JP2009044108A - Dielectric thin film thickness evaluation method of semiconductor element end surface - Google Patents

Dielectric thin film thickness evaluation method of semiconductor element end surface Download PDF

Info

Publication number
JP2009044108A
JP2009044108A JP2007210599A JP2007210599A JP2009044108A JP 2009044108 A JP2009044108 A JP 2009044108A JP 2007210599 A JP2007210599 A JP 2007210599A JP 2007210599 A JP2007210599 A JP 2007210599A JP 2009044108 A JP2009044108 A JP 2009044108A
Authority
JP
Japan
Prior art keywords
film thickness
film
thin film
thickness
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007210599A
Other languages
Japanese (ja)
Other versions
JP4828485B2 (en
Inventor
Tatsuya Takeshita
達也 竹下
Mitsuru Sugo
満 須郷
Kazutoshi Kato
和利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007210599A priority Critical patent/JP4828485B2/en
Publication of JP2009044108A publication Critical patent/JP2009044108A/en
Application granted granted Critical
Publication of JP4828485B2 publication Critical patent/JP4828485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric thin film thickness evaluation method of a semiconductor element end surface, which measures with sufficient precision the reflection factor of the semiconductor element end surface, and at the same time, based on a measured value, makes it possible to obtain the semiconductor element of which the reflection factor of the semiconductor element end surface is made closer to a design value. <P>SOLUTION: The dielectric thin film thickness evaluation method is equipped with a TiO<SB>2</SB>film and an SiO<SB>2</SB>film, and the film thickness of an HR film provided in the light-emitting end surface of the semiconductor element is found by: measuring an optical beam induced current generated by a pumping light irradiated from the outside of the light-emitting end surface of the semiconductor element to the HR film; calculating the change rate I<SB>ph</SB>of the optical beam induced current based on the measured value of the optical beam induced current: comparing the relation of the calculated result of the change rate I<SB>ph</SB>of the optical beam induced current, and the change rate to the deviation between the design thickness of the TiO<SB>2</SB>film calculated previously as a reference value and the actual film thickness, and the deviation between the design thickness of SiO<SB>2</SB>film and the actual film thickness; and determining the region (I), (II), and (IV) which the actual film thickness of the TiO<SB>2</SB>film and the actual film thickness of the SiO<SB>2</SB>film can take. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ファイバ通信、光情報処理、光ディスクなどに用いられる半導体レーザ、半導体光増幅器又は半導体光スイッチ等アクティブ素子に用いられているコーティング膜の反射率最適化を可能とする半導体素子端面の誘電体薄膜膜厚評価方法に関する。   The present invention relates to a semiconductor element end face that enables optimization of the reflectance of a coating film used in an active element such as a semiconductor laser, a semiconductor optical amplifier, or a semiconductor optical switch used in optical fiber communication, optical information processing, an optical disk, etc. The present invention relates to a dielectric thin film thickness evaluation method.

劈開した半導体レーザは劈開面が反射率0.3のミラーを自動的に形成する。この半導体レーザに電流を注入すると光利得が増加し、ロスを補償するまで駆動電流を増加させるとレーザ発振を起こす。このレーザ発振は、ロスを下げる(反射率を上げる)と低電流駆動で生じることから、半導体レーザの端面には反射率を制御する手段として誘電体薄膜(以下、コーティング膜という)のコーティングが行われている。一方、半導体レーザの両端面に反射防止(Antireflection;AR)膜をコーティングすると、端面によるファブリー・ペローモードが抑制され、半導体光増幅器又は光スイッチを作製することができる。このように、半導体レーザの端面コーティングは多機能の光素子を作製する上で必須の技術となっている。   The cleaved semiconductor laser automatically forms a mirror whose cleaved surface has a reflectivity of 0.3. When current is injected into this semiconductor laser, the optical gain increases. When the drive current is increased until the loss is compensated, laser oscillation occurs. Since this laser oscillation is caused by low current drive when the loss is lowered (increased reflectivity), a dielectric thin film (hereinafter referred to as a coating film) is coated on the end face of the semiconductor laser as a means for controlling the reflectivity. It has been broken. On the other hand, when antireflection (AR) films are coated on both end faces of the semiconductor laser, the Fabry-Perot mode by the end faces is suppressed, and a semiconductor optical amplifier or an optical switch can be manufactured. As described above, the end face coating of the semiconductor laser is an indispensable technique for producing a multifunctional optical device.

図7に分布帰還型半導体レーザ(DFBレーザ)の一部破断した斜視図を示す。図中1は1.3μm組成InGaAsP活性層、2は1.1μm組成下部InGaAsPガイド層、3は1.1μm組成上部InGaAsPガイド層、4はp‐InPバッファー層、5はn‐InPクラッド層、6はn+‐InGaAsPキャップ層、7はp‐InP基板、8はRu添加半絶縁体(semi‐insulator;SI)‐InP電流ブロック層、9はp電極、10はn電極である。なお、1.1μm組成InGaAsPガイド層3には分布帰還(Distributed feedback)を実現する構造としてグレーティング11が作製され、単一縦モード発振を可能にしている。 FIG. 7 shows a partially broken perspective view of a distributed feedback semiconductor laser (DFB laser). In the figure, 1 is a 1.3 μm composition InGaAsP active layer, 2 is a 1.1 μm composition lower InGaAsP guide layer, 3 is a 1.1 μm composition upper InGaAsP guide layer, 4 is a p-InP buffer layer, 5 is an n-InP cladding layer, 6 is an n + -InGaAsP cap layer, 7 is a p-InP substrate, 8 is a Ru-added semi-insulator (SI) -InP current blocking layer, 9 is a p-electrode, and 10 is an n-electrode. Note that a grating 11 is fabricated in the 1.1 μm composition InGaAsP guide layer 3 as a structure that realizes distributed feedback, enabling single longitudinal mode oscillation.

図7に示す半導体レーザでは、コーティング膜として、前端面側にAR膜12、後端面側に高反射(High reflection;HR)膜13のコーティングがなされ、これによって、光出力の大きい前端面側から図示しない光ファイバへ効率良くレーザ光を結合させることが可能となっている。さらに、劈開端面が誘電体膜でコーティングされるため、劈開端面の劣化が抑制され、長期信頼性が確保される。このように、端面コーティングは半導体素子の光特性及び信頼性の観点から必須な技術となっている。   In the semiconductor laser shown in FIG. 7, the coating film is coated with an AR film 12 on the front end face side and a high reflection (HR) film 13 on the rear end face side. Laser light can be efficiently coupled to an optical fiber (not shown). Furthermore, since the cleavage end face is coated with a dielectric film, deterioration of the cleavage end face is suppressed, and long-term reliability is ensured. As described above, the end surface coating is an essential technique from the viewpoint of the optical characteristics and reliability of the semiconductor element.

半導体レーザ端面の反射率、即ち、半導体レーザ端面にコーティングされたコーティング膜の反射率は該コーティング膜の膜厚と屈折率の2つのパラメータから決定され、適切な設計が必要とされる。しかしながら、これら2つのパラメータ(膜厚、屈折率)はコーティング膜の作製に依存し変動する。2つのパラメータが変動すると、該コーティング膜の反射率が設計値からずれてしまう。コーティング膜の反射率と設計値とのずれを修正するためには該コーティング膜の反射率の精密な測定が必要であり、測定した結果をもとに上記パラメータを設計値に近づけることが可能となる。   The reflectance of the end face of the semiconductor laser, that is, the reflectance of the coating film coated on the end face of the semiconductor laser is determined from two parameters of the thickness and refractive index of the coating film, and appropriate design is required. However, these two parameters (film thickness and refractive index) vary depending on the production of the coating film. When the two parameters fluctuate, the reflectance of the coating film deviates from the design value. In order to correct the deviation between the reflectance of the coating film and the design value, it is necessary to precisely measure the reflectance of the coating film, and based on the measurement result, the above parameters can be brought close to the design value. Become.

以下、一例として図7に示す半導体レーザの端面反射率を測定する測定法について説明する。コーティング膜の反射率は半導体レーザの光出力Pと関係があり、次の(1)式で表される。   Hereinafter, as an example, a measuring method for measuring the end face reflectance of the semiconductor laser shown in FIG. 7 will be described. The reflectance of the coating film is related to the optical output P of the semiconductor laser and is expressed by the following equation (1).

Figure 2009044108
Figure 2009044108

但し、RfとRrはそれぞれ半導体レーザの前端面側反射率と後端面側反射率(図7に示す構成においては、AR膜12の反射率とHR膜13の反射率)である。コーティング前の反射率は約0.3であるので、半導体レーザ端面の反射率は各コーティング前後の前端面側光出力Pfと後端面側光出力Prの比から見積もることができる。 Here, R f and R r are the front end face side reflectance and the rear end face side reflectance of the semiconductor laser (in the configuration shown in FIG. 7, the reflectance of the AR film 12 and the reflectance of the HR film 13), respectively. Because reflectance before coating is about 0.3, the reflectance of the semiconductor laser facet can be estimated from the ratio of front facet optical output P f and the rear end face side optical output P r before and after each coating.

上記測定法で見積もられた前端面側反射率Rfと後端面側反射率Rrをもとに、コーティング膜の解析が可能となる。 The coating film can be analyzed based on the front end face side reflectance R f and the rear end face side reflectance R r estimated by the measurement method.

まず、後端面側のHR膜13について説明する。後端面側のHR膜13はそれぞれ光学的に1/4波長の厚さの高屈折率の誘電体と低屈折率の誘電体をペアとして用いることにより実現でき、さらに、ペア数の増加はコーティング膜の反射率を増加させる(例えば、非特許文献1参照)。一例として1ペアの高屈折率(例えば、屈折率2.3)のTiO2膜と低屈折率(例えば、屈折率1.45)のSiO2膜を使い、波長λ=1310nmのレーザ光に対する該HR膜13の反射率Rrを計算すると0.61程度となる。 First, the HR film 13 on the rear end face side will be described. The HR film 13 on the rear end face side can be realized by using a pair of a high refractive index dielectric material and a low refractive index dielectric material each having a thickness of 1/4 wavelength, and the increase in the number of pairs is a coating. The reflectance of the film is increased (for example, see Non-Patent Document 1). As an example, a pair of high refractive index (for example, refractive index 2.3) TiO 2 film and low refractive index (for example, refractive index 1.45) SiO 2 film is used. The reflectance R r of the HR film 13 is calculated to be about 0.61.

