JP2009042146A - 物体認識装置および物体認識方法 - Google Patents

物体認識装置および物体認識方法 Download PDF

Info

Publication number
JP2009042146A
JP2009042146A JP2007209192A JP2007209192A JP2009042146A JP 2009042146 A JP2009042146 A JP 2009042146A JP 2007209192 A JP2007209192 A JP 2007209192A JP 2007209192 A JP2007209192 A JP 2007209192A JP 2009042146 A JP2009042146 A JP 2009042146A
Authority
JP
Japan
Prior art keywords
scanning
measurement
distance measuring
measuring sensor
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209192A
Other languages
English (en)
Inventor
Kazuteru Hida
和輝 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007209192A priority Critical patent/JP2009042146A/ja
Publication of JP2009042146A publication Critical patent/JP2009042146A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】 脚型ロボットまたは脚車輪型ロボットの姿勢制御に好適で、かつ、測距センサを用いた2次元距離測定装置により物体認識を行う場合に認識精度を向上するのに好適な物体認識装置を提供する。
【解決手段】 脚車輪型ロボット100は、基体10と、基体10に対して自由度を有して連結された脚部12と、脚部12に回転可能に設けられた駆動輪20と、物体上の測定点までの距離を測定する測距センサ212aを備え、測距センサ212aを走査し、その走査範囲で測定可能な測定点について測距センサ212aの測定結果を取得し、取得した測定結果を直交座標系の座標に変換し、変換された測定点間を線分で接続し、得られた線上の点の座標に基づいてハフ変換により直交座標系における線分を検出し、検出した線分に基づいて物体上の連続面または連続面の境界を認識する。
【選択図】図11

Description

本発明は、物体上の面または面の境界を認識する装置および方法に係り、特に、脚型ロボットまたは脚車輪型ロボットの姿勢制御に好適で、かつ、測距センサを用いた2次元距離測定装置により物体認識を行う場合に認識精度を向上するのに好適な物体認識装置および物体認識方法に関する。
従来、2次元距離測定装置としては、2次元レンジセンサ、レーザレンジファインダ、測域センサおよび平面センサ等があり、これら2次元距離測定装置を用いて物体認識を行う技術としては、非特許文献1記載の技術が知られている。
非特許文献1には、2次元距離測定装置を水平方向および垂直方向の2方向に走査し、これにより得られる測定情報を用いて、マップの生成および自己位置の認識を行う技術が開示されている。この技術は、不整地を移動するクローラ型ロボットへの応用を想定したものであり、2次元距離測定装置の測定情報を用いて、人が入り込めない空間における自己位置を推定するとともにその周辺のマップ情報を生成するものである。
石田宏、永谷圭司、五福明夫「不整地移動ロボットのための3次元自己位置推定と環境地図の構築」、第21回 日本ロボット学会学術講演会予稿集、112a、(2003−09)
ところで、ロボットの移動機構は、クローラ型、車輪型、脚型またはこれらを組み合わせた機構に分類され、脚型と車輪型を組み合わせたロボットとして脚車輪型ロボットが提案されている。クローラ型ロボットは、複雑な姿勢制御を行わないため、階段への適応性が低いが、不整地での移動に適している。これに対し、脚型ロボットや脚車輪型ロボットは、脚部を駆動する複雑な姿勢制御を行うことができるので、階段への適応性が高い。
しかしながら、非特許文献1記載の技術にあっては、複雑な姿勢制御を必要としないクローラ型ロボットへの応用を想定したものであるため、移動できる空間があるか否かを判定できれば十分であることから、大まかな位置や形状の情報を含むマップ情報を生成するにすぎない。これに対し、脚型ロボットや脚車輪型ロボットのように複雑な姿勢制御を必要とするロボットへの応用を考えた場合、姿勢制御を行うには、階段の形状等を把握するため、物体の形状に関する詳細な情報が必要であるところ、非特許文献1記載のマップ情報では不十分であるという問題があった。
一方、測距センサ(1次元距離測定装置)を用いた2次元距離測定装置により物体認識を行うことが考えられる。この2次元距離測定装置としては、例えば、物体上の測定点までの距離を測定する測距センサと、測距センサの測定方向に対して直交する走査軸の回りに測距センサを回転させる回転機構とを備え、回転機構により測距センサを回転させながら所定の走査単位角度ごとに測距センサの測定結果を取得する構成を採用することができる。
図20は、測距センサの走査角度と測定点間の密度との関係を示す図である。
しかしながら、このような2次元距離測定装置にあっては、所定の走査単位角度ごとに物体までの距離を測定するという測定原理に基づくことから、図20に示すように、測距センサの走査角度によって測定点間の密度(測定解像度)が異なる。このため、測定解像度が低い領域については認識精度が低下してしまう。
さらに、光学式の測距センサを採用した場合は、物体上の面のうち測定点となる箇所(以下、測定面という。)の反射率や光沢の影響を受けるため、反射率が低い領域や光沢がある領域については、平面を平面として測定できない場合がある。
そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、脚型ロボットまたは脚車輪型ロボットの姿勢制御に好適で、かつ、測距センサを用いた2次元距離測定装置により物体認識を行う場合に認識精度を向上するのに好適な物体認識装置および物体認識方法を提供することを目的としている。
〔発明1〕 上記目的を達成するために、発明1の物体認識装置は、物体上の面または面の境界を認識する物体認識装置であって、物体上の測定点までの距離を測定する測距センサと、前記測距センサを走査する走査手段と、前記走査手段の走査範囲で測定可能な前記測定点について前記測距センサの測定結果を取得する測定結果取得手段と、前記測定結果取得手段で取得した測定結果を直交座標系の座標に変換する座標変換手段と、前記座標変換手段で変換された前記測定点間を線で補間する測定点間補間手段と、前記測定点間補間手段で得られた線上の点の座標に基づいてハフ変換により前記直交座標系における線分を検出する線分検出手段と、前記線分検出手段で検出した線分に基づいて物体上の面または面の境界を認識する認識手段とを備える。
