JP2009044791A - Method of manufacturing laminated core of rotor for reluctance motor - Google Patents

Method of manufacturing laminated core of rotor for reluctance motor Download PDF

Info

Publication number
JP2009044791A
JP2009044791A JP2007204299A JP2007204299A JP2009044791A JP 2009044791 A JP2009044791 A JP 2009044791A JP 2007204299 A JP2007204299 A JP 2007204299A JP 2007204299 A JP2007204299 A JP 2007204299A JP 2009044791 A JP2009044791 A JP 2009044791A
Authority
JP
Japan
Prior art keywords
core
arc
core piece
rotor
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007204299A
Other languages
Japanese (ja)
Inventor
Yukio Matsunaga
幸雄 松永
Yusuke Hasuo
裕介 蓮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2007204299A priority Critical patent/JP2009044791A/en
Publication of JP2009044791A publication Critical patent/JP2009044791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated core of a rotor for a reluctance motor, which improves the deterioration of magnetic property in a conventional laminated core of a rotor, thereby increasing efficiency in the reluctance motor. <P>SOLUTION: In the method of manufacturing the laminated core 1 of the rotor for a reluctance motor, which laminates a specified number of core pieces 10, in each of which a plurality of circular arc slits 10s, with the sides of a rotating shaft hole 10a being recessed, are formed coaxially with spacing around the rotating shaft hole, thereby forming a core piece laminated body 10A, and then fills and solidifies resin in the circular arc slits of the core piece laminated body, thereby fixing the specified number of laminated core pieces to each other, the resin is filled and solidified in the circular arc slits of the core piece laminated body, in the state pressing the periphery of the core piece laminated body toward the center in the non-projective direction of pole and generating compressive stress in the non-projective direction of pole in the core piece laminated body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リラクタンスモータ用回転子積層鉄心の製造方法に関し、詳しくは、回転軸孔側を凸とした複数の円弧状スリットを同心状に形成し、かつ複数の円弧状スリットを回転軸孔の周囲に間隔をおいて形成した鉄心片を、所定枚数積層して鉄心片積層体を形成したのち、該鉄心片積層体の円弧状スリットに樹脂を充填固化させ、積層された所定枚数の鉄心片を相互に固着して成る、リラクタンスモータ用回転子積層鉄心の製造方法に関するものである。     The present invention relates to a method for manufacturing a rotor laminated iron core for a reluctance motor, and more specifically, a plurality of arc-shaped slits that are convex on the rotating shaft hole side are formed concentrically, and the plurality of arc-shaped slits are formed on the rotating shaft hole. After a predetermined number of core pieces formed at intervals are stacked to form a core piece laminate, the arc-shaped slits of the core piece laminate are filled and solidified with resin, and a predetermined number of core pieces are stacked. The present invention relates to a method for manufacturing a rotor laminated core for a reluctance motor.

例えば、各種工作機械や自動車等に搭載される駆動電動機としては、耐久性の向上や大出力化の要求から、従来のブラシ付きモータからブラシレスモータへの置き換えが進んでおり、上記ブラシレスモータの一態様として、多相交流によって進行波磁界を生じる固定子積層鉄心内において、突極型磁路を有する回転子積層鉄心が上記進行波磁界に同期して回転する原理のモータ、すなわちリラクタンスモータ(特にシンクロナスリラクタンスモータ)の提供が為されている(例えば、特許文献1参照)。     For example, as drive motors installed in various machine tools, automobiles, etc., replacement of conventional brushed motors with brushless motors is progressing due to demands for improved durability and higher output. As an aspect, in a stator laminated iron core that generates a traveling wave magnetic field by multiphase AC, a rotor laminated iron core having a salient pole type magnetic path rotates in synchronization with the traveling wave magnetic field, that is, a reluctance motor (particularly, Synchronous reluctance motors) have been provided (see, for example, Patent Document 1).

図7に示す如く、リラクタンスモータにおける回転子積層鉄心(リラクタンスモータ用回転子積層鉄心)Aは、所定枚数の鉄心片(回転子鉄心片)P、P…を積層し、これら鉄心片P、P…を一体化することによって構成されており、中央には回転軸孔Oが開口しているとともに、上記回転軸孔Oの周囲にはフラックスバリア(磁束障壁)としての円弧状スリットS、S…が形成されている。   As shown in FIG. 7, a rotor laminated core (rotor laminated core for a reluctance motor) A in a reluctance motor is formed by laminating a predetermined number of core pieces (rotor core pieces) P, P. Is formed by integrating the rotation shaft hole O in the center, and arcuate slits S, S as flux barriers (magnetic flux barriers) are provided around the rotation shaft hole O. Is formed.

ここで、上記回転子積層鉄心Aにおいては、磁気的な突極方向の磁路と非突極方向の磁路とを形成するため、各々の鉄心片P、P…に、回転軸孔O側を凸とした複数の円弧状スリットS、S…が同心状に形成されており、これら同心状に形成された円弧状スリットS、S…のグループは、上記回転軸孔Oの周囲に間隔をおいて複数組形成されている。   Here, in the rotor laminated iron core A, a magnetic path in the magnetic salient pole direction and a magnetic path in the non-salient pole direction are formed, so that each iron core piece P, P. A plurality of arc-shaped slits S, S... That are convex are formed concentrically, and the group of arc-shaped slits S, S... Formed concentrically is spaced around the rotation shaft hole O. A plurality of sets are formed.