コーティング膜の反射率は既に述べたように膜厚と屈折率に依存して変化する。一般的にコーティングに使用する誘電体は安定な物質であり、上記誘電体の屈折率変動はほとんどない。この理由から、コーティング膜の反射率の設計値からのずれはコーティング膜の膜厚が設計値からずれたことによるものであることがわかる。   As described above, the reflectance of the coating film changes depending on the film thickness and the refractive index. In general, a dielectric used for coating is a stable material, and the refractive index of the dielectric hardly fluctuates. For this reason, it can be seen that the deviation of the reflectance of the coating film from the design value is due to the deviation of the thickness of the coating film from the design value.

図8に、波長1310nmのレーザ光を用いた場合におけるTiO2膜厚dTiO2-xとSiO2膜厚dSiO2-xのそれぞれの膜厚の設計値である設計膜厚dTiO2-0とdSiO2-0からのずれ(以下、それぞれTiO2膜厚のずれ、SiO2膜厚のずれという)(dTiO2-x−dTiO2-0)と(dSiO2-x−dSiO2-0)に伴うHR膜13の反射率、即ち後端面側反射率Rrの変化(計算値)を示す。 FIG. 8 shows design film thicknesses d TiO2-0 and d, which are design values of the respective film thicknesses of TiO 2 film thickness d TiO2-x and SiO 2 film thickness d SiO2-x when laser light having a wavelength of 1310 nm is used. Accompanying deviation from SiO2-0 (hereinafter referred to as deviation of TiO 2 film thickness and deviation of SiO 2 film thickness) (d TiO2-x -d TiO2-0 ) and (d SiO2-x -d SiO2-0 ) The change (calculated value) of the reflectivity of the HR film 13, that is, the rear end face side reflectivity R r is shown.

図8に示すように、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)が±10nmの範囲であれば反射率Rrは0.60以上0.61以下となり、HR膜では膜厚の設計値からのずれに対する反射率の変化は小さい。しかしながら、膜厚のトレランスが大きいことは、反射率の測定値から膜厚のずれを見積もることを困難にする。 As shown in FIG. 8, if the deviation of TiO 2 film thickness (d TiO2-x -d TiO2-0 ) and the deviation of SiO 2 film thickness (d SiO2-x -d SiO2-0 ) are in the range of ± 10 nm. The reflectance R r is 0.60 or more and 0.61 or less, and in the HR film, the change in reflectance with respect to the deviation of the film thickness from the design value is small. However, the large film thickness tolerance makes it difficult to estimate the film thickness deviation from the measured reflectance.

次に、前端面側のAR膜12について説明する。前端面側のAR膜12は(1)式を用いた測定法では、前端面側反射率Rfが数%以下になると前端面側光出力Pfの増加は小さくなり、精度よく前端面側反射率Rfを見積もることは困難になる。そこで、前端面側反射率Rfが数%以下の場合においては、レーザ発振前の波長スペクトルのリップル測定が行われる。リップルの最大値と最小値の比をmとすると、利得Gと反射率Rf、Rrの関係は以下の(2)式のようになる。 Next, the AR film 12 on the front end face side will be described. In the AR film 12 on the front end face side, when the front end face side reflectance R f is less than several percent in the measurement method using the equation (1), the increase in the front end face side light output P f becomes small, and the front end face side is accurate. It becomes difficult to estimate the reflectance R f . Therefore, when the front end face side reflectance R f is several% or less, the ripple measurement of the wavelength spectrum before laser oscillation is performed. When the ratio between the maximum value and the minimum value of the ripple is m, the relationship between the gain G and the reflectances R f and R r is expressed by the following equation (2).

Figure 2009044108
Figure 2009044108

as-cleaved素子では前端面側反射率Rfと後端面側反射率Rrはそれぞれ0.3であることから、閾値電流以下の電流でリップルの最大値と最小値の比mを測定することにより利得Gを見積もることができる。次に、AR膜12のコーティング後、同電流で測定されたリップルの最大値と最小値の比mと、AR膜12のコーティング前に測定した利得Gを使い、前端面側反射率Rfを見積もることができる。 In the as-cleaved element, the front end face side reflectivity R f and the rear end face side reflectivity R r are each 0.3. Therefore, the ratio m between the maximum value and the minimum value of the ripple should be measured at a current below the threshold current. Thus, the gain G can be estimated. Next, after coating the AR film 12, using the ratio m of the maximum and minimum ripples measured at the same current and the gain G measured before coating the AR film 12, the front end face side reflectance R f is calculated. Can be estimated.

反射率を0.1%程度に下げるには、一層からなるAR膜に比べ屈折率制限のない二層からなるAR膜が適している。一例として低屈折率(例えば、屈折率1.45)のSiO2膜と高屈折率(例えば、屈折率2.3)のTiO2膜を使い、波長1310nmの光を用いた場合における、最低となる前端面側反射率Rfを計算すると、0.0002以下となる。 In order to lower the reflectivity to about 0.1%, a two-layered AR film with no refractive index limitation is more suitable than a single-layered AR film. As an example, when a SiO 2 film having a low refractive index (for example, refractive index 1.45) and a TiO 2 film having a high refractive index (for example, refractive index 2.3) are used and light having a wavelength of 1310 nm is used, When the front end face side reflectance R f is calculated, it becomes 0.0002 or less.

図9に、波長1310nmの光を用いた場合におけるSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)に対するAR膜の反射率、即ち前端面側反射率Rfの変化(計算値)を示す。 Figure 9, AR for shift in SiO 2 film thickness (d SiO2-x -d SiO2-0) and the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0) in the case of using light having a wavelength 1310nm The change (calculated value) of the reflectance of the film, that is, the front end face side reflectance R f is shown.

図9に示すように、それぞれの膜厚が設計値から10nm程度ずれた場合、前端面側反射率RfはTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)がそれぞれ0である場合に比べて10倍以上増加している。また、前端面側反射率RfはSiO2膜厚dSiO2-x、TiO2膜厚dTiO2-xに対してほぼ同心円状に変化している。従って、仮にリップル測定法により前端面側反射率Rf=0.0005と見積もられたとすると、作製されたコーティング膜のSiO2膜厚dSiO2-x、TiO2膜厚dTiO2-xがそれぞれの設計値dSiO2-0、dTiO2-0に対してどのようにずれているか判別することはできない。 As shown in FIG. 9, when the respective film thicknesses deviate from the design value by about 10 nm, the front end face side reflectance R f is different from the TiO 2 film thickness deviation (d TiO 2 -x- d TiO 2-0 ) and the SiO 2 film. The thickness deviation ( dSiO2 -x- dSiO2-0 ) is increased by 10 times or more as compared with the case where each thickness is zero. Further, the front end face side reflectance R f changes substantially concentrically with respect to the SiO 2 film thickness d SiO2-x and the TiO 2 film thickness d TiO2-x . Accordingly, if the front end face side reflectance R f = 0.0005 is estimated by the ripple measurement method, the SiO 2 film thickness d SiO2-x and the TiO 2 film thickness d TiO2-x of the prepared coating film are respectively It is impossible to determine how the values deviate from the design values dSiO2-0 and dTiO2-0 .

一般的に、ファブリ・ペロー型半導体レーザの場合、(1)式と(2)式を用いることにより、前端面側反射率Rfと後端面側反射率Rrを見積もることができる。しかしながら、上述したように、DFBレーザではグレーティング構造を持ち、前端面側反射率Rfは0.1%程度になることから、ファブリ・ペロー型半導体レーザと同様な方法で前端面側反射率Rfを見積もることは困難である。 In general, in the case of a Fabry-Perot type semiconductor laser, the front end face side reflectance R f and the rear end face side reflectance R r can be estimated by using the expressions (1) and (2). However, as described above, the DFB laser has a grating structure, and the front end face side reflectivity R f is about 0.1%. Therefore, the front end face side reflectivity R is measured in the same manner as the Fabry-Perot semiconductor laser. It is difficult to estimate f .

M.Ettenberg、"A new dielectronic facet reflector for semiconductor lasers"、Appl. Phys. Lett.、vol.32、1978年、p.724-726M. Ettenberg, "A new dielectronic facet reflector for semiconductor lasers", Appl. Phys. Lett., Vol. 32, 1978, p.724-726

このように例えば図7に示すような半導体レーザにおいて、該半導体レーザ端面の反射防止/高反射を実現するにはコーティング膜の膜厚制御が重要であり、特にAR膜12では従来の光パワーの比を用いた測定方法で前端面側反射率Rfを精度よく見積もることは容易ではなかった。二つ目に、図8に示したように、HR膜13では膜厚のずれによる後端面側反射率Rrの変化が小さいため、後端面側反射率Rrの測定値から膜厚のずれを見積もることは困難であった。三つ目に、AR膜では、特に、DFBレーザのグレーティング特性が現れるため、AR膜12をコーティングした半導体レーザ端面の反射率測定は困難であった。最後に、波長スペクトルのリップルを使った測定では、設計波長近傍であることから、図8及び図9に示したように、反射率の変化に対してSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の関係が同心円状の膜厚のずれの解として現れ、膜厚の設計値である設計膜厚との差を判定することはできなかった。 Thus, for example, in a semiconductor laser as shown in FIG. 7, the film thickness control of the coating film is important for realizing antireflection / high reflection of the end face of the semiconductor laser. the measurement method using the ratio estimate accurately the front facet reflectivity R f is not easy. Second, as shown in FIG. 8, in the HR film 13, the change in the rear end face side reflectance R r due to the deviation in film thickness is small, so the thickness deviation from the measured value of the rear end face side reflectance R r. It was difficult to estimate. Thirdly, in the AR film, since the grating characteristics of the DFB laser appear in particular, it is difficult to measure the reflectance of the semiconductor laser end face coated with the AR film 12. Finally, since the measurement using the ripple of the wavelength spectrum is near the design wavelength, as shown in FIGS. 8 and 9, the SiO 2 film thickness deviation (d SiO2-x -D SiO2-0 ) and TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ) appear as a solution to the concentric film thickness deviation, The difference could not be determined.

