JP2009046710A - Continuous manufacturing apparatus of semiconductor device - Google Patents

Continuous manufacturing apparatus of semiconductor device Download PDF

Info

Publication number
JP2009046710A
JP2009046710A JP2007212148A JP2007212148A JP2009046710A JP 2009046710 A JP2009046710 A JP 2009046710A JP 2007212148 A JP2007212148 A JP 2007212148A JP 2007212148 A JP2007212148 A JP 2007212148A JP 2009046710 A JP2009046710 A JP 2009046710A
Authority
JP
Japan
Prior art keywords
belt
dielectric
shaped substrate
roller
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212148A
Other languages
Japanese (ja)
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007212148A priority Critical patent/JP2009046710A/en
Publication of JP2009046710A publication Critical patent/JP2009046710A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous manufacturing apparatus of semiconductor devices, which can transfer a belt-shaped substrate while pressing the belt-shaped substrate against rollers with sufficiently large force even if a non-magnetic belt-like substrate is used, and which can manufacture high quality semiconductor devices by making the gap of a gas gate part small and preventing the mixing of gas between film deposition chambers. <P>SOLUTION: In the continuous manufacturing apparatus of semiconductor devices, having a belt-shaped substrate transfer means for transferring a belt-shaped substrate 4 to next film deposition chamber 20 by the rotation of a plurality of rollers 2 arranged in the longitudinal direction of the belt-shaped substrate 4 in each of gas gates 10 connecting between a plurality of film deposition chambers 20, an electrode is arranged at the inside of each gas gate 10 in such a manner that the electrode is put close to the belt-shaped substrate 4 being transferred through the gas gate 10, a dielectric 1 is provided between the electrode and the belt-shaped substrate 4, and a direct current voltage or alternating current voltage is applied to the electrode. Thereby, the belt-shaped substrate 4 is pressed against the rollers 2 while using a non-magnetic belt-shaped substrate by the cooperation of the electrode and the dielectric 1, and the belt-shaped substrate 4 is supported in a state that the gap of the gas gate 10 part is made small. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、太陽電池等に用いられる大面積の半導体薄膜素子を、帯状基板上に連続的に作成する半導体素子の連続的製造装置に関する。   The present invention relates to a semiconductor device continuous manufacturing apparatus for continuously forming a large-area semiconductor thin film element used for a solar cell or the like on a strip substrate.

長尺の帯状基板上に複数の層を成膜する方法として、成膜室間を搬送される帯状基板上に複数の層を次々と成膜するロール・ツー・ロール方式が多く用いられている。かかるロール・ツー・ロール方式の一例として、特許文献2(米国特許4,400,409号公報)のように、帯状の基板に対して、ロール・ツー・ロール方式を用いてプラズマCVDにより、太陽電池薄膜素子を製造する方法が開示されている。
この方法では、グロー放電装置を備えた複数の成膜室を、ガスゲートを呼ばれる構造で接続し、帯状基板が各成膜室に順次通過するように連続的に搬送することで、種類の異なる複数の半導体層を帯状基板の表面に形成している。
As a method for depositing a plurality of layers on a long strip substrate, a roll-to-roll method is often used in which a plurality of layers are deposited one after another on a strip substrate transported between deposition chambers. . As an example of such a roll-to-roll system, as in Patent Document 2 (US Pat. No. 4,400,409), a solar substrate is formed by plasma CVD using a roll-to-roll system on a belt-like substrate. A method of manufacturing a battery thin film element is disclosed.
In this method, a plurality of film forming chambers equipped with glow discharge devices are connected by a structure called a gas gate, and the belt-like substrate is successively transferred so as to sequentially pass through each film forming chamber. The semiconductor layer is formed on the surface of the belt-like substrate.

上記ガスゲートは、成膜室の間をスリット状の通路によって分割し、この通路の途中にH2やAr等の掃気用ガスを供給するか、またはこの通路の途中でガスを排気することで、隣接する成膜室のガス成分が、互いに拡散、混合することを抑制している。
上記ガスゲートのような狭い隙間を流れるガスの流量は、隙間の3乗に比例するので、掃気用ガスの供給量又はガスゲートからの排気量を抑えるには、当該隙間はなるべく小さいことが望ましい。
そこで、特許文献3(米国特許4,462,332号公報)では、帯状基板の片面をガスゲートの壁面に密着させて隙間の管理を容易にするために、磁性体基板を磁力によってガスゲート壁面に密着させ、磁性体基板を壁面に対して滑らせながら搬送する方法が開示されている。このような構成とすることで、基板の位置が安定するため、しわ、うねりが存在する基板でもガスゲートの隙間を狭くことができる。
しかしながら、上記特許文献3の方法では、帯状基板とガスゲートの壁面との間に生じる摩擦力によって搬送に必要な張力が増加したり、帯状基板の変形の
よる堆積膜の欠陥が生ずるという問題がある。
The gas gate is divided between the film forming chambers by a slit-like passage, and a scavenging gas such as H 2 or Ar is supplied in the middle of the passage, or the gas is exhausted in the middle of the passage, The gas components in adjacent film forming chambers are prevented from diffusing and mixing with each other.
Since the flow rate of the gas flowing through a narrow gap such as the gas gate is proportional to the cube of the gap, the gap is desirably as small as possible in order to suppress the supply amount of scavenging gas or the exhaust amount from the gas gate.
Therefore, in Patent Document 3 (US Pat. No. 4,462,332), in order to make one side of the belt-like substrate closely contact with the wall surface of the gas gate to facilitate the management of the gap, the magnetic substrate is closely attached to the gas gate wall surface by magnetic force. And a method of transporting the magnetic substrate while sliding it on the wall surface is disclosed. With such a configuration, since the position of the substrate is stabilized, the gap between the gas gates can be narrowed even in a substrate where wrinkles and undulations exist.
However, the method of Patent Document 3 has a problem that the tension necessary for conveyance increases due to the frictional force generated between the belt-like substrate and the wall surface of the gas gate, and defects in the deposited film due to deformation of the belt-like substrate occur. .

このような問題を解決するための1つとして、特許文献1(特許2,975,151号公報)が提供されている。
図10は、かかる特許文献1における半導体素子の連続的製造装置のガスゲート部の縦断面図である。図10に示すように、複数の成膜室20,20の間を接続するガスゲート10内において、帯状基板4を、該帯状基板4の長手方向に、複数個(この例では4個)列設されたローラー2の回転により搬送し、磁石30の磁力により磁性体からなる帯状基板4を、ローラー2に押し付けることにより、摩擦の少ない搬送を可能としている。なお、符号6は掃気用ガス供給口である。
As one of solutions for such a problem, Patent Document 1 (Patent No. 2,975,151) is provided.
FIG. 10 is a vertical cross-sectional view of a gas gate portion of a continuous semiconductor device manufacturing apparatus disclosed in Patent Document 1. In FIG. As shown in FIG. 10, a plurality (four in this example) of strip-shaped substrates 4 are arranged in the longitudinal direction of the strip-shaped substrate 4 in the gas gate 10 connecting the plurality of film forming chambers 20, 20. The belt 2 is conveyed by the rotation of the roller 2, and the belt-like substrate 4 made of a magnetic material is pressed against the roller 2 by the magnetic force of the magnet 30, thereby enabling conveyance with less friction. Reference numeral 6 denotes a scavenging gas supply port.

特許2,975,151号公報Japanese Patent No. 2,975,151 米国特許4,400,409号公報U.S. Pat. No. 4,400,409 米国特許4,462,332号公報U.S. Pat. No. 4,462,332

すなわち、特許文献1(特許2,975,151号公報)においては、磁石30の磁力により磁性体からなる帯状基板4を、ローラー2に押し付けることにより、摩擦の少ない搬送を可能としているが、磁石30の磁力による方法では十分に大きな力で帯状基板4をローラー2に押し付けることができず、従ってガスゲート部の隙間を小さくするには限界があった。   That is, in Patent Document 1 (Japanese Patent No. 2,975,151), the belt-like substrate 4 made of a magnetic material is pressed against the roller 2 by the magnetic force of the magnet 30, thereby enabling conveyance with less friction. In the method using the magnetic force of 30, the belt-like substrate 4 cannot be pressed against the roller 2 with a sufficiently large force. Therefore, there is a limit in reducing the gap between the gas gate portions.

