JPH1051072A - Semiconductor laser device having reflection preventive film - Google Patents

Semiconductor laser device having reflection preventive film

Info

Publication number
JPH1051072A
JPH1051072A JP8201533A JP20153396A JPH1051072A JP H1051072 A JPH1051072 A JP H1051072A JP 8201533 A JP8201533 A JP 8201533A JP 20153396 A JP20153396 A JP 20153396A JP H1051072 A JPH1051072 A JP H1051072A
Authority
JP
Japan
Prior art keywords
film
thin film
semiconductor laser
silicon nitride
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8201533A
Other languages
Japanese (ja)
Inventor
Koji Nakahara
宏治 中原
Kazuhisa Uomi
和久 魚見
Masahiro Aoki
雅博 青木
Hideaki Takano
秀明 鷹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8201533A priority Critical patent/JPH1051072A/en
Publication of JPH1051072A publication Critical patent/JPH1051072A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To materialize low reflectance independent of the dispersion in manu facture of silicon nitrides. SOLUTION: A reflection preventive film is composed of the silicon nitride 101 of the first layer where the refractive index is 1.82 to 2.00 and the thickness of an optical film is seventeen-hundredths to twenty three-hundredths as large as the oscillated wavelength and the silicon oxide 102 of the second layer where the thickness of the optical film is three-hundredths to fifteen-hundredths as large as the oscillated wavelength. Here, selecting the silicon nitride and the silicon oxide of such film thickness and refractive indexes that the reflectance becomes minimum to the laser oscillating wavelength will enable the reflectance to be under 0.6% even if the dispersion in manufacture of silicon nitrides and silicon oxides occurs. This way, a reflection preventive film which has stable low reflectance independent of the refractive index and the film thickness of the silicon nitride 101 is provided, and the yield in single vertical mode of a DFB (distributed feedback type) can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信などに利用さ
れる情報伝送を行う半導体レ−ザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device for transmitting information used for optical communication and the like.

【0002】[0002]

【従来の技術】光通信システムが世界規模で拡充しつつ
ある今日、光通信用のレーザでは低コスト化のために製
造歩留まりの高い半導体レーザが求められている。中距
離及び長距離光通信では、単一縦モード発振を得るため
に活性層に隣接して回折格子を備えた分布帰還型(DF
B)レーザが使用される。しかし、同一周期の均一な回
折格子を備えたDFBレーザでは端面における回折格子
の位相により単一縦モードで発振するか2つのモードに
なるかが決定される。一般に回折格子の周期は200から2
40nm程度であり、現在の劈開技術の精度では回折格子の
端面の位相を制御することはできない。よって単一縦モ
ードで発振する割合は確率的に決まる。またこの確率は
レーザ端面の反射率によっても大きく変わる。図2に計
算によって得られた単一縦モード歩留まりの前端面反射
率依存性を示す。図より前端面の反射率は小さいほど歩
留まりは向上する。反射防止膜については、上手らによ
り「DFBレーザにおけるエラーレート特性の端面反射率
依存性」(昭和63年電子情報通信学会秋季全国大会C
ー153)に開示されているように一般に窒化シリコン
が用いられている。図3に従来例の斜視図を示す。図3
において302は半導体レーザの結晶部でその出射端面
に301の窒化シリコン薄膜を成膜する。305はスト
ライプの電極で303、305は他方の電極である。し
かし、窒化シリコンの反射率は最小でも1%程度であ
り、さらに窒化シリコン中の窒素の割合が一定でなく製
造の度にその割合が変わるので屈折率が5%程ばらつ
き、また膜厚も製造の度に5%程、変化するので反射率
は1%より高くなる場合が多々あり、DFBレーザの単
一縦モード発振の歩留まりの向上を妨げていた。
2. Description of the Related Art Today, as optical communication systems are expanding on a worldwide scale, semiconductor lasers with a high production yield are required for lasers for optical communication in order to reduce costs. In medium- and long-distance optical communications, distributed feedback (DF) with a diffraction grating adjacent to the active layer to obtain single longitudinal mode oscillation
B) A laser is used. However, in a DFB laser having a uniform diffraction grating having the same period, whether the laser oscillates in a single longitudinal mode or has two modes is determined by the phase of the diffraction grating at the end face. Generally, the grating period is 200 to 2
Since it is about 40 nm, the phase of the end face of the diffraction grating cannot be controlled with the accuracy of the current cleavage technology. Therefore, the ratio of oscillation in the single longitudinal mode is determined stochastically. This probability also varies greatly depending on the reflectivity of the laser end face. FIG. 2 shows the dependence of the single longitudinal mode yield obtained by calculation on the reflectance of the front end face. As shown in the drawing, the yield increases as the reflectance of the front end face decreases. Regarding the anti-reflection film, he described “Dependence of the error rate characteristic of DFB laser on the facet reflectivity” (The IEICE Fall National Convention C, 1988)
-153), silicon nitride is generally used. FIG. 3 shows a perspective view of a conventional example. FIG.
Reference numeral 302 denotes a crystal part of the semiconductor laser, and a silicon nitride thin film 301 is formed on the emission end face thereof. Reference numeral 305 denotes a stripe electrode, and reference numerals 303 and 305 denote the other electrode. However, the reflectance of silicon nitride is at least about 1%, and furthermore, the ratio of nitrogen in silicon nitride is not constant and changes with each production, so that the refractive index varies by about 5%, and the film thickness also varies. Each time, the reflectivity changes by about 5%, so that the reflectivity often becomes higher than 1%, which hinders the improvement of the yield of the single longitudinal mode oscillation of the DFB laser.