これにより、円弧状スリットS、S…の延設方向に沿って、磁束の流れ易い突極方向(d−d軸)の磁路が形成されるとともに、円弧状スリットS、S…の並設方向に沿って、磁束が流れ難い非突極方向(q−q軸)の磁路が形成され、上記回転子積層鉄心Aは、突極方向と非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転することとなる。   Thereby, along the extending direction of the arc-shaped slits S, S..., A magnetic path in the salient pole direction (dd axis) where the magnetic flux easily flows is formed, and the arc-shaped slits S, S. A magnetic path in the non-salient pole direction (qq axis) in which magnetic flux hardly flows is formed along the direction, and the rotor laminated core A is based on the difference in inductance between the salient pole direction and the non-salient pole direction. It will rotate by the reluctance torque which arises.

ここで、上述した回転子積層鉄心Aにおいては、円弧状スリットS、S…を形成したことで遠心力に対する耐力が低下するため、円弧状スリットSを分断するリブを形成して回転子積層鉄心の強度を向上させる構成が有効であるが、上記構成を採用した場合には、上記円弧状スリットSを分断するリブによって磁束が漏洩するため、リラクタンスモータにおける効率の低下が問題となる。   Here, in the rotor laminated core A described above, since the arc-shaped slits S, S... Are reduced in resistance to centrifugal force, ribs that divide the arc-shaped slit S are formed to form the rotor laminated core. Although the structure which improves the intensity | strength of this is effective, when the said structure is employ | adopted, since the magnetic flux leaks by the rib which divides | segments the said circular arc-shaped slit S, the fall of the efficiency in a reluctance motor becomes a problem.

そこで、円弧状スリットを分断するリブを形成することなく、円弧状スリットを形成したことによる回転子積層鉄心の強度低下を補うべく、個々の円弧状スリットに結合用樹脂を充填して成る回転子積層鉄心が提供されている(例えば、特許文献2参照)。   Therefore, a rotor formed by filling individual arc-shaped slits with a bonding resin so as to compensate for the strength reduction of the rotor laminated iron core due to the formation of the arc-shaped slits without forming ribs that divide the arc-shaped slits. A laminated iron core is provided (see, for example, Patent Document 2).

すなわち、図8に示す回転子積層鉄心A′においては、積層された鉄心片P′、P′…における回転軸孔O′の周囲に形成された円弧状スリットS′、S′…に、それぞれ非磁性体である結合用樹脂I′、I′…を充填し、固化した結合用樹脂I′、I′…によって、回転子積層鉄心A′を構成する鉄心片P′、P′…を相互に固着している。   That is, in the rotor laminated core A ′ shown in FIG. 8, arc-shaped slits S ′, S ′,... Formed around the rotation shaft hole O ′ in the laminated core pieces P ′, P ′,. The core pieces P ′, P ′... Constituting the rotor laminated core A ′ are mutually bonded by the solidified binding resins I ′, I ′... Filled with non-magnetic binding resins I ′, I ′. It is stuck to.

上記構成の回転子積層鉄心A′によれば、円弧状スリットS′、S′…を有しているものの、各々の円弧状スリットS′に結合用樹脂I′を充填固化させることで、回転子積層鉄心の強度を大幅に向上させることができ、併せて磁束の漏洩によるリラクタンスモータの効率低下を防止することが可能となる。
特開2001−258222号公報 特開2000−299947号公報
According to the rotor laminated core A ′ having the above configuration, although the arc-shaped slits S ′, S ′,... Are provided, the arc-shaped slits S ′ are filled with the binding resin I ′ and solidified to be rotated. The strength of the child laminated iron core can be greatly improved, and at the same time, it is possible to prevent a decrease in efficiency of the reluctance motor due to leakage of magnetic flux.
JP 2001-258222 A JP 2000-299947 A

ところで、上述した従来の回転子積層鉄心A′では、電磁鋼板から鉄心片P′を形成する工程において、多数の円弧状スリットS′、S′…の打抜き加工に伴って生じる歪み等に起因し、回転子積層鉄心A′を構成している各鉄心片P′、P′…の磁気特性が、母材である電磁鋼板の磁気特性よりも劣ってしまう場合がある。     By the way, in the conventional rotor laminated core A ′ described above, in the process of forming the core piece P ′ from the magnetic steel sheet, it is caused by the distortion or the like caused by the punching processing of a large number of arc-shaped slits S ′, S ′. The magnetic properties of the core pieces P ′, P ′,... Constituting the rotor laminated iron core A ′ may be inferior to the magnetic properties of the electromagnetic steel sheet as the base material.

すなわち、母材である電磁鋼板の良好な磁気特性が、回転子積層鉄心A′を構成する各鉄心片P′、P′…に引き継がれず、上記回転子積層鉄心A′を構成要素とするリラクタンスモータの効率低下を招いてしまう不都合があった。   That is, the reluctance having the magnetic laminated steel core A ′ as a constituent element is not inherited by the core pieces P ′, P ′... Constituting the rotor laminated iron core A ′. There was an inconvenience that caused a reduction in the efficiency of the motor.