本発明はこのような実状に鑑みてなされたものであって、その目的は、非磁性体の帯状基板を用いても、該帯状基板を十分に大きな力でローラーに押し付けながら搬送でき、ガスゲート部の隙間を小さくすることを可能とし、かつ成膜室間のガスの混合を防いで高品質の半導体素子を製造することが可能な半導体素子の連続的製造装置を提供することにある。   The present invention has been made in view of such a situation, and even if a non-magnetic band-shaped substrate is used, the present invention can convey the band-shaped substrate while pressing it against a roller with a sufficiently large force. It is an object of the present invention to provide a continuous semiconductor device manufacturing apparatus capable of reducing the gap between the film forming chambers and preventing gas mixing between film forming chambers and manufacturing high-quality semiconductor elements.

上記従来技術の有する課題を解決するために、本発明は、複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に複数個列設されたローラーの回転により搬送して次の成膜室に移送する帯状基板搬送手段を備えたロール・ツー・ロール方式の半導体素子の連続的製造装置において、前記ガスゲート内を搬送される前記帯状基板に近接して電極を前記ガスゲートの内部に配置し、前記電極と前記帯状基板との間に誘電体を設置し、前記電極に直流または交流の電圧を印加して前記電極と誘電体との共働により前記帯状基板を支持するように構成している。
本発明は、具体的には次のように構成するのが好ましい。
前記誘電体を、中空円筒からなる回転自在なローラーの外周に嵌挿し、前記電極を前記ローラーに電気的に接続される回転軸に連結して、該回転軸を軸受により前記ガスゲートに支持し、前記電極からの電力を前記回転軸、前記軸受及び前記ローラーを介して前記誘電体に伝達するように構成している。
In order to solve the above-described problems of the prior art, the present invention provides a gas gate that connects a plurality of film forming chambers by rotating a plurality of belt-like substrates arranged in the longitudinal direction of the belt-like substrate. In a continuous manufacturing apparatus of a roll-to-roll type semiconductor device having a belt-shaped substrate transport means for transporting and transferring to the next film formation chamber, an electrode is disposed in the vicinity of the belt-shaped substrate transported in the gas gate. Arranged inside the gas gate, a dielectric is installed between the electrode and the strip substrate, and a DC or AC voltage is applied to the electrode to cooperate with the electrode and the dielectric to form the strip substrate. It is configured to support.
Specifically, the present invention is preferably configured as follows.
The dielectric is inserted into the outer periphery of a rotatable roller made of a hollow cylinder, the electrode is connected to a rotating shaft electrically connected to the roller, and the rotating shaft is supported by the gas gate by a bearing, Electric power from the electrode is transmitted to the dielectric via the rotating shaft, the bearing and the roller.

そして、本発明は前記ローラーを次のように構成するのが好ましい。
(1)前記ローラーを、絶縁体を介して軸方向に2分割してそれぞれを回転軸に連結し、該各回転軸に前記電極をそれぞれ接続している。
(2)前記誘電体を、中空円筒からなる回転自在なローラーの外周に嵌挿し、前記ローラーを前記回転軸と一体に形成し、前記電極を前記回転軸と一体のローラーに接続するとともに、該ローラーを軸受にて前記ガスゲートに支持し、前記電極からの電力をスリップリングを介して前記回転軸と一体のローラーに接続し、該ローラーを介して前記誘電体に伝達するように構成している。
(3)前記ローラーの内部に円周方向に沿って形成された絶縁体を設け、該絶縁体の外周に一定間隔で前記誘電体の内周面に開口する溝を形成し、該溝内に円周方向に沿って正電極と負電極とを交互に埋め込み、前記誘電体の内周に接触させるように構成している。
In the present invention, the roller is preferably configured as follows.
(1) The roller is divided into two in the axial direction through an insulator, and each roller is connected to a rotation shaft, and the electrodes are connected to the rotation shafts, respectively.
(2) The dielectric is inserted into an outer periphery of a rotatable roller made of a hollow cylinder, the roller is formed integrally with the rotating shaft, the electrode is connected to a roller integrated with the rotating shaft, A roller is supported by the gas gate with a bearing, and electric power from the electrode is connected to a roller integral with the rotating shaft via a slip ring, and is transmitted to the dielectric via the roller. .
(3) An insulator formed along the circumferential direction is provided inside the roller, and grooves are formed in the outer periphery of the insulator at regular intervals to open on the inner peripheral surface of the dielectric. A positive electrode and a negative electrode are alternately embedded along the circumferential direction so as to be in contact with the inner periphery of the dielectric.

また、本発明は、複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に搬送して次の成膜室に移送する帯状基板搬送手段を備えた半導体素子の連続的製造装置において、前記ガスゲート内を搬送される前記帯状基板に接する誘電体を単独で回転可能とし、固定部材に固定した正電極と負電極を前記誘電体の内周に接触させるように構成している。   The present invention also provides a semiconductor device comprising a strip-shaped substrate transport means for transporting a strip-shaped substrate in the longitudinal direction of the strip-shaped substrate and transferring it to the next deposition chamber in a gas gate connecting a plurality of deposition chambers. In the continuous manufacturing apparatus, the dielectric that contacts the belt-like substrate conveyed in the gas gate can be rotated independently, and the positive electrode and the negative electrode fixed to the fixing member are brought into contact with the inner periphery of the dielectric. It is composed.

さらに、本発明は、複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に搬送して次の成膜室に移送する帯状基板搬送手段を備えた半導体素子の連続的製造装置において、前記ガスゲート内に溝を設け、該溝内に2個の補助ローラーを並設して該補助ローラーに誘電体をベルトコンベア式に架設し、該誘電体を前記帯状基板に接触させながら回転駆動し、前記2個の補助ローラーの間に絶縁体を配置し、該絶縁体の長手方向に沿って正電極と負電極とを交互に埋め込み、回転駆動される前記誘電体に接触させるように構成している。   Furthermore, the present invention provides a semiconductor device comprising a strip-shaped substrate transport means for transporting a strip-shaped substrate in the longitudinal direction of the strip-shaped substrate and transferring it to the next deposition chamber in a gas gate connecting a plurality of deposition chambers. In the continuous manufacturing apparatus, a groove is provided in the gas gate, two auxiliary rollers are provided in parallel in the groove, and a dielectric is installed on the auxiliary roller in a belt conveyor type, and the dielectric is attached to the belt-like substrate. The dielectric that is rotationally driven while being in contact with each other, arranges an insulator between the two auxiliary rollers, and alternately embeds positive and negative electrodes along the longitudinal direction of the insulator, and is rotationally driven. It is comprised so that it may contact.

また、本発明は、複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に搬送して次の成膜室に移送する帯状基板搬送手段を備えた半導体素子の連続的製造装置において、前記ガスゲートの壁面に絶縁体を長手方向に沿って配置し、該絶縁体内に長手方向に沿って埋設された複数の電極を誘電体に接触させ、前記帯状基板を、前記誘電体上をスライド可能に構成している。   The present invention also provides a semiconductor device comprising a strip-shaped substrate transport means for transporting a strip-shaped substrate in the longitudinal direction of the strip-shaped substrate and transferring it to the next deposition chamber in a gas gate connecting a plurality of deposition chambers. In the continuous manufacturing apparatus, an insulator is disposed along the longitudinal direction on the wall surface of the gas gate, a plurality of electrodes embedded in the insulator along the longitudinal direction are brought into contact with the dielectric, and the strip substrate is The dielectric is slidable.