【0003】また、半導体レーザと電界吸収型変調器が
集積化された変調器集積化レーザ光源はその優れた特性
から長距離通信用に使用されるが、出射端面の反射によ
り特性が著しく劣化する。つまり、0.05%以上の反射が
あると電界吸収型変調器で強度変調された反射光がレー
ザ部に戻り、レーザ部の発振波長の変動を生じるという
問題である。これを解決するため、出射前端面の一部に
窓領域を作り、反射防止膜と窓領域との組み合わせで反
射率を下げる構成が一般的に用いられる。この構成にお
いて窓領域端面の反射防止膜は0.2%以下にする必要があ
り窒化シリコン単層膜での反射防止膜形成は困難であっ
た。
A modulator-integrated laser light source in which a semiconductor laser and an electro-absorption modulator are integrated is used for long-distance communication because of its excellent characteristics. . In other words, there is a problem that if there is a reflection of 0.05% or more, the reflected light intensity-modulated by the electroabsorption modulator returns to the laser unit, and the oscillation wavelength of the laser unit fluctuates. In order to solve this, a configuration is generally used in which a window region is formed in a part of the front end face of the light emission, and the reflectance is reduced by a combination of the antireflection film and the window region. In this configuration, the amount of the antireflection film on the end face of the window region needs to be 0.2% or less, and it is difficult to form the antireflection film using a silicon nitride single layer film.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は窒化シ
リコンの製造ばらつきに依らない低反射率を実現する構
造の反射防止膜を提供し、DFBレーザにおける高歩留
まりの単一縦モードを実現することにある。また、変調
器集積化レーザ光源の窓領域前端面に安定した低反射率
を実現する反射防止膜を提供し、レーザ部への戻り光の
無い、良好な高周波特性の変調器集積化レーザ光源を実
現することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an antireflection film having a structure realizing a low reflectance independent of manufacturing variations of silicon nitride, and to realize a single longitudinal mode with a high yield in a DFB laser. It is in. In addition, an anti-reflection film that realizes a stable low reflectivity is provided on the front end face of the window region of the modulator integrated laser light source, and a modulator integrated laser light source having good high-frequency characteristics without returning light to the laser unit is provided. Is to make it happen.

【0005】[0005]

【課題を解決するための手段】上記の課題は以下の手段
により解決される。
The above object is achieved by the following means.