このような構成であれば、走査手段により、測距センサが走査可能となる。したがって、物体の少なくとも平面的な形状を把握することができる。そして、測定結果取得手段により、走査手段の走査範囲で測定可能な測定点について測距センサの測定結果が取得され、座標変換手段により、取得された測定結果が直交座標系の座標に変換される。
次いで、測定点間補間手段により、変換された測定点間が線で補間され、線分検出手段により、得られた線上の点の座標に基づいてハフ変換により直交座標系における線分が検出される。
複数の測定点に基づいて線分を検出する他の方法として、最小二乗法が知られている。
しかしながら、最小二乗法では、1つ1つの測定点を辿って線分を検出するため、測定解像度が低い領域では、物体上の面とは沿わない線分を検出してしまうことがある。これに対し、ハフ変換では、測定解像度の影響を受けにくく、測定解像度が低い領域を含んでいても、物体上の面に比較的沿った線分を検出することができる。
また、最小二乗法では、1つ1つの測定点を辿って線分を検出するため、測定面の光沢等の影響により測定結果にばらつきが生じたときは、ばらつきが生じた測定点およびその近傍領域(以下、誤差領域という。)について、実際は平坦な線分であるところ斜めの線分として検出してしまう。これに対し、ハフ変換では、ばらつきの影響を受けにくく、ばらつきの数が少なければ、誤差領域およびその両側の領域を平坦な線分として検出することができる。
また、最小二乗法では、どこからどこまでの領域を1つの連続面であるかを認識するかについて問題がある。この場合、例えば、検出した線分の傾きが急激に変化した箇所を連続面の境界として認識することが考えられるが、この認識方法では、誤差領域について、実際は誤差領域およびその両側の領域が1つの連続面であるところ両側の領域を別々の連続面として認識してしまう。これに対し、ハフ変換では、ばらつきの影響を受けにくく、ばらつきの数が少なければ、誤差領域およびその両側の領域を1つの平坦な線分として検出することができる。
ハフ変換により線分が検出されると、認識手段により、検出された線分に基づいて物体上の面または面の境界が認識される。したがって、脚型ロボットや脚車輪型ロボットのように複雑な姿勢制御を必要とするロボットの姿勢制御に好適な認識結果を得ることができる。
ここで、走査手段は、測距センサを走査するものであればどのような構成であってもよく、例えば、測定点の軌跡が線をなすように測距センサを1次元に走査してもよいし、測定点の軌跡が面をなすように測距センサを2次元に走査してもよい。前者の場合は、物体の平面的な形状を、後者の場合は、物体の立体的な形状を把握することができる。
また、走査手段としては、例えば、次の構成を採用することができる。
(1)回転機構
前記測距センサの測定方向に対して所定角度をなす少なくとも1つの走査軸の回りに前記測距センサを回転させる回転手段からなる構成である。
(2)移動機構
前記測距センサの測定方向とは異なる少なくとも1つの走査方向に前記測距センサを移動させる移動手段からなる構成である。なお、移動手段は、前記走査方向に延長する経路を含む経路に沿って前記測距センサを移動させてもよい。
また、補間には、測定点間を線で接続することのほか、測定点間を線で近似することが含まれ、必ずしも、測定点が線上に位置しなくてもよいし、隣接する測定点同士を対象としなくてもよい。以下、発明6の物体認識方法において同じである。
また、線には、直線、線分、多次曲線その他の曲線が含まれる。以下、発明6の物体認識方法において同じである。
〔発明2〕 さらに、発明2の物体認識装置は、発明1の物体認識装置において、前記認識手段は、前記線分検出手段で検出した線分の端点の座標に基づいて物体上の面の境界を認識する。
このような構成であれば、認識手段により、検出された線分の端点の座標に基づいて物体上の面の境界が認識される。
〔発明3〕 さらに、発明3の物体認識装置は、発明1および2のいずれか1の物体認識装置において、前記走査手段は、前記測距センサの測定方向とは異なる第1走査方向に前記測距センサを走査する第1走査手段と、前記測定方向および前記第1走査方向とは異なる第2走査方向に前記測距センサを走査する第2走査手段とからなり、前記測定結果取得手段は、前記第1走査手段および前記第2走査手段の走査範囲で測定可能な前記測定点について前記測距センサの測定結果を取得する。
このような構成であれば、第1走査手段により、第1走査方向に測距センサが、第2走査手段により、第2走査方向に測距センサがそれぞれ走査可能となる。したがって、物体の立体的な形状を把握することができる。そして、測定結果取得手段により、第1走査手段および第2走査手段の走査範囲で測定可能な測定点について測距センサの測定結果が取得される。
ここで、第1走査手段および第2走査手段としては、例えば、次の構成を採用することができる。
(1)回転機構
前記測距センサの測定方向に対して所定角度をなす第1走査軸の回りに前記測距センサを回転させる第1回転手段と、前記測定方向および前記第1走査軸に対して所定角度をなす第2走査軸の回りに前記測距センサを回転させる第2回転手段とからなる構成である。
(2)移動機構
前記測距センサの測定方向とは異なる第1走査方向に前記測距センサを移動させる第1移動手段と、前記測定方向および前記第1走査方向とは異なる第2走査方向に前記測距センサを移動させる第2移動手段とからなる構成である。なお、第1移動手段は、前記第1走査方向に延長する経路を含む第1経路に沿って前記測距センサを移動させてもよいし、第2移動手段は、前記第2走査方向に延長する経路を含む第2経路に沿って前記測距センサを移動させてもよい。以下、(3)、(4)においても同様である。
(3)回転機構と移動機構の組み合わせ
前記測距センサの測定方向に対して所定角度をなす走査軸の回りに前記測距センサを回転させる回転手段と、前記走査軸の軸方向とは異なる走査方向に前記測距センサを移動させる移動手段とからなる構成である。
(4)移動機構と回転機構の組み合わせ
前記測距センサの測定方向とは異なる走査方向に前記測距センサを移動させる移動手段と、前記走査方向に対して所定角度をなす走査軸の回りに前記測距センサを回転させる回転手段とからなる構成である。
〔発明4〕 さらに、発明4の物体認識装置は、発明3の物体認識装置において、前記認識手段は、前記線分検出手段で検出した線分の端点の座標に基づいて物体上の面を認識する。
このような構成であれば、認識手段により、検出された線分の端点の座標に基づいて物体上の面が認識される。