本発明においては、ガスゲートの壁面またはガスゲートの内部に配置されたローラーと帯状基板とを密着させる手段として誘電体に発生する静電力を用いている。前記静電力の適正値は、数十〜数百Pa程度である。
すなわち、ガスゲート内を搬送される帯状基板に近接して、静電力を付与するための電極をガスゲートの内部に配置し、電極と帯状基板との間に中空円筒からなる回転自在なローラーに誘電体を設置し、前記電極を前記ローラーに電気的に接続される回転軸に連結して前記電極に直流または交流の電圧を印加して、前記電極と誘電体との共働により前記帯状基板を支持している。
In the present invention, the electrostatic force generated in the dielectric is used as means for bringing the roller disposed on the wall surface of the gas gate or inside the gas gate and the belt-like substrate into close contact with each other. The appropriate value of the electrostatic force is about several tens to several hundreds Pa.
That is, an electrode for applying an electrostatic force is disposed inside the gas gate in the vicinity of the belt-shaped substrate transported in the gas gate, and a dielectric is formed on a rotatable roller formed of a hollow cylinder between the electrode and the belt-shaped substrate. The electrode is connected to a rotating shaft that is electrically connected to the roller, a DC or AC voltage is applied to the electrode, and the belt-like substrate is supported by the cooperation of the electrode and a dielectric. is doing.

前記帯状基板には、それ自体が導電性を有するか、または絶縁体の基板の表面または内部に導体部分を有するものが用いられている。例えば、ポリイミド樹脂膜の表面に銀の層を設けたものを用いることが可能である。
前記電極と前記帯状基板との間には、絶縁を維持し、静電力を向上させるために厚さの薄い誘電体を備えている。すなわち、前記静電力は印加電圧の2乗に比例し誘電体厚さの2乗に反比例するので、薄い誘電体ほど大きな吸引力で帯状基板を引き付けることができる。
また、前記誘電体の誘電率は、大きいほど、静電力が増加することになる。従って、ポリイミドやPTFEといった樹脂材、窒化アルミやシリコンカーバイドといったセラミックス材料、アルミの陽極酸化膜等を、誘電体として用いることが可能である。
As the belt-like substrate, one having a conductive property or a conductor portion on the surface or inside of an insulating substrate is used. For example, it is possible to use a polyimide resin film provided with a silver layer.
A thin dielectric is provided between the electrode and the strip substrate to maintain insulation and improve electrostatic force. That is, since the electrostatic force is proportional to the square of the applied voltage and inversely proportional to the square of the dielectric thickness, the thinner dielectric can attract the belt-like substrate with a larger attractive force.
Further, the electrostatic force increases as the dielectric constant of the dielectric increases. Therefore, a resin material such as polyimide or PTFE, a ceramic material such as aluminum nitride or silicon carbide, an anodic oxide film of aluminum, or the like can be used as the dielectric.

印加する電圧としては、直流または交流のいずれをも用いることができる。直流は大きな静電力が得られ、また交流は静電力が周期的に変化するために、基板を電極から引き離すことが容易になるという利点がある。
また、基板を接地するための構造を省略するには、直流電圧を印加する場合は接地電位を基準として正極と負極とが、基板に対してほぼ同じ面積で近接するようにすることが好ましい。同じ理由で交流を用いる場合は、位相の異なる電圧を印加する電極が、同程度の面積で基板と近接するようにすることが好ましい。
As the voltage to be applied, either direct current or alternating current can be used. A direct current provides a large electrostatic force, and an alternating current has an advantage that it is easy to separate the substrate from the electrode because the electrostatic force changes periodically.
In order to omit the structure for grounding the substrate, it is preferable that when a DC voltage is applied, the positive electrode and the negative electrode are close to the substrate with substantially the same area with reference to the ground potential. When alternating current is used for the same reason, it is preferable that electrodes to which voltages having different phases are applied are close to the substrate in the same area.

従って、本発明によれば、誘電体の厚さを薄くするほど静電気が大きくなり、前記ローラーの表面に被覆された誘電体に前記帯状基板を吸着する力が大きくなる。これにより、前記帯状基板は、該帯状基板とローラーの表面に被覆された誘電体との間に隙間を生ずることなく密着することになる。なお、誘電体の厚さの下限は、該誘電体の強度面から決定する。
そして、誘電体の内部に発生する静電気によるものであるので、前記帯状基板が非磁性材であっても、例えば、ポリイミド樹脂膜の表面に銀の層を設けた等を用いることができ、小さなガスゲートの隙間を実現し、成膜室間のガスの拡散混合を抑制することで、高品質の半導体薄膜素子を製造することができる。
Therefore, according to the present invention, the static electricity increases as the thickness of the dielectric material decreases, and the force for adsorbing the belt-like substrate to the dielectric material coated on the surface of the roller increases. Thereby, the said strip | belt-shaped board | substrate adheres without producing a clearance gap between this strip | belt-shaped board | substrate and the dielectric material coat | covered on the surface of the roller. Note that the lower limit of the thickness of the dielectric is determined from the strength of the dielectric.
And because it is due to static electricity generated inside the dielectric, even if the belt-like substrate is a non-magnetic material, for example, it is possible to use a silver resin layer provided on the surface of a polyimide resin film. A high quality semiconductor thin film element can be manufactured by realizing the gap between the gas gates and suppressing gas diffusion and mixing between the film forming chambers.

また、前記ローラーを、絶縁体を介して軸方向に2分割してそれぞれを回転軸に連結し、該各回転軸に前記電極をそれぞれ接続すれば、1本のローラーに正電極と負電極とを組み込むことができ、構造を簡単化することができる。
また、絶縁体をガスゲートの、内壁面全体に配置することにより、ローラーとガスゲートとの絶縁性を高めることができる。
Further, if the roller is divided into two in the axial direction through an insulator and each of the rollers is connected to a rotation shaft, and the electrodes are connected to the rotation shafts, a positive electrode and a negative electrode are connected to one roller. Can be incorporated, and the structure can be simplified.
Further, by disposing the insulator over the entire inner wall surface of the gas gate, the insulation between the roller and the gas gate can be enhanced.

一方、前記誘電体を、中空円筒からなる回転自在なローラーの外周に嵌挿し、前記ローラーを前記回転軸と一体に形成し、前記電極を前記回転軸と一体のローラーに接続するとともに、該ローラーを軸受にてガスゲートに支持し、前記電極からの電力をスリップリングを介して前記回転軸と一体のローラーに接続し、該ローラーを介して前記誘電体に伝達するように構成すれば、軸がローラーと一体で回転することになるので、構造が簡単で、かつ部品点数も少なくて済み、コストダウンを図ることができる。   On the other hand, the dielectric is inserted into the outer periphery of a rotatable roller made of a hollow cylinder, the roller is formed integrally with the rotating shaft, the electrode is connected to the roller integrated with the rotating shaft, and the roller Is supported by a gas gate with a bearing, and the power from the electrode is connected to a roller integral with the rotary shaft via a slip ring, and is transmitted to the dielectric via the roller. Since the roller rotates integrally with the roller, the structure is simple, the number of parts is small, and the cost can be reduced.

また、前記ローラーの内部に円周方向に沿って形成された絶縁体を設け、該絶縁体の外周に一定間隔で前記誘電体の内周面に開口する溝を形成し、該溝内に円周方向に沿って正電極と負電極とを交互に埋め込み、前記誘電体の内周に接触させるように構成すれば、1本のローラーに接触する前記帯状基板の表面に、正電荷と負電荷とを誘起することができ、装置のコンパクト化を図ることができる。   In addition, an insulator formed along the circumferential direction is provided inside the roller, and grooves are formed on the outer periphery of the insulator at regular intervals to open on the inner peripheral surface of the dielectric. If the positive electrode and the negative electrode are alternately embedded along the circumferential direction so as to be in contact with the inner periphery of the dielectric, a positive charge and a negative charge are formed on the surface of the belt-shaped substrate in contact with one roller. And the device can be made compact.

さらに、前記ガスゲート内を搬送される前記帯状基板に接する誘電体を単独で回転可能とし、固定部材に固定した正電極と負電極を前記誘電体の内周に接触させることように構成すれば、誘電体をセラミックス等にして強度と高める必要があり、それに対応して印加電圧も高める必要があるが、電極の数が少なくて済むという利点がある。   Further, if the dielectric that is in contact with the belt-shaped substrate transported in the gas gate can be independently rotated, and the positive electrode and the negative electrode fixed to the fixing member are brought into contact with the inner periphery of the dielectric, It is necessary to increase the strength of the dielectric by using ceramics or the like, and it is necessary to increase the applied voltage accordingly.