なお、上記のように半導体レーザの特性から反射率を求める方法以外に、モニタ用ウエハにコーティング膜を作製し、その反射パワーを測定し、反射率を見積もる方法がある。しかしながら、半導体レーザ端面の光出射領域とモニタウエハの等価屈折率が異なるため、異なった反射率特性を示すことになる。従って、測定する領域は半導体レーザの光出射端面である必要がある。   In addition to the method for obtaining the reflectance from the characteristics of the semiconductor laser as described above, there is a method for producing a coating film on the monitor wafer, measuring the reflected power, and estimating the reflectance. However, since the equivalent refractive index of the light emitting area of the semiconductor laser end face and the monitor wafer are different, different reflectance characteristics are exhibited. Therefore, the region to be measured needs to be the light emitting end face of the semiconductor laser.

本発明はこのような課題を解決するものであり、半導体素子端面の反射率を精度よく測定するとともに、測定値に基づいて該半導体素子端面の反射率をより設計値に近づけた半導体レーザ、半導体光増幅器又は半導体光スイッチ等アクティブ素子を得ることを可能とする半導体素子端面の誘電体薄膜膜厚評価方法を提供することを目的とする。   The present invention solves such a problem, and accurately measures the reflectivity of the end face of the semiconductor element, and also makes the reflectivity of the end face of the semiconductor element closer to the design value based on the measured value. It is an object of the present invention to provide a method for evaluating the thickness of a dielectric thin film on an end face of a semiconductor element that makes it possible to obtain an active element such as an optical amplifier or a semiconductor optical switch.

上記の課題を解決するための第1の発明に係る半導体素子端面の誘電体薄膜膜厚評価方法は、第一の薄膜および第二の薄膜を備え、半導体素子の光出射端面に設けられて該光出射端面における反射率を決定する誘電体薄膜の膜厚評価方法であって、前記誘電体薄膜に前記半導体素子の光出射端面外部から励起光を照射し、前記半導体素子の出射端面を透過した光によって生成された光励起電流を測定し、前記光励起電流の測定値に基づいて前記誘電体薄膜が設計膜厚である場合に対する前記光励起電流の変動率を算出し、前記光励起電流の変動率の算出結果と、予め参考値として計算した前記第一の薄膜の設計膜厚と実際の膜厚のずれ及び前記第二の薄膜の設計膜厚と実際の膜厚のずれに対する前記変動率の関係とを比較し、前記光励起電流の変動率の正負に応じて前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚の取り得る領域を決定することを特徴とする。   A dielectric thin film thickness evaluation method for a semiconductor element end face according to a first aspect of the present invention for solving the above-described problem includes a first thin film and a second thin film, and is provided on a light emitting end face of a semiconductor element. A method for evaluating a thickness of a dielectric thin film for determining a reflectance at a light emitting end face, wherein the dielectric thin film is irradiated with excitation light from outside a light emitting end face of the semiconductor element and transmitted through the emitting end face of the semiconductor element Measure the photoexcitation current generated by light, calculate the variation rate of the photoexcitation current with respect to the case where the dielectric thin film has a designed film thickness based on the measured value of the photoexcitation current, and calculate the variation rate of the photoexcitation current The results and the relationship between the fluctuation rate of the design thickness of the first thin film and the actual film thickness calculated as reference values in advance and the deviation of the design thickness of the second thin film from the actual film thickness. Compare the photoexcitation current And determining the actual film thickness and the actual thickness can take the region of the second thin film of said first thin film in accordance with the sign of the variation rate.

第2の発明に係る半導体素子端面の誘電体薄膜膜厚評価方法は、第1の発明において、前記励起光の波長が、実際の前記誘電体薄膜の膜厚と前記誘電体薄膜の設計値との差によって生じる反射率の変化が大きい波長帯の範囲にある波長であることを特徴とする。   According to a second aspect of the present invention, there is provided a method for evaluating a thickness of a dielectric thin film on an end face of a semiconductor element according to the first aspect, wherein the wavelength of the excitation light is an actual film thickness of the dielectric thin film and a design value of the dielectric thin film. The wavelength is in the range of a wavelength band in which the change in reflectance caused by the difference is large.

第3の発明に係る半導体素子端面の誘電体薄膜膜厚評価方法は、第2の発明において、前記励起光の波長として、前記誘電体薄膜の反射率が波長の変化に対して0.1%/nm以上又は−0.1%/nm以下変動する波長帯の波長を用いることを特徴とする。   According to a third aspect of the present invention, there is provided a method for evaluating a thickness of a dielectric thin film on an end face of a semiconductor element, in the second aspect, the reflectance of the dielectric thin film is 0.1% with respect to a change in wavelength. It is characterized by using a wavelength in a wavelength band that fluctuates at / nm or more or −0.1% / nm or less.

第4の発明に係る半導体素子端面の誘電体薄膜膜厚評価方法は、第1乃至第3のいずれかの発明において、前記光励起電流の変動率の算出結果と、前記参考値と、予め計算した前記第一の薄膜の設計膜厚と実際の膜厚のずれ及び前記第二の薄膜の設計膜厚と実際の膜厚のずれに対する前記光出射端面における反射率の関係とを比較し、前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚の取り得る領域を決定することを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for evaluating a thickness of a dielectric thin film on an end face of a semiconductor element according to any one of the first to third aspects, wherein the calculation result of the fluctuation rate of the photoexcitation current and the reference value are calculated in advance. The relationship between the design thickness of the first thin film and the actual film thickness, and the relationship of the reflectance at the light emitting end surface with respect to the design film thickness of the second thin film and the actual film thickness, A region where the actual film thickness of one thin film and the actual film thickness of the second thin film can be determined is determined.

第5の発明に係る半導体素子端面の誘電体薄膜膜厚最適化方法は、第1乃至第4のいずれかの発明に係る半導体素子端面の誘電体薄膜膜厚評価方法によって得られた前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚の取り得る領域に基づいて前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚を導出し、導出した結果に基づいて前記第一の薄膜の膜厚及び前記第二の薄膜の膜厚が設計膜厚となるように調整することを特徴とする。   A dielectric thin film thickness optimization method for a semiconductor element end face according to a fifth invention is the first method obtained by the dielectric thin film thickness evaluation method for a semiconductor element end face according to any one of the first to fourth inventions. Deriving the actual film thickness of the first thin film and the actual film thickness of the second thin film based on the actual film thickness of the thin film and the area that the actual film thickness of the second thin film can take, Based on the derived result, the thickness of the first thin film and the thickness of the second thin film are adjusted so as to be the designed film thickness.

上述した本発明に係る半導体素子端面の誘電体薄膜膜厚評価方法によれば、半導体レーザの光出射端面の高反射又は反射防止コーティング膜、さらに、半導体光増幅器又は半導体光スイッチ等アクティブ素子の光出射端面の反射防止コーティング膜の最適化に関して、励起波長光源を用いた光励起電流の測定を行い、光励起電流の変動率の正負に応じて第一の薄膜と第二の薄膜の実際の膜厚と設計膜厚とのずれが存在する領域を決定することにより、第一の薄膜と第二の薄膜の実際の膜厚を設計膜厚に近づけるプロセスを短縮できる。   According to the above-described dielectric thin film thickness evaluation method for an end face of a semiconductor device according to the present invention, a highly reflective or antireflective coating film for a light emitting end face of a semiconductor laser, and further, light of an active element such as a semiconductor optical amplifier or a semiconductor optical switch. Regarding the optimization of the antireflection coating film on the emission end face, the photoexcitation current is measured using an excitation wavelength light source, and the actual film thicknesses of the first thin film and the second thin film are determined according to the positive / negative of the fluctuation rate of the photoexcitation current. By determining a region where there is a deviation from the design film thickness, the process of bringing the actual film thicknesses of the first thin film and the second thin film closer to the design film thickness can be shortened.

さらに、光励起電流の変動率の算出結果と、第一の薄膜の設計膜厚と実際の膜厚のずれ及び第二の薄膜の設計膜厚と実際の膜厚のずれに対する光励起電流の変動率の関係と、第一の薄膜の設計膜厚と実際の膜厚のずれ及び第二の薄膜の設計膜厚と実際の膜厚のずれに対する光出射端面における反射率の関係とを比較し、第一の薄膜の実際の膜厚と第二の薄膜の実際の膜厚の取り得る領域を決定するようにすれば、取り得る膜厚の解を2又は1点に絞ることができ、設計膜厚に近づけるプロセスを更に短縮できる。   Further, the calculation result of the fluctuation rate of the photoexcitation current, the deviation of the design thickness of the first thin film from the actual film thickness, and the fluctuation rate of the photoexcitation current with respect to the deviation of the design thickness of the second thin film from the actual film thickness. And the relationship between the design thickness of the first thin film and the actual film thickness, and the relationship of the reflectance at the light emitting end face with respect to the design film thickness of the second thin film and the actual film thickness. If the actual film thickness of the thin film and the area where the actual film thickness of the second thin film can be determined are determined, the solution of the film thickness that can be obtained can be narrowed down to two or one point. The approaching process can be further shortened.

本発明の実施の形態について図を用いて説明する。本実施形態は、半導体レーザ等の光出射端面の高反射率/低反射率のコーティング膜の膜厚の最適化を可能とする半導体素子端面の誘電体薄膜膜厚評価方法であって、従来のコーティング膜の光学的な反射特性に加えて新たに光励起電流特性を考慮するものであり、コーティング膜の膜厚最適化に係る工程を短縮することができる。以下、本発明を半導体レーザに適用した例について説明する。   Embodiments of the present invention will be described with reference to the drawings. This embodiment is a method for evaluating the thickness of a dielectric thin film on an end face of a semiconductor element that enables optimization of the thickness of a coating film having a high reflectance / low reflectance on a light emitting end face of a semiconductor laser or the like. In addition to the optical reflection characteristic of the coating film, the photoexcitation current characteristic is newly taken into consideration, and the process for optimizing the film thickness of the coating film can be shortened. Hereinafter, an example in which the present invention is applied to a semiconductor laser will be described.