〔発明5〕 さらに、発明5の物体認識装置は、発明3および4のいずれか1の物体認識装置において、前記第1走査手段は、前記測定方向に対して所定角度をなす第1走査軸の回りに前記測距センサを回転させる第1回転手段であり、前記第2走査手段は、前記測定方向および前記第1走査軸に対して所定角度をなす第2走査軸の回りに前記測距センサを回転させる第2回転手段であり、前記測定結果取得手段は、前記第1回転手段により前記測距センサを回転させながら前記第1回転手段の所定単位角度ごとに前記測距センサの測定結果を取得する第1走査を、前記第2回転手段により前記測距センサを回転させながら前記第2回転手段の所定単位角度ごとに行う第2走査を行うことにより、前記第1回転手段の所定単位角度ごとおよび前記第2回転手段の所定単位角度ごとの前記測定結果を取得する。
このような構成であれば、第1回転手段により、第1走査軸の回りに測距センサが、第2回転手段により、第2走査軸の回りに測距センサがそれぞれ回転可能となる。したがって、物体の立体的な形状を把握することができる。そして、測定結果取得手段により、第2走査が行われることにより第1回転手段の所定単位角度ごとおよび第2回転手段の所定単位角度ごとの測定結果が取得される。第2走査では、第2回転手段により測距センサを回転させながら第2回転手段の所定単位角度ごとに第1走査が行われる。第1走査では、第1回転手段により測距センサを回転させながら第1回転手段の所定単位角度ごとに測定結果が取得される。
〔発明6〕 一方、上記目的を達成するために、発明6の物体認識方法は、物体上の測定点までの距離を測定する測距センサを用いて物体上の面または面の境界を認識する物体認識方法であって、前記測距センサを走査する走査ステップと、前記走査ステップの走査範囲で測定可能な前記測定点について前記測距センサの測定結果を取得する測定結果取得ステップと、前記測定結果取得ステップで取得した測定結果を直交座標系の座標に変換する座標変換ステップと、前記座標変換ステップで変換された前記測定点間を線で補間する測定点間補間ステップと、前記測定点間補間ステップで得られた線上の点の座標に基づいてハフ変換により前記直交座標系における線分を検出する線分検出ステップと、前記線分検出ステップで検出した線分に基づいて物体上の面または面の境界を認識する認識ステップとを含む。
ここで、走査ステップは、測距センサを走査するものであればどのような方法であってもよく、例えば、測定点の軌跡が線をなすように測距センサを1次元に走査してもよいし、測定点の軌跡が面をなすように測距センサを2次元に走査してもよい。前者の場合は、物体の平面的な形状を、後者の場合は、物体の立体的な形状を把握することができる。
以上説明したように、発明1の物体認識装置によれば、物体上の面または面の境界として物体の少なくとも平面的な形状を把握することができるので、脚型ロボットや脚車輪型ロボットのように複雑な姿勢制御を必要とするロボットの姿勢制御に好適な認識結果を得ることができるという効果が得られる。また、ハフ変換により線分を検出するので、測距センサを用いた2次元距離測定装置により物体認識を行う場合に、測定解像度の低下または測定結果のばらつきにより認識精度が低下する可能性を低減することができるという効果も得られる。さらに、測定点間を線で補間して得られた線上の点の座標に基づいて線分を検出するので、測定解像度の低下または測定結果のばらつきが生じても比較的正確な認識結果を得ることができ、認識精度が低下する可能性をさらに低減することができるという効果も得られる。
さらに、発明2の物体認識装置によれば、物体上の面の境界を比較的正確に認識することができるという効果が得られる。
さらに、発明3の物体認識装置によれば、物体上の面または面の境界として物体の立体的な形状を把握することができるので、脚型ロボットや脚車輪型ロボットのように複雑な姿勢制御を必要とするロボットの姿勢制御にさらに好適な認識結果を得ることができるという効果が得られる。
さらに、発明4の物体認識装置によれば、物体上の面を比較的正確に認識することができるという効果が得られる。
さらに、発明5の物体認識装置によれば、測距センサを回転させる回転機構を採用したので、移動機構に比して、走査に必要なスペースが小さくてすみ、走査のための機構が簡素となり、しかも高速な走査を実現することができるという効果が得られる。
一方、発明6の物体認識方法によれば、発明1の物体認識装置と同等の効果が得られる。
以下、本発明の実施の形態を図面を参照しながら説明する。図1ないし図18は、本発明に係る物体認識装置および物体認識方法の実施の形態を示す図である。
まず、本発明を適用する脚車輪型ロボット100の構成を説明する。
図1は、脚車輪型ロボット100の正面図である。
図2は、脚車輪型ロボット100の側面図である。
脚車輪型ロボット100は、図1および図2に示すように、基体10と、基体10に連結された4つの脚部12とを有して構成されている。
基体10の前部には、2本の脚部12が回転関節14を介して左右対称の位置に連結されている。また、基体10の後部には、2本の脚部12が回転関節14を介して左右対称の位置に連結されている。回転関節14は、脚車輪型ロボット100の底面と直交する方向を軸方向として回転する。すなわち、ヨー軸回りに回転する。
各脚部12には、2つの回転関節16、18が設けられている。回転関節14は、下方を軸方向として回転し、回転関節16、18は、回転関節14が図1の状態であるときは、脚車輪型ロボット100の側面と直交する方向を軸方向として回転する。すなわち、回転関節14が図1の状態であるときは、ピッチ軸回りに回転し、回転関節14が図1の状態から90度回転した状態であるときは、ロール軸回りに回転する。したがって、脚部12は、それぞれ3自由度を有する。
各脚部12の先端には、回転関節16、18と軸方向を同一にして駆動輪20が回転可能に設けられている。
各脚部12の先端には、脚車輪型ロボット100の移動経路上に存在する物体までの距離を測定する前方脚先センサ22と、接地面までの距離を測定する下方脚先センサ24とが設けられている。
一方、基体10の正面には、3次元距離測定装置200が取り付けられている。3次元距離測定装置200の座標系は、基体10の奥行き(前後の長さ)方向をx軸、基体10の幅(左右の長さ)方向をy軸、基体10の高さ方向をz軸とし、x軸は基体10の前方を、y軸は基体10の右方を、z軸は基体10の上方をそれぞれ正の方向とする。
次に、3次元距離測定装置200の外観構造を説明する。
図3は、3次元距離測定装置200の外観構造を示す図である。同図(a)は、3次元距離測定装置200の正面図(z−y平面)を示す図であり、同図(b)は、3次元距離測定装置200の上面図(x−y平面)である。
3次元距離測定装置200は、図3(a)に示すように、板状の支持部材219と、2次元距離測定装置212と、2次元距離測定装置212を回転駆動するモータ216と、モータ216の回転角度位置を検出するエンコーダ218と、モータ216の駆動力を2次元距離測定装置212に伝達するプーリ220a、220bおよびベルト221とを有して構成されている。
支持部材219の下面には、モータ216が取り付けられている。モータ216の回転軸(以下、駆動回転軸という。)は、支持部材219を下方から貫通し、支持部材219を挟んで反対側に配置されたプーリ220aに連結している。