本発明の目的は、上述した実状に鑑みて、従来の回転子積層鉄心に見られた磁気特性の低下を改善し、もってリラクタンスモータにおける効率の増大を可能とする、リラクタンスモータ用回転子積層鉄心の製造方法を提供することにある。   An object of the present invention is to provide a rotor laminated core for a reluctance motor that improves the reduction in magnetic properties seen in the conventional rotor laminated iron core and enables an increase in efficiency in the reluctance motor. It is in providing the manufacturing method of.

上記目的を達成するべく、本発明に関わるリラクタンスモータ用回転子積層鉄心の製造方法は、回転軸孔側を凸とした複数の円弧状スリットを同心状に形成し、かつ複数の円弧状スリットを回転軸孔の周囲に間隔をおいて形成した鉄心片を、所定枚数積層して鉄心片積層体を形成したのち、該鉄心片積層体の円弧状スリットに樹脂を充填固化させ、積層された所定枚数の鉄心片を相互に固着して成り、円弧状スリットの延設方向に沿って磁束が流れ易い突極方向と、円弧状スリットの並設方向に沿って磁束が流れ難い非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転するリラクタンスモータ用回転子積層鉄心の製造方法であって、鉄心片積層体の外周を非突極方向に沿って中心方向へ加圧し、鉄心片積層体に非突極方向に沿った圧縮応力を発生させた状態において、鉄心片積層体の円弧状スリットに樹脂を充填して固化させることを特徴としている。     In order to achieve the above object, a method of manufacturing a rotor laminated core for a reluctance motor according to the present invention is formed by concentrically forming a plurality of arc-shaped slits convex on the rotating shaft hole side, and forming a plurality of arc-shaped slits. After a predetermined number of core pieces formed at intervals around the rotation shaft hole are laminated to form an iron core piece laminate, the arc-shaped slit of the iron core piece laminate is filled and solidified with resin, and laminated A plurality of core pieces fixed to each other, and a salient pole direction in which the magnetic flux easily flows along the extending direction of the arc-shaped slit, and a non-salient pole direction in which the magnetic flux hardly flows along the parallel direction of the arc-shaped slit. A method for manufacturing a rotor laminated core for a reluctance motor that is rotated by a reluctance torque generated based on a difference in inductance between the core pieces, pressurizing the outer periphery of the core piece laminate along the non-salient direction toward the center, body In the state that caused the compressive stress along the non-salient direction, it is characterized in that solidified by filling a resin into the circular slit of the core piece laminate.

本発明に関わるリラクタンスモータ用回転子積層鉄心の製造方法によれば、鉄心片積層体に非突極方向に沿った圧縮応力を発生させた状態において、鉄心片積層体の円弧状スリットに樹脂を充填して固化させることで、完成品としてのリラクタンスモータ用回転子積層鉄心においては、非突極方向に沿って圧縮応力の作用した状態が維持されることとなり、圧縮応力の方向、すなわち非突極方向へは磁束が流れ難くなるために、突極方向とのインダクタンスの差が増大することとなり、また、前記非突極方向に沿って圧縮応力が作用した状態では、円弧状スリット間の磁路形成部が回転軸孔側へ湾曲しようとすることで、突極方向に沿って引張応力が生じ、非突極方向と突極方向とのインダクタンスの差が更に増大することとなり、もってリラクタンスモータにおける効率(モータ特性)を増大させることが可能となる。     According to the method for manufacturing a rotor laminated core for a reluctance motor according to the present invention, a resin is applied to the arc-shaped slit of the core piece laminate in a state where compressive stress is generated along the non-salient direction in the core piece laminate. By filling and solidifying the rotor core for a reluctance motor as a finished product, the state in which compressive stress is applied along the non-salient pole direction is maintained. Since the magnetic flux does not easily flow in the pole direction, the difference in inductance from the salient pole direction increases, and in the state where compressive stress is applied along the non-salient pole direction, the magnetic field between the arc-shaped slits is increased. As the path forming portion tries to bend toward the rotating shaft hole side, tensile stress is generated along the salient pole direction, which further increases the difference in inductance between the non-salient pole direction and the salient pole direction. It is possible to increase the efficiency (motor characteristic) in Kutansumota.

以下、実施例を示す図面に基づいて、本発明を詳細に説明する。
図1は、本発明に関わる製造方法に則って製造されたリラクタンスモータ用回転子積層鉄心の一実施例を示している。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments.
FIG. 1 shows an embodiment of a rotor laminated core for a reluctance motor manufactured according to the manufacturing method according to the present invention.