図10(a)に誘電体薄膜としてのHR膜の反射率の波長依存性(計算値)、図10(b)に他の誘電体薄膜としてのAR膜の反射率の波長依存性(計算値)をそれぞれ示す。両図に示すように、HR膜の反射率、AR膜の反射率ともに、設計波長1310nmから離れていくと反射率が大きく変化する領域がある。   FIG. 10A shows the wavelength dependence (calculated value) of the reflectance of the HR film as the dielectric thin film, and FIG. 10B shows the wavelength dependence of the reflectance of the AR film as the other dielectric thin film (calculated value). ) Respectively. As shown in both figures, there is a region where the reflectance of the HR film and the reflectance of the AR film change greatly as they move away from the design wavelength of 1310 nm.

また、図11にHR膜とAR膜のdR/dλの波長依存性(計算値)を示す。図11に示すように、コーティング膜のdR/dλの絶対値が0.1%/nm以上となる領域としては、HR膜では波長820〜1080nmの波長帯等、AR膜では510〜650nmの波長帯等がある。なお、dR/dλは波長の変化に対する反射率の変動率である。   FIG. 11 shows the wavelength dependency (calculated value) of dR / dλ of the HR film and the AR film. As shown in FIG. 11, the region where the absolute value of dR / dλ of the coating film is 0.1% / nm or more includes the wavelength band of 820 to 1080 nm for the HR film, and the wavelength of 510 to 650 nm for the AR film. There are obi etc. Note that dR / dλ is a reflectance variation rate with respect to a change in wavelength.

これらの波長帯では、図10(a)及び図10(b)に示したように、膜厚のずれ、即ち実際の膜厚と設計値との差によって生じる反射率の変化も大きくなっている。従って、励起光源として上述した波長帯の光を半導体レーザ外部から該半導体レーザの光出射端面に照射し、端面を透過した光によって生成された光励起電流を測定すると、反射率(透過率)の差を反映し光励起電流が大きく変動し、微小な反射率変動を膜厚のずれとして高精度に見積もることができる。   In these wavelength bands, as shown in FIGS. 10A and 10B, the change in the reflectance caused by the difference in film thickness, that is, the difference between the actual film thickness and the design value is also large. . Accordingly, when the light emission end face of the semiconductor laser is irradiated from the outside of the semiconductor laser as the excitation light source and the photoexcitation current generated by the light transmitted through the end face is measured, the difference in reflectance (transmittance) is found. Thus, the photoexcitation current largely fluctuates, and a minute reflectance variation can be estimated with high accuracy as a film thickness deviation.

従って、本実施形態においては、HR膜の反射率測定のため、上述したコーティング膜のdR/dλの絶対値が0.1%/nm以上となるとともに膜厚のずれによって生じる反射率の変化が大きい波長820〜1080nmの波長帯の範囲から、一例として波長940nmの光を励起光源として半導体レーザの光出射端面に照射し、その結果生じる光励起電流を測定し、膜厚のずれを判定する。   Therefore, in this embodiment, in order to measure the reflectance of the HR film, the absolute value of dR / dλ of the coating film described above is 0.1% / nm or more, and the change in reflectance caused by the film thickness deviation occurs. As an example, light with a wavelength of 940 nm is used as an excitation light source to irradiate the light emitting end face of the semiconductor laser from a large wavelength range of 820 to 1080 nm, and the resulting photoexcitation current is measured to determine the film thickness deviation.

また、AR膜の反射率測定のため、上述したコーティング膜のdR/dλの絶対値が0.1%/nm以上となるとともに膜厚のずれによって生じる反射率の変化が大きい波長510〜650nmの波長帯の範囲から、一例として波長600nmの光を励起光源として半導体レーザの光出射端面に照射し、その結果生じる光励起電流を測定し、膜厚のずれを判定する。   In addition, for measuring the reflectance of the AR film, the absolute value of dR / dλ of the coating film described above is 0.1% / nm or more, and the change in reflectance caused by the difference in film thickness is large at a wavelength of 510 to 650 nm. From the wavelength range, for example, light with a wavelength of 600 nm is used as an excitation light source to irradiate the light emitting end face of the semiconductor laser, and the resulting photoexcitation current is measured to determine the film thickness deviation.

さらに、本実施形態の光励起電流測定から見積もった反射率の解を従来のリップル測定から見積もった反射率の解と比較することにより、該当し得る解を2又は1点に絞り込むものである。   Further, by comparing the reflectance solution estimated from the photoexcitation current measurement of this embodiment with the reflectance solution estimated from the conventional ripple measurement, the applicable solutions are narrowed down to two or one point.

本実施形態に係る半導体素子端面の誘電体薄膜膜厚評価方法によれば、半導体素子端面の反射率を精度よく測定することができるとともに、測定値に基づいて該半導体素子端面の反射率をより設計値に近づけることができる。   According to the method for evaluating a thickness of a dielectric thin film on an end face of a semiconductor element according to the present embodiment, the reflectance of the end face of the semiconductor element can be accurately measured, and the reflectivity of the end face of the semiconductor element can be further increased based on the measured value. The design value can be approached.

以下、図1乃至図3を用いて本発明の第1の実施例を詳細に説明する。本実施例においてはコーティング膜として1ペアの第一の薄膜としての高屈折率(例えば、屈折率2.3)のTiO2膜と第二の薄膜としての低屈折率(例えば、屈折率1.45)のSiO2膜からなるHR膜を使い、設計波長1310nmで最大反射率となるように、TiO2膜とSiO2膜の設計膜厚dTiO2-0とdSiO2-0を、それぞれ142.39と225.86nmとした。 Hereinafter, the first embodiment of the present invention will be described in detail with reference to FIGS. In this embodiment, a TiO 2 film having a high refractive index (for example, a refractive index of 2.3) as a pair of first thin films and a low refractive index (for example, having a refractive index of 1. use HR film made of SiO 2 film 45), so that the maximum reflectance at the design wavelength of 1310 nm, the design thickness d TiO2-0 and d SiO2-0 of the TiO 2 film and the SiO 2 film, respectively 142. 39 and 225.86 nm.

図1に、HR膜の膜厚のずれによって反射率Rが大きく変動する波長として940nmを用いた場合における、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)によるHR膜の反射率Rの変化(計算値)を示す。図1に示すように、本実施例にあっては、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)の値が±10nmの範囲において、HR膜の反射率が0.15〜0.39の範囲で変化している。 FIG. 1 shows the difference in TiO 2 film thickness (d TiO2−x− d TiO2−0 ) and SiO 2 film thickness when 940 nm is used as the wavelength at which the reflectance R varies greatly due to the film thickness difference of the HR film. The change (calculated value) of the reflectivity R of the HR film due to the deviation ( dSiO2 -x- dSiO2-0 ) is shown. As shown in FIG. 1, in this example, the TiO 2 film thickness deviation (d TiO 2 -x- d TiO 2-0 ) and the SiO 2 film thickness deviation (d SiO 2 -x -d SiO 2-0 ). In the range of ± 10 nm, the reflectivity of the HR film changes in the range of 0.15 to 0.39.

HR膜の反射率としてある一定値を付与する可能性のあるTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)の関係はライン状の軌跡となり、TiO2膜厚dTiO2-xとSiO2膜厚dSiO2-xが増加・減少するに従い、HR膜の反射率はそれぞれ減少・増加している。また、図1に示す波長940nmの励起光源を用いた場合のTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)が±10nmの範囲における反射率変動は、図8に示した波長1310nmのレーザ光を用いた場合と比べ、一桁以上反射率の変動が大きくなっている。 TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ) and SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ), which may give a certain value as the reflectivity of the HR film ) Is a linear locus, and as the TiO 2 film thickness d TiO2-x and the SiO 2 film thickness d SiO2-x increase / decrease, the reflectivity of the HR film decreases / increases, respectively. Further, TiO 2 thickness deviation and (d TiO2-x -d TiO2-0) of SiO 2 film thickness deviation in the case of using an excitation light source of wavelength 940nm shown in FIG. 1 (d SiO2-x -d SiO2-0 ) Is within a range of ± 10 nm, the reflectance variation is larger by one digit or more than when the laser beam having a wavelength of 1310 nm shown in FIG. 8 is used.

図2にHR膜の膜厚が設計値である場合、即ち、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)がそれぞれ0である場合の光励起電流(以下、設計値の光励起電流という)を基準にして、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)に対する光励起電流の変動率を計算した結果を示す。反射率変動を反映して、半導体レーザ端面の透過光が変動すると、半導体に吸収される光励起電流が変化する。設計値の光励起電流Iphは以下に示す(3)式で表される。 In FIG. 2, when the thickness of the HR film is a design value, that is, the deviation of the TiO 2 film thickness (d TiO 2 -x -d TiO 2-0 ) and the deviation of the SiO 2 film thickness (d SiO 2 -x -d SiO 2- 0) photoexcitation current (less if each 0, based on the) that photoexcitation current design values, the deviation of the TiO 2 film thickness (d TiO2-x -d TiO2-0) of SiO 2 film thickness deviation The result of having calculated the fluctuation rate of the photoexcitation current with respect to ( dSiO2 -x- dSiO2-0 ) is shown. When the transmitted light at the end face of the semiconductor laser changes, reflecting the change in reflectance, the photoexcitation current absorbed by the semiconductor changes. The designed photoexcitation current Iph is expressed by the following equation (3).