一方、支持部材219の下面であってモータ216から水平方向に所定距離隔てた位置には、2次元距離測定装置212が取り付けられている。2次元距離測定装置212は、回転軸(以下、被駆動回転軸という。)を有し、被駆動回転軸が支持部材219を下方から貫通し、支持部材219を挟んで反対側に配置されたプーリ220bに連結している。
プーリ220a、220bには、ベルト221が巻き掛けられている。したがって、モータ216によりプーリ220aが回転し、プーリ220aに巻き掛けたベルト221によりプーリ220bが回転することにより、2次元距離測定装置212は、図3(b)に示すように、z軸回りに回転する。
図4は、測距センサの走査範囲を示す図である。
2次元距離測定装置212は、測距センサを内蔵し、図4に示すように、測距センサを、z軸およびその測定方向に対して直交する軸回りに回転させながら所定の走査単位角度ごとに測距センサの測定結果を取得する。測距センサの走査範囲は、脚車輪型ロボット100が階段の昇降や障害物の回避を行うことを目的としているため、脚車輪型ロボット100の下方を重点的に走査するように設定されている。なお、2次元距離測定装置212および測距センサの原点位置(走査角度θおよびφが0°の位置)においては、測距センサの測定方向がx軸と一致し、測距センサの回転軸がy軸と一致する。測距センサの回転軸は、2次元距離測定装置212の走査角度によって向きが変化するが、原点位置においてy軸と一致するため、説明の便宜上、測距センサの回転軸をy’軸と表記する。
3次元距離測定装置200は、2次元距離測定装置212を回転駆動する回転駆動機構(モータ216、エンコーダ218、プーリ220a、220b、ベルト221および支持部材219)が、図4に示す走査範囲外に設けられているため、図4に示す走査範囲であれば、3次元距離測定装置200を構成する各機構部によって、測距センサ212aの走査が阻害されない。
また、脚車輪型ロボット100の走行経路上の障害物を認識できればよいので、z軸回りの回転駆動による走査範囲も、前方180°までをカバーする必要はなく、2次元距離測定装置212から水平方向に所定距離隔てて配置されたモータ216およびエンコーダ218を走査範囲外とする範囲でも十分である。したがって、2次元距離測定装置212の回転駆動範囲を、モータ216およびエンコーダ218を含まない範囲とする。
次に、脚車輪型ロボット100の移動制御システムを説明する。
図5は、脚車輪型ロボット100の移動制御システムを示すブロック図である。
各脚部12の回転関節14〜18には、図5に示すように、回転関節14〜18を回転駆動する関節モータ40がそれぞれ設けられている。各関節モータ40には、関節モータ40の回転角度位置を検出するエンコーダ42と、モータ指令信号およびエンコーダ42の出力信号に基づいて関節モータ40の駆動を制御するドライバ44が設けられている。
各脚部12の駆動輪20には、駆動輪20を回転駆動する車輪モータ50がそれぞれ設けられている。各車輪モータ50には、車輪モータ50の回転角度位置を検出するエンコーダ52と、モータ指令信号およびエンコーダ52の出力信号に基づいて車輪モータ50の駆動を制御するドライバ54が設けられている。
脚車輪型ロボット100は、さらに、CPU60と、脚車輪型ロボット100の姿勢を検出する3軸姿勢センサ70と、外部のPC等と無線通信を行う無線通信部74と、無線通信部74とCPU60の入出力を中継するハブ76と、警告音等を出力するスピーカ78とを有して構成されている。
3軸姿勢センサ70は、ジャイロ若しくは加速度センサ、またはその両方を有し、地軸に対して脚車輪型ロボット100の姿勢の傾きを検出する。
CPU60は、モータ指令出力I/F61を介してドライバ44、54にモータ指令信号を出力し、角度取込I/F62を介してエンコーダ42、52の出力信号を入力する。また、センサ入力I/F63を介して、3次元距離測定装置200、前方脚先センサ22、下方脚先センサ24および3軸姿勢センサ70からそれぞれセンサ信号を入力する。また、通信I/F64を介してハブ76と信号の入出力を行い、サウンド出力I/F65を介してスピーカ78に音声信号を出力する。
次に、2次元距離測定装置212の制御構造を説明する。
図6は、2次元距離測定装置212の制御構造を示すブロック図である。
2次元距離測定装置212は、図6に示すように、測定範囲内に存在する物体上の測定点までの距離を測定する測距センサ212aと、測距センサ212aを回転駆動するモータ212cと、モータ212cの回転角度位置を検出するエンコーダ212dと、指令信号およびエンコーダ212dの出力信号に基づいてモータ212cの駆動を制御するドライバ212bとを有して構成されている。
ドライバ212bは、センシングプロセッサ210からの指令信号において設定された走査角度範囲(例えば、−40°〜+40°等の所定の角度範囲)および走査単位角度(例えば、0.36°等の所定の単位角度)に基づいて、モータ212cの回転軸を走査単位角度ずつ回転させる制御を行う。
モータ212cは、測距センサ212aのレーザ出力部(不図示)および受光部(不図示)をy’軸回りに回転駆動するように設けられており、ドライバ212bからの制御信号に応じて、自己の回転軸を走査単位角度(Δθ)ずつ回転駆動する。
次に、3次元距離測定装置200の制御構造を説明する。
図7は、3次元距離測定装置200の制御構造を示すブロック図である。
3次元距離測定装置200は、図7に示すように、センシングプロセッサ210と、2次元距離測定装置212と、モータ216と、エンコーダ218と、指令信号およびエンコーダ218の出力信号に基づいてモータ216の駆動を制御するドライバ214とを有して構成されている。
センシングプロセッサ210は、専用のプログラムを実行し、ドライバ212bに指令信号を与えて測距センサ212aを回転させ、測距センサ212aの走査範囲で測定可能な領域(以下、走査平面という。)内に存在する物体上の測定点までの距離を測定する第1走査処理を実行するとともに、1つの走査平面に対する第1走査処理が終了するごとに、ドライバ214に指令信号を与えて2次元距離測定装置212を回転させる第2走査処理を実行する。
センシングプロセッサ210は、さらに、第1走査処理および第2走査処理を経て2次元距離測定装置212で測定した距離の情報(以下、距離情報という。)に基づいて、測定範囲内に存在する物体上の連続面を認識する処理を実行する。
次に、3次元距離測定装置200の距離測定の原理を説明する。
図8は、2次元距離測定装置212の距離測定の原理を説明するための図である。
2次元距離測定装置212は、測距センサ212aが、モータ212cの回転軸の回転駆動に応じて、y’軸回りに走査単位角度ずつ回転し、かつ、回転するごとに、図8に示すように、レーザ出力部からレーザ光を出力するとともに、出力光に対する物体(図8中の障害物)からの反射光を受光部で受光し、各走査角度に応じた距離(図8中の測定距離L(物体と受光部との間の距離))を測定する。