この回転子積層鉄心(リラクタンスモータ用回転子積層鉄心)1は、所定枚数の鉄心片(回転子鉄心片)10、10…を積層して成る鉄心片積層体10Aを有し、該鉄心片積層体10Aを構成する各鉄心片10、10…を、後述する結合用樹脂10i、10i…を介して一体化することで構成されており、上記鉄心片積層体10Aの中央部には回転軸孔1O(10a、10a…)が開口している。   The rotor laminated iron core (rotor laminated iron core for reluctance motor) 1 has an iron core laminated body 10A formed by laminating a predetermined number of iron core pieces (rotor iron core pieces) 10, 10... The core pieces 10, 10... Constituting the body 10A are integrated through bonding resins 10i, 10i, which will be described later, and a rotating shaft hole is formed at the center of the core piece laminate 10A. 1O (10a, 10a ...) is open.

また、上記回転子積層鉄心1においては、磁気的な突極方向の磁路と非突極方向の磁路とを形成するべく、鉄心片積層体10Aを構成する各々の鉄心片10、10…に、回転軸孔10a側を凸とした複数の円弧状スリット10s、10s…が同心状に形成されており、これら同心状に形成された円弧状スリット10s、10s…のグループは、上記回転軸孔10aの周囲に間隔をおいて複数組、実施例においては4組のグループが形成されている。   Further, in the rotor laminated core 1, each of the core pieces 10, 10... Constituting the core piece laminated body 10 </ b> A is formed in order to form a magnetic path in the magnetic salient pole direction and a magnetic path in the non-salient pole direction. In addition, a plurality of arc-shaped slits 10s, 10s... Having a convex shape on the rotating shaft hole 10a side are formed concentrically, and the group of arc-shaped slits 10s, 10s. A plurality of groups are formed around the hole 10a at intervals, and in the embodiment, four groups are formed.

因みに、上記円弧状スリット10sは、実施例に示した曲線による円弧状の形態のみならず、例えば複数の短い直線を連続させて成る円弧状であっても良いことは言うまでもない。   Incidentally, it goes without saying that the arc-shaped slit 10s is not limited to the arc-shaped form formed by the curve shown in the embodiment, but may be an arc shape formed by, for example, a plurality of continuous short straight lines.

さらに、上記回転子積層鉄心1においては、鉄心片積層体10Aを構成する鉄心片10、10…の円弧状スリット10s、10s…に、それぞれ結合用樹脂10i、10i…が充填されており、これら結合用樹脂10i、10i…によって鉄心片10、10…が相互に固着され、回転子積層鉄心1が一体化したものとなっている。   Further, in the rotor laminated iron core 1, the arc-shaped slits 10s, 10s,... Of the iron core pieces 10, 10,. The core pieces 10, 10 ... are fixed to each other by the binding resins 10i, 10i ..., and the rotor laminated core 1 is integrated.

上記構成の回転子積層鉄心1によれば、円弧状スリット10s、10s…の延設方向に沿って、磁束の流れ易い突極方向(d−d軸)の磁路が形成され、また円弧状スリット10s、10s…の並設方向に沿って、磁束が流れ難い非突極方向(q−q軸)の磁路が形成され、かくして上記回転子積層鉄心1においては、突極方向と非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転することとなる。   According to the rotor laminated core 1 having the above-described configuration, a magnetic path in the salient pole direction (dd axis) in which magnetic flux easily flows is formed along the extending direction of the arc-shaped slits 10s, 10s. A magnetic path in the non-salient pole direction (qq axis) in which the magnetic flux does not easily flow is formed along the parallel arrangement direction of the slits 10s, 10s... It will rotate by the reluctance torque which arises based on the difference of the inductance with a polar direction.

以下では、上述した回転子積層鉄心1の製造方法を、工程の順を追って詳細に説明する。
先ず、図2(a)に示す如く、母材(電磁鋼板)から打抜き形成した鉄心片10、10…を、所定の枚数だけ積層して鉄心片積層体10Aを構成し、次いで図2(b)に示す如く、上記鉄心片積層体10Aを製造装置100にセットする。
Below, the manufacturing method of the rotor lamination | stacking iron core 1 mentioned above is demonstrated in detail later on order of a process.
First, as shown in FIG. 2 (a), a predetermined number of core pieces 10, 10,... Punched from a base material (electromagnetic steel plate) are laminated to form an iron core laminate 10A, and then FIG. ), The core piece laminate 10A is set in the manufacturing apparatus 100.

ここで、上記製造装置100は、樹脂成形用の金型装置110を備え、該金型装置110は、鉄心片積層体10Aを収容する上型110Uと下型110Lとを有している。   Here, the manufacturing apparatus 100 includes a mold apparatus 110 for resin molding, and the mold apparatus 110 includes an upper mold 110U and a lower mold 110L that accommodate the core piece laminate 10A.

また、上記製造装置100は、鉄心片積層体10Aを加圧するための加圧装置120を備え、この加圧装置120は、鉄心片積層体10Aの外周に当接する加圧ブロック120Bと、該加圧ブロック120Bを駆動するアクチュエータ120Aとを有している。   The manufacturing apparatus 100 includes a pressurizing device 120 for pressurizing the core piece laminate 10A. The pressurizer 120 includes a pressurizing block 120B that contacts the outer periphery of the core piece laminate 10A, and the pressurizing block 120B. And an actuator 120A for driving the pressure block 120B.

