JPS63222487A - Manufacture of semiconductor light emitting device - Google Patents

Manufacture of semiconductor light emitting device

Info

Publication number
JPS63222487A
JPS63222487A JP62056035A JP5603587A JPS63222487A JP S63222487 A JPS63222487 A JP S63222487A JP 62056035 A JP62056035 A JP 62056035A JP 5603587 A JP5603587 A JP 5603587A JP S63222487 A JPS63222487 A JP S63222487A
Authority
JP
Japan
Prior art keywords
layer
temperature
inp
active layer
dfb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056035A
Other languages
Japanese (ja)
Inventor
Yoshitaka Furutsu
古津 美貴
Haruhisa Soda
晴久 雙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62056035A priority Critical patent/JPS63222487A/en
Publication of JPS63222487A publication Critical patent/JPS63222487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To enable oscillation of a DFB mode in a wide temperature range, by setting a difference lambda between the gain peak wavelength lambdaEL and the DFB mode wavelength lambdaDFB at a negative value at temperature 20 deg.C. CONSTITUTION:An n-InGaAsP guide layer 2, an InGaAsP active layer 3 and a P-In clad layer 4 are formed on a n-InP substrate 1. Next, a mesastripe is formed followed by forming a p-InP buried layer 5 and an n-InP layer 6 on its side. Thereafter, a p-InP layer 7, a contact layer 8 and an electrode 10 are formed all over the surface. In a DFB laser of this constitution, the constructions of the active layer 3, the clad layer 4 and a diffraction grating are set and formed so that a difference lambda between the gain peak wavelength lambdaEL, decided by a band gap of the active layer 3, and the DFB mode wavelength lambdaDFB, decided by a refractive index of the active layer 3 and the clad layer 4 and by the pitch of a diffraction grating, may be negative at temperature 20 deg.C.

Description

【発明の詳細な説明】 〔概要〕 非対称反射鏡型の叶Bレーザ(分布帰還型レーザ)では
、利得ピーク波長λ1とDFBモード波長λDFIIを
一致させることにより、単一波長発振を得ているが1周
囲温度を広い範囲にわたって変化させるとλ、とλDF
IIの差が太き(なってFP(Fabry−Pero 
L)モード発振が起こってしまうことがある。この不都
合を抑制するために5本発明者の実験結果より△λ=λ
EL−λDFIを温度20℃で負の値になるように回折
格子の周期を調節して発光装置を形成するようにする方
法を提起する。
[Detailed Description of the Invention] [Summary] In the asymmetric reflecting mirror type Kano B laser (distributed feedback laser), single wavelength oscillation is obtained by matching the gain peak wavelength λ1 and the DFB mode wavelength λDFII. 1 When the ambient temperature is varied over a wide range, λ and λDF
The difference between II and FP (Fabry-Pero
L) Mode oscillation may occur. In order to suppress this inconvenience, based on the experimental results of the inventor, △λ=λ
A method is proposed in which a light emitting device is formed by adjusting the period of a diffraction grating so that EL-λDFI becomes a negative value at a temperature of 20°C.

〔産業上の利用分野〕[Industrial application field]

本発明はDFBレーザについて、広い温度範囲で単一波
長発振を得るための方法に関する。
The present invention relates to a method for obtaining single wavelength oscillation over a wide temperature range for a DFB laser.

DFBレーザは単一波長発振が得られやすいために、光
通信システムの光源として広く用いられている。
DFB lasers are widely used as light sources for optical communication systems because they easily produce single wavelength oscillation.

〔従来の技術〕[Conventional technology]

第3図(1)、 (2)はDFBレーザの断面図と側断
面図である。
FIGS. 3(1) and 3(2) are a cross-sectional view and a side cross-sectional view of the DFB laser.

図には、波長が1.3μm帯のPBH(Flat 5u
rfaceBuried 5tructure)−DF
Bが示される。
The figure shows PBH (Flat 5u
rfaceBuried 5structure)-DF
B is shown.

以下にこのレーザの構造を製造工程順に説明する。The structure of this laser will be explained below in the order of manufacturing steps.

図において、n型インジウム¥A(n−1nP)基板1
上に、ガイド層としてn型インジウムガリウム砒素W(
n−1nGaAsP)層2.活性層としてアンドープの
InGaAsP i 3 、クラッド層としてp型イン
ジウム燐(p−InP)層4を成長する。
In the figure, an n-type indium\A (n-1nP) substrate 1
On top, n-type indium gallium arsenide W (
n-1nGaAsP) layer 2. Undoped InGaAsP i 3 is grown as an active layer, and a p-type indium phosphide (p-InP) layer 4 is grown as a cladding layer.

この際、 n−1nP基板1は下側のクラッド層を兼用
し、成長に先立ってこれとn−InGaAsP ’ff
j 2との間に回折格子を形成する。
At this time, the n-1nP substrate 1 also serves as the lower cladding layer, and prior to growth, the n-InGaAsP 'ff
A diffraction grating is formed between the two.

つぎに1通常のりソグラフィを用いて基板をエツチング
してメサストライプを形成し、エツチングマスクをその
まま成長マスクに使用して、メサストライプ側面に埋込
層としてp−1nP層5゜nJnP層6を成長する。
Next, the substrate is etched using normal lamination lithography to form a mesa stripe, and using the etching mask as a growth mask, a p-1nP layer 5°nJnP layer 6 is grown as a buried layer on the side surface of the mesa stripe. do.

つぎに、成長マスクを除去して基板全面にp−1nP層
7.コンタクト層としてp−1nGaAsP層8を成長
し、メサストライプ上のp−1nGaAsP WJ 8
をストライプ状に残し、この上にストライプ状に開口さ
れた二酸化珪素(SiO□)JEJ9を介して、p側電
極としてチタン/白金/金(Ti/Pt/Au)層10
゜n−InP基板1の裏面にn側電極として金/金ゲル
マニウム(Au/AuGe)層11を形成する。
Next, the growth mask is removed and a p-1nP layer 7. A p-1nGaAsP layer 8 is grown as a contact layer, and a p-1nGaAsP WJ 8 is grown on the mesa stripe.
is left in the form of a stripe, and a titanium/platinum/gold (Ti/Pt/Au) layer 10 is formed as a p-side electrode via a silicon dioxide (SiO□) JEJ9 having an opening in the form of a stripe.
A gold/gold germanium (Au/AuGe) layer 11 is formed on the back surface of the n-InP substrate 1 as an n-side electrode.

レーザの層構造は以上のように形成され、非対称反射鏡
型の構造は2例えば活性層の片方の端面ばへき開(反射
率31%)のまま、他方の端面ば低反射膜(反射率5%
)12を被着して形成する。
The layer structure of the laser is formed as described above, and the asymmetric reflector type structure has two, for example, one end face of the active layer is left cleaved (reflectance 31%) and the other end face is coated with a low reflection film (reflectance 5%).
) 12 is deposited and formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

DFBレーザにおいて単一波長を得るために。 To obtain a single wavelength in a DFB laser.

Δλ−λ、−λDFIIを常温(〜温度20℃)で0に
なるように回折格子の周期を調節しているが、広い温度
範囲にわたってΔλ=0を維持することは困難であった
Although the period of the diffraction grating is adjusted so that Δλ−λ and −λDFII become 0 at room temperature (up to a temperature of 20° C.), it has been difficult to maintain Δλ=0 over a wide temperature range.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、活性層のバンドギャップより決ま
る利得ピーク波長λ。と、活性層と活性層を挾むクラッ
ド層との屈折率と回折格子のピッチより決まるDFBモ
ード波長λtlF11との差Δλ=λ。−λD□を温度
20’Cで負の値になるように、活性層、クラッド層9
回折格子構造を設定して形成する半導体発光装置の製造
方法により達成される。
The solution to the above problem is the gain peak wavelength λ determined by the bandgap of the active layer. and the difference Δλ=λ between the refractive index of the active layer and the cladding layer sandwiching the active layer and the DFB mode wavelength λtlF11 determined by the pitch of the diffraction grating. -λD□ has a negative value at a temperature of 20'C, the active layer and cladding layer 9
This is achieved by a method of manufacturing a semiconductor light emitting device in which a diffraction grating structure is set and formed.

1.3μm帯系のDFBレーザにおいて、前記△λが温
度20℃で 一15nm≦△λ≦−5nm にあればよい。
In the 1.3 μm band DFB laser, the Δλ may be -15 nm≦△λ≦−5 nm at a temperature of 20°C.

〔作用〕[Effect]

本発明はΔλの異なる種々のレーザを作製し。 In the present invention, various lasers with different Δλs are manufactured.

各Δλの温度依存と発振モードを測定した結果。Results of measuring the temperature dependence and oscillation mode of each Δλ.

Δλを温度20℃で負の値に設定すると広い温度範囲で
DFBモードの発振が得られるという実験結果を利用し
たものである。
This is based on the experimental result that when Δλ is set to a negative value at a temperature of 20° C., DFB mode oscillation can be obtained over a wide temperature range.

第1図は本発明を説明する実験データで、 DFBレー
ザの温度依存と発振モードを示す図である。
FIG. 1 shows experimental data for explaining the present invention, and is a diagram showing the temperature dependence and oscillation mode of a DFB laser.

図は1.3μm帯系のDF[lレーザの測定結果で。The figure shows the measurement results of a 1.3 μm band DF[l laser.

黒丸はFPモード、白丸はDI”Bモードを示す。The black circles indicate the FP mode, and the white circles indicate the DI''B mode.

図より、温度20℃で、−15nm≦△λ≦−5nmで
あれば5〜100℃でDFBモード発振が得られること
が分かる。
From the figure, it can be seen that at a temperature of 20°C, DFB mode oscillation can be obtained at 5 to 100°C if -15nm≦△λ≦-5nm.

第2図は利得ピーク波長λ、と叶Bモード波長λ。2.
の温度依存を示す図である。
Figure 2 shows the gain peak wavelength λ and the B mode wavelength λ. 2.
FIG. 2 is a diagram showing the temperature dependence of

図より分かるように、λ。は0.3nm/’C。As can be seen from the figure, λ. is 0.3nm/'C.

λtarsは0.1nm/”Cの温度依存をもつため、
常温においてΔλ−0に調節すると高温において△λが
大きい正の値をもつようになる。従って図のように常温
でΔλを負の値に設定すれば9周囲温度の変化にともな
うΔλの絶対値を広い温度範囲で小さく抑えることがで
きる。
Since λtars has a temperature dependence of 0.1 nm/”C,
When adjusted to Δλ-0 at room temperature, Δλ has a large positive value at high temperatures. Therefore, if Δλ is set to a negative value at room temperature as shown in the figure, the absolute value of Δλ due to changes in ambient temperature can be suppressed to a small value over a wide temperature range.

活性層のバンドギャップの温度依存により利得ピーク波
長λ1が周囲温度の上昇とともに叶Bモード波長λDF
II以上に長波長側に大きくずれるためにΔλは大きく
なり1本発明はこのずれを常温において前もって補正す
るものである。
Due to the temperature dependence of the bandgap of the active layer, the gain peak wavelength λ1 changes to the B mode wavelength λDF as the ambient temperature rises.
Since there is a large shift toward longer wavelengths than II, Δλ becomes large, and the present invention corrects this shift in advance at room temperature.

従って2本発明の作用は、その他の帯域のレーザについ
ても適用できる。
Therefore, the effects of the present invention can also be applied to lasers in other bands.

〔実施例〕〔Example〕

第3図を用いて実施例を説明する。 An example will be explained using FIG.

従来例と異なる点は1回折格子の周期へが従来例ではΔ
=199.6 nmであったが、Δλ”10nmに対応
してA =202.2 nmに形成したことである。
The difference from the conventional example is that the period of one diffraction grating is Δ in the conventional example.
= 199.6 nm, but A = 202.2 nm corresponding to Δλ''10 nm.

回折格子はレジストをマスクにして二光束干渉法による
リソグラフィを用いて形成し、深さはエツチングにより
30 nmに調節する。
The diffraction grating is formed using lithography using a two-beam interference method using a resist as a mask, and its depth is adjusted to 30 nm by etching.

ここで、レーザの各層の諸元はつぎのとおりである。Here, the specifications of each layer of the laser are as follows.

図番 眉毛  物質  F−バントキャリア濃度 厚さ
くca+−リ  (nn+) 1  基板 n−1nP   Sn   2E18 1
00μm(クラ9F) 2    ガイド    n−InGaAsP  Sn
      5E17     1503    活性
   InGaAsP   アンドープ   −   
    1504    クラフト   p4nP  
    Cd      5817     5005
  埋込 p−InP   Cd   2E18  1
0006  埋込 n−1nP   Sn   581
7  10007    クラフト   p−InP 
     Cd      5E17    1000
8    コンタクト  p−1nGaAsP  Zn
      IE19    1000実施例において
は、1.3μm帯のレーザについて説明したが、その他
の帯域のレーザについても本発明を適用すれば原理的に
も、実験的にも同様の効果が得られることが確認された
Drawing number Eyebrow Substance F-band carrier concentration Thickness ca+-ri (nn+) 1 Substrate n-1nP Sn 2E18 1
00μm (Kura 9F) 2 Guide n-InGaAsP Sn
5E17 1503 Active InGaAsP Undoped -
1504 Craft p4nP
Cd 5817 5005
Embedded p-InP Cd 2E18 1
0006 Embedded n-1nP Sn 581
7 10007 Craft p-InP
Cd 5E17 1000
8 Contact p-1nGaAsP Zn
In the IE19 1000 example, a 1.3 μm band laser was explained, but it has been confirmed that the same effect can be obtained both in principle and experimentally if the present invention is applied to lasers in other bands. Ta.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、従来法に比
べて広い温度範囲で単一波長発振を維持することができ
る。
As described in detail above, according to the present invention, single wavelength oscillation can be maintained over a wider temperature range than in conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明する実験データで、 DFBレー
ザの温度依存と発振モードを示す図。 第2図は利得ピーク波長λ1とDFBモード波長ある。 図において。 ■はn−1nP基板。 2はガイド層でn−1nGaAsP層。 3は活性層でInGaAsP ]i+ 4はクラッド層でp−InP ff1゜5は埋込層でp
−1nP層。 6は埋込層でn−InP層。 7はクラッド層でp4nP jiう 8はコンタクト層でp−1nGaAsP層。 9はSiO2層。 10はp側゛電極でTi/Pt/AuN。 11はn側電極でAu/AuGe Nt12は低反射膜 周囲温度(°C) 末路日月を説日月する実屑史データ 第 1 図 周囲温度(°C) 入ELヒ入1)FBの5里ルイ欠在 第2図 (1)断面図 FBl 第  3 (2)A−△側断面口 m−す゛ 図
FIG. 1 is a diagram showing experimental data explaining the present invention, showing the temperature dependence and oscillation mode of a DFB laser. In FIG. 2, there is a gain peak wavelength λ1 and a DFB mode wavelength. In fig. ■ is an n-1nP board. 2 is a guide layer and is an n-1nGaAsP layer. 3 is the active layer, InGaAsP ] i+ 4 is the cladding layer, p-InP ff1゜5 is the buried layer, p
-1nP layer. 6 is a buried layer, which is an n-InP layer. 7 is a cladding layer, and 8 is a contact layer, which is a p-1nGaAsP layer. 9 is a SiO2 layer. 10 is a p-side electrode made of Ti/Pt/AuN. 11 is the n-side electrode, Au/AuGe Nt12 is a low reflective film Ambient temperature (°C) Actual scrap history data to explain the final date Figure 1 Ambient temperature (°C) Input EL input 1) FB of 5 Figure 2 (1) Cross-sectional view FBl Part 3 (2) A-△ side cross-sectional opening m-diagram

Claims (2)

【特許請求の範囲】[Claims] (1)活性層のバンドギャップより決まる利得ピーク波
長(λ_E_L)と、活性層と活性層を挟むクラッド層
との屈折率と回折格子のピッチより決まるDFBモード
波長(λ_D_E_F)との差(△λ=λ_E_L−λ
_D_F_F)を温度20℃で負の値になるように、活
性層、クラッド層、回折格子構造を設定して形成するこ
とを特徴とする半導体発光装置の製造方法。
(1) The difference (△λ =λ_E_L−λ
A method of manufacturing a semiconductor light emitting device, characterized in that an active layer, a cladding layer, and a diffraction grating structure are set and formed so that _D_F_F) becomes a negative value at a temperature of 20°C.
(2)1.3μm帯系のDFBレーザにおいて、前記△
λが温度20℃で −15nm≦△λ≦−5nm であることを特徴とする特許請求の範囲第1項記載の半
導体発光装置の製造方法。
(2) In the 1.3 μm band DFB laser, the above △
2. The method of manufacturing a semiconductor light emitting device according to claim 1, wherein λ satisfies -15 nm≦△λ≦-5 nm at a temperature of 20°C.
JP62056035A 1987-03-11 1987-03-11 Manufacture of semiconductor light emitting device Pending JPS63222487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056035A JPS63222487A (en) 1987-03-11 1987-03-11 Manufacture of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056035A JPS63222487A (en) 1987-03-11 1987-03-11 Manufacture of semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS63222487A true JPS63222487A (en) 1988-09-16

Family

ID=13015821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056035A Pending JPS63222487A (en) 1987-03-11 1987-03-11 Manufacture of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS63222487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423528A2 (en) * 1989-10-20 1991-04-24 Alcatel SEL Aktiengesellschaft Semiconductor laser with electrically tunable wavelength
EP0549123A2 (en) * 1991-12-20 1993-06-30 AT&T Corp. Semiconductor laser having reduced temperature dependence
JP2017034034A (en) * 2015-07-30 2017-02-09 浜松ホトニクス株式会社 Distribution feedback lateral multimode semiconductor laser element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423528A2 (en) * 1989-10-20 1991-04-24 Alcatel SEL Aktiengesellschaft Semiconductor laser with electrically tunable wavelength
US5101414A (en) * 1989-10-20 1992-03-31 Alcatel N.V. Electrically wavelength tunable semiconductor laser
EP0549123A2 (en) * 1991-12-20 1993-06-30 AT&T Corp. Semiconductor laser having reduced temperature dependence
EP0549123B1 (en) * 1991-12-20 1997-02-12 AT&T Corp. Semiconductor laser having reduced temperature dependence
JP2017034034A (en) * 2015-07-30 2017-02-09 浜松ホトニクス株式会社 Distribution feedback lateral multimode semiconductor laser element

Similar Documents

Publication Publication Date Title
US8419956B2 (en) Surface emitting photonic device
KR0142587B1 (en) Tunable semiconductor diode laser with distributed reflection and method of manufacturing such a semiconductor diode
JPWO2009116140A1 (en) Optical semiconductor device and manufacturing method thereof
JP2008113041A (en) Waveguide
US20070189349A1 (en) Single mode laser
WO2018197015A1 (en) Curved waveguide laser
JPS63222487A (en) Manufacture of semiconductor light emitting device
JP3166836B2 (en) Semiconductor laser
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
EP0549123A2 (en) Semiconductor laser having reduced temperature dependence
WO2018105015A1 (en) Method for manufacturing semiconductor laser
JP2586671B2 (en) Semiconductor multilayer film
JPH11204773A (en) Waveguide type semiconductor optical integrated element and its manufacture
JP2732604B2 (en) Distributed feedback laser
JP2713445B2 (en) Semiconductor laser device
JPS60132380A (en) Distributed feedback type semiconductor laser device
JP2000049417A (en) Semiconductor light emitting device semiconductor light emitting apparatus with such device and their manufacture
KR20050022333A (en) Semiconductor laser device
JPS63213383A (en) Semiconductor laser
JP2953449B2 (en) Optical semiconductor device and method of manufacturing the same
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPH0443693A (en) Semiconductor laser device
JP3239387B2 (en) Semiconductor laser and method of manufacturing the same
KR100464377B1 (en) Semiconductor Laser Diode and Method for Fabricating Therefor
JPH02252284A (en) Semiconductor laser array and manufacture thereof