図9は、第1走査処理および第2走査処理により走査を行った場合を示す図である。同図(a)は、測距センサ212aをy’軸回りに回転させたときの測定距離と走査角度θとの関係を示す図であり、同図(b)は、2次元距離測定装置212をz軸回りに回転させたときの走査平面と走査角度φとの関係を示す図である。
第1走査処理は、例えば、図9(a)に示すように、測距センサ212aをy’軸回りに走査単位角度ずつ回転させながら、原点位置に対する各走査角度(図9(a)中のθ1、θ2、θ3)に応じた距離情報(図9(a)中のL(θ1)、L(θ2)、L(θ3))を測定する処理となる。
また、第1走査処理における、モータ212cの回転軸の回転中心と、レーザの走査軌道線の両端とを結んで形成される平面が、走査平面(物体が存在しない場合は扇形の平面)となる。
ドライバ214は、センシングプロセッサ210からの指令信号において設定された走査角度範囲および走査単位角度(Δφ)に基づいて、モータ216の回転軸を走査単位角度ずつ回転させる制御を行う。
モータ216は、減速機(不図示)、プーリ220a、220bおよびベルト221を介して、2次元距離測定装置212をz軸回りに回転駆動するように設けられており、ドライバ214からの制御信号に応じて、自己の回転軸を走査単位角度ずつ回転駆動する。これにより、モータ216の回転軸の回転駆動に応じて、プーリ220a、220bを介して被駆動回転軸に回転駆動力が伝達され、2次元距離測定装置212がz軸回りに走査単位角度ずつ回転する。
すなわち、第2走査処理は、図9(b)に示すように、2次元距離測定装置212をz軸回りに走査単位角度ずつ回転させる処理となる。そして、第1走査処理と第2走査処理とを交互に連続して行うことにより、第1走査処理によって形成される走査平面をz軸回りに連続して形成する。
図10は、3次元距離測定装置200の距離の計測例を示す図である。
これにより、例えば、図10に示すように、壁、ついたて、スタンド、棚等の物体の立体的な形状を把握することができる。
また、図9(b)に示すように、第2走査処理後の各測定点の距離情報をL(θi,φj)と表記する。ここで、iは、y’軸回りの走査角度に応じて各測定点に付与される通し番号であり、jは、z軸回りの走査角度に応じて各測定点に付与される通し番号である。
次に、3次元距離測定装置200で実行される物体認識処理を説明する。
図11は、3次元距離測定装置200で実行される物体認識処理を示すフローチャートである。
物体認識処理は、CPU60からの指令信号に基づいて、センシングプロセッサ210が、ROM(不図示)に記憶された専用のプログラムを読み出し、読み出したプログラムを実行することで実現される処理であって、処理が実行されると、図11に示すように、まず、ステップS100に移行する。
ステップS100では、3次元距離測定装置200において、CPU60からの指令信号に基づいて、測距センサ212aおよび2次元距離測定装置212の走査角度範囲および走査単位角度を設定し、ステップS102に移行する。ここで、CPU60からの指令信号には、走査角度範囲および走査単位角度の情報が含まれている。
ステップS102では、2次元距離測定装置212に指令信号を出力することにより、ドライバ212b、モータ212cおよびエンコーダ212dを駆動し、測距センサ212aを、ステップS100で設定されたy’軸回りの走査角度範囲内において、ステップS100で設定された走査単位角度ずつy’軸回りに回転させるとともに、各走査角度に応じた距離情報を測定する第1走査処理を実行し、ステップS104に移行する。
ステップS104では、ステップS102で測定した距離情報に対して、メディアンフィルタを用いたフィルタリング処理を実行してノイズ成分を除去し、ステップS106に移行する。
ステップS106では、ステップS104でノイズ除去後の回転座標系の距離情報を直交座標系の座標情報に変換する。これにより、第1走査処理で得られた各測定点の距離情報は、その第1走査処理の走査平面を2次元平面とする直交座標系の座標情報に変換される。
次いで、ステップS108に移行して、ステップS106で変換された座標情報に基づいて、隣接する測定点の間を線分で接続し、ステップS110に移行して、得られた線上の点の座標情報に基づいてハフ変換により直交座標系における線分を検出する。
図12は、ハフ変換の原理を説明するための図である。同図(a)は、x−y平面を示し、同図(b)は、ρ−θ平面を示す。
ハフ変換は、デジタル画像処理で用いられる特徴抽出法の一つである。古典的には直線の検出を行うものだったが、さらに一般化されて様々な形態(円や楕円など方程式の形で表現できるもの)に対して用いられている。ハフ変換の特徴は、画像中の直線が途中で切断されている場合や、雑音が存在する場合でも、比較的良好な結果を得ることができる点である。
図12(a)に示すように、x−y座標系における直線ax+by+c=0を考える。なお、同図(a)のx軸、y軸は、3次元距離測定装置200の座標系におけるx軸、y軸とは別個のものである。
この直線から原点に垂線を下ろし、垂線の長さをρ、垂線とx軸とのなす角をθとしたとき、この直線は、下式(1)により表すことができる。
Figure 2009042146
上式(1)は、下式(2)に変形することができる。

ρ=xcosθ+ysinθ …(2)
したがって、1組の(ρ、θ)に対して1本の直線が対応することとなる。ここで、点(ρ、θ)を直線ax+by+c=0のハフ変換と呼ぶ。また、x−y座標系の任意の点(x0、y0)を通る直線群は、下式(3)により表すことができる。

ρ=x0cosθ+y0sinθ …(3)
ここで、x−y平面において3点P1、P2、P3を通るそれぞれの直線群の軌跡をρ−θ平面に描くと、図12(b)に示すように正弦曲線となる。この3点がx−y平面において同一直線上に存在するのであれば、ρとθの値は同一となり、ρ−θ平面において、3点に対応する曲線は1点で交わることになる。
ハフ変換の原理を利用すれば、複数の測定点の座標に基づいて線分を検出することができる。すなわち、n(n≧2)個の測定点に対して、ρ−θ平面上ではn個の曲線が描かれ、このうちm(n≧m≧2)個の曲線が1点で交わっていれば、このm個の曲線に対応するm個の測定点は、x−y平面において同一直線上にあるということになる。
次いで、ステップS120に移行して、検出した線分の端点を物体上の連続面の境界(凹凸を示す特徴点)として判定する。複数の線分が重なり合っているとき、または複数の線分が所定距離内に存在するときは、1つの線分であるとみなし、それら線分の端点のうち最も離れた2点を連続面の境界として判定する。
次いで、ステップS124に移行して、連続面の境界として判定した端点の座標情報をセンサ座標系(3次元座標)に変換し、変換された座標情報を各線分ごとに対応付けてRAM等のメモリ(不図示)に記憶し、ステップS126に移行する。