【0006】図1のように半導体レーザ結晶部103の
光出射端面に少なくとも窒化シリコン薄膜101、酸化
シリコン薄膜102を順に形成する。図1において10
4は上部電極、105はストライプ、106は下部電極
である。前述のように窒化シリコン膜は屈折率が製造の
度にばらつくが酸化シリコン膜の屈折率は1.45とほぼ一
定となる。ばらつく可能性のある窒化シリコンの屈折率
を成膜装置で成膜されたものの平均値として使用し、半
導体レーザの端面から上記の誘電薄膜を通り外部へ出射
されるレーザ光の反射率が最小となるときの窒化シリコ
ン、酸化シリコンの膜厚を求め、これらの膜厚で反射防
止膜を構成すると、製造ばらつきが生じても反射率は0.
6%を越えない。表1に反射率の膜厚及び屈折ばらつき依
存性の例を示す。これは1.3μm帯DFBレーザに本発
明の反射率を適用した例である。反射率の計算は厳密解
が求められる有効フレネル法を使用した。半導体レーザ
の有効屈折率は3.241で、酸化シリコンの屈折率は定数
として計算した。表より窒化シリコンの膜厚及び屈折率
が5%、酸化シリコンの膜厚が5%変化しても反射率は
0.55%未満であることがわかる。以上の手段により前述
の課題は解決される。
As shown in FIG. 1, at least a silicon nitride thin film 101 and a silicon oxide thin film 102 are sequentially formed on a light emitting end face of a semiconductor laser crystal part 103. In FIG.
4 is an upper electrode, 105 is a stripe, and 106 is a lower electrode. As described above, the refractive index of the silicon nitride film varies every time it is manufactured, but the refractive index of the silicon oxide film is almost constant at 1.45. The refractive index of silicon nitride, which may vary, is used as the average value of those formed by the film forming apparatus, and the reflectance of laser light emitted from the end face of the semiconductor laser to the outside through the dielectric thin film is minimized. When the thicknesses of silicon nitride and silicon oxide are determined, and the antireflection film is formed with these film thicknesses, the reflectance is reduced to 0.
Does not exceed 6%. Table 1 shows examples of the dependency of the reflectance on the film thickness and refraction variation. This is an example in which the reflectance of the present invention is applied to a 1.3 μm band DFB laser. The calculation of the reflectivity used the effective Fresnel method which requires an exact solution. The effective refractive index of the semiconductor laser was 3.241, and the refractive index of silicon oxide was calculated as a constant. From the table, even if the film thickness and refractive index of silicon nitride change by 5% and the film thickness of silicon oxide changes by 5%, the reflectivity remains unchanged.
It turns out that it is less than 0.55%. The above-mentioned problem is solved by the above means.

【0007】[0007]

【表1】 [Table 1]

【0008】製造ばらつきによらず、さらに反射率を低
減させるためには以下の手段による。まず上記の方法に
より予め最小反射率となる第1層の窒化シリコンと第2
層の酸化シリコンの膜厚を求める。計算により得られた
膜厚で第1層の窒化シリコンを半導体レーザ端面に成膜
する。成膜後、エリプソメータなどを使用して窒化シリ
コンの膜厚及び屈折率を測定する。次にこの測定値を定
数として最小となる反射率の場合の酸化シリコンの膜厚
を再度、厳密解の有効フレネル法または近似解であるベ
クター法で計算する。算出された第2層酸化シリコンの
膜厚を第1層窒化シリコン上に成膜することで本発明の
目的は達成される。また簡便には窒化シリコン成膜後、
反射率の測定により光学膜厚を測定し、窒化シリコンの
平均の屈折率を使用することで第2層酸化シリコンの膜
厚を補正することも可能である。
In order to further reduce the reflectivity irrespective of manufacturing variations, the following means are used. First, the silicon nitride of the first layer and the second
The thickness of the silicon oxide layer is determined. A first layer of silicon nitride is formed on the end face of the semiconductor laser with a thickness obtained by calculation. After the film formation, the thickness and the refractive index of the silicon nitride are measured using an ellipsometer or the like. Next, the film thickness of the silicon oxide in the case of the reflectance which minimizes the measured value as a constant is calculated again by the effective Fresnel method of the exact solution or the vector method which is the approximate solution. The object of the present invention is achieved by forming the calculated film thickness of the second layer silicon oxide on the first layer silicon nitride. Also, simply after silicon nitride deposition,
It is also possible to measure the optical film thickness by measuring the reflectance and to correct the film thickness of the second layer silicon oxide by using the average refractive index of silicon nitride.