さらに、上記加圧装置120は、図3に示す如く、セットされた状態の鉄心片積層体10Aに対して、その周囲に4台設置されており、各々の加圧装置120は、加圧ブロック120Bの動作によって、鉄心片積層体10A(鉄心片10)を非突極方向(q−q軸)に沿って加圧し得る態様で配設されている。   Further, as shown in FIG. 3, four pressurizing devices 120 are installed around the set of core piece laminates 10A, and each pressurizing device 120 has a pressurizing block. By the operation of 120B, the core piece laminated body 10A (iron core piece 10) is arranged in a manner capable of pressurizing along the non-salient pole direction (qq axis).

図2(b)に示す如く、製造装置100に鉄心片積層体10Aをセットしたのち、加圧装置120のアクチュエータ120Aにより、加圧ブロック120Bを図4中の矢印Cで示す如く駆動し、鉄心片積層体10Aの外周を非突極方向(q−q軸)に沿って中心方向へ加圧して、上記鉄心片積層体10Aに非突極方向(q−q軸)に沿った圧縮応力を発生させる。   As shown in FIG. 2B, after the core piece laminate 10A is set in the manufacturing apparatus 100, the pressurizing block 120B is driven as indicated by the arrow C in FIG. The outer periphery of the piece laminate 10A is pressurized in the center direction along the non-salient pole direction (qq axis), and compressive stress along the non-salient pole direction (qq axis) is applied to the core piece laminate 10A. generate.

ここで、図5に示す如く、加圧装置120の加圧ブロック120Bを矢印Cの如く駆動し、鉄心片積層体10Aの外周を非突極方向(q−q軸)に沿って中心方向へ加圧することで、上記鉄心片積層体10A、詳しくは各々の鉄心片10、10…における、円弧状スリット10s間の弓状を呈する磁路形成部10b、10b…に、非突極方向(q−q軸)に沿った圧縮応力が発生することとなる。   Here, as shown in FIG. 5, the pressurizing block 120B of the pressurizing device 120 is driven as indicated by an arrow C, and the outer periphery of the iron core laminate 10A is moved in the center direction along the non-salient pole direction (qq axis). By applying pressure, in the core piece laminated body 10A, more specifically, in each of the iron core pieces 10, 10,..., The magnetic path forming portions 10b, 10b,. A compressive stress along (−q axis) is generated.

また、鉄心片積層体10Aの外周を非突極方向(q−q軸)に沿って中心方向へ加圧すると、各々の鉄心片10、10…における、円弧状スリット10s間の弓状を呈する磁路形成部10b、10b…が、回転軸孔1O(10a)へ向けて更に湾曲する如く変形することで、各々の磁路形成部10b、10b…には、突極方向(d−d軸)に沿った引張応力が発生することとなる。   Further, when the outer periphery of the core piece laminated body 10A is pressed in the central direction along the non-salient pole direction (qq axis), an arcuate shape between the arc-shaped slits 10s in each of the core pieces 10, 10. The magnetic path forming portions 10b, 10b,... Are further deformed so as to bend toward the rotary shaft hole 10 (10a), so that the magnetic path forming portions 10b, 10b,. ) Will occur.

なお、鉄心片積層体10Aに対して圧縮応力(および引張応力)を発生させる加圧力は、上記鉄心片積層体10A(鉄心片10)を弾性変形域内において変形させ得る荷重負荷に制限されている。   In addition, the applied pressure which generates compressive stress (and tensile stress) with respect to the core piece laminated body 10A is limited to a load that can deform the core piece laminated body 10A (iron core piece 10) in the elastic deformation region. .

図4に示す如く、鉄心片積層体10Aに非突極方向(q−q軸)に沿った圧縮応力を発生させた状態において、製造装置100における金型装置110のキャビティーに、溶融した樹脂10Iを矢印Iで示す如く供給し、鉄心片積層体10Aを構成する各鉄心片10における円弧状スリット10s、10s…に、溶融した樹脂10I(結合用樹脂10i、10i…)を充填する。   As shown in FIG. 4, in a state where compressive stress along the non-salient pole direction (qq axis) is generated in the core piece laminate 10 </ b> A, molten resin is formed in the cavity of the mold apparatus 110 in the manufacturing apparatus 100. 10I is supplied as indicated by an arrow I, and the arc-shaped slits 10s, 10s,... In each core piece 10 constituting the core piece laminate 10A are filled with molten resin 10I (binding resins 10i, 10i,...).

上記鉄心片積層体10Aの円弧状スリット10s、10s…に充填した樹脂10Iが完全に固化したのち、図6(a)に示す如く製造装置100から取り出して、図6(a)に示す如く鉄心片積層体10Aの上面および下面から、余分な樹脂10Iを除去することにより、上記鉄心片積層体10Aの円弧状スリット10s、10s…に、各々結合用樹脂10i、10i…が挿入された、図1に示す如き製品としての回転子積層鉄心1が完成することとなる。   After the resin 10I filled in the arc-shaped slits 10s, 10s... Of the core piece laminate 10A is completely solidified, it is taken out from the manufacturing apparatus 100 as shown in FIG. 6 (a), and the iron core as shown in FIG. FIG. 4 is a diagram in which the coupling resins 10i, 10i,... Are inserted into the arc-shaped slits 10s, 10s,... Of the iron core laminate 10A by removing excess resin 10I from the upper surface and the lower surface of the laminate 10. Thus, the rotor laminated core 1 as a product as shown in FIG.