また、前記ガスゲート内に溝を設け、該溝内に2個の補助ローラーを並設して該補助ローラーに誘電体をベルトコンベア式に架設し、該誘電体を前記帯状基板に接触させながら回転駆動し、前記2個の補助ローラーの間に絶縁体を配置し、該絶縁体の長手方向に沿って正電極と負電極とを交互に埋め込み、回転駆動される前記誘電体に接触させるように構成すれば、電極は正電極と負電極のみでよく、電極の数が少なくて済む。   In addition, a groove is provided in the gas gate, two auxiliary rollers are provided in parallel in the groove, a dielectric material is installed on the auxiliary roller in a belt conveyor manner, and the dielectric material rotates while contacting the belt-like substrate. Drive, dispose an insulator between the two auxiliary rollers, and alternately embed positive and negative electrodes along the longitudinal direction of the insulator so as to contact the rotationally driven dielectric If constituted, the electrodes need only be a positive electrode and a negative electrode, and the number of electrodes can be reduced.

そして、前記ガスゲートの壁面に絶縁体を長手方向に沿って配置し、該絶縁体内に長手方向に沿って埋設された複数の電極を誘電体に接触させ、前記帯状基板を、前記誘電体上をスライド可能に構成すれば、帯状基板と誘電体との接触面積を大きくすることが可能となる。このため、誘電体との材質として潤滑性の高い材料を用いるとともに、静電吸引力も小さめにするのが好ましい。かかる本発明によれば、3相交流電圧を印加した場合、静電吸引力が周期的に変化するため、帯状基板の搬送に必要な張力を小さくすることができる。また、3相交流電圧に代えて位相が180°ずれた2相交流を正、負の電極に加えることも可能である。   Then, an insulator is disposed along the longitudinal direction on the wall surface of the gas gate, a plurality of electrodes embedded in the insulator along the longitudinal direction are brought into contact with the dielectric, and the belt-like substrate is placed on the dielectric. If configured to be slidable, the contact area between the belt-like substrate and the dielectric can be increased. For this reason, it is preferable to use a material having high lubricity as a material for the dielectric and to make the electrostatic attractive force small. According to the present invention, when a three-phase AC voltage is applied, the electrostatic attraction force changes periodically, so that the tension necessary for transporting the belt-like substrate can be reduced. It is also possible to apply a two-phase alternating current with a phase shift of 180 ° to the positive and negative electrodes instead of the three-phase alternating voltage.

以下、図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態に係る半導体素子の連続的製造装置のガスゲート部の縦断面図、図2はローラーの軸心に沿う断面図(図1のA―A線断面図)である。
図1及び図2に示すように、複数の成膜室20,20の間を接続するガスゲート10内において、帯状基板4が、複数個(この実施形態では4個)列設されたローラー2の回転により、当該帯状基板4の長手方向に搬送されるようになっている。
図2に示すように、上記ローラー2は中空状に形成されて正電極11を構成し、その中央部にはSUS304、鋼鉄、アルミニウム等の導電性を有する材料からなる軸7が貫通配置されており、該軸7の両端部付近は、ローラー2の両側部において、導電性を有する材料からなる軸受9により回転自在に支持されている。
[First embodiment]
FIG. 1 is a longitudinal sectional view of a gas gate portion of a semiconductor device continuous manufacturing apparatus according to a first embodiment of the present invention, and FIG. 2 is a sectional view taken along the axis of a roller (a sectional view taken along line AA in FIG. 1). It is.
As shown in FIGS. 1 and 2, a plurality of strip-like substrates 4 (four in this embodiment) are arranged in a row in a gas gate 10 connecting a plurality of film forming chambers 20, 20. The belt is conveyed in the longitudinal direction of the belt-like substrate 4 by the rotation.
As shown in FIG. 2, the roller 2 is formed in a hollow shape to constitute a positive electrode 11, and a shaft 7 made of a conductive material such as SUS304, steel, aluminum, or the like is penetratingly disposed at the center thereof. In the vicinity of both ends of the shaft 7, the both sides of the roller 2 are rotatably supported by bearings 9 made of a conductive material.

上記軸7の両端部には、絶縁体8が嵌挿されており、該絶縁体8によって軸7とガスゲート10とを絶縁した状態で、当該ガスゲート10の壁面に固定されている。
また、上記ローラー2はアルミニウム合金A5050の中空円筒であり、該ローラー2を構成する正電極11の表面には、厚さ75μm程度で誘電率3.6程度のポリイミド樹脂膜等からなる誘電体1が被覆されている。これらローラー2が負電極を構成する場合も、上記と同様な誘電体1で構成されている。
誘電体1としては、他にポリエチレンフィルム、酸化タンタル、チタン酸バリウム等が用いられる。
An insulator 8 is inserted into both ends of the shaft 7, and the shaft 7 and the gas gate 10 are insulated from each other by the insulator 8 and fixed to the wall surface of the gas gate 10.
The roller 2 is a hollow cylinder of aluminum alloy A5050, and the dielectric 1 made of a polyimide resin film having a thickness of about 75 μm and a dielectric constant of about 3.6 is formed on the surface of the positive electrode 11 constituting the roller 2. Is covered. Also when these rollers 2 constitute a negative electrode, they are constituted by the dielectric 1 similar to the above.
In addition, a polyethylene film, tantalum oxide, barium titanate, or the like is used as the dielectric 1.

上記帯状基板4は、例えば、幅300mm、厚さ50μm程度の寸法のポリイミド樹脂膜で表裏に厚さ0.2〜0.3μmの銀からなる導電性膜5が成膜されている。ガスゲート10の中央位置の2箇所に設けられた掃気用ガス供給口6からは、例えば、250sccm程度のH2がそれぞれ供給されるようになっている。
また、上記ガスゲート10の両側に接続される成膜室20,20は、圧力が2〜5Torr,温度は140〜180℃程度の設定条件が適当である。また、成膜室20,20のガス組成は、H2、Si4をベースとし、片側の成膜室20には、微量のPH4またはB26が混合されてもよい。
The strip-like substrate 4 is, for example, a polyimide resin film having a width of about 300 mm and a thickness of about 50 μm, and a conductive film 5 made of silver having a thickness of 0.2 to 0.3 μm is formed on both sides. For example, about 250 sccm of H 2 is supplied from the scavenging gas supply ports 6 provided at two central positions of the gas gate 10.
In addition, the film forming chambers 20 and 20 connected to both sides of the gas gate 10 are appropriately set with a pressure of 2 to 5 Torr and a temperature of about 140 to 180 ° C. The gas composition of the film forming chambers 20 and 20 is based on H 2 and Si H 4 , and a small amount of PH 4 or B 2 H 6 may be mixed in the film forming chamber 20 on one side.

図2に示されるように(図2には帯状基板4を省略している)、上記各軸7の軸先端部には直流電源3が接続されている。この直流電源3は、図1に示すように、正極となるローラー2の隣には少なくとも一つの負極となるローラー2が配置されている。このような構成とすることにより、上記帯状基板4には、正負同量の電荷が誘起され、帯状基板4の電位は正極と負極の中間電位、すなわち接地電極と同等になる。   As shown in FIG. 2 (the strip-like substrate 4 is omitted in FIG. 2), a DC power source 3 is connected to the shaft tip of each shaft 7. As shown in FIG. 1, the DC power source 3 has at least one roller 2 serving as a negative electrode disposed next to the roller 2 serving as a positive electrode. With this configuration, positive and negative charges are induced in the belt-like substrate 4, and the potential of the belt-like substrate 4 is equal to the intermediate potential between the positive electrode and the negative electrode, that is, the ground electrode.