【0009】窒化シリコン薄膜の屈折率の製造ばらつき
を定量化するために窒化シリコン薄膜の屈折率を統計的
に調査した。この結果を図4に示す。図4から窒化シリ
コン薄膜の平均屈折率は1.91で標準偏差は2σ=0.091
であった。よって窒化シリコン薄膜は1.82から2.00まで
ばらつくことがわかる。また、半導体レーザのストライ
プ内の有効屈折率はその発振波長によって3.1から3.27
まで変化する。このような範囲で屈折率が変化した場合
に、最小反射率を取る時の窒化シリコン薄膜と酸化シリ
コン薄膜の2層膜のそれぞれの光学膜厚をレーザの発振
波長で割った値を求め、それらの取り得る範囲について
計算した結果を図5に示す。ここで光学膜厚とはその薄
膜の屈折率と膜厚をかけたものである。図5から窒化シ
リコン薄膜は光学膜厚でレーザの発振波長の0.17倍から
0.24倍まで変化し、酸化シリコン薄膜は光学膜厚でレー
ザの発振波長の0.03倍から0.15倍まで変化することが判
明した。よってこの範囲内で有効フレネル法またはベク
ター法で計算を行い、最小反射率を持つ、窒化シリコン
薄膜と酸化シリコン薄膜の光学膜厚の組み合わせを選べ
ば良い。尚、この範囲内での最小反射率は1×10-3%以
下であり反射防止膜として十分な特性を持つ。
[0009] In order to quantify the manufacturing variation of the refractive index of the silicon nitride thin film, the refractive index of the silicon nitride thin film was statistically investigated. The result is shown in FIG. From FIG. 4, the average refractive index of the silicon nitride thin film is 1.91 and the standard deviation is 2σ = 0.091.
Met. Thus, it can be seen that the silicon nitride thin film varies from 1.82 to 2.00. The effective refractive index in the stripe of the semiconductor laser is 3.1 to 3.27 depending on the oscillation wavelength.
To change. When the refractive index changes in such a range, the value obtained by dividing each optical film thickness of the two-layer film of the silicon nitride thin film and the silicon oxide thin film at the time of obtaining the minimum reflectance by the laser oscillation wavelength is obtained. FIG. 5 shows the result calculated for the range that can be taken. Here, the optical film thickness is obtained by multiplying the refractive index of the thin film by the film thickness. From Fig. 5, the silicon nitride thin film has an optical thickness of 0.17 times the oscillation wavelength of the laser.
It was found that the thickness of the silicon oxide thin film varied from 0.03 times to 0.15 times the laser oscillation wavelength at the optical thickness. Therefore, calculation may be performed by the effective Fresnel method or the vector method within this range, and a combination of the optical thickness of the silicon nitride thin film and the silicon oxide thin film having the minimum reflectance may be selected. The minimum reflectance within this range is 1 × 10 −3 % or less, which is sufficient for an antireflection film.

【0010】[0010]

【発明の実施の形態】本発明による第1の実施例を図6
に示す。図6において605、608はそれぞれ半導体
レーザの上部電極、下部電極である。レーザ構造は当該
分野で周知なものでよく例えばp型InP基板上の埋め込
み型DFBレーザ603を使用する。発振波長は1.3μmで
ある。活性層は井戸層に圧縮歪を有するInGaAsPの多重
量子井戸構造である。活性層607を含めたストライプ
の有効屈折率は3.241であった。1周期202.0nmの回折格
子604を活性層に隣接して設けている。後端面606
にはアモルファスシリコンと酸化シリコンから成る反射
率70%の反射コーティングを施してある。前端面60
1、602は本発明による反射防止膜である。有効フレ
ネル法の計算によると最小反射率のときの窒化シリコ
ン、酸化シリコンの膜厚はそれぞれ0.134μm、0.087μ
mである。このとき窒化シリコンの屈折率は1.901を使
用した。この計算に基づき、RFスパッタ法により第1
層窒化シリコン薄膜、第2層酸化シリコン薄膜を成膜し
た。成膜後に第1層、第2層の膜厚及び屈折率を測定し
たところ、窒化シリコン膜は屈折率1.940,膜厚0.129μm
で酸化シリコン膜は屈折率1.45,膜厚0.085μmであっ
た。反射率は再計算によると0.09%、測定では0.1%とな
った。この反射防止膜による半導体DFBレーザの単一縦
モード発振の歩留まりは44%と高かった。
FIG. 6 shows a first embodiment of the present invention.
Shown in In FIG. 6, reference numerals 605 and 608 denote an upper electrode and a lower electrode of the semiconductor laser, respectively. The laser structure may be well known in the art, for example using an embedded DFB laser 603 on a p-type InP substrate. The oscillation wavelength is 1.3 μm. The active layer has a multiple quantum well structure of InGaAsP having a compressive strain in the well layer. The effective refractive index of the stripe including the active layer 607 was 3.241. A diffraction grating 604 having a period of 202.0 nm is provided adjacent to the active layer. Rear end face 606
Has a reflective coating made of amorphous silicon and silicon oxide with a reflectance of 70%. Front end face 60
Reference numerals 1 and 602 are antireflection films according to the present invention. According to the calculation of the effective Fresnel method, the film thicknesses of silicon nitride and silicon oxide at the minimum reflectance are 0.134 μm and 0.087 μm, respectively.
m. At this time, the refractive index of silicon nitride was 1.901. Based on this calculation, the first
A layer silicon nitride thin film and a second layer silicon oxide thin film were formed. When the film thickness and the refractive index of the first layer and the second layer were measured after the film formation, the silicon nitride film had a refractive index of 1.940 and a film thickness of 0.129 μm.
As a result, the silicon oxide film had a refractive index of 1.45 and a thickness of 0.085 μm. The reflectivity was 0.09% by recalculation and 0.1% by measurement. The yield of single longitudinal mode oscillation of the semiconductor DFB laser using the antireflection film was as high as 44%.