上述した如き回転子積層鉄心1の製造方法によれば、鉄心片積層体10Aに非突極方向(q−q軸)に沿った圧縮応力を発生させた状態において、鉄心片積層体10Aの円弧状スリット10s、10s…に溶融した樹脂10Iを充填し、この樹脂10Iを固化させて結合用樹脂10i、10i…が挿入された形態とすることで、完成品としての回転子積層鉄心1においては、非突極方向(q−q軸)に沿って圧縮応力の作用した状態が維持されることとなる。   According to the manufacturing method of the rotor laminated core 1 as described above, in the state where the compressive stress along the non-salient pole direction (q-q axis) is generated in the core piece laminated body 10A, the circle of the core piece laminated body 10A. In the rotor laminated iron core 1 as a finished product, the arc-shaped slits 10s, 10s,... Are filled with the molten resin 10I, and the resin 10I is solidified so that the binding resins 10i, 10i,. The state in which the compressive stress is applied is maintained along the non-salient pole direction (qq axis).

かくして、圧縮応力が作用している非突極方向(q−q軸)へは磁束が流れ難いことから、突極方向(d−d軸)とのインダクタンスの差が増大するために、リラクタンスモータにおける効率(モータ特性)を増大させることが可能となる。   Thus, since the magnetic flux hardly flows in the non-salient direction (qq axis) where the compressive stress is applied, the difference in inductance from the salient pole direction (dd axis) increases, so that the reluctance motor It is possible to increase the efficiency (motor characteristics).

また、上述した回転子積層鉄心1の製造方法によれば、鉄心片積層体10Aに非突極方向(q−q軸)に沿った圧縮応力を発生させるべく、上記鉄心片積層体10Aを非突極方向(q−q軸)に沿って中心方向へ加圧した際、先に述べたように、各々の鉄心片10、10…における磁路形成部10b、10b…には、突極方向(d−d軸)に沿った引張応力が発生することとなり、完成品としての回転子積層鉄心1においては、突極方向(d−d軸)に沿って引張応力の作用した状態が維持されることとなる。   Moreover, according to the manufacturing method of the rotor lamination | stacking iron core 1 mentioned above, in order to generate | occur | produce the compressive stress along a non-salient pole direction (qq axis) to the core piece lamination body 10A, the said core piece lamination | stacking body 10A is not made. When pressurizing in the central direction along the salient pole direction (qq axis), as described above, the magnetic path forming portions 10b, 10b,. Tensile stress along the (dd axis) is generated, and in the rotor laminated core 1 as a finished product, the state where the tensile stress is applied along the salient pole direction (dd axis) is maintained. The Rukoto.

かくして、引張応力が作用している突極方向(d−d軸)へは磁束が流れ易いことから、圧縮応力が作用しているために磁束が流れ難い非突極方向(q−q軸)とのインダクタンスの差が更に増大することとなり、もってリラクタンスモータにおける効率(モータ特性)を更に増大させることが可能となる。   Thus, since the magnetic flux easily flows in the salient pole direction (dd axis) where the tensile stress is applied, the magnetic flux is difficult to flow because the compressive stress is applied (qq axis). The inductance difference between the reluctance motor and the efficiency (motor characteristics) of the reluctance motor can be further increased.

また、上述した回転子積層鉄心1の製造方法によれば、回転子積層鉄心1には円弧状スリット10s、10s…が形成されているものの、各々の円弧状スリット10s、10s…に結合用樹脂10iを充填して固化させていることで、回転子積層鉄心1の強度が大幅に向上したものとなり、もって上記回転子積層鉄心1は、モータ特性に優れるとともに機械的強度が高く、高速回転に十分適用し得るものとなる。   Moreover, according to the manufacturing method of the rotor lamination | stacking iron core 1 mentioned above, although the arc-shaped slit 10s, 10s ... is formed in the rotor lamination | stacking iron core 1, resin for coupling | bonding to each arc-shaped slit 10s, 10s ... By filling and solidifying 10i, the strength of the rotor laminated core 1 is greatly improved. Thus, the rotor laminated core 1 has excellent motor characteristics and high mechanical strength, and can be rotated at high speed. It will be fully applicable.

なお、上述した回転子積層鉄心1の製造時においては、加圧されて圧縮応力が生じている状態の鉄心片積層体10Aに対し、その円弧状スリット10s、10s…に溶融した樹脂10Iが充填されていれば良く、もって、先ず鉄心片積層体10Aに対する加圧を開始したのち、円弧状スリット10s、10s…に溶融した樹脂10Iを充填しても、あるいは、先ず円弧状スリット10s、10s…に溶融した樹脂10Iを充填したのち、鉄心片積層体10Aに対する加圧を開始しても良い。   In addition, at the time of manufacturing the rotor laminated core 1 described above, the molten resin 10I is filled in the arc-shaped slits 10s, 10s... Therefore, after pressurizing the iron core laminate 10A first, the arc-shaped slits 10s, 10s,... Are filled with the molten resin 10I, or first, the arc-shaped slits 10s, 10s,. After the molten resin 10I is filled, pressurization on the core piece laminate 10A may be started.