図1及び図2において、直流電源3が通電されると、該電流は軸7及び軸受9を通って、ポリイミド樹脂膜等からなる誘電体1に伝達される。ここで、誘電体1に電極の移動が発生して正負電荷の中心が分離し、静電気が発生して電気モーメントが分布する状態になる。この静電気は、印加電圧の2乗に比例し、誘電体1厚さの2乗に反比例している。
従って、誘電体1の厚さを薄くするほど静電気が大きくなり、ローラー2の表面に被覆された誘電体1に帯状基板4を吸引する力が大きくなる。これにより、帯状基板4は、該帯状基板4とローラー2の表面に被覆された誘電体1との間に隙間を生ずることなく、密着することになる。
ただし、誘電体1の厚さの下限は、該誘電体1の強度面から決定する。また、ガスゲート10の一例として、隙間は3mm、幅と長さは300mmとする。さらに、誘電体1の内部に発生する静電気によるので、帯状基板4が非磁性材であっても、例えば、ポリイミド樹脂膜の表面に銀の層を設けた等の場合は用いることが可能である。
1 and 2, when the DC power source 3 is energized, the current passes through the shaft 7 and the bearing 9 and is transmitted to the dielectric 1 made of a polyimide resin film or the like. Here, movement of the electrode in the dielectric 1 occurs, the centers of the positive and negative charges are separated, static electricity is generated, and the electric moment is distributed. This static electricity is proportional to the square of the applied voltage and inversely proportional to the square of the thickness of the dielectric 1.
Accordingly, as the thickness of the dielectric 1 is reduced, static electricity increases, and the force for attracting the belt-like substrate 4 to the dielectric 1 covered on the surface of the roller 2 increases. Thereby, the strip | belt-shaped board | substrate 4 adheres, without producing a clearance gap between this strip | belt-shaped board | substrate 4 and the dielectric material 1 coat | covered on the surface of the roller 2. FIG.
However, the lower limit of the thickness of the dielectric 1 is determined from the strength aspect of the dielectric 1. As an example of the gas gate 10, the gap is 3 mm, and the width and length are 300 mm. Furthermore, because of the static electricity generated inside the dielectric 1, even if the belt-like substrate 4 is a nonmagnetic material, it can be used, for example, when a silver layer is provided on the surface of the polyimide resin film. .

[第2実施形態]
図3は本発明の第2実施形態に係る半導体素子の連続的製造装置のガスゲート部の縦断面図である。
このガスゲート10においては、ローラー2は絶縁体8を介して正電極11と負電極12とに分けられ、それぞれの正電極11は軸受9aを介して軸7aに連結され、負電極12は軸受9bを介して軸7bに連結されている。そして、各軸7a及び軸7bは、それぞれ直流電源3a及び直流電源3bに接続されている。その他の構成は、上記第1実施形態と同一であり、これと同一の部材は同一の符号で示している。
第2実施形態のように構成すれば、1本のローラー2に正電極11と負電極12とを組み込むことができ、構造を簡単化することができる。また、絶縁体8aをガスゲート10の、内壁面全体に配置することにより、ローラー2とガスゲート10との絶縁性を高めることができる。
[Second Embodiment]
FIG. 3 is a longitudinal sectional view of a gas gate portion of a continuous manufacturing apparatus for semiconductor elements according to a second embodiment of the present invention.
In this gas gate 10, the roller 2 is divided into a positive electrode 11 and a negative electrode 12 through an insulator 8, and each positive electrode 11 is connected to a shaft 7a through a bearing 9a, and the negative electrode 12 is connected to a bearing 9b. It is connected to the shaft 7b via Each shaft 7a and shaft 7b are connected to a DC power source 3a and a DC power source 3b, respectively. Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
If comprised like 2nd Embodiment, the positive electrode 11 and the negative electrode 12 can be integrated in the one roller 2, and a structure can be simplified. Further, by disposing the insulator 8a over the entire inner wall surface of the gas gate 10, the insulation between the roller 2 and the gas gate 10 can be enhanced.

[第3実施形態]
図4は本発明の第3実施形態に係る半導体素子の連続的製造装置のガスゲート部の縦断面図である。
この第3実施形態においては、軸7がローラー2(例えば正電極11、負電極12でもよい)と一体に形成され、両端部は軸受9,9で支持されている。これら軸受9,9は、絶縁体8,8で支持され、ガスゲート10と絶縁されている。この場合は、軸7の先端部にスリップリング10が嵌挿されており、直流電源3からの直流電流をスリップリング10aを介して軸7に通流し、軸7がローラー2(例えば正電極11)と一体で回転している。従って、上記軸受9,9は導電性を有する材料でなくてもよい。その他の構成は、上記第1実施形態と同一であり、これと同一の部材は同一の符号で示している。
かかる第3実施形態においては、軸7がローラー2と一体で回転しているので、より一層構造が簡単となり、部品点数も少なくなる。
[Third Embodiment]
FIG. 4 is a longitudinal sectional view of a gas gate portion of a continuous manufacturing apparatus for semiconductor elements according to a third embodiment of the present invention.
In the third embodiment, the shaft 7 is formed integrally with the roller 2 (for example, the positive electrode 11 or the negative electrode 12), and both end portions are supported by bearings 9 and 9. These bearings 9 and 9 are supported by insulators 8 and 8 and insulated from the gas gate 10. In this case, a slip ring 10 is inserted into the tip of the shaft 7, and a direct current from the DC power source 3 is passed through the shaft 7 via the slip ring 10a, and the shaft 7 is connected to the roller 2 (for example, the positive electrode 11). ) And rotate together. Therefore, the bearings 9 and 9 may not be a conductive material. Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
In the third embodiment, since the shaft 7 rotates integrally with the roller 2, the structure is further simplified and the number of parts is reduced.

[第4実施形態]
図5〜図7は本発明の第4実施形態〜第6実施形態に係る半導体素子の連続的製造装置のガスゲート部のローラー軸心に直角な方向の断面図であって、ローラーが1個の場合を示している。なお、図5〜図7はローラーが1個の場合を示しているが、実際は図1〜図4と同様にローラーが複数個ずつ設けられている。
図5に示される第4実施形態は、図1及び図2の第1実施形態と同様であり、ローラー2は、正電極11と負電極12に相当している。また、上記帯状基板4には、第1実施形態と同様に、表裏に厚さ0.2〜0.3μmの銀からなる導電性膜5が成膜されている。さらに、誘電体1の表面とガスゲート10との隙間Sは、掃気用ガスの通過を少なくするためにできるだけ小さく形成されている。
その他の構成は、上記第1実施形態と同一であり、これと同一の部材は同一の符号で示している。
[Fourth Embodiment]
5 to 7 are cross-sectional views in a direction perpendicular to the roller axis of the gas gate portion of the continuous manufacturing apparatus for semiconductor elements according to the fourth to sixth embodiments of the present invention. Shows the case. 5 to 7 show the case where there is one roller, but in actuality, a plurality of rollers are provided in the same manner as in FIGS.
The fourth embodiment shown in FIG. 5 is the same as the first embodiment of FIGS. 1 and 2, and the roller 2 corresponds to the positive electrode 11 and the negative electrode 12. In addition, the conductive film 5 made of silver having a thickness of 0.2 to 0.3 μm is formed on the front and back surfaces of the belt-like substrate 4 as in the first embodiment. Further, the gap S between the surface of the dielectric 1 and the gas gate 10 is formed as small as possible in order to reduce the passage of the scavenging gas.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.

[第5実施形態]
図6に示される第5実施形態は、ローラー2の内部において、円周方向に沿って形成された絶縁体8の外周に一定間隔で、誘電体1の内周面に開口する溝21が形成され、該溝21内には円周方向に沿って正電極11と負電極12とが交互に埋め込まれている。その他の構成は、上記第1実施形態と同一であり、これと同一の部材は同一の符号で示している。
第5実施形態のように構成すれば、1本のローラー2に接触する帯状基板4の表面に、正電荷と負電荷とを誘起することができ、装置のコンパクト化が図れることになる。
[Fifth Embodiment]
In the fifth embodiment shown in FIG. 6, grooves 21 that open to the inner peripheral surface of the dielectric 1 are formed at regular intervals on the outer periphery of the insulator 8 formed along the circumferential direction inside the roller 2. The positive electrode 11 and the negative electrode 12 are alternately embedded in the groove 21 along the circumferential direction. Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
If configured as in the fifth embodiment, positive charges and negative charges can be induced on the surface of the belt-like substrate 4 in contact with one roller 2, and the apparatus can be made compact.