Figure 2009044108
Figure 2009044108

ここで、Rは反射率、ηは量子効率、qは電子電荷、hはプランク定数、νは周波数、Γは光閉じ込め係数、α0は内部損失、Pi(x)はパワーである。パワーPi(x)は以下の(4)式で表される。 Here, R is reflectance, η is quantum efficiency, q is electronic charge, h is Planck's constant, ν is frequency, Γ is optical confinement factor, α 0 is internal loss, and P i (x) is power. The power P i (x) is expressed by the following equation (4).

Figure 2009044108
Figure 2009044108

なお、Pi0は入射パワーである。 P i0 is the incident power.

図2に示すように、本実施例にあっては、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)が±10nmの範囲において、光励起電流の変動率が−16%〜16%の範囲で変化しており、TiO2膜厚dTiO2-xとSiO2膜厚dSiO2-xが増加・減少するに従い、光励起電流は、それぞれ増加・減少している。 As shown in FIG. 2, in this embodiment, the TiO 2 film thickness deviation (d TiO 2 -x- d TiO 2-0 ) and the SiO 2 film thickness deviation (d SiO 2 -x -d SiO 2-0 ). In the range of ± 10 nm, the fluctuation rate of the photoexcitation current changes in the range of −16% to 16%, and as the TiO 2 film thickness d TiO2-x and the SiO 2 film thickness d SiO2-x increase / decrease, The photoexcitation current increases and decreases, respectively.

例えば、図2中(a)点においては矢印の方向、即ち、SiO2膜厚dSiO2-xを減少させるとともにTiO2膜厚dTiO2-xを増加させることにより、HR膜の膜厚を設計膜厚に近づけることができる。また、(b)点においては矢印の方向、即ちSiO2膜厚dSiO2-x及びTiO2膜厚dTiO2-xを減少させることにより、HR膜の膜厚を設計膜厚に近づけることができる。また、(c)点においては矢印の方向、即ちSiO2膜厚dSiO2-xを増加させるとともにTiO2膜厚dTiO2-xを減少させることにより、HR膜の膜厚を設計膜厚に近づけることができる。 For example, at the point (a) in FIG. 2, the thickness of the HR film is designed by decreasing the SiO 2 film thickness d SiO2-x and increasing the TiO 2 film thickness d TiO2-x. The film thickness can be approached. Further, it is possible to approach the direction of the arrow in (b) point, i.e. by reducing the SiO 2 film thickness d SiO2-x and TiO 2 film thickness d TiO2-x, the design thickness of the film thickness of the HR film . Further, at the point (c), by increasing the direction of the arrow, that is, the SiO 2 film thickness d SiO2-x and decreasing the TiO 2 film thickness d TiO2-x , the film thickness of the HR film is brought close to the design film thickness. be able to.

図2に示すように、dTiO2-x−dTiO2-0=0のラインとdSiO2-x−dSiO2-0=0のラインを境界として4つの領域(I)〜(IV)に分ける。即ち、領域(I)、(II)、(III)と(IV)はそれぞれ(i)dTiO2-x−dTiO2-0<0とdSiO2-x−dSiO2-0>0、(ii)dTiO2-x−dTiO2-0>0とdSiO2-x−dSiO2-0>0、(iii)dTiO2-x−dTiO2-0<0とdSiO2-x−dSiO2-0<0、(iv)dTiO2-x−dTiO2-0>0とdSiO2-x−dSiO2-0<0の領域となる。 As shown in FIG. 2, divided into four regions a line d TiO2-x -d TiO2-0 = 0 line and d SiO2-x -d SiO2-0 = 0 as the boundary (I) ~ (IV). That is, regions (I), (II), (III) and (IV) are respectively (i) dTiO2 -x- dTiO2-0 <0 and dSiO2 -x- dSiO2-0 > 0, (ii) dTiO2 -x- dTiO2-0 > 0 and dSiO2 -x- dSiO2-0 > 0, (iii) dTiO2 -x- dTiO2-0 <0 and dSiO2 -x- dSiO2-0 <0 (Iv) d TiO2-x- d TiO2-0 > 0 and dSiO2 -x- dSiO2-0 <0.

ここで、光励起電流の変動率が正の場合と負の場合に注目すると、光励起電流の変動率が正の場合、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)は領域(I)、(II)と(IV)に分布することがあるが、領域(III)に分布することはない。一方、光励起電流の変動率が負の場合、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)は領域(I)、(III)と(IV)に分布することがあるが、領域(II)に分布することはない。 Here, paying attention to the cases where the fluctuation rate of the photoexcitation current is positive and negative, when the fluctuation rate of the photoexcitation current is positive, the deviation of the TiO 2 film thickness (d TiO2-x -d TiO2-0 ) and SiO 2 The film thickness deviation ( dSiO2 -x- dSiO2-0 ) may be distributed in the regions (I), (II), and (IV), but not in the region (III). On the other hand, when the fluctuation rate of the photoexcitation current is negative, the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ) and the SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) are in the region ( It may be distributed in I), (III) and (IV), but not in region (II).

つまり、光励起電流の変動率が正の場合と負の場合とでは、SiO2膜厚dSiO2-x及びTiO2膜厚dTiO2-xをそれぞれ設計膜厚に近づけるために、それぞれ、SiO2膜厚dSiO2-x/TiO2膜厚dTiO2-xを、増加/増加と減少/減少にする解はないことを示している。 That is, in order to make the SiO 2 film thickness d SiO2-x and the TiO 2 film thickness d TiO2-x close to the designed film thickness, respectively, in the case where the variation rate of the photoexcitation current is positive and negative, the SiO 2 film the thickness d SiO2-x / TiO 2 film thickness d TiO2-x, indicating that there is no solution to reduce / increase and decrease / increase.

図3に本実施例における光励起電流測定装置の概略構成図を示す。14は励起光源、15はビームスプリッタ、16はパワーメータ、17はガルバノメータ、18はリレーレンズ、19はミラー、20は測定試料、21は光励起電流測定器、22はコンピュータである。本実施例においては、測定試料20としてレーザダイオード(LD)を用いた。LD端面にはコーティング膜が形成され、その表面上に励起光源14からの光を照射する。LDは表面と裏面に電極を有しそれぞれからの配線を光励起電流測定器21に接続することにより光励起電流を測定する。   FIG. 3 shows a schematic configuration diagram of the photoexcitation current measuring apparatus in the present embodiment. Reference numeral 14 denotes an excitation light source, 15 denotes a beam splitter, 16 denotes a power meter, 17 denotes a galvanometer, 18 denotes a relay lens, 19 denotes a mirror, 20 denotes a measurement sample, 21 denotes a photoexcitation current measuring instrument, and 22 denotes a computer. In this example, a laser diode (LD) was used as the measurement sample 20. A coating film is formed on the end face of the LD, and the surface is irradiated with light from the excitation light source 14. The LD has electrodes on the front surface and the back surface, and measures the photoexcitation current by connecting the wiring from each to the photoexcitation current measuring device 21.

本実施例において、励起波長光源940nmを用い、LD光出射端面の光励起電流を測定したところ、標準試料の光励起電流に比べ4%増加した。つまり、図2に示す領域(I)、(II)と(IV)にある4%のライン状軌跡に実際のTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)の関係を満たす可能性のある解があり、このライン状軌跡のどこかに実際の設計膜厚とのずれが存在する。これは、SiO2膜厚dSiO2-x/TiO2膜厚dTiO2-xを図2中(a)に示すように減少/増加するように変化させる、(b)に示すように減少/減少するように変化させる、又は、(c)に示すように増加/減少するように変化させることにより、HR膜の膜厚を設計膜厚に近づけることができることを示している。 In this example, when the excitation wavelength light source of 940 nm was used and the photoexcitation current at the LD light exit end face was measured, it increased by 4% compared to the photoexcitation current of the standard sample. That is, the area shown in FIG. 2 (I), (II) and the actual TiO 2 film thickness deviation of 4% of the linear trajectory in the (IV) (d TiO2-x -d TiO2-0) SiO 2 film There is a solution that may satisfy the relationship of thickness deviation ( dSiO2 -x- dSiO2-0 ), and there is a deviation from the actual design film thickness somewhere in this linear locus. This is to change the SiO 2 film thickness d SiO2-x / TiO 2 film thickness d TiO2-x to decrease / increase as shown in FIG. 2 (a), and to decrease / decrease as shown in (b). It is shown that the film thickness of the HR film can be brought close to the design film thickness by changing so as to increase or decrease as shown in (c).

このように領域(III)を排除した結果、残る領域(I)、(II)、(IV)それぞれに基づいて膜厚の最適化を行った。まず、領域(I)に基づいて設計膜厚に近づけるようにSiO2膜厚dSiO2-xを減少させTiO2膜厚dTiO2-xを増加させた結果、設計膜厚に相当する結果は得られなかった。次に、領域(II)に基づいて設計膜厚に近づけるようにSiO2膜厚dSiO2-xを減少させTiO2膜厚dTiO2-xを減少させた結果、設計膜厚に相当する結果は得られなかった。最後に、領域(IV)に基づいて設計膜厚に近づけるようにSiO2膜厚dSiO2-xを増加させTiO2膜厚dTiO2-xを減少させた結果、設計膜厚に相当する結果が得られた。この設計膜厚が得られた条件でLD端面にHR膜を形成した結果、波長1310nmの光に対する反射率が0.61という良好なLD特性が得られた。 As a result of eliminating the region (III) in this way, the film thickness was optimized based on the remaining regions (I), (II), and (IV). First, as a result of decreasing the SiO 2 film thickness d SiO2-x and increasing the TiO 2 film thickness d TiO2-x so as to approach the design film thickness based on the region (I), a result corresponding to the design film thickness is obtained. I couldn't. Next, as a result of decreasing the SiO 2 film thickness d SiO2-x and reducing the TiO 2 film thickness d TiO2-x so as to approach the design film thickness based on the region (II), the result corresponding to the design film thickness is It was not obtained. Finally, as a result of increasing the SiO 2 film thickness d SiO2-x and decreasing the TiO 2 film thickness d TiO2-x so as to approach the design film thickness based on the region (IV), a result corresponding to the design film thickness is obtained. Obtained. As a result of forming the HR film on the end face of the LD under the condition that the designed film thickness was obtained, good LD characteristics with a reflectance of 0.61 with respect to light having a wavelength of 1310 nm were obtained.