【0011】本発明による第2の実施例を図6に示す。
レーザ構造は当該分野で周知なものでよく例えばn型In
P基板上のリッジ型DFBレーザ603を使用する。発振波
長は1.55μmである。活性層は井戸層に圧縮歪を有する
InGaAsPの多重量子井戸構造である。活性層を含めた多
層構造の有効屈折率は3.195であった。1周期241.0nmの
回折格子604を活性層に隣接して設けている。後端面
608にはアモルファスシリコンと酸化シリコンから成
る反射率90%の反射コーティングを施してある。前端
面601、602は本発明による反射防止膜である。ベ
クターの計算によると最小反射率のときの窒化シリコ
ン、酸化シリコンの膜厚はそれぞれ0.151μm、0.118μ
mである。この計算に基づき、RFスパッタ法により第
1層窒化シリコン薄膜を成膜した。窒化シリコン形成
後、エリプソメータにより屈折率及び膜厚を測定したと
ころ、それぞれ1.853、膜厚0.162μmであった。この測
定値を基に再度、ベクター法により酸化シリコンを窒化
シリコン上に付けたときに最小となる反射率を求め、膜
厚0.101μmを得た。次にこの膜厚で酸化シリコンを窒
化シリコン上に成膜した。その結果、反射防止膜の反射
率は0.18%となった。本発明の反射防止膜を備えた半
導体レーザの単一縦モード発振の歩留まりは62%と高
かった。
FIG. 6 shows a second embodiment according to the present invention.
The laser structure may be well known in the art, for example, n-type In.
A ridge type DFB laser 603 on a P substrate is used. The oscillation wavelength is 1.55 μm. Active layer has compressive strain in well layer
It is a multiple quantum well structure of InGaAsP. The effective refractive index of the multilayer structure including the active layer was 3.195. A diffraction grating 604 having a period of 241.0 nm is provided adjacent to the active layer. The rear end face 608 is provided with a reflective coating made of amorphous silicon and silicon oxide with a reflectivity of 90%. The front end faces 601 and 602 are antireflection films according to the present invention. According to the vector calculation, the film thicknesses of silicon nitride and silicon oxide at the minimum reflectance are 0.151 μm and 0.118 μm, respectively.
m. Based on this calculation, a first-layer silicon nitride thin film was formed by an RF sputtering method. After the formation of silicon nitride, the refractive index and the film thickness were measured by an ellipsometer and found to be 1.853 and 0.162 μm, respectively. Based on this measured value, the reflectance which becomes the minimum when silicon oxide was applied to silicon nitride by the vector method was determined again, and a film thickness of 0.101 μm was obtained. Next, silicon oxide was formed on the silicon nitride with this thickness. As a result, the reflectance of the antireflection film was 0.18%. The yield of single longitudinal mode oscillation of the semiconductor laser provided with the antireflection film of the present invention was as high as 62%.