[第6実施形態]
図7に示される第6実施形態は、ローラー2から正電極11と負電極12とが分離して固定部材40に固定され、誘電体1を単独で回転させながら帯状基板4と接触するように構成されている。その他の構成は、上記第1実施形態と同一であり、これと同一の部材は同一の符号で示している。
この場合は誘電体1を単独で回転させているので、厚さ1mm程度のセラミックス等にして、強度を高める必要があり、それに対応して印加電圧も高める必要がある。しかしながら、この第6実施形態によれば、電極の数が少なくて済む。
[Sixth Embodiment]
In the sixth embodiment shown in FIG. 7, the positive electrode 11 and the negative electrode 12 are separated from the roller 2 and fixed to the fixing member 40 so that the dielectric 1 contacts the belt-like substrate 4 while rotating alone. It is configured. Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
In this case, since the dielectric 1 is rotated independently, it is necessary to increase the strength by using ceramics having a thickness of about 1 mm, and it is necessary to increase the applied voltage accordingly. However, according to the sixth embodiment, the number of electrodes can be small.

[第7実施形態]
図8は本発明の第7実施形態に係る半導体素子の連続的製造装置のガスゲート部のローラー軸心に直角な方向の断面図であって、補助ローラーが2個の場合を示している。
この第7実施形態では、ガスゲート10の溝10a内に、2個の補助ローラー16が並設され、該補助ローラー16間には誘電体1がベルトコンベア式に架設されて、補助ローラー16が回転駆動するように構成されている。一方、2個の補助ローラー16間には、絶縁体8の溝内で、長手方向に沿って正電極11と負電極12とが交互に埋め込まれ、該正電極11と負電極12とに対し、誘電体1が回転させられるようになっている。なお、帯状基板4には、第1実施形態と同様に、表裏に厚さ0.2〜0.3μmの銀からなる導電性膜5が成膜されている。
かかる第7実施形態によれば、電極は正電極11と負電極12のみでよく、電極の数が少なくて済む。
[Seventh Embodiment]
FIG. 8 is a cross-sectional view in a direction perpendicular to the roller axis of the gas gate portion of the continuous manufacturing apparatus for semiconductor elements according to the seventh embodiment of the present invention, and shows a case where there are two auxiliary rollers.
In the seventh embodiment, two auxiliary rollers 16 are arranged in parallel in the groove 10a of the gas gate 10, and the dielectric 1 is installed between the auxiliary rollers 16 in a belt conveyor manner so that the auxiliary roller 16 rotates. It is configured to drive. On the other hand, between the two auxiliary rollers 16, the positive electrode 11 and the negative electrode 12 are alternately buried along the longitudinal direction in the groove of the insulator 8, and with respect to the positive electrode 11 and the negative electrode 12. The dielectric 1 is rotated. As in the first embodiment, a conductive film 5 made of silver having a thickness of 0.2 to 0.3 μm is formed on the front and back surfaces of the belt-like substrate 4.
According to the seventh embodiment, only the positive electrode 11 and the negative electrode 12 may be used, and the number of electrodes may be small.

[第8実施形態]
図9は本発明の第8実施形態に係る半導体素子の連続的製造装置のガスゲート部の断面図である。
図9において、ガスゲート10の壁面には、絶縁体8の長手方向に沿って埋設されたU相電極13、V相電極14及びW相電極15が一定の間隔を置いて配置され、各電極には、周波数1HZ〜100HZnの3相交流電圧が印加されるように構成されている。
上記U相電極13、V相電極14及びW相電極15と、帯状基板4との間には、厚さ1mmのアルミナ系セラミックスが誘電体1として配置されている。帯状基板4は、誘電体1上を矢印Z方向で示すように、スライド可能に構成されている。このように構成すると、実効値300Vの交流電圧を印加した場合、静電吸引力は30Pa程度となる。
[Eighth Embodiment]
FIG. 9 is a cross-sectional view of a gas gate portion of a continuous semiconductor device manufacturing apparatus according to the eighth embodiment of the present invention.
In FIG. 9, a U-phase electrode 13, a V-phase electrode 14, and a W-phase electrode 15 embedded along the longitudinal direction of the insulator 8 are arranged at regular intervals on the wall surface of the gas gate 10. Is configured such that a three-phase AC voltage having a frequency of 1HZ to 100HZn is applied.
Between the U-phase electrode 13, the V-phase electrode 14 and the W-phase electrode 15 and the strip substrate 4, alumina ceramics having a thickness of 1 mm are disposed as the dielectric 1. The belt-like substrate 4 is configured to be slidable as indicated by the arrow Z direction on the dielectric 1. With this configuration, when an AC voltage having an effective value of 300 V is applied, the electrostatic attractive force is about 30 Pa.

この第8実施形態においては、帯状基板4と誘電体1との接触面積が大きいので、誘電体1との材質として潤滑性の高い材料を用いるとともに、静電吸引力も小さめにするのが好ましい。
かかる第8実施形態によれば、3相交流電圧を印加した場合、静電吸引力が周期的に変化するため、帯状基板4の搬送に必要な張力を小さくすることができる。また、3相交流電圧に代えて位相が180°ずれた2相交流を正、負の電極に加えることができる。
In the eighth embodiment, since the contact area between the belt-like substrate 4 and the dielectric 1 is large, it is preferable to use a material having high lubricity as the material for the dielectric 1 and to reduce the electrostatic attractive force.
According to the eighth embodiment, when a three-phase AC voltage is applied, the electrostatic attraction force periodically changes, so that the tension necessary for transporting the belt-like substrate 4 can be reduced. In addition, a two-phase alternating current whose phase is shifted by 180 ° can be applied to the positive and negative electrodes instead of the three-phase alternating voltage.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変更及び変形が可能である。   While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes and modifications can be made based on the technical idea of the present invention.

本発明の第1実施形態に係る半導体素子の連続的製造装置のガスゲート部を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a gas gate portion of the semiconductor device continuous manufacturing apparatus according to the first embodiment of the present invention. ローラーの軸心に沿う断面図(図1のA―A線断面図)である。FIG. 2 is a cross-sectional view (a cross-sectional view taken along line AA in FIG. 1) along the axis of the roller. 本発明の第2実施形態に係る半導体素子の連続的製造装置のガスゲート部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る半導体素子の連続的製造装置のガスゲート部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る半導体素子の連続的製造装置のガスゲート部のローラー軸心に直角な方向の断面図であって、ローラーが1個の場合を示している。It is sectional drawing of the direction orthogonal to the roller axial center of the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 4th Embodiment of this invention, Comprising: The case where there is one roller is shown. 本発明の第5実施形態に係る半導体素子の連続的製造装置のガスゲート部のローラー軸心に直角な方向の断面図であって、ローラーが1個の場合を示している。It is sectional drawing of the direction orthogonal to the roller axial center of the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 5th Embodiment of this invention, Comprising: The case where there is one roller is shown. 本発明の第6実施形態に係る半導体素子の連続的製造装置のガスゲート部のローラー軸心に直角な方向の断面図であって、ローラーが1個の場合を示している。It is sectional drawing of the direction orthogonal to the roller axial center of the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 6th Embodiment of this invention, Comprising: The case where there is one roller is shown. 本発明の第7実施形態に係る半導体素子の連続的製造装置のガスゲート部のローラー軸心に直角な方向の断面図であって、補助ローラーが2個の場合を示している。It is sectional drawing of the direction orthogonal to the roller axial center of the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 7th Embodiment of this invention, Comprising: The case where two auxiliary rollers are shown is shown. 本発明の第8実施形態に係る半導体素子の連続的製造装置のガスゲート部を示す断面図である。It is sectional drawing which shows the gas gate part of the continuous manufacturing apparatus of the semiconductor element which concerns on 8th Embodiment of this invention. 従来例を示すものであって、図1に対応する縦断面図である。It is a longitudinal cross-sectional view which shows a prior art example and corresponds to FIG.