以上のように、本実施例による励起波長光源を用いた光励起電流測定により、光励起電流の変動率が正の場合と負の場合において、TiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)がそれぞれ領域(III)と領域(II)に存在する可能性を排除でき、コーティング膜の膜厚を設計膜厚に近づけるプロセスを短縮できる。なお、本実施例では設計波長として1310nmを用いたが、他の波長を用いても同様の効果が得られることは明らかである。 As described above, the photoexcitation current measurement using the excitation wavelength light source according to the present embodiment shows that the deviation of the TiO 2 film thickness (d TiO2−x −d TiO2−) in the case where the variation rate of the photoexcitation current is positive and negative. 0 ) and SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) can be eliminated in the regions (III) and (II), respectively, and the coating film thickness can be reduced to the designed film thickness. The process of approaching can be shortened. In this embodiment, 1310 nm is used as the design wavelength. However, it is obvious that the same effect can be obtained even if other wavelengths are used.

以下、図4乃至図6を用いて本発明の第2の実施例を詳細に説明する。本実施例においては、コーティング膜として1ペアの低屈折率(例えば、屈折率1.45)のSiO2膜と高屈折率(例えば、屈折率2.3)のTiO2膜からなるAR膜を使い、波長1310nmで最小反射率となるように、SiO2膜とTiO2膜の設計膜厚dSiO2-0とdTiO2-0を、それぞれ168.86と101.67nmとした。 Hereinafter, a second embodiment of the present invention will be described in detail with reference to FIGS. In this embodiment, an AR film composed of a pair of low refractive index (for example, refractive index 1.45) SiO 2 film and high refractive index (for example, refractive index 2.3) TiO 2 film as a coating film. The designed film thicknesses d SiO2-0 and d TiO2-0 of the SiO 2 film and the TiO 2 film were set to 168.86 and 101.67 nm, respectively, so that the minimum reflectance was obtained at a wavelength of 1310 nm.

図4にAR膜の膜厚のずれによって反射率が大きく変動する波長の一例として600nmの光を用いた場合における、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)によるAR膜の反射率の変化(計算値)を示す。図4に示すように、本実施例にあっては、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の値が±10nmの範囲において、AR膜の反射率が0.06〜0.18の範囲で変化している。 FIG. 4 shows the SiO 2 film thickness shift (d SiO 2−x −d SiO 2-0 ) and TiO 2 when light having a wavelength of 600 nm is used as an example of the wavelength at which the reflectance varies greatly due to the film thickness shift of the AR film. The change (calculated value) in the reflectivity of the AR film due to the film thickness deviation (d TiO2-x -d TiO2-0 ) is shown. As shown in FIG. 4, in this embodiment, the SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) and the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ). In the range of ± 10 nm, the reflectance of the AR film changes in the range of 0.06 to 0.18.

AR膜の反射率としてある一定値を付与する可能性のあるSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の関係はライン状の軌跡となり、SiO2とTiO2の膜厚が増加・減少するに従い、AR膜の反射率は、それぞれ、増加・減少している。また、図4に示す波長600nmの励起光源を用いた場合のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)が±10nmの範囲における反射率変動は、図9に示した波長1310nmの場合と比べ、一桁以上反射率の変化が大きくなっている。 The SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) and the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ), which may give a certain value as the reflectance of the AR film relationship) becomes linear trajectory, in accordance with the film thickness of SiO 2 and TiO 2 increases or decreases, the reflectivity of the AR film, respectively, it is increasing or decreasing. Further, SiO 2 film thickness deviation (d SiO2-x -d SiO2-0) and the TiO 2 film thickness deviation in the case of using an excitation light source of wavelength 600nm shown in FIG. 4 (d TiO2-x -d TiO2-0 ) In the range of ± 10 nm, the change in reflectance is larger by one digit or more than in the case of the wavelength of 1310 nm shown in FIG.

図5に、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)がそれぞれ0である場合の設計値の光励起電流を基準にして、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)に対して光励起電流の変動率を計算した結果を示す。反射率変動を反映して、LD端面の透過光が変動し、その結果、半導体に吸収される光励起電流が変化する。 5, photoexcitation of the design value when the SiO 2 film thickness deviation (d SiO2-x -d SiO2-0) and TiO 2 thickness deviation (d TiO2-x -d TiO2-0) is 0, respectively Based on the current, the rate of variation of the photoexcitation current with respect to the SiO 2 film thickness deviation (d SiO2-x −d SiO2-0 ) and the TiO 2 film thickness deviation (d TiO2-x −d TiO2-0 ) The calculated result is shown. Reflecting the reflectance variation, the light transmitted through the LD end face varies, and as a result, the photoexcitation current absorbed by the semiconductor changes.

図5に示すように、本実施例にあっては、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の値が±10nmの範囲において、光励起電流の変動率が6%〜−8%の範囲で変化しており、TiO2膜厚dTiO2-xとSiO2膜厚dSiO2-xが増加・減少するに従い、光励起電流は、それぞれ、減少・増加している。 As shown in FIG. 5, in the present embodiment, SiO 2 film thickness deviation (d SiO2-x -d SiO2-0) and TiO 2 thickness deviation (d TiO2-x -d TiO2-0) In the range of ± 10 nm, the fluctuation rate of the photoexcitation current changes in the range of 6% to -8%, and the TiO 2 film thickness d TiO2-x and the SiO 2 film thickness d SiO2-x increase / decrease. As a result, the photoexcitation current decreases and increases, respectively.

図5において、dSiO2-X−dSiO2-0=0のラインとdTiO2-X−dTiO2-0=0のラインを境界として4つの領域(I)〜(IV)に分ける。即ち、領域(I)、(II)、(III)と(IV)はそれぞれ(i)dSiO2-X−dSiO2-0<0及びdTiO2-X−dTiO2-0>0、(ii)dSiO2-X−dSiO2-0>0及びdTiO2-X−dTiO2-0>0、(iii)dSiO2-X−dSiO2-0<0及びdTiO2-X−dTiO2-0<0と(iv)dSiO2-X−dSiO2-0>0及びdTiO2-X−dTiO2-0<0の領域となる。 5, divided into four regions a line d SiO2-X -d SiO2-0 = 0 line and d TiO2-X -d TiO2-0 = 0 as the boundary (I) ~ (IV). That is, regions (I), (II), (III) and (IV) are respectively (i) dSiO2 -X- dSiO2-0 <0 and dTiO2 -X- dTiO2-0 > 0, (ii) dSiO2 -X- dSiO2-0 > 0 and dTiO2 -X- dTiO2-0 > 0, (iii) dSiO2 -X- dSiO2-0 <0 and dTiO2 -X- dTiO2-0 <0 a and (iv) d SiO2-X -d SiO2-0> 0 and d TiO2-X -d TiO2-0 <0 region.

ここで、光励起電流の変動率が正の場合と負の場合に注目すると、光励起電流の変動率が正の場合、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の値は領域(I)、(III)と(IV)に分布することがあるが、領域(II)に分布することはない。一方、光励起電流の変動率が負の場合、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の値は領域(I)、(II)と(IV)に分布することがあるが、領域(III)に分布することはない。 Here, paying attention to the cases where the fluctuation rate of the photoexcitation current is positive and negative, when the fluctuation rate of the photoexcitation current is positive, the SiO 2 film thickness deviation (d SiO2−x −d SiO2-0 ) and TiO 2 The value of the film thickness deviation ( dTiO2 -x- dTiO2-0 ) may be distributed in the regions (I), (III) and (IV), but not in the region (II). On the other hand, when the fluctuation rate of the photoexcitation current is negative, the values of the SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) and the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ) are It may be distributed in regions (I), (II) and (IV), but not in region (III).

つまり、光励起電流の変動率が正の場合と負の場合とでは、TiO2膜厚dTiO2-xとSiO2膜厚dSiO2-xを設計膜厚に近づけるために、それぞれ、TiO2膜厚dTiO2-X/SiO2膜厚dSiO2-Xを、減少/減少及び増加/増加にする解はないことを示している。 That is, in the case variation rate of the excitation current for positive and negative, in order to approximate the TiO 2 film thickness d TiO2-x and SiO 2 film thickness d SiO2-x on the design thickness, respectively, TiO 2 thickness This shows that there is no solution to decrease / decrease and increase / increase the d TiO2-X / SiO 2 film thickness dSiO2-X .

本実施例において、図3に示し上述した光励起電流測定系を用い、励起波長光源600nmとして、LD光出射端面の光励起電流を測定したところ、標準試料の光励起電流に比べ2%増加した。つまり、図5に示す領域(I)、(III)と(IV)にある2%のライン状軌跡に実際のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の関係を満たす可能性のある解があり、このライン状軌跡のどこかに実際の設計膜厚とのずれが存在する。これはTiO2膜厚dTiO2-x/SiO2膜厚dSiO2-xを、図5の(d)に示すように減少/増加するように変化させる、(e)に示すように増加/増加するように変化させる、又は、(f)に示すように増加/減少するように変化させることにより、AR膜の膜厚を設計膜厚に近づけることができることを示している。 In this example, when the photoexcitation current measurement system shown in FIG. 3 and described above was used to measure the photoexcitation current of the LD light emitting end face with an excitation wavelength light source of 600 nm, it increased by 2% compared to the photoexcitation current of the standard sample. That is, the actual SiO 2 film thickness deviation (d SiO2−x −d SiO2-0 ) and the TiO 2 film in the 2% line-like locus in the regions (I), (III) and (IV) shown in FIG. There is a solution that may satisfy the relationship of thickness deviation (d TiO2-x -d TiO2-0 ), and there is a deviation from the actual design film thickness somewhere in this linear locus. This is to change the TiO 2 film thickness d TiO2-x / SiO 2 film thickness d SiO2-x to decrease / increase as shown in FIG. 5 (d), and to increase / increase as shown in (e). It is shown that the film thickness of the AR film can be brought close to the design film thickness by changing so as to increase or decrease as shown in (f).