【0012】本発明による第3の実施例を図7に示す。
図7はn型InP基板上の変調器集積化レーザ光源の模式
図である。図7において705、708はそれぞれ集積
化レーザ光源の半導体レーザ部の上部電極、下部電極で
あり、また706は半導体レーザ部の後端面反射膜であ
る。レーザ部703の発振波長は1.55μmである。活性
層707はInGaAsPの多重量子井戸構造である。704
の回折格子により単一発振モードを得ている。変調器集
積化レーザ光源では、レーザ部は常時レーザ発光させて
おき、その前にある変調器709でレーザ光を高速変調
する。変調器内の多重量子井戸層710はレーザ部の多
重量子井戸層よりエネルギーバンドギャップが大きくな
るように作製されている。変調器の電極711に逆電圧
を加えると量子閉じ込めシュタルク効果によりレーザ光
は変調器で吸収され、レーザ光は外部に出ない。変調器
部上部電極711に電圧を加えないときにはレーザ光は
変調器で吸収されずに外部にレーザ光が出力される。7
12はInPの窓領域で、701、702が本発明による
反射防止膜である。InP窓領域の屈折率は3.17である。
有効フレネル法の計算によると最小反射率のときの窒化
シリコン、酸化シリコンの膜厚はそれぞれ0.158μm、
0.108μmである。このとき窒化シリコンの屈折率は1.8
99を使用した。この計算に基づき、RFスパッタ法によ
り第1層窒化シリコン薄膜、第2層酸化シリコン薄膜を
成膜した。成膜後に第1層、第2層の膜厚及び屈折率を
測定したところ、窒化シリコン膜は屈折率1.870,膜厚0.
150μmで酸化シリコン膜は屈折率1.45,膜厚0.112μmで
あった。反射率は再計算によると0.09%、測定では0.11
%となった。窓領域を含めた反射率は0.03%未満とな
り、この変調器集積化レーザ光源の高周波応答特性は1
3GHzまで平坦で良好な特性が得られた。また戻り光低
減によるチャーピング減少の効果により伝送速度毎秒2.
5Gbでの通常分散ファイバへの最大伝送距離が、窒化シ
リコンの単層膜を用いた場合の200kmから、600km
以上に増大した。
FIG. 7 shows a third embodiment according to the present invention.
FIG. 7 is a schematic view of a modulator integrated laser light source on an n-type InP substrate. In FIG. 7, reference numerals 705 and 708 denote an upper electrode and a lower electrode of the semiconductor laser portion of the integrated laser light source, respectively, and 706 denotes a rear end face reflection film of the semiconductor laser portion. The oscillation wavelength of the laser unit 703 is 1.55 μm. The active layer 707 has a multiple quantum well structure of InGaAsP. 704
A single oscillation mode is obtained by the diffraction grating. In the modulator integrated laser light source, the laser unit always emits laser light, and the modulator 709 in front of the laser unit modulates the laser light at high speed. The multiple quantum well layer 710 in the modulator is manufactured so that the energy band gap is larger than that of the multiple quantum well layer in the laser unit. When a reverse voltage is applied to the electrode 711 of the modulator, the laser light is absorbed by the modulator due to the quantum confined Stark effect, and the laser light does not go out. When no voltage is applied to the modulator upper electrode 711, the laser light is output to the outside without being absorbed by the modulator. 7
Reference numeral 12 denotes an InP window region, and reference numerals 701 and 702 denote antireflection films according to the present invention. The refractive index of the InP window region is 3.17.
According to the calculation of the effective Fresnel method, the film thickness of silicon nitride and silicon oxide at the time of the minimum reflectance is 0.158 μm, respectively.
0.108 μm. At this time, the refractive index of silicon nitride is 1.8
99 was used. Based on this calculation, a first-layer silicon nitride thin film and a second-layer silicon oxide thin film were formed by RF sputtering. When the film thickness and the refractive index of the first layer and the second layer were measured after the film formation, the silicon nitride film had a refractive index of 1.870 and a film thickness of 0.2.
At 150 μm, the silicon oxide film had a refractive index of 1.45 and a thickness of 0.112 μm. Reflectivity is 0.09% by recalculation and 0.11 by measurement
%. The reflectivity including the window area is less than 0.03%, and the high frequency response characteristic of this modulator integrated laser light source is 1
Flat and good characteristics were obtained up to 3 GHz. In addition, the transmission speed 2.
The maximum transmission distance to a normal dispersion fiber at 5 Gb is from 200 km using a single-layer film of silicon nitride to 600 km.
It increased above.

【0013】[0013]

【発明の効果】本発明によれば、窒化シリコンの製造ば
らつきによらずに安定した反射防止膜(反射率<0.6%)
を容易に作製可能であり、DFBレーザの単一縦モード
発振の歩留まりを向上することができる。また変調器集
積化レーザ光源においては戻り光を低減し、高周波特性
を容易に向上することができる。
According to the present invention, a stable anti-reflection film (reflectivity <0.6%) regardless of manufacturing variations of silicon nitride.
Can be easily manufactured, and the yield of single longitudinal mode oscillation of the DFB laser can be improved. In the modulator integrated laser light source, return light can be reduced, and high frequency characteristics can be easily improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体レーザ端面上の反射防止
膜。
FIG. 1 shows an antireflection film on a semiconductor laser end face according to the present invention.