(a)および(b)は、本発明に関わる方法によって製造されたリラクタンスモータ用回転子積層鉄心の外観平面図および要部断面側面図。(a) And (b) is an external appearance top view of the rotor lamination | stacking iron core for reluctance motors manufactured by the method in connection with this invention, and principal part sectional side view. (a)および(b)は、鉄心片積層体の概念的な断面側面図および鉄心片積層体を製造装置にセットした状態の概念的な断面側面図。(a) And (b) is a notional cross-sectional side view of an iron core piece laminated body, and notional cross-sectional side view of the state which set the iron core piece laminated body in the manufacturing apparatus. 鉄心片積層体を製造装置にセットした状態を示す鉄心片積層体と加圧装置との概念的な平面図。The conceptual top view of the core piece laminated body and pressurization apparatus which show the state which set the iron core piece laminated body to the manufacturing apparatus. 製造装置にセットした鉄心片積層体に樹脂材料を充填しつつ加圧する工程を示す概念的な断面側面図。The conceptual cross-sectional side view which shows the process pressurized while filling the resin material to the core piece laminated body set to the manufacturing apparatus. 鉄心片積層体に樹脂材料を充填しつつ加圧する工程における鉄心片積層体の要部と加圧装置とを示す概念的な平面図。The conceptual top view which shows the principal part and pressurization apparatus of an iron core piece laminated body in the process pressurized while filling a resin material to an iron core piece laminated body. (a)および(b)は、製造装置から取り出した状態の鉄心片積層体を示す概念的な断面側面図、および製品としてのリラクタンスモータ用回転子積層鉄心を示す概念的な断面側面図。(a) And (b) is a notional cross-sectional side view which shows the core piece laminated body of the state taken out from the manufacturing apparatus, and a notional cross-section side view which shows the rotor laminated iron core for reluctance motors as a product. (a)および(b)は、従来のリラクタンスモータ用回転子積層鉄心の外観平面図および外観側面図。(a) And (b) is an external appearance top view and external appearance side view of the conventional rotor lamination | stacking iron core for reluctance motors. (a)および(b)は、従来のリラクタンスモータ用回転子積層鉄心の外観平面図および外観側面図。(a) And (b) is an external appearance top view and external appearance side view of the conventional rotor lamination | stacking iron core for reluctance motors.

符号の説明Explanation of symbols

1…リラクタンスモータ用回転子積層鉄心、
1O…回転軸孔、
10A…鉄心片積層体、
10…鉄心片、
10a…回転軸孔、
10s…円弧状スリット、
10i…結合用樹脂、
10I…樹脂、
100…製造装置、
110…金型装置、
120…加圧装置。
1 ... Rotor laminated core for reluctance motor,
1O ... rotating shaft hole,
10A ... Iron core laminate,
10 ... Iron core piece,
10a ... rotating shaft hole,
10s ... arc-shaped slit,
10i: binding resin,
10I ... resin,
100 ... manufacturing equipment,
110 ... mold apparatus,
120: Pressurizing device.

Claims (1)

回転軸孔側を凸とした複数の円弧状スリットを同心状に形成し、かつ前記複数の円弧状スリットを前記回転軸孔の周囲に間隔をおいて形成した鉄心片を、所定枚数積層して鉄心片積層体を形成したのち、該鉄心片積層体の前記円弧状スリットに樹脂を充填固化させ、積層された所定枚数の前記鉄心片を相互に固着して成り、前記円弧状スリットの延設方向に沿って磁束が流れ易い突極方向と、前記円弧状スリットの並設方向に沿って磁束が流れ難い非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転するリラクタンスモータ用回転子積層鉄心の製造方法であって、
前記鉄心片積層体の外周を前記非突極方向に沿って中心方向へ加圧し、前記鉄心片積層体に前記非突極方向に沿った圧縮応力を発生させた状態において、前記鉄心片積層体の前記円弧状スリットに樹脂を充填して固化させることを特徴とするリラクタンスモータ用回転子積層鉄心。
A plurality of arc-shaped slits convex on the rotation shaft hole side are formed concentrically, and a predetermined number of core pieces each having the plurality of arc-shaped slits formed at intervals around the rotation shaft hole are laminated. After forming the core piece laminate, the arc-shaped slit of the core piece laminate is filled and solidified with resin, and a predetermined number of the laminated core pieces are fixed to each other, and the arc-shaped slit is extended. Rotation for a reluctance motor that rotates due to a reluctance torque generated based on a difference in inductance between a salient pole direction in which magnetic flux easily flows along the direction and a non-salient pole direction in which magnetic flux does not easily flow along the parallel direction of the arc-shaped slits A method of manufacturing a child laminated core,
In the state where the outer periphery of the core piece laminate is pressurized in the center direction along the non-salient pole direction, and the compressive stress along the non-salience pole direction is generated in the iron core piece laminate, the core piece laminate A rotor laminated core for a reluctance motor, wherein the arc-shaped slit is filled with resin and solidified.
JP2007204299A 2007-08-06 2007-08-06 Method of manufacturing laminated core of rotor for reluctance motor Pending JP2009044791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204299A JP2009044791A (en) 2007-08-06 2007-08-06 Method of manufacturing laminated core of rotor for reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204299A JP2009044791A (en) 2007-08-06 2007-08-06 Method of manufacturing laminated core of rotor for reluctance motor