図6に本発明に係る設計値の光励起電流を基準にした場合における、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)による光励起電流の変動率特性(計算値)(図6中実線で示す)、及び、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)によるAR膜の反射率(波長1310nm)の変化(計算値)(図6中破線で示す)を示す。 In the case where the reference light excitation current design values according to the present invention in FIG. 6, SiO 2 film thickness deviation (d SiO2-x -d SiO2-0) and TiO 2 thickness deviation (d TiO2-x -d volatility characteristics of the excitation current by TiO2-0) (calculated) (shown in FIG. 6 solid line), and, of SiO 2 film thickness deviation and (d SiO2-x -d SiO2-0) of TiO 2 thickness deviation The change (calculated value) (indicated by a broken line in FIG. 6) of the reflectance (wavelength 1310 nm) of the AR film due to ( dTiO2 -x- dTiO2-0 ) is shown.

リップルの測定から設定波長を1310nmとした場合の反射率は0.0005であった。これにより、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の解は図6に示す反射率0.0005の同心円状軌跡上にあることがわかる。また、波長600nmの光励起電流測定から、SiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)の解は2%のライン状軌跡上にある。従って、反射率0.0005の同心円と光励起電流の変動率2%のラインが交わる点(A)と点(B)は双方を満足する点であり、どちらかの点が実際のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)である。これは、TiO2膜厚dTiO2-x/SiO2膜厚dSiO2-xを(A)減少/増加又は(B)増加/減少の方法により、設計膜厚に近づけることができることを意味している。 From the measurement of ripple, the reflectance when the set wavelength was 1310 nm was 0.0005. As a result, the solution of the SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) and the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ) has a reflectance of 0.0005 as shown in FIG. It can be seen that it is on a concentric locus. Further, the optical excitation current measurement wavelength 600 nm, the solution of the SiO 2 film thickness deviation (d SiO2-x -d SiO2-0) and the TiO 2 film thickness deviation (d TiO2-x -d TiO2-0) 2% It is on the linear trajectory. Therefore, the point (A) and the point (B) where the concentric circle with a reflectance of 0.0005 and the line with the fluctuation rate of 2% of the photoexcitation current intersect are both points, and either point is the actual SiO 2 film thickness. it is a deviation (d SiO2-x -d SiO2-0) and TiO 2 thickness deviation (d TiO2-x -d TiO2-0) . This means that the TiO 2 film thickness d TiO2-x / SiO 2 film thickness d SiO2-x can be brought close to the design film thickness by the method of (A) decrease / increase or (B) increase / decrease. Yes.

このように領域(II)と(III)を排除し、領域(I)にある点(A)、領域(IV)にある点(B)それぞれに基づいて膜厚の最適化を行った。まず、点(A)に基づいて設計膜厚に近づけるようにSiO2膜厚dSiO2-xを減少させTiO2膜厚dTiO2-xを増加させた結果、設計膜厚に相当する結果は得られなかった。一方、点(B)に基づいて設計膜厚に近づけるようにSiO2膜厚dSiO2-xを増加させTiO2膜厚dTiO2-xを減少させた結果、設計膜厚に相当する結果が得られた。この設計膜厚が得られた条件でLD端面にAR膜を形成した結果、設定波長1310nmにおける反射率が0.0002という良好な特性が得られた。 Thus, the regions (II) and (III) were excluded, and the film thickness was optimized based on the point (A) in the region (I) and the point (B) in the region (IV). First, as a result of decreasing the SiO 2 film thickness d SiO2-x and increasing the TiO 2 film thickness d TiO2-x so as to approach the design film thickness based on the point (A), a result corresponding to the design film thickness is obtained. I couldn't. On the other hand, as a result of increasing the SiO 2 film thickness d SiO2-x and decreasing the TiO 2 film thickness d TiO2-x so as to approach the design film thickness based on the point (B), a result corresponding to the design film thickness is obtained. It was. As a result of forming an AR film on the LD end face under the condition where the designed film thickness was obtained, a favorable characteristic of a reflectance of 0.0002 at a set wavelength of 1310 nm was obtained.

以上のように、本発明による励起波長光源を用いた光励起電流測定により、光励起電流の変動率が正の場合と負の場合とで、それぞれ領域(II)と領域(III)を排除でき、コーティング膜の膜厚を設計膜厚に近づけるプロセスを短縮できる。さらに、本発明の光励起電流測定から見積もった反射率の解を従来のリップル測定から見積もった反射率の解に取り込むことにより、取り得る解を2又は1点(本実施例では2点)に絞り込むことができ、コーティング膜の膜厚を設計膜厚に近づけるプロセスを更に短縮できる。   As described above, the photoexcitation current measurement using the excitation wavelength light source according to the present invention can eliminate the region (II) and the region (III), respectively, in the case where the fluctuation rate of the photoexcitation current is positive and negative, and the coating The process of bringing the film thickness closer to the designed film thickness can be shortened. Further, by incorporating the reflectance solution estimated from the photoexcitation current measurement of the present invention into the reflectance solution estimated from the conventional ripple measurement, the possible solutions are narrowed down to 2 or 1 point (in this embodiment, 2 points). In addition, the process of bringing the coating film thickness closer to the design film thickness can be further shortened.

なお、本実施例においては設計波長として1310nmを用いたが、他の波長を用いても同様の効果が得られることは明らかである。また、本実施例ではAR膜コーティングを施す半導体素子として半導体レーザを用いたが、半導体光増幅器又は半導体光スイッチ等アクティブ素子を用いても同様の効果が得られることは明らかである。   In this embodiment, 1310 nm is used as the design wavelength, but it is obvious that the same effect can be obtained even when other wavelengths are used. In this embodiment, the semiconductor laser is used as the semiconductor element to be coated with the AR film. However, it is obvious that the same effect can be obtained even if an active element such as a semiconductor optical amplifier or a semiconductor optical switch is used.

本発明は、光ファイバ通信、光情報処理、光ディスクなどに用いられる半導体レーザ、半導体光増幅器又は半導体光スイッチ等アクティブ素子に用いられているコーティング膜の反射率最適化を可能とする半導体素子端面の誘電体薄膜膜厚評価方法に適用して好適なものである。   The present invention relates to a semiconductor element end face that enables optimization of the reflectance of a coating film used in an active element such as a semiconductor laser, a semiconductor optical amplifier, or a semiconductor optical switch used in optical fiber communication, optical information processing, an optical disk, etc. It is suitable for application to a dielectric thin film thickness evaluation method.

本発明の実施例1における励起光の波長を940nmとした場合のTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)に対するHR反射率(計算値)を示すグラフである。TiO 2 thickness deviation and (d TiO2-x -d TiO2-0) of SiO 2 film thickness deviation in the case of the 940nm wavelength of the excitation light in the first embodiment of the present invention (d SiO2-x -d SiO2- 0 ) is a graph showing the HR reflectivity (calculated value). 本発明の実施例1における励起光の波長を940nmとした場合のTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)に対する光励起電流の変動率(計算値)を示すグラフである。TiO 2 thickness deviation and (d TiO2-x -d TiO2-0) of SiO 2 film thickness deviation in the case of the 940nm wavelength of the excitation light in the first embodiment of the present invention (d SiO2-x -d SiO2- 0 ) is a graph showing the fluctuation rate (calculated value) of the photoexcitation current. 本発明の実施例1に係る光励起電流測定装置の概略構成図である。It is a schematic block diagram of the photoexcitation current measuring apparatus which concerns on Example 1 of this invention. 本発明の実施例2における励起光の波長を600nmとした場合のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)に対するAR反射率(計算値)を示すグラフである。In Example 2 of the present invention, when the wavelength of the excitation light is 600 nm, the SiO 2 film thickness deviation (d SiO 2 −x −d SiO 2-0 ) and the TiO 2 film thickness deviation (d TiO 2 −x −d TiO 2− 0 ) is a graph showing the AR reflectance (calculated value). 本発明の実施例2における励起光の波長を600nmとした場合のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)に対する光励起電流の変動率(計算値)を示すグラフである。SiO 2 film thickness of the displacement (d SiO2-x -d SiO2-0) and the TiO 2 film thickness deviation in the case of the 600nm wavelength of the excitation light in the second embodiment of the present invention (d TiO2-x -d TiO2- 0 ) is a graph showing the fluctuation rate (calculated value) of the photoexcitation current. 本発明の実施例2における励起光の波長を600nmとした場合のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)に対する光励起電流の変動率(計算値)及び反射率を示すグラフである。In Example 2 of the present invention, when the wavelength of the excitation light is 600 nm, the SiO 2 film thickness deviation (d SiO 2 −x −d SiO 2-0 ) and the TiO 2 film thickness deviation (d TiO 2 −x −d TiO 2− 0 ) is a graph showing the fluctuation rate (calculated value) and reflectance of the photoexcitation current. 分布帰還型半導体レーザ(DFBレーザ)を一部破断して示す斜視図である。1 is a perspective view showing a distributed feedback semiconductor laser (DFB laser) partially cut away. FIG. 設定波長1310nmとした場合のTiO2膜厚のずれ(dTiO2-x−dTiO2-0)とSiO2膜厚のずれ(dSiO2-x−dSiO2-0)に対するHR反射率(計算値)を示すグラフである。TiO 2 film thickness deviation in the case of a set wavelength 1310nm (d TiO2-x -d TiO2-0 ) and HR reflectivity for SiO 2 thickness of the displacement (d SiO2-x -d SiO2-0) ( calculated) It is a graph which shows. 設定波長1310nmとした場合のSiO2膜厚のずれ(dSiO2-x−dSiO2-0)とTiO2膜厚のずれ(dTiO2-x−dTiO2-0)に対するAR反射率(計算値)を示すグラフである。AR reflectivity (calculated value) for SiO 2 film thickness deviation (d SiO2-x -d SiO2-0 ) and TiO 2 film thickness deviation (d TiO2-x -d TiO2-0 ) when setting wavelength is 1310 nm It is a graph which shows. 図10(a)はHR膜の反射率の波長依存性を示すグラフ、図10(b)はAR膜の反射率の波長依存性を示すグラフである。FIG. 10A is a graph showing the wavelength dependence of the reflectance of the HR film, and FIG. 10B is a graph showing the wavelength dependence of the reflectance of the AR film. HR膜及びAR膜の波長の変化に対する反射率の変動率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the fluctuation rate of the reflectance with respect to the change of the wavelength of HR film | membrane and AR film | membrane.