【図2】DFBレーザの単一縦モード歩留まりの前端面
反射率依存性の計算値の一例。
FIG. 2 is an example of a calculated value of a front end face reflectance dependency of a single longitudinal mode yield of a DFB laser.

【図3】従来例の模式図。FIG. 3 is a schematic view of a conventional example.

【図4】窒化シリコン薄膜の屈折率の製造ばらつきを示
す図。
FIG. 4 is a diagram showing manufacturing variations in the refractive index of a silicon nitride thin film.

【図5】窒化シリコン薄膜及び酸化シリコン薄膜が最小
反射率となるときのそれぞれの光学膜厚/レーザ発振波
長の窒化シリコン薄膜依存性。
FIG. 5 shows the dependency of the optical film thickness / laser oscillation wavelength on the silicon nitride thin film when the silicon nitride thin film and the silicon oxide thin film have the minimum reflectance.

【図6】本発明に基づいた第1及び第2の実施例による
模式図。
FIG. 6 is a schematic diagram according to first and second embodiments according to the present invention.

【図7】本発明に基づいた第3の実施例による模式図。FIG. 7 is a schematic diagram according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 窒化シリコン薄膜 102 酸化シリコン薄膜 103 半導体レーザ 104 上部電極 105 ストライプ 106 下部電極 301 窒化シリコン薄膜 302 半導体レーザ 303 上部電極 305 ストライプ 306 下部電極 601 窒化シリコン薄膜 602 酸化シリコン薄膜 603 半導体レーザ(p型InP基板上埋込型DFBレ
ーザまたはn型InP基板上リッジ型DFBレーザ) 604 回折格子(202.0nmまたは241.0nm) 605 上部電極 606 後端面反射膜 607 活性層(有効屈折率3.241または3.195) 608 下部電極 701 窒化シリコン薄膜 702 酸化シリコン薄膜 703 半導体レーザ部(n型InP基板上DFBレー
ザ) 704 回折格子(202.0nm) 705 上部電極 706 後端面反射膜 707 活性層 708 下部電極 709 変調器部 710 変調器部多重量子井戸層 711 変調器部上部電極 712 窓領域部。
Reference Signs List 101 silicon nitride thin film 102 silicon oxide thin film 103 semiconductor laser 104 upper electrode 105 stripe 106 lower electrode 301 silicon nitride thin film 302 semiconductor laser 303 upper electrode 305 stripe 306 lower electrode 601 silicon nitride thin film 602 silicon oxide thin film 603 semiconductor laser (p-type InP substrate) Top embedded type DFB laser or ridge type DFB laser on n-type InP substrate 604 Diffraction grating (202.0 nm or 241.0 nm) 605 Upper electrode 606 Rear end reflection film 607 Active layer (effective refractive index 3.241 or 3.195) 608 Lower electrode 701 Silicon nitride thin film 702 Silicon oxide thin film 703 Semiconductor laser unit (DFB laser on n-type InP substrate) 704 Diffraction grating (202.0 nm) 705 Upper electrode 706 Rear end reflection film 707 Active layer 708 Lower electrode 709 Modulator unit 710 Modulator unit multiplex Child well layer 711 modulator section upper electrode 712 window region part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷹野 秀明 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideaki Takano 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光を閉じ込めるストライプ部と発生した光
からレーザ光を得るための共振器構造を有し、ストライ
プ部の実効的な屈折率である有効屈折率が3.1から3.27
の半導体レーザにおいて、少なくとも1つ以上の光出射
端面上に順に形成された第1、第2の誘電体薄膜を備
え、第1の誘電体薄膜は、光学膜厚が前記半導体レーザ
の発振波長の0.17倍から0.23倍である窒化シリコンから
成り、第2の誘電体薄膜が酸化シリコンから成る反射防
止膜を有する半導体レーザ装置。
The present invention has a stripe structure for confining light and a resonator structure for obtaining a laser beam from generated light, and an effective refractive index which is an effective refractive index of the stripe portion is 3.1 to 3.27.
Semiconductor laser comprising: a first and a second dielectric thin film sequentially formed on at least one or more light emitting end faces, wherein the first dielectric thin film has an optical thickness of an oscillation wavelength of the semiconductor laser. A semiconductor laser device comprising silicon nitride of 0.17 times to 0.23 times, and a second dielectric thin film having an antireflection film made of silicon oxide.
【請求項2】請求項1記載の反射防止膜において第1の
誘電体薄膜の窒化シリコン薄膜の屈折率が1.82から2.00
であることを特徴とする請求項1記載の反射防止膜を有
する半導体レーザ装置。
2. The antireflection film according to claim 1, wherein the first dielectric thin film has a refractive index of 1.82 to 2.00.
2. A semiconductor laser device having an anti-reflection film according to claim 1, wherein:
【請求項3】請求項2記載の反射防止膜において第2の
誘電体薄膜の酸化シリコンの光学膜厚が0.03から0.15倍
であることを特徴とする請求項2記載の半導体レーザ用
反射防止膜を有する半導体レーザ装置。
3. The anti-reflection coating for a semiconductor laser according to claim 2, wherein the optical thickness of the silicon oxide of the second dielectric thin film is 0.03 to 0.15 times. A semiconductor laser device having:
【請求項4】前記の反射防止膜において第1の誘電体薄
膜を形成後、観測された第1の誘電体薄膜の屈折率、膜
厚により、前記半導体レーザの端面から第1、第2の誘
電体薄膜を通り外部へ出射されるレーザ光の反射率を最
小とするときの第2の誘電体薄膜の膜厚が補正された値
を持つことを特徴とする半導体レーザ用反射防止薄膜を
有する請求項1、請求項2及び請求項3のいずれかに記
載の半導体レーザ装置。
4. After forming a first dielectric thin film on the antireflection film, the first and second dielectric thin films are measured from the end face of the semiconductor laser in accordance with the observed refractive index and film thickness of the first dielectric thin film. An anti-reflection thin film for a semiconductor laser, wherein the thickness of the second dielectric thin film has a corrected value when the reflectance of the laser light emitted outside through the dielectric thin film is minimized. The semiconductor laser device according to claim 1.
JP8201533A 1996-07-31 1996-07-31 Semiconductor laser device having reflection preventive film Pending JPH1051072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201533A JPH1051072A (en) 1996-07-31 1996-07-31 Semiconductor laser device having reflection preventive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201533A JPH1051072A (en) 1996-07-31 1996-07-31 Semiconductor laser device having reflection preventive film