ステップS126では、第2走査処理の走査角度範囲および走査単位角度に対応するすべての走査平面についてステップS102〜S124の処理が終了したか否かを判定し、処理が終了したと判定したとき(Yes)は、ステップS128に移行する。
ステップS128では、メモリに記憶された座標情報に基づいて面データを生成する。連続面の境界として判定した端点を結ぶ線分(ステップS120で、1つの線分であるとみなしたもの)は、物体上の連続面と走査平面が交わる交線であるので、面データの生成は、例えば、ある走査平面において、連続面の境界として判定した端点を結ぶ線分と、z軸回りに隣接する走査平面において、連続面の境界として判定した端点を結ぶ線分との傾きおよび座標が所定範囲にあるものを連続面と判定し、それら線分に対応する座標情報を対応付けたり、公知の補間法を用いてつなぎ合わせたりすることにより行う。例えば、傾きが0に近い連続面は、水平面とみなすことができるので、そこが歩行可能な面であると判定することができる。
次いで、ステップS130に移行して、ハブ76および通信I/F64を介して、ステップS128で生成した面データをCPU60に出力し、一連の処理を終了する。
一方、ステップS126で、すべての走査平面についてステップS102〜S124の処理が終了しないと判定したとき(No)は、ステップS132に移行して、3次元距離測定装置200に指令信号を出力することにより、ドライバ214、モータ216およびエンコーダ218を駆動し、2次元距離測定装置212を、ステップS100で設定されたz軸回りの走査角度範囲内において、ステップS100で設定された走査単位角度ずつz軸回りに回転させる第2走査処理を実行し、ステップS102に移行する。
次に、CPU60で実行される処理を説明する。
CPU60は、ROM等の所定領域に格納されている制御プログラムを起動させ、その制御プログラムに従って、図13のフローチャートに示す昇降制御処理を実行する。
図13は、昇降制御処理を示すフローチャートである。
昇降制御処理は、脚部12の昇降制御を行う処理であって、CPU60において実行されると、まず、図13に示すように、ステップS200に移行する。
ステップS200では、3次元距離測定装置200から面データを入力し、ステップS202に移行して、入力した面データに基づいて、そのセンサ座標系における各測定点の座標をグローバル座標系の座標に変換し、連続面の周縁上の点を階段の特徴点として検出する。
次いで、ステップS204に移行して、検出した特徴点に基づいて階段の幅を算出し、ステップS206に移行して、検出した特徴点に基づいて階段の段鼻部の実座標を算出し、ステップS208に移行する。
ステップS208では、算出した階段の幅および段鼻部の実座標、並びに3軸姿勢センサ70のセンサ信号に基づいて逆運動学計算および重心計算を行い、ステップS210に移行して、ステップS208の計算結果に基づいて脚先(駆動輪20)の着地位置を決定し、ステップS212に移行する。
ステップS212では、前方脚先センサ22および下方脚先センサ24からそれぞれセンサ信号を入力し、ステップS214に移行して、入力した前方脚先センサ22のセンサ信号に基づいて蹴込板までの距離を算出し、ステップS216に移行して、入力した下方脚先センサ24のセンサ信号に基づいて脚先と踏板の位置関係を算出し、ステップS218に移行する。
ステップS218では、決定した着地位置および算出した両距離に基づいてドライバ44、54へのモータ指令信号を生成し、ステップS220に移行して、生成したモータ指令信号をドライバ44、54に出力し、ステップS222に移行する。
ステップS222では、脚先が踏板に着地したか否かを判定し、脚先が着地したと判定したとき(Yes)は、一連の処理を終了して元の処理に復帰させる。
一方、ステップS222で、脚先が着地しないと判定したとき(No)は、ステップS212に移行する。
次に、本実施の形態の動作を説明する。
脚車輪型ロボット100の移動経路上に階段が存在し、これを乗り越える場合を説明する。
図14は、第1走査処理による測定結果を示すグラフである。
センシングプロセッサ210では、まず、ステップS100を経て、CPU60からの指令信号に基づいて、センシングプロセッサ210において走査角度範囲および走査単位角度が設定される。
ここで、2次元距離測定装置212は、測距範囲20〜4095[mm]、最大走査角度範囲240°、角度分解能0.36°の2次元レンジセンサであることとする。走査角度範囲が240°であれば、図4に示す走査平面を形成する走査角度範囲と同じとなり、2次元距離測定装置212の上方にある支持部材219、プーリ220a、220bおよびベルト221が走査範囲に含まれないことになる。
また、第1走査処理に対して、走査角度範囲240°および走査単位角度0.36°が設定され、第2走査処理に対して、走査角度範囲−40°〜+40°および走査単位角度10°が設定されたとする(この場合は、走査平面が9つ形成される)。走査角度範囲−40°〜+40°であれば、2次元距離測定装置212から水平方向に所定距離隔てて配置されたモータ216およびエンコーダ218が走査範囲に含まれないことになる。
次いで、ステップS102を経て、第1走査処理に対して設定された走査角度範囲および走査単位角度に基づいて、ドライバ212bに指令信号が出力されることにより第1走査処理が実行される。最初は、z軸回りの走査角度φが0°の位置(原点位置)に対する第1走査処理が実行される。
その結果、ドライバ212bにより、センシングプロセッサ210からの指令信号およびエンコーダ212dからの出力信号に基づいて、モータ212cの回転軸が回転駆動し、測距センサ212aがy’軸回りに走査単位角度Δθ=0.36°ずつ回転するとともに、各走査角度に応じた距離が測定される。各距離情報は、データ列L(θi,φj)としてセンシングプロセッサ210に出力される。
なお、y’軸回りの走査範囲内には、基体10以外に、2次元距離測定装置212の駆動機構等の走査を阻害する物が一切存在しないため、走査範囲内に存在する物体の正確な距離情報を得ることができる。
1つの走査平面に対する第1走査処理が終了すると、ステップS104を経て、第1走査処理で測定された距離情報に対してフィルタリング処理が行われる。これにより、測定情報におけるノイズ成分が除去される。
ここで、ノイズ成分除去後の各測定点の測定距離L[mm]は、例えば、図14に示すようになる。図14において、横軸は、各走査角度に応じた測定点の番号(第1走査角度番号)であり、縦軸は、各走査角度番号の測定点に対する測定距離L[mm]である。
図14の例では、脚車輪型ロボット100の歩行経路上に、段差が一定でかつ踏板が連続面となっている階段が存在することが分かる。
次いで、ステップS106を経て、フィルタリング処理後の回転座標系の距離情報が直交座標系の座標情報に変換される。
図15は、図14の各測定点の回転座標系の距離情報を直交座標系の座標情報に変換した結果を示すグラフである。
