measuring arrangement for determining the loading of a two-phase flow | |
JP4208004B2 (en) | Microwave concentration measurement method | |
US8729475B1 (en) | Absorption biased single beam NDIR gas sensor | |
RU2572087C2 (en) | Moisture meter | |
CN109799247B (en) | Device and method for detecting phase content of two-phase flow based on microwave transmission time | |
KR100972376B1 (en) | Gas sensor circuit | |
WO2014077736A1 (en) | Moisture meter for bulk solids | |
JP2965712B2 (en) | Densitometer | |
Hartnett et al. | Novel interferometric frequency discriminators for low noise microwave applications | |
US4087798A (en) | Device and method for determining the presence of resonant materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20090721 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110914 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110927 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120306 |