符号の説明Explanation of symbols

1 1.3μm組成InGaAsP活性層
2 1.1μm組成下部InGaAsPガイド層
3 1.1μm組成上部InGa AsPガイド層
4 p‐InPバッファー層
5 n‐InPクラッド層
6 n+‐InGaAsPキャップ層
7 p‐InP基板
8 Ru添加SI‐InP電流ブロック層
9 p電極
10 n電極
11 グレーティング
12 反射防止(AR)膜
13 高反射(HR)膜
14 励起光源
15 ビームスプリッタ
16 パワーメータ
17 ガルバノメータ
18 リレーレンズ
19 ミラー
20 測定試料
21 光励起電流測定器
22 コンピュータ
1 1.3 μm composition InGaAsP active layer 2 1.1 μm composition lower InGaAsP guide layer 3 1.1 μm composition upper InGa AsP guide layer 4 p-InP buffer layer 5 n-InP cladding layer 6 n + -InGaAsP cap layer 7 p-InP Substrate 8 Ru-added SI-InP current blocking layer 9 p electrode 10 n electrode 11 grating 12 antireflection (AR) film 13 high reflection (HR) film 14 excitation light source 15 beam splitter 16 power meter 17 galvanometer 18 relay lens 19 mirror 20 measurement Sample 21 Photoexcitation current measuring instrument 22 Computer

Claims (5)

第一の薄膜および第二の薄膜を備え、半導体素子の光出射端面に設けられて該光出射端面における反射率を決定する誘電体薄膜の膜厚評価方法であって、
前記誘電体薄膜に前記半導体素子の光出射端面外部から励起光を照射し、
前記半導体素子の出射端面を透過した光によって生成された光励起電流を測定し、
前記光励起電流の測定値に基づいて前記誘電体薄膜が設計膜厚である場合に対する前記光励起電流の変動率を算出し、
前記光励起電流の変動率の算出結果と、予め参考値として計算した前記第一の薄膜の設計膜厚と実際の膜厚のずれ及び前記第二の薄膜の設計膜厚と実際の膜厚のずれに対する前記光励起電流の変動率の関係とを比較し、
前記光励起電流の変動率の正負に応じて前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚の取り得る領域を決定する
ことを特徴とする半導体素子端面の誘電体薄膜膜厚評価方法。
A dielectric thin film thickness evaluation method comprising a first thin film and a second thin film, provided on a light emitting end face of a semiconductor element, and determining a reflectance at the light emitting end face,
Irradiating the dielectric thin film with excitation light from the outside of the light emitting end face of the semiconductor element,
Measure the photoexcitation current generated by the light transmitted through the emission end face of the semiconductor element,
Based on the measured value of the photoexcitation current, the rate of change of the photoexcitation current with respect to the case where the dielectric thin film has a design thickness is calculated,
The calculation result of the fluctuation rate of the photoexcitation current, the deviation between the design thickness and the actual film thickness of the first thin film calculated as a reference value in advance, and the deviation between the design thickness and the actual film thickness of the second thin film And the relationship of the variation rate of the photoexcitation current with respect to
An area where the actual film thickness of the first thin film and the actual film thickness of the second thin film can be taken is determined according to the sign of the rate of change of the photoexcitation current. Thin film thickness evaluation method.
前記励起光の波長が、実際の前記誘電体薄膜の膜厚と前記誘電体薄膜の設計膜厚との差によって生じる反射率の変化が大きい波長帯の範囲にある波長である
ことを特徴とする請求項1記載の半導体素子端面の誘電体薄膜膜厚評価方法。
The wavelength of the excitation light is a wavelength in a range of a wavelength band in which a change in reflectance caused by a difference between an actual thickness of the dielectric thin film and a design thickness of the dielectric thin film is large. The dielectric thin film film thickness evaluation method of the semiconductor element end surface according to claim 1.
前記励起光の波長として、前記誘電体薄膜の反射率が波長の変化に対して0.1%/nm以上又は−0.1%/nm以下変動する波長帯の波長を用いる
ことを特徴とする請求項2に記載の半導体素子端面の誘電体薄膜膜厚評価方法。
As the wavelength of the excitation light, a wavelength in a wavelength band in which the reflectance of the dielectric thin film varies by 0.1% / nm or more or −0.1% / nm or less with respect to a change in wavelength is used. The dielectric thin film film thickness evaluation method of the semiconductor element end surface according to claim 2.
前記光励起電流の変動率の算出結果と、前記参考値と、予め計算した前記第一の薄膜の設計膜厚と実際の膜厚のずれ及び前記第二の薄膜の設計膜厚と実際の膜厚のずれに対する前記光出射端面における反射率の関係とを比較し、
前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚の取り得る領域を決定する
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体素子端面の誘電体薄膜膜厚評価方法。
The calculation result of the fluctuation rate of the photoexcitation current, the reference value, the deviation between the design thickness and the actual film thickness of the first thin film calculated in advance, and the design film thickness and the actual film thickness of the second thin film. And the relationship of the reflectance at the light exit end face with respect to the deviation of
4. The semiconductor element according to claim 1, wherein an area where the actual film thickness of the first thin film and the actual film thickness of the second thin film can be determined is determined. 5. Method for evaluating the thickness of the dielectric thin film on the end face.
請求項1乃至請求項4のいずれか1項に係る半導体素子端面の誘電体薄膜膜厚評価方法によって得られた前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚の取り得る領域に基づいて前記第一の薄膜の実際の膜厚と前記第二の薄膜の実際の膜厚を導出し、導出した結果に基づいて前記第一の薄膜の膜厚及び前記第二の薄膜の膜厚が設計膜厚となるように調整することを特徴とする半導体素子端面の誘電体薄膜膜厚最適化方法。   The actual film thickness of said 1st thin film and the actual film thickness of said 2nd thin film obtained by the dielectric thin film film thickness evaluation method of the semiconductor element end surface concerning any one of Claims 1 thru | or 4 The actual film thickness of the first thin film and the actual film thickness of the second thin film are derived based on the area that can be taken, and the film thickness of the first thin film and the second film thickness are derived based on the derived result. A method for optimizing the thickness of a dielectric thin film on an end face of a semiconductor device, wherein the thickness of the thin film is adjusted to be a designed film thickness.
JP2007210599A 2007-08-13 2007-08-13 Method for evaluating dielectric thin film thickness on semiconductor element end face Expired - Fee Related JP4828485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210599A JP4828485B2 (en) 2007-08-13 2007-08-13 Method for evaluating dielectric thin film thickness on semiconductor element end face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210599A JP4828485B2 (en) 2007-08-13 2007-08-13 Method for evaluating dielectric thin film thickness on semiconductor element end face

Publications (2)

Publication Number Publication Date
JP2009044108A true JP2009044108A (en) 2009-02-26
JP4828485B2 JP4828485B2 (en) 2011-11-30

Family

ID=40444477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210599A Expired - Fee Related JP4828485B2 (en) 2007-08-13 2007-08-13 Method for evaluating dielectric thin film thickness on semiconductor element end face

Country Status (1)

Country Link
JP (1) JP4828485B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051072A (en) * 1996-07-31 1998-02-20 Hitachi Ltd Semiconductor laser device having reflection preventive film
JPH1126863A (en) * 1997-07-02 1999-01-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and its manufacture
JP2002344055A (en) * 2001-05-16 2002-11-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring semiconductor optical element
JP2005045128A (en) * 2003-07-24 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> Method for adjusting coating reflection factor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051072A (en) * 1996-07-31 1998-02-20 Hitachi Ltd Semiconductor laser device having reflection preventive film
JPH1126863A (en) * 1997-07-02 1999-01-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and its manufacture
JP2002344055A (en) * 2001-05-16 2002-11-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring semiconductor optical element
JP2005045128A (en) * 2003-07-24 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> Method for adjusting coating reflection factor

Also Published As

Publication number Publication date
JP4828485B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US5488678A (en) Assembly structure for an optical integrated circuit device
JPH10221572A (en) Optical device
US10186837B2 (en) Laser device
JP2008047692A (en) Self-induced oscillating semiconductor laser and manufacturing method therefor
JP6572209B2 (en) Optical device and method for manufacturing optical device
US20190356108A1 (en) Method of manufacturing semiconductor laser element, and semiconductor laser device thereof and gas analyzer
WO2000052795A1 (en) Semiconductor light-emitting device
JP4828485B2 (en) Method for evaluating dielectric thin film thickness on semiconductor element end face
JP2010003883A (en) Semiconductor laser device, optical module, and optical transceiver
KR100754956B1 (en) Semiconductor laser device and laser system
JP5616629B2 (en) High brightness light emitting diode
JP7145877B2 (en) semiconductor laser
US10063033B2 (en) Edge-emitting semiconductor laser
US20150138562A1 (en) Wavelength-variable laser including soa and optical coherence tomography apparatus including the laser
WO2016167071A1 (en) Grating element and external resonator-type light emitting device
CN110178275B (en) Semiconductor laser element and method for manufacturing semiconductor laser element
JP2000049417A (en) Semiconductor light emitting device semiconductor light emitting apparatus with such device and their manufacture
US11050218B2 (en) Method to tune emission wavelength of laser apparatus
US20010048704A1 (en) Distributed feedback laser diode
JPH1075004A (en) Semiconductor light-emitting device
JPS63222487A (en) Manufacture of semiconductor light emitting device
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JP2002374030A (en) Coherent light source and production method therefor
JP2010074028A (en) External resonator-type wavelength-variable laser module
Sumpf et al. Reliable operation of 1064 nm DBR tapered lasers and monolithic master oscillator tapered amplifiers at output powers up to 7 W

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees