JP2009044483A - 画像符号化装置 - Google Patents

画像符号化装置 Download PDF

Info

Publication number
JP2009044483A
JP2009044483A JP2007207576A JP2007207576A JP2009044483A JP 2009044483 A JP2009044483 A JP 2009044483A JP 2007207576 A JP2007207576 A JP 2007207576A JP 2007207576 A JP2007207576 A JP 2007207576A JP 2009044483 A JP2009044483 A JP 2009044483A
Authority
JP
Japan
Prior art keywords
complexity
orthogonal transform
quantization
quantization table
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007207576A
Other languages
English (en)
Inventor
Koji Matsui
浩二 松井
Hiroshi Saito
浩 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007207576A priority Critical patent/JP2009044483A/ja
Publication of JP2009044483A publication Critical patent/JP2009044483A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

【課題】フレーム毎に異なる量子化ステップが選択されると量子化による歪み傾向が変化して主観画質が悪化する。
【解決手段】入力画像101を直交変換して直交変換係数102を出力する直交変換部11と、直交変換係数から複雑度103を算出する複雑度算出部12と、複雑度103に基づき、複雑度がある量子化テーブルの適用上限値と別の量子化テーブルの適用下限値の間にあるとき、複雑度103と上限・下限値の各距離の逆比に応じた割合で前記2種類の量子化テーブルを混合して出力量子化テーブル104を算出するパラメータ決定部13とを備えている。こうして決定した出力量子化テーブル104を用いて直交変換係数102を量子化部14で量子化する。これにより、フレーム毎に量子化ステップを適応設定することで視覚的な画質を保ったまま圧縮率を改善する。
【選択図】図1

Description

本発明は、入力画像に応じて量子化テーブルを決定する画質パラメータ制御方法を備えた画像符号化装置に関する。
画像信号を符号化して記憶媒体に記録する画像符号化装置においては、画像信号に対して圧縮歪みを許容する非可逆符号化方式が一般的に用いられる。画像符号化の国際標準方式の一つであるJPEG2000(非特許文献1参照)では、画像信号をウェーブレット変換することにより周波数成分に変換する。変換により得たウェーブレット変換係数に対して量子化を行い、量子化係数を算術符号化する。
上記JPEG2000のように、非可逆符号化方式では画像信号を直交変換等により周波数成分に変換する手法が一般的である。また、この周波数成分のうち観測者が知覚しにくい高周波数成分を荒く量子化することで、主観画質を保ちつつ圧縮率を高めている。
具体的には、比較的絵柄の変化が少ない画像信号に対しては各周波数成分を均等に量子化する一方で、多数の輪郭や複雑なテクスチャが含まれる画像信号に対しては高周波成分をより荒く量子化することで主観的な画質を損なわずに圧縮率を改善することができる。こうした観点から、入力された画像信号に対して適応的に量子化テーブルを決定する手法が提案されている(例えば特許文献1参照)。
図9は前記特許文献1に記載された従来の画像符号化装置の構成を示す図である。図9において、領域分析部20は、入力画像101の波形を解析し、階調変化と振幅変化の特徴量を領域情報110として出力する。量子化テーブル格納部21は、予め各領域情報に対応した複数組の量子化テーブルを格納し、入力された領域情報110に対応する量子化テーブルを出力量子化テーブル111として出力する。
一方、直交変換部22は、入力画像101に直交変換を施し直交変換係数109を得る。量子化部23は、直交変換係数109を出力量子化テーブル111で量子化して量子化係数112を得る。可変長符号化部24は量子化係数112を符号化し可変長符号化列113を出力する。多重化部25は復号時に使用するために領域情報110を可変長符号化列113に付加して符号化データ114を得る。
ISO/IEC 15444−1 特開平6−164939号公報
しかしながら、前記特許文献1に記載された従来の画像符号化装置では、複数の量子化テーブルを入力ブロック単位で切り替えているため、空間的、あるいは時間的な量子化テーブルの切り替え境界において画質が急変することがあるという課題を有している。特に動画像符号化に適用した場合には、同一のシーンのように類似した絵柄が続く動画像であっても、被写体やカメラの影響等によって量子化テーブル切り替えの指標値がフレーム毎に微妙に変動する。この結果、フレーム毎に異なる量子化テーブルが選択されることで、量子化による歪み傾向が大きく変化して主観画質が悪化することがある。
このような画質が急変する課題は、指標値に対して量子化テーブルの特性が不連続かつ急激に変化することに起因する。したがって、指標値を判定するしきい値と、しきい値に対応した量子化テーブルの種類を多く持つことで改善を見込むことができる。しかし、十分な種類の量子化テーブルを格納するためには記憶領域が増大するという課題がある。
本発明は上記の課題を解決するためになされたもので、量子化テーブルを格納するための記憶容量を削減しつつ、主観画質を悪化させることなくフレーム毎に適切な量子化を行うことができる画像符号化装置を提供することを目的とする。
上記従来の課題を解決するために本発明の画像符号化装置は、入力画像に対し直交変換を施して直交変換係数を出力する直交変換手段と、直交変換係数から複雑度を算出する複雑度算出手段と、基礎量子化テーブル並びに基礎量子化テーブルを適用する複雑度の上限値及び下限値との組を複数種類含むパラメータテーブルを保持し、複雑度算出手段が算出した複雑度及びパラメータテーブルに基づいて出力量子化テーブルを算出するパラメータ決定手段とを備え、パラメータテーブルは、パラメータテーブルに含まれる隣接する2つの基礎量子化テーブルに対応する上限値及び下限値が互いに異なるとともに、任意の複雑度に対応する基礎量子化テーブルの数が2を越えないように設定され、パラメータ決定手段は、複雑度算出手段が算出した複雑度に対応する基礎量子化テーブルを求め、複雑度に対応する基礎量子化テーブルが一意に決まるときには複雑度に対応する基礎量子化テーブルを出力量子化テーブルとし、複雑度に対応する基礎量子化テーブルが一意に決まらないときには複雑度に最も近い上限値と対応する基礎量子化テーブルと、複雑度に最も近い下限値と対応する基礎量子化テーブルとに基づいて出力量子化テーブルを算出する構成としたものである。
本発明の画像符号化装置によれば、量子化テーブルを混合して算出することにより、出力量子化テーブルを連続的に可変とし、同一のシーンのように類似した絵柄が続く動画像においても主観画質を悪化させることなくフレーム毎に適切な量子化を行うことができる。また、量子化ステップを多種類格納する必要が無いため、パラメータ記憶容量を削減できる。