図14の各測定点の回転座標系の距離情報は、座標変換により、図15に示すように、各走査角度に対応するx軸方向の距離[mm]とz軸方向の距離[mm]とで表される2次元の座標情報となる。図15において、横軸は、x軸方向の距離Lx[mm]であり、縦軸は、z軸方向の距離Lz[mm]である。
次いで、ステップS108、S110を経て、変換された座標情報に基づいて測定点間が線分で接続され、得られた線上の点の座標情報に基づいてハフ変換により直交座標系における線分が検出される。
図16は、直交座標系における測定点、線分接続の結果およびハフ変換の結果を示すグラフである。
直交座標系において各測定点は、図16(a)に示すように、蹴込板および踏板の輪郭に沿った複数の点の集合として表される。図16(a)の例では、1段目の踏板に対応する領域において、いくつかの測定点が連続面から外れた領域に分布しているが、これは、測定面である踏板の光沢等の影響により測定結果にばらつきが生じたものであり、誤差領域A1である。また、領域A2は、他の領域と比べて測定解像度が低くなっている。
この測定結果に対して線分接続を行うと、図16(b)に示すように、各測定点が1つの線で接続される。これにより、測定点が存在しない測定点間は、線上の点で補間されることになる。
この接続結果に対してハフ変換を行うと、図16(c)に示すように、各蹴込板および各踏板の輪郭に沿った線分が検出される。
複数の測定点に基づいて線分を検出する他の方法として、最小二乗法が知られている。
しかしながら、最小二乗法では、1つ1つの測定点を辿って線分を検出するため、低解像度領域A2では、蹴込板または踏板の輪郭とは沿わない線分を検出してしまうことがある。これに対し、ハフ変換では、測定解像度の影響を受けにくく、低解像度領域A2を含んでいても、図16(c)に示すように、蹴込板および踏板の輪郭に比較的沿った線分を検出することができる。
また、最小二乗法では、1つ1つの測定点を辿って線分を検出するため、誤差領域A1について、実際は平坦な線分であるところ斜めの線分として検出してしまう。これに対し、ハフ変換では、ばらつきの影響を受けにくく、ばらつきの数が少なければ、図16(c)に示すように、誤差領域A1およびその両側の領域を平坦な線分として検出することができる。
また、最小二乗法では、どこからどこまでの領域を1つの連続面であるかを認識するかについて問題がある。この場合、例えば、検出した線分の傾きが急激に変化した箇所を連続面の境界として認識することが考えられるが、この認識方法では、誤差領域A1について、実際は誤差領域A1およびその両側の領域が1つの連続面であるところ両側の領域を別々の連続面として認識してしまう。これに対し、ハフ変換では、ばらつきの影響を受けにくく、ばらつきの数が少なければ、図16(c)に示すように、誤差領域A1およびその両側の領域を1つの平坦な線分として検出することができる。
図17は、線分接続を行わない場合のハフ変換の結果を示すグラフである。
なお、線分接続を行わず、図16(a)の測定結果に対してハフ変換を行うと、図17に示すように、各踏板の輪郭に沿った線分が検出されるが、各蹴込板に沿った線分は検出することができない。
次いで、ステップS120、S124を経て、検出された線分の端点が物体上の連続面の境界として判定され、連続面の境界として判定された端点の座標情報がセンサ座標系に変換され、変換された座標情報がメモリに記憶される。
1つの走査平面について測定が終了すると、ステップS132を経て、第2走査処理に対して設定された走査角度範囲および走査単位角度に基づいて、ドライバ214に指令信号が出力されることにより第2走査処理が実行される。
その結果、ドライバ214により、センシングプロセッサ210からの指令信号およびエンコーダ218からの出力信号に基づいて、モータ216の回転軸が回転駆動し、2次元距離測定装置212がz軸回りに走査単位角度10°ずつ回転する。第2走査処理によって、2次元距離測定装置212の向きが1つ前の状態に対してz軸回りに10°だけ変化する。そして、この状態で、ステップS102を経て、第1走査処理が再び実行される。すなわち、z軸回りに10°ずれた位置に新たな走査平面が形成され、この走査平面について第1走査処理が実行される。
ここで、2次元距離測定装置212が基体10の正面に取り付けられているため、基体10が走査範囲内に含まれてしまうが、脚車輪型ロボット100の前方および歩行経路上を含む範囲においては阻害物が一切ないため、脚車輪型ロボット100の歩行制御を行うのに十分な走査範囲が確保できているといえる。
すべての走査平面について測定が終了すると、ステップS128を経て、メモリに記憶された座標情報に基づいて面データが生成される。
図18は、連続面の判定結果を示す図である。
面データは、図18に示すように、z軸回りに隣接する走査平面間において、傾きおよび座標が近い線分をつなぎ合わせることで生成される。図18の例では、例えば、走査平面φ0において、1段目の踏板に対応する領域(φ0、2)の線分と、走査平面φ1において、1段目の踏板に対応する領域(φ1、2)の線分とが1つの連続面を構成すると判定されるので、その連続面については、それら線分の端点の座標情報を対応付けた面データが生成される。
なお、同様に、走査平面φ0における領域(φ0、2i(iは2以上の整数))の線分および走査平面φ1における領域(φ1、2i)の線分が1つの連続面を、走査平面φ0における領域(φ0、2j(jは1以上の整数)−1)の線分および走査平面φ1における領域(φ1、2j−1)の線分が1つの連続面を構成すると判定され、面データが生成される。
面データは、ステップS130を経て、ハブ76および通信I/F64を介してCPU60に出力される。
CPU60では、面データを入力すると、ステップS202を経て、入力された面データに基づいて特徴点が検出される。また、入力された面データが解析され、例えば、傾きが0に近い連続面が水平面とみなされ、脚車輪型ロボット100が歩行可能な面であると判定される。
歩行可能な面であると判定されると、ステップS204〜S210を経て、検出された特徴点に基づいて階段の幅および段鼻部の実座標が算出され、算出された階段の幅および段鼻部の実座標に基づいて脚先の着地位置が決定される。
さらに、ステップS212〜S216を経て、脚先センサ22、24からそれぞれセンサ信号が入力され、蹴込板までの距離および脚先と踏板の位置関係が算出される。そして、ステップS218、S220を経て、決定された着地位置および算出された両距離に基づいてモータ指令信号が生成され、生成されたモータ指令信号がドライバ44、54に出力される。これにより、駆動輪20が回転するとともに回転関節14〜18が駆動し、脚車輪型ロボット100が姿勢を適切に保ちつつ階段を乗り越える。また、状況によっては階段を回避、停止する。したがって、脚型ロボットと同様に階段への適応性が高い。
なお、段差が一定でかつ踏板が連続面となる階段を例に挙げたが、段差が一定でない階段、蹴込板の無い階段等に対しても、正確にその面を認識することができるので、脚車輪型ロボット100の階段への適応性を高めることができる。