符号の説明Explanation of symbols

1 誘電体
2 ローラー
3 直流電源
4 帯状基板
5 導電性膜
6 掃気用ガス供給口
7 軸
8 絶縁体
9 軸受
10 ガスゲート
10a スリップリング
11 正電極
12 負電極
13 U相電極
14 V相電極
15 W相電極
20 成膜室
DESCRIPTION OF SYMBOLS 1 Dielectric body 2 Roller 3 DC power supply 4 Strip | belt-shaped board | substrate 5 Conductive film 6 Gas supply port for scavenging 7 Axis 8 Insulator 9 Bearing 10 Gas gate 10a Slip ring 11 Positive electrode 12 Negative electrode 13 U-phase electrode 14 V-phase electrode 15 W-phase Electrode 20 deposition chamber

Claims (8)

複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に複数個列設されたローラーの回転により搬送して次の成膜室に移送する帯状基板搬送手段を備えたロール・ツー・ロール方式の半導体素子の連続的製造装置において、前記ガスゲート内を搬送される前記帯状基板に近接して電極を前記ガスゲートの内部に配置し、前記電極と前記帯状基板との間に誘電体を設置し、前記電極に直流または交流の電圧を印加して前記電極と誘電体との共働により前記帯状基板を支持するように構成したことを特徴とする半導体素子の連続的製造装置。   A belt-shaped substrate transporting means for transporting a belt-shaped substrate by rotation of a plurality of rollers arranged in the longitudinal direction of the belt-shaped substrate in a gas gate connecting a plurality of film-forming chambers to the next film-forming chamber. In a continuous manufacturing apparatus for a roll-to-roll semiconductor element, an electrode is disposed in the gas gate in the vicinity of the strip substrate transported in the gas gate, and the electrode and the strip substrate A continuous semiconductor device characterized in that a dielectric is installed between the electrodes, and a DC or AC voltage is applied to the electrodes to support the strip substrate by the cooperation of the electrodes and the dielectric. Manufacturing equipment. 前記誘電体を、中空円筒からなる回転自在なローラーの外周に嵌挿し、前記電極を前記ローラーに電気的に接続される回転軸に連結して、該回転軸を軸受により前記ガスゲートに支持し、前記電極からの電力を前記回転軸、前記軸受及び前記ローラーを介して前記誘電体に伝達するように構成したことを特徴とする請求項1に記載の半導体素子の連続的製造装置。   The dielectric is inserted into the outer periphery of a rotatable roller made of a hollow cylinder, the electrode is connected to a rotating shaft electrically connected to the roller, and the rotating shaft is supported by the gas gate by a bearing, The apparatus for continuously manufacturing a semiconductor element according to claim 1, wherein electric power from the electrode is transmitted to the dielectric via the rotating shaft, the bearing, and the roller. 前記ローラーを、絶縁体を介して軸方向に2分割してそれぞれを回転軸に連結し、該各回転軸に前記電極をそれぞれ接続したことを特徴とする請求項2に記載の半導体素子の連続的製造装置。   3. The continuous semiconductor element according to claim 2, wherein the roller is divided into two in the axial direction through an insulator, each of which is connected to a rotation shaft, and each of the electrodes is connected to the rotation shaft. Manufacturing equipment. 前記誘電体を、中空円筒からなる回転自在なローラーの外周に嵌挿し、前記ローラーを前記回転軸と一体に形成し、前記電極を前記回転軸と一体のローラーに接続するとともに、該ローラーを軸受にて前記ガスゲートに支持し、前記電極からの電力をスリップリングを介して前記回転軸と一体のローラーに接続し、該ローラーを介して前記誘電体に伝達するように構成したことを特徴とする請求項2に記載の半導体素子の連続的製造装置。   The dielectric is inserted into the outer periphery of a rotatable roller made of a hollow cylinder, the roller is formed integrally with the rotating shaft, the electrode is connected to the roller integrated with the rotating shaft, and the roller is a bearing. The gas gate is configured to support the electric power from the electrode through a slip ring and to a roller integral with the rotating shaft, and to be transmitted to the dielectric through the roller. The continuous manufacturing apparatus for semiconductor elements according to claim 2. 前記ローラーの内部に円周方向に沿って形成された絶縁体を設け、該絶縁体の外周に一定間隔で前記誘電体の内周面に開口する溝を形成し、該溝内に円周方向に沿って正電極と負電極とを交互に埋め込み、前記誘電体の内周に接触させるように構成したことを特徴とする請求項2に記載の半導体素子の連続的製造装置。   An insulator formed along the circumferential direction is provided inside the roller, and grooves are formed on the outer periphery of the insulator at regular intervals to open on the inner peripheral surface of the dielectric. The semiconductor device continuous manufacturing apparatus according to claim 2, wherein a positive electrode and a negative electrode are alternately embedded along the inner surface of the dielectric and contact with the inner periphery of the dielectric. 複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に搬送して次の成膜室に移送する帯状基板搬送手段を備えた半導体素子の連続的製造装置において、前記ガスゲート内を搬送される前記帯状基板に接する誘電体を単独で回転可能とし、固定部材に固定した正電極と負電極を前記誘電体の内周に接触させるように構成したことを特徴とする半導体素子の連続的製造装置。   In a continuous production device for a semiconductor device, comprising a belt-shaped substrate transport means for transporting a belt-shaped substrate in the longitudinal direction of the belt-shaped substrate and transferring it to the next film-forming chamber in a gas gate connecting a plurality of film deposition chambers The dielectric that is in contact with the belt-shaped substrate conveyed in the gas gate can be independently rotated, and the positive electrode and the negative electrode fixed to the fixing member are configured to contact the inner periphery of the dielectric. Continuous manufacturing equipment for semiconductor devices. 複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に搬送して次の成膜室に移送する帯状基板搬送手段を備えた半導体素子の連続的製造装置において、前記ガスゲート内に溝を設け、該溝内に2個の補助ローラーを並設して該補助ローラーに誘電体をベルトコンベア式に架設し、該誘電体を前記帯状基板に接触させながら回転駆動し、前記2個の補助ローラーの間に絶縁体を配置し、該絶縁体の長手方向に沿って正電極と負電極とを交互に埋め込み、回転駆動される前記誘電体に接触させるように構成したことを特徴とする半導体素子の連続的製造装置。   In a continuous production device for a semiconductor device, comprising a belt-shaped substrate transport means for transporting a belt-shaped substrate in the longitudinal direction of the belt-shaped substrate and transferring it to the next film-forming chamber in a gas gate connecting a plurality of film deposition chambers A groove is provided in the gas gate, two auxiliary rollers are provided in parallel in the groove, and a dielectric is installed on the auxiliary roller in a belt conveyor manner, and the dielectric is rotated while being in contact with the belt-like substrate. An insulator is disposed between the two auxiliary rollers, and positive and negative electrodes are alternately embedded along the longitudinal direction of the insulator so as to come into contact with the rotationally driven dielectric. A continuous manufacturing apparatus for semiconductor elements. 複数の成膜室の間を接続するガスゲート内に、帯状基板を該帯状基板の長手方向に搬送して次の成膜室に移送する帯状基板搬送手段を備えた半導体素子の連続的製造装置において、前記ガスゲートの壁面に絶縁体を長手方向に沿って配置し、該絶縁体内に長手方向に沿って埋設された複数の電極を誘電体に接触させ、前記帯状基板を、前記誘電体上をスライド可能に構成したことを特徴とする半導体素子の連続的製造装置。   In a continuous production device for a semiconductor device, comprising a belt-shaped substrate transport means for transporting a belt-shaped substrate in the longitudinal direction of the belt-shaped substrate and transferring it to the next film-forming chamber in a gas gate connecting a plurality of film deposition chambers An insulator is disposed on the wall surface of the gas gate along the longitudinal direction, a plurality of electrodes embedded in the insulator along the longitudinal direction are brought into contact with the dielectric, and the strip substrate is slid over the dielectric A continuous manufacturing apparatus of a semiconductor device, characterized in that it is configured.
JP2007212148A 2007-08-16 2007-08-16 Continuous manufacturing apparatus of semiconductor device Pending JP2009046710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212148A JP2009046710A (en) 2007-08-16 2007-08-16 Continuous manufacturing apparatus of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212148A JP2009046710A (en) 2007-08-16 2007-08-16 Continuous manufacturing apparatus of semiconductor device