Publications (1)

Publication Number Publication Date
JP2009044791A true JP2009044791A (en) 2009-02-26

Family

ID=40444938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204299A Pending JP2009044791A (en) 2007-08-06 2007-08-06 Method of manufacturing laminated core of rotor for reluctance motor

Country Status (1)

Country Link
JP (1) JP2009044791A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121253A (en) * 2011-12-07 2013-06-17 Daikin Ind Ltd Rotor, and manufacturing method therefor
WO2013117480A3 (en) * 2012-02-10 2014-07-31 Ksb Aktiengesellschaft Rotor and reluctance motor
EP3160015A1 (en) * 2015-10-20 2017-04-26 Jtekt Corporation Synchronous reluctance motor
RU191977U1 (en) * 2018-12-27 2019-08-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) HIGH-TURNING ELECTRIC INDUCTOR TYPE MACHINE
CN110544996A (en) * 2013-04-11 2019-12-06 西门子公司 Rotor for reluctance motor, manufacturing method, reluctance motor and motor vehicle
RU2772705C1 (en) * 2021-03-31 2022-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) High-speed switched reluctance electric machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121253A (en) * 2011-12-07 2013-06-17 Daikin Ind Ltd Rotor, and manufacturing method therefor
WO2013117480A3 (en) * 2012-02-10 2014-07-31 Ksb Aktiengesellschaft Rotor and reluctance motor
CN104205571A (en) * 2012-02-10 2014-12-10 Ksb股份公司 Rotor and reluctance motor
RU2613664C2 (en) * 2012-02-10 2017-03-21 КСБ Акциенгезельшафт Rotor and jet inductor engine
US9866077B2 (en) 2012-02-10 2018-01-09 Ksb Aktiengesellschaft Rotor and reluctance motor
CN104205571B (en) * 2012-02-10 2018-11-23 Ksb 股份公司 Rotor and magnetic resistance motor
CN110544996A (en) * 2013-04-11 2019-12-06 西门子公司 Rotor for reluctance motor, manufacturing method, reluctance motor and motor vehicle
EP3160015A1 (en) * 2015-10-20 2017-04-26 Jtekt Corporation Synchronous reluctance motor
CN106921270A (en) * 2015-10-20 2017-07-04 株式会社捷太格特 Synchronous reluctance motor
US10348173B2 (en) 2015-10-20 2019-07-09 Jtekt Corporation Synchronous reluctance motor
RU191977U1 (en) * 2018-12-27 2019-08-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) HIGH-TURNING ELECTRIC INDUCTOR TYPE MACHINE
RU2772705C1 (en) * 2021-03-31 2022-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) High-speed switched reluctance electric machine

Similar Documents

Publication Publication Date Title
JP6479392B2 (en) Laminated iron core and method for manufacturing the same
JP6305651B1 (en) Permanent magnet type synchronous machine and method of manufacturing stator of permanent magnet type synchronous machine
JP5398512B2 (en) Axial gap type permanent magnet motor, rotor used therefor, and method for manufacturing the rotor
TWI399013B (en) Method for making a molded stator of a rotary electric machinery
JP5518258B2 (en) Laminated iron core of linear motor and method of manufacturing the same
KR100885763B1 (en) Magnetic powder metal composite core for electrical machines
JP2006353001A (en) Laminated iron core and its manufacturing method and apparatus
JP2006101673A (en) Rotating machine with permanent magnet and method for manufacturing teeth of stator iron core of the same
JP5012155B2 (en) Laminated core and rotating electric machine
JP6385588B2 (en) Rotor and rotating electric machine
JP6649676B2 (en) Manufacturing method of laminated core
JP2011182552A (en) Rotor core, and core for rotary electric machine
JP2007110880A (en) Laminated core and its manufacturing method
JP2009195088A (en) Rotating electric machine and manufacturing method thereof
JP6744573B2 (en) Rotor unit and method for manufacturing rotor unit
JP2009044791A (en) Method of manufacturing laminated core of rotor for reluctance motor
JP2016086508A (en) Armature core and method of manufacturing armature core
JP2014023387A (en) Motor and manufacturing method of the same
JP2013158156A (en) Core block, stator, rotary electric machine, and method for manufacturing core block
JP5241442B2 (en) Manufacturing method of rotor laminated core
EP3276793A1 (en) Rotor assembly, in particular for an electric motor of the ipm-pmasr type, and electric motor comprising said rotor assembly
JP5274496B2 (en) Magnetic metal body and method for manufacturing rotating electrical machine using magnetic metal body
JP5528164B2 (en) Stator for rotating electrical machine and method for manufacturing the same
JP2010004635A (en) Field magneton, manufacturing method therefor, and rotating electrical machine
JP2007274749A (en) Stator, motor and method for manufacturing stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100714

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Effective date: 20111207

Free format text: JAPANESE INTERMEDIATE CODE: A073