Publications (1)

Publication Number Publication Date
JPH1051072A true JPH1051072A (en) 1998-02-20

Family

ID=16442632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201533A Pending JPH1051072A (en) 1996-07-31 1996-07-31 Semiconductor laser device having reflection preventive film

Country Status (1)

Country Link
JP (1) JPH1051072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103081B2 (en) 2002-10-18 2006-09-05 Sumitomo Electric Industries, Ltd. DFB laser with ar coating selected to provide wide temperature range of operation
JP2009044108A (en) * 2007-08-13 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Dielectric thin film thickness evaluation method of semiconductor element end surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103081B2 (en) 2002-10-18 2006-09-05 Sumitomo Electric Industries, Ltd. DFB laser with ar coating selected to provide wide temperature range of operation
JP2009044108A (en) * 2007-08-13 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Dielectric thin film thickness evaluation method of semiconductor element end surface

Similar Documents

Publication Publication Date Title
JP3714430B2 (en) Distributed feedback semiconductor laser device
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
US5978400A (en) Laser
US7103081B2 (en) DFB laser with ar coating selected to provide wide temperature range of operation
EP0300790A2 (en) Semiconductor laser
JPH1154832A (en) Distributed feedback semiconductor laser
JP2001320124A (en) Modulator integrated light source and module for optical communication
JP2001156392A (en) Method for fabricating low temperature operation semiconductor laser
US6545296B1 (en) Semiconductor light emitting device
US20200036162A1 (en) Laser
JPH0468798B2 (en)
US6825505B2 (en) Phase-shifted distributed feedback type semiconductor laser diode capable of improving wavelength chirping and external reflection return light characteristics
EP1037343A2 (en) Distributed feedback semiconductor laser
US7627012B2 (en) Distributed feedback semiconductor laser including wavelength monitoring section
JP2001320125A (en) Semiconductor laser device
JPH1051072A (en) Semiconductor laser device having reflection preventive film
US6778573B2 (en) Fundamental-transverse-mode index-guided semiconductor laser device having upper optical waveguide layer thinner than lower optical waveguide layer
US7215694B2 (en) Semiconductor laser device
JPS6232680A (en) Integrated type semiconductor laser
KR100429531B1 (en) Distributed feedback semiconductor laser
JPH11330540A (en) Superluminescent diode
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
EP1396913A1 (en) Single mode distributed feedback lasers
JP3239387B2 (en) Semiconductor laser and method of manufacturing the same
JPH1075004A (en) Semiconductor light-emitting device