Publications (1)

Publication Number Publication Date
JP2009046710A true JP2009046710A (en) 2009-03-05

Family

ID=40499196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212148A Pending JP2009046710A (en) 2007-08-16 2007-08-16 Continuous manufacturing apparatus of semiconductor device

Country Status (1)

Country Link
JP (1) JP2009046710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130084409A1 (en) * 2010-07-09 2013-04-04 Vito Nv Method and Device for Atmospheric Pressure Plasma Treatment
WO2016148029A1 (en) * 2015-03-13 2016-09-22 コニカミノルタ株式会社 Film forming apparatus and gas barrier film production method
KR101903600B1 (en) * 2011-09-23 2018-10-04 삼성디스플레이 주식회사 Substrate transferring unit, substrate processing apparatus having the same and method of processing substrate using the same
TWI653358B (en) 2017-04-11 2019-03-11 㵢杰有限公司 Continuous deposition device and method of continuous deposition
WO2020050112A1 (en) * 2018-09-05 2020-03-12 富士フイルム株式会社 Film forming method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345699B1 (en) * 1969-03-27 1978-12-08
JPS58199571A (en) * 1982-04-29 1983-11-19 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Gas gate for photovoltaic device producing apparatus
JPS61124455A (en) * 1984-11-16 1986-06-12 Ekuseru Kogyo Kk Electrostatically adsorbing rubber belt
JPS642947A (en) * 1988-03-12 1989-01-06 Abisare:Kk Mechanical facility provided with electrostatic holding means
JPH0379764A (en) * 1989-08-23 1991-04-04 Ulvac Japan Ltd Ion plating device for long-sized material
JPH03293238A (en) * 1990-04-12 1991-12-24 Canon Inc Image forming device
JPH06184747A (en) * 1992-12-21 1994-07-05 Canon Inc Gas gate and vacuum treatment device having this gate
JPH06255823A (en) * 1993-02-26 1994-09-13 Nec Corp Conveying device
JPH07185315A (en) * 1993-12-27 1995-07-25 Tokai Univ Method for reforming surface of solid material and device therefor
JPH09167794A (en) * 1995-12-15 1997-06-24 Sony Corp Electrostatic chuck and plasma processing method
JP2000017440A (en) * 1998-07-02 2000-01-18 Sony Corp Plasma assisted cvd deposition apparatus
JP2001152349A (en) * 1996-09-10 2001-06-05 Hitachi Maxell Ltd Plasma cvd apparatus
JP2001326183A (en) * 2000-05-16 2001-11-22 Canon Inc Method and apparatus for processing substrate
JP2003089874A (en) * 2001-09-19 2003-03-28 Ulvac Japan Ltd Method and device for manufacturing gas barrier film
WO2007007731A1 (en) * 2005-07-12 2007-01-18 Creative Technology Corporation Apparatus for removing foreign material from substrate and method for removing foreign material from substrate

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345699B1 (en) * 1969-03-27 1978-12-08
JPS58199571A (en) * 1982-04-29 1983-11-19 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Gas gate for photovoltaic device producing apparatus
JPS61124455A (en) * 1984-11-16 1986-06-12 Ekuseru Kogyo Kk Electrostatically adsorbing rubber belt
JPS642947A (en) * 1988-03-12 1989-01-06 Abisare:Kk Mechanical facility provided with electrostatic holding means
JPH0379764A (en) * 1989-08-23 1991-04-04 Ulvac Japan Ltd Ion plating device for long-sized material
JPH03293238A (en) * 1990-04-12 1991-12-24 Canon Inc Image forming device
JPH06184747A (en) * 1992-12-21 1994-07-05 Canon Inc Gas gate and vacuum treatment device having this gate
JPH06255823A (en) * 1993-02-26 1994-09-13 Nec Corp Conveying device
JPH07185315A (en) * 1993-12-27 1995-07-25 Tokai Univ Method for reforming surface of solid material and device therefor
JPH09167794A (en) * 1995-12-15 1997-06-24 Sony Corp Electrostatic chuck and plasma processing method
JP2001152349A (en) * 1996-09-10 2001-06-05 Hitachi Maxell Ltd Plasma cvd apparatus
JP2000017440A (en) * 1998-07-02 2000-01-18 Sony Corp Plasma assisted cvd deposition apparatus
JP2001326183A (en) * 2000-05-16 2001-11-22 Canon Inc Method and apparatus for processing substrate
JP2003089874A (en) * 2001-09-19 2003-03-28 Ulvac Japan Ltd Method and device for manufacturing gas barrier film
WO2007007731A1 (en) * 2005-07-12 2007-01-18 Creative Technology Corporation Apparatus for removing foreign material from substrate and method for removing foreign material from substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130084409A1 (en) * 2010-07-09 2013-04-04 Vito Nv Method and Device for Atmospheric Pressure Plasma Treatment
US9255330B2 (en) * 2010-07-09 2016-02-09 Vito Nv Method and device for atmospheric pressure plasma treatment
KR101903600B1 (en) * 2011-09-23 2018-10-04 삼성디스플레이 주식회사 Substrate transferring unit, substrate processing apparatus having the same and method of processing substrate using the same
WO2016148029A1 (en) * 2015-03-13 2016-09-22 コニカミノルタ株式会社 Film forming apparatus and gas barrier film production method
JPWO2016148029A1 (en) * 2015-03-13 2017-12-28 コニカミノルタ株式会社 Film forming apparatus and gas barrier film manufacturing method
TWI653358B (en) 2017-04-11 2019-03-11 㵢杰有限公司 Continuous deposition device and method of continuous deposition
WO2020050112A1 (en) * 2018-09-05 2020-03-12 富士フイルム株式会社 Film forming method
JPWO2020050112A1 (en) * 2018-09-05 2021-08-26 富士フイルム株式会社 Film formation method
JP7109554B2 (en) 2018-09-05 2022-07-29 富士フイルム株式会社 Deposition method

Similar Documents

Publication Publication Date Title
JP2009046710A (en) Continuous manufacturing apparatus of semiconductor device
KR101148760B1 (en) Plasma cvd apparatus
JP6121471B2 (en) Graphene device and manufacturing method thereof
US7983017B2 (en) Electrostatic chuck and method of forming
JP4747658B2 (en) Film forming apparatus and film forming method
Maeda et al. Steep subthreshold swing of pentacene-based organic field-effect transistor with nitrogen-doped LaB6 interfacial layer
TW201934780A (en) Deposition apparatus, method of coating a flexible substrate and flexible substrate having a coating
JP5484846B2 (en) Functional membrane manufacturing apparatus and manufacturing method
WO2015151680A1 (en) Plasma cvd film-forming device
JP4601381B2 (en) Pressure gradient ion plating film deposition system
US20220356028A1 (en) Roller for transporting a flexible substrate, vacuum processing apparatus, and methods therefor
WO2014080601A1 (en) Plasma cvd device
JP6569685B2 (en) Film forming apparatus and gas barrier film manufacturing method
JP2006104568A (en) Film formation apparatus using pressure gradient ion plating
TWI810911B (en) Roller for transporting a flexible substrate, vacuum processing apparatus, and methods therefor
Lee et al. Application of calendering for improving the electrical characteristics of a printed top-gate, bottom-contact organic thin film transistors
JP2004149845A (en) Running type vacuum deposition system
KR102360686B1 (en) Method for forming sealing film, and sealing film
JP2012083177A (en) Inspection method of gas barrier laminate film, and manufacturing method of gas barrier laminate film
KR101538408B1 (en) Plasma cvd apparatus
JP2007311737A (en) Electrostatic chuck
JP2024014680A (en) Substrate processing apparatus, substrate holding apparatus, and substrate holding method
JP6288082B2 (en) Film forming apparatus, electrode roll, and gas barrier film manufacturing method
JPH08246150A (en) Apparatus for manufacturing thin film
WO2016148029A1 (en) Film forming apparatus and gas barrier film production method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A625

A711 Notification of change in applicant

Effective date: 20110422

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20111121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313