以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1にかかる画像符号化装置の構成を示すブロック図である。本実施の形態にかかる画像符号化装置は、符号化方式としてJPEG2000に準拠したものである。
図1において、直交変換部11は入力画像101に対し、直交変換の一種であるウェーブレット変換を行って直交変換係数102を出力する。複雑度算出部12は、直交変換部11より出力された直交変換係数102を入力し、直交変換係数の周波数帯域毎の絶対値和に基づいた複雑度103を算出する。パラメータ決定部13は、決定処理で参照する基礎量子化テーブル及び基礎量子化テーブルに対応する複雑度の上限値・下限値をパラメータテーブルに格納している。また、入力された複雑度103とパラメータテーブルとを参照し、出力量子化テーブル104を算出する。量子化部14は、出力量子化テーブル104に基づき、直交変換係数102を一様量子化して、量子化係数106を出力する。算術符号化部15は、量子化係数106を算術符号化し、算術符号列107を出力する。符号生成部16は、算術符号列107と出力量子化テーブル104等のヘッダ情報とを多重化し、JPEG2000に準拠した符号化データ108を出力する。
次に、各処理部の動作について説明する。
直交変換部11で行うウェーブレット変換では、フレーム単位で入力される入力画像101に対して水平及び垂直方向にローパスフィルタ、ハイパスフィルタを繰り返し適用し、直交変換係数102を出力する。このフィルタ処理を繰り返す回数をウェーブレット変換のレベルと呼び、通常5レベルの変換を行う。図2(a)は入力画像101に対して1レベルのウェーブレット変換を行った際の、係数の周波数帯域(サブバンド)を示す図である。この際、画像信号は1LL(低域)、1LH、1HL、1HH(高域)の4つのサブバンドに分割される。2レベル以降、自然画像の信号電力が低域に集中することを考慮し、最も低域のサブバンドであるLLサブバンドを再帰的に変換する。例えば、2レベル目のウェーブレット変換では図2(a)において1LLサブバンドを再変換し、2レベルでのサブバンド分割状況を示した図2(b)のように合計7個のサブバンドに分割する。以降のレベルも同様に2LLサブバンド〜4LLサブバンドを変換することにより、5レベルのウェーブレット変換では5LL,5LH,5HL,5HH,…,2HH,1LH,1HL,1HHの16個のサブバンドに分割する。
複雑度算出部12は上記直交変換係数102を用いて、直流成分を含む5LLサブバンドを除いた各サブバンドに対し、変換係数の絶対値和を求める。前記絶対値和を各サブバンドの逆ウェーブレット変換フィルタのノルムで重み付けして求めた総和を、入力画像101に対する複雑度103として出力する。
パラメータ決定部13は、内蔵するパラメータテーブルを参照し、複雑度算出部12が算出した複雑度103に対応する基礎量子化テーブルを求め、さらに求めた基礎量子化テーブルに基づいて出力量子化テーブル104を算出する。なお、基礎量子化テーブル、出力量子化テーブル104は、それぞれサブバンド毎に適用する量子化ステップの組で構成する。
まず、パラメータテーブルの構成について説明する。パラメータテーブルは、基礎量子化テーブルを構成する量子化ステップの組及び基礎量子化テーブルを適用する複雑度103のしきい値としての上限値・下限値の組を、N種類格納している。ただしNは2以上の整数であり、1番目の下限値は複雑度103の取りうる最小値、N番目の上限値は複雑度103の取りうる最大値とする。
図3は、N=3を例にパラメータテーブルを表した図である。図3では、3種類の基礎量子化テーブルをQSTEP1〜3として、各QSTEPに対応した上限値・下限値(具体的な値は後述する)と、各QSTEPを構成する量子化ステップQSTEPb(bはサブバンド5LL〜1HHを示す)とを表している。
パラメータテーブルに含まれる隣接する2つの基礎量子化テーブルに対応する上限値及び下限値は、互いに異なるものとする。すなわち、Q1U及びQ2L、Q2U及びQ3Lは、互いに異なっている。そして、任意の複雑度に対応する基礎量子化テーブルの数が2を越えないように設定されている。
なお、量子化ステップQSTEPbの値が大きくなるほど、そのサブバンドの量子化度合いが大きく、圧縮率が高いことを示す。図3に示したQSTEP1〜3は人間の視覚周波数特性や画像符号化特性、ユーザの判断等に応じてあらかじめ設定した量子化テーブルである。QSTEP1はJPEG2000における標準的な量子化テーブルであり、QSTEP2はQSTEP1と比較して高周波成分をより大きな量子化ステップで量子化し、高周波成分を削減するように設定した量子化テーブル、QSTEP3はQSTEP2よりさらに高周波成分を削減する量子化テーブルである。
次にパラメータテーブルを参照して複雑度103に対応した基礎量子化テーブルを求め、さらにその基礎量子化テーブルに基づいて出力量子化テーブル104を算出する。本発明の画像符号化装置においては、前記上限値・下限値の設定によって、基礎量子化テーブルの適用範囲を以下の2種類の形態とすることができる。図4、図5は、図3のパラメータテーブルの上限値・下限値が互いに異なる例を示した図であり、(a)に上限値・下限値を値の小さいものから順に並べた参照テーブルを示し、(b)に複雑度103を横軸としてQSTEP1〜3の適用範囲を模式的に示した。図4は第1の形態として、QSTEPを適用する複雑度の範囲を重複させた場合を示した図である。この場合、複雑度103に対応する基礎量子化テーブルは1つまたは2つとなる。図5は第2の形態として、QSTEPを重複させず独立させた場合を示した図である。この場合、複雑度103に対応する基礎量子化テーブルは0または1つとなる。まず、QSTEPを重複させた第1の形態について説明する。
図4(b)において、ある複雑度に対して適用される基礎量子化テーブルが1種類である範囲を非混合領域201、基礎量子化テーブルが重複する範囲を混合領域202とする。図6は、非混合領域及び混合領域の例を示す図である。複雑度103が非混合領域201に位置する例(図6(a))では、複雑度103から基礎量子化テーブルが一意に決まるため、QSTEP1をそのまま出力量子化テーブル104として出力する。また、複雑度103が混合領域202に位置する例(図6(b))では、次のようにして出力量子化テーブル104を算出する。まず図4(a)の参照テーブルから、そのフレームの複雑度103に最も近い上限値・下限値を探す。この例では複雑度の値が220付近であるため、QSTEP2の下限値Q2LとQSTEP1の上限値Q1Uが該当する。そして、混合領域の左端を示すQ2Lと複雑度との距離dist1、及び混合領域の右端を示すQ1Uと複雑度との距離dist2を算出する。複雑度103をCとすると、算出式は式1、式2のようになる。
dist1=|C−Q2L| (式1)
dist2=|Q1U−C| (式2)
そしてdist1とdist2の逆比の割合でQSTEP1とQSTEP2とを加重平均により混合し、出力量子化テーブル104を得る。出力量子化テーブル104を構成する量子化ステップをΔbとして、算出式を式3に示す。
Δb=(QSTEP1b×dist2+QSTEP2b×dist1)/(dist1+dist2) (式3)
式3に従って全てのサブバンドbについて量子化ステップΔbを算出し、これらの集合を出力量子化テーブル104として出力する。
次に、図5に示すようにQSTEPを独立させた第2の形態においては、混合領域203をある複雑度103に対して対応するQSTEPが存在しない領域として定義する。複雑度103が、Q1UとQ2Lの間の混合領域203に位置する場合、dist1を混合領域203の左端を示すQ1Uと複雑度103との距離、dist2を混合領域203の右端を示すQ2Lと複雑度103との距離として求める。算出式を式4、式5に示す。
dist1=|C−Q1U| (式4)
dist2=|Q2L−C| (式5)
このdist1、dist2を用いて、上記式3による量子化ステップΔbの算出を行う。つまり式3を用いる限り、複雑度103に最も近い上限値と下限値を入れ替えることによって、混合領域202と混合領域203とにおける出力量子化テーブルの算出を等価に扱うことができる。
以上のパラメータ決定部13におけるフローチャートを図7に示した。まず、パラメータテーブルを参照して複雑度103に対応する基礎量子化テーブルを選択する(ステップ301)。このとき、複雑度103が非混合領域であるか判断し(ステップ302)、非混合領域の場合は、基礎量子化テーブルをそのまま出力量子化テーブル104に割り当てる(ステップ303)。非混合領域でない場合は、第1の形態か判断し(ステップ304)、第1の形態であるときは、式1、式2を用いて複雑度103と上限値及び下限値の距離を算出する(ステップ305)。一方、第1の形態でないとき、すなわち第2の形態であるときは、複雑度103に最も近い上限値と下限値を入れ替え(ステップ306)、前記距離を算出する(ステップ305)。第2の形態の場合は、上限値と下限値とを入れ替えてから式1、式2を用いることにより、式4、式5を適用するのと等価となる。次に、算出した距離と基礎量子化テーブルを参照し、式3を用いて出力量子化テーブルを算出する(ステップ307)。
また、算術符号化部15では、量子化係数106をサブバンド内でコードブロックに分割し、コードブロックのビットプレーン単位に算術符号化を行って算術符号列107を出力する。
さらに、符号生成部16では、入力された算術符号化列107と出力量子化テーブル104などのヘッダ情報を多重化するとともに、出力量子化テーブル104をサブバンドの重み係数として参照する符号量制御を行い、符号化データ108を出力する。
なお、本実施の形態においては、符号化方式としてJPEG2000を採用したものを示しているが、MotionJPEG、MPEG2、MPEG4 AVCなど直交変換部11にDCT変換など周波数成分に変換する直交変換を採用した他の符号化方式であってもよい。例えばMotionJPEGでは、8×8画素単位でDCT変換を行う。複雑度算出部では、複雑度をDCT係数の直流成分を除いた絶対値和とする。また、パラメータ決定部では8×8画素の基礎量子化テーブルを格納しておき、DCTブロック毎に出力量子化テーブルを算出する。量子化部以降はMotionJPEGに準拠した符号化方式と同様とする。
また、複雑度算出部12では、直交変換係数102の重み付き絶対値和を複雑度としていたが、直交変換係数102の分散、標準偏差、2乗平均平方根などを用いても良い。
また、上記式3では、混合計算に距離の比を直接適用しているが、他の混合手法を利用することもできる。例えば、距離のべき乗の比、指数的な比などを用いても良い。さらに、量子化テーブル適用範囲が重複する第1の形態は距離の比、独立する第2の形態は距離の2乗比等とし、各々の場合で上記式3の定義を異なるものとして量子化ステップの混合特性を変化させることもできる。
以上のように、本実施の形態によると、入力画像から算出した複雑度に基づいて量子化テーブルが連続的に変化することで、しきい値付近で量子化ステップの急変が起こらないため、主観画質の低下を防ぐとともに圧縮率を向上する効果が得られる。また、本実施の形態によると、パラメータ決定部13のパラメータテーブルに基礎量子化テーブルを多数格納する必要がないため、格納に必要な記憶領域を低減する効果が得られる。
(実施の形態2)
図8は、本発明の実施の形態2にかかる画像符号化装置の構成を示すブロック図である。この画像符号化装置は、図1に示した実施の形態1の構成と比較して、直交変換部17が2種類の異なる直交変換部を備えた点が異なり、その他の構成は図1と同様である。また、実施の形態1と同様の構成要素には同一の参照番号を付し、説明は省略する。
次に、本実施の形態にかかる画像符号化装置の動作について説明する。
図8において、第1の直交変換部であるアダマール変換部30は、入力された画像データ101をアダマール変換してアダマール変換係数105を出力する。アダマール変換はM×M画素の正方ブロック単位に実行する。M=8の場合、ブロック毎に64個のアダマール変換係数105を出力する。複雑度算出部12はアダマール変換部30より出力されたアダマール変換係数105を入力とし、直流成分を含む低域係数1個を除いた63個の変換係数の絶対値和を求め、当該フレームの複雑度103として出力する。
第2の直交変換部であるウェーブレット変換部31は、入力画像101をウェーブレット変換して直交変換係数102を出力する。量子化部14は、出力量子化テーブル104を用いて直交変換係数102を一様量子化し、量子化係数106を出力する。以降の動作は上記実施の形態1と同様である。
以上のように本実施の形態によれば、ウェーブレット変換と比較して短時間で処理可能なアダマール変換を用いることで、実施の形態1と同様の効果を得ることができるのみならず、量子化部14の動作を待たせる要素となり得る複雑度算出部12及びパラメータ決定部13の処理の完了までに要する時間を短縮することができるため、画像符号化装置の時間遅延を増加することなく出力量子化テーブル104の算出を行うことができるという効果をも得ることができる。
なお、直交変換部17では第1の直交変換部にアダマール変換部30を用いているが、KL変換や離散コサイン変換など周波数成分に変換する直交変換を用いても良い。
また、複雑度算出部12では、アダマール変換係数105の絶対値和を複雑度としていたが、分散、標準偏差、2乗平均平方根などの別の統計量を用いるほか、帯域毎に第1の直交変換部と第2の直交変換部の周波数特性差を補正する重みを与えても良い。
本発明にかかる画像符号化装置は、入力された画像信号に応じて量子化ステップなどの画質制御パラメータを連続的に可変とした結果、主観画質を悪化させることなく圧縮率を向上できるため、高画質な画像を多量に扱う業務用映像機器等にも適用可能である。
本発明の実施の形態1における画像符号化装置の構成を示すブロック図 JPEG2000における2レベルウェーブレット変換の帯域分割を示す図 同実施の形態1におけるパラメータテーブルの例を示す図 同実施の形態1におけるパラメータの適用範囲の例を示す図 同実施の形態1におけるパラメータの適用範囲の例を示す図 同実施の形態1における非混合領域及び混合領域の例を示す図 同実施の形態1における量子化テーブル決定のフローチャート 本発明の実施の形態2における画像符号化装置の構成を示すブロック図 従来技術の構成を示すブロック図
符号の説明
11 直交変換部
12 複雑度算出部
13 パラメータ決定部
14 量子化部
15 算術符号化部
16 符号生成部
17 直交変換部
20 領域分析部
21 量子化テーブル格納部
22 直交変換部
23 量子化部
24 可変長符号化部
25 多重化部
30 アダマール変換部
31 ウェーブレット変換部
101 入力画像
102 直交変換係数
103 複雑度
104 出力量子化テーブル
105 アダマール変換係数
106 量子化係数
107 算術符号列
108 符号化データ
109 直交変換係数
110 領域情報
111 量子化テーブル
112 量子化係数
113 可変長符号化列
114 符号化データ
201 非混合領域
202 重複した混合領域
203 独立した混合領域

Claims (5)

  1. 入力画像に対し直交変換を施して直交変換係数を出力する直交変換手段と、
    前記直交変換係数から複雑度を算出する複雑度算出手段と、
    基礎量子化テーブル並びに前記基礎量子化テーブルを適用する前記複雑度の上限値及び下限値の組を複数種類含むパラメータテーブルを保持し、前記複雑度算出手段が算出した前記複雑度及び前記パラメータテーブルに基づいて出力量子化テーブルを算出するパラメータ決定手段とを備え、
    前記パラメータテーブルは、前記パラメータテーブルに含まれる隣接する2つの前記基礎量子化テーブルに対応する前記上限値及び前記下限値が互いに異なるとともに、任意の複雑度に対応する前記基礎量子化テーブルの数が2を越えないように設定され、
    前記パラメータ決定手段は、前記複雑度算出手段が算出した前記複雑度に対応する前記基礎量子化テーブルを求め、前記複雑度に対応する前記基礎量子化テーブルが一意に決まるときには前記複雑度に対応する前記基礎量子化テーブルを出力量子化テーブルとし、
    前記複雑度に対応する前記基礎量子化テーブルが一意に決まらないときには前記複雑度に最も近い前記上限値と対応する前記基礎量子化テーブルと、前記複雑度に最も近い下限値と対応する前記基礎量子化テーブルとに基づいて出力量子化テーブルを算出する、
    画像符号化装置。
  2. 前記パラメータ決定手段は、前記複雑度算出手段が算出した前記複雑度に対応する前記基礎量子化テーブルを求め、前記複雑度に対応する前記基礎量子化テーブルの数が2の場合には、前記複雑度に最も近い前記下限値と前記複雑度との距離を第1の距離として算出すると共に前記複雑度に最も近い上限値と前記複雑度との距離を第2の距離として算出し、前記複雑度に対応する前記基礎量子化テーブルの数が0の場合には、前記複雑度に最も近い前記上限値と前記複雑度との距離を前記第1の距離として算出すると共に前記複雑度に最も近い下限値と前記複雑度との距離を前記第2の距離として算出し、前記複雑度に最も近い前記下限値に対応する前記基礎量子化テーブル及び、前記複雑度に最も近い上限値に対応する前記基礎量子化テーブルをそれぞれ前記第1の距離及び前記第2の距離の逆比により混合処理することで、前記出力量子化テーブルを算出する、請求項1記載の画像符号化装置。
  3. 前記直交変換手段は、前記入力画像に対してウェーブレット変換を行って前記直交変換係数を出力し、
    前記複雑度算出手段は、最低周波数帯域を除いた前記直交変換係数の絶対値和を前記複雑度とする請求項1記載の画像符号化装置。
  4. 前記直交変換手段は、異なる2つの直交変換処理部を備え、前記複雑度算出手段と前記量子化手段に対して異なる直交変換係数を出力する請求項1記載の画像符号化装置。
  5. 前記直交変換手段は、異なる2つの直交変換処理部として第1の直交変換部及び第2の直交変換部を備え、
    前記第1の直交変換部は、前記入力画像に対してアダマール変換を行い第1の直交変換係数を前記複雑度算出手段に出力し、
    前記第2の直交変換部は、前記入力画像に対してウェーブレット変換を行い第2の直交変換係数を前記量子化手段に出力し、
    前記複雑度算出手段は、直流成分を除いた前記第1の直交変換係数の絶対値和を前記複雑度として前記パラメータ決定手段に出力する請求項4記載の画像符号化装置。
JP2007207576A 2007-08-09 2007-08-09 画像符号化装置 Pending JP2009044483A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207576A JP2009044483A (ja) 2007-08-09 2007-08-09 画像符号化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207576A JP2009044483A (ja) 2007-08-09 2007-08-09 画像符号化装置

Publications (1)

Publication Number Publication Date
JP2009044483A true JP2009044483A (ja) 2009-02-26

Family

ID=40444735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207576A Pending JP2009044483A (ja) 2007-08-09 2007-08-09 画像符号化装置

Country Status (1)

Country Link
JP (1) JP2009044483A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117955A1 (ja) * 2011-02-28 2012-09-07 株式会社メガチップス 画像符号化装置
JP2015154454A (ja) * 2014-02-19 2015-08-24 株式会社メガチップス 動画像符号化装置、プログラム、および、集積回路
JP2021526774A (ja) * 2018-06-28 2021-10-07 アップル インコーポレイテッドApple Inc. 低レイテンシ動画符号化及び送信のレート制御
US11496758B2 (en) 2018-06-28 2022-11-08 Apple Inc. Priority-based video encoding and transmission
US11653026B2 (en) 2018-06-28 2023-05-16 Apple Inc. Video encoding system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117955A1 (ja) * 2011-02-28 2012-09-07 株式会社メガチップス 画像符号化装置
US9031341B2 (en) 2011-02-28 2015-05-12 Megachips Corporation Image coding apparatus
US9407919B2 (en) 2011-02-28 2016-08-02 Megachips Corporation Image coding apparatus
JP6062356B2 (ja) * 2011-02-28 2017-01-18 株式会社メガチップス 画像符号化装置
JP2015154454A (ja) * 2014-02-19 2015-08-24 株式会社メガチップス 動画像符号化装置、プログラム、および、集積回路
JP2021526774A (ja) * 2018-06-28 2021-10-07 アップル インコーポレイテッドApple Inc. 低レイテンシ動画符号化及び送信のレート制御
US11451788B2 (en) 2018-06-28 2022-09-20 Apple Inc. Rate control for low latency video encoding and transmission
US11496758B2 (en) 2018-06-28 2022-11-08 Apple Inc. Priority-based video encoding and transmission
JP7249364B2 (ja) 2018-06-28 2023-03-30 アップル インコーポレイテッド 低レイテンシ動画符号化及び送信のレート制御
US11653026B2 (en) 2018-06-28 2023-05-16 Apple Inc. Video encoding system

Similar Documents

Publication Publication Date Title
US9282329B2 (en) Methods and devices for data compression using offset-based adaptive reconstruction levels
US9716891B2 (en) Quantization method and apparatus in encoding/decoding
JP5107495B2 (ja) 品質ベースのイメージ圧縮
US7751478B2 (en) Prediction intra-mode selection in an encoder
JP5700970B2 (ja) 画像シーケンスを表す符号化データストリームの復号方法と画像シーケンスの符号化方法
US20210152621A1 (en) System and methods for bit rate control
US20130083855A1 (en) Adaptive color space selection for high quality video compression
JP5359302B2 (ja) 情報処理装置および方法、並びにプログラム
WO2012042646A1 (ja) 動画像符号化装置、動画像符号化方法、動画像符号化用コンピュータプログラム、動画像復号装置及び動画像復号方法ならびに動画像復号用コンピュータプログラム
JP2021040345A (ja) 逆変換シフトメモリにより削減されたダイナミックレンジ変換を行う動画像を復号する方法
JP2009044483A (ja) 画像符号化装置
US8442338B2 (en) Visually optimized quantization
US20230133895A1 (en) Image encoding apparatus and method for controlling the same and non-transitory computer-readable storage medium
JPH07203430A (ja) 画像符号化装置
CN114025166A (zh) 视频压缩方法、电子设备及计算机可读存储介质
JP2000041249A (ja) 視覚的プログレッシブコ―ディング方法
JP6813991B2 (ja) 画像符号化装置及びその制御方法及びプログラム
JP6564314B2 (ja) 画像符号化装置及びその制御方法及びプログラム並びに記憶媒体
Kim et al. Implementation of DWT-based adaptive mode selection for LCD overdrive
Hakami et al. Improve data compression performance using wavelet transform based on HVS
JP2007049582A (ja) 符号化装置、プログラム及び情報記録媒体
Katsigiannis et al. CVC: The Contourlet Video Compression algorithm for real-time applications
JP2023070055A (ja) 画像符号化装置及びその制御方法及びプログラム
KR101307469B1 (ko) 비디오 인코더, 비디오 디코더, 비디오 인코딩 방법 및 비디오 디코딩 방법
JP2013175870A (ja) 画像処理装置及び画像処理方法