一方、平地では、脚車輪型ロボット100は、車輪走行で移動することができる。したがって、車輪型ロボットと同様に平地での移動性が高い。
このようにして、本実施の形態では、物体上の測定点までの距離を測定する測距センサ212aを備え、測距センサ212aを走査し、その走査範囲で測定可能な測定点について測距センサ212aの測定結果を取得し、取得した測定結果を直交座標系の座標に変換し、変換された測定点間を線分で接続し、得られた線上の点の座標に基づいてハフ変換により直交座標系における線分を検出し、検出した線分に基づいて物体上の連続面または連続面の境界を認識する。
これにより、物体上の連続面または連続面の境界として物体の少なくとも平面的な形状を把握することができるので、脚型ロボットや脚車輪型ロボット100のように複雑な姿勢制御を必要とするロボットの姿勢制御に好適な認識結果を得ることができる。また、ハフ変換により線分を検出するので、測距センサ212aを用いた2次元距離測定装置212により物体認識を行う場合に、測定解像度の低下または測定結果のばらつきにより認識精度が低下する可能性を低減することができる。さらに、測定点間を線分で接続して得られた線上の点の座標に基づいて線分を検出するので、測定解像度の低下または測定結果のばらつきが生じても比較的正確な認識結果を得ることができ、認識精度が低下する可能性をさらに低減することができる。
さらに、最小二乗法に比して、検出が困難となるエッジに対してロバストな検出が可能となる。
さらに、本実施の形態では、検出した線分の端点の座標に基づいて物体上の連続面または連続面の境界を認識する。
これにより、物体上の連続面または連続面の境界を比較的正確に認識することができる。
さらに、本実施の形態では、測距センサ212aをy’軸回りに回転させるモータ212c等からなるy’軸回転機構と、測距センサ212aをz軸回りに回転させるモータ216等からなるz軸回転機構とを備え、y’軸回転機構により測距センサ212aを回転させながらy’軸回転機構の走査単位角度ごとに測距センサ212aの測定結果を取得する第1走査を、z軸回転機構により測距センサ212aを回転させながらz軸回転機構の走査単位角度ごとに行う第2走査を行うことにより、y’軸回転機構の走査単位角度ごとおよびz軸回転機構の走査単位角度ごとの測定結果を取得する。
これにより、物体上の連続面または連続面の境界として物体の立体的な形状を把握することができるので、脚型ロボットや脚車輪型ロボット100のように複雑な姿勢制御を必要とするロボットの姿勢制御にさらに好適な認識結果を得ることができる。また、測距センサ212aを回転させる回転機構を採用したので、移動機構に比して、走査に必要なスペースが小さくてすみ、走査のための機構が簡素となり、しかも高速な走査を実現することができる。
さらに、本実施の形態では、モータ216およびエンコーダ218と、2次元距離測定装置212とを水平方向に所定距離隔てて配置し、駆動回転軸の回転駆動力を、プーリ220a、ベルト221およびプーリ220bを介して被駆動回転軸へと伝達し、2次元距離測定装置212をz軸回りに回転駆動する構成とした。
これにより、2次元距離測定装置212の走査角度範囲内には、走査を阻害するものが一切なくなるので、正確な距離情報を得ることができる。また、モータ216およびエンコーダ218と、2次元距離測定装置212とを水平方向に配置したので、3次元距離測定装置200の高さ方向の占有率を低減することができる。
さらに、本実施の形態では、脚先センサ22、24を備え、脚先センサ22、24で測定した距離に基づいて階段を認識し、その認識結果に基づいてモータ40、50を制御する。
これにより、脚先センサ22、24を用いて未知の階段を認識しながら脚部12の昇降制御を行うので、従来に比して、未知の階段に対して高い適応性を実現することができる。また、人が活動する環境での動作を行えるので、人と一緒に行動する用途に用いられるホームロボット、パーソナルロボット等に好適である。
さらに、本実施の形態では、3次元距離測定装置200を基体10の正面に設け、脚先センサ22、24を脚部12の先端に設けた。
これにより、脚車輪型ロボット100の移動経路上に存在する物体を広い視野で検出することができるとともに、階段昇降時に駆動輪20と階段の距離を精度よく測定することができる。
さらに、本実施の形態では、前方脚先センサ22の測定結果に基づいて階段の蹴込板までの距離を算出し、下方脚先センサ24の測定結果に基づいて駆動輪20と階段の踏板の位置関係を算出する。
これにより、階段の特徴のうち脚部12の昇降制御にさらに有効な特徴を検出することができるので、未知の階段に対してさらに高い適応性を実現することができる。
上記実施の形態において、ステップS102、S132は、発明1、3若しくは5の測定結果取得手段、または発明6の測定結果取得ステップに対応し、ステップS106は、発明1の座標変換手段、または発明6の座標変換ステップに対応し、ステップS110は、発明1、2若しくは4の線分検出手段、または発明6の線分検出ステップに対応している。また、ステップS120、S128は、発明1、2若しくは4の認識手段、または発明6の認識ステップに対応し、y’軸は、発明5の第1走査軸に対応し、z軸は、発明5の第2走査軸に対応し、y’軸回転機構は、発明3若しくは5の第1走査手段、または発明5の第1回転手段に対応している。
また、上記実施の形態において、z軸回転機構は、発明3若しくは5の第2走査手段、または発明5の第2回転手段に対応している。
なお、上記実施の形態においては、物体上の連続面または連続面の境界を認識するように構成したが、これに限らず、物体上の断続面その他の面またはその境界を認識するように構成することもできる。
また、上記実施の形態においては、隣接する測定点の間を線分で接続するように構成したが、これに限らず、直線、多次曲線その他の曲線で測定点間を接続し、または直線、線分、多次曲線その他の曲線で測定点間を近似するように構成することもできる。この場合、必ずしも、測定点が線上に位置しなくてもよいし、隣接する測定点同士を対象としなくてもよい。
また、上記実施の形態においては、線分接続により得られた線上の点の座標に基づいてハフ変換により線分を検出するように構成したが、これに限らず、得られた線から所定距離内に存在する点の座標に基づいてハフ変換により線分を検出するように構成することもできる。
また、上記実施の形態においては、エンコーダ218を駆動回転軸に設けて構成としたが、これに限らず、被駆動回転軸に設けて構成とすることもできる。
これにより、伝達誤差の影響を受けずに第2走査処理における走査角度を高精度に検出することができる。
また、上記実施の形態においては、プーリ220a、220bおよびベルト221を介して、駆動回転軸の回転駆動力を被駆動回転軸へと伝達するように構成としたが、これに限らず、複数の歯車を介して、駆動回転軸の回転駆動力を被駆動回転軸へと伝達するように構成とすることもできる。
また、上記実施の形態においては、第1走査処理における距離情報の取得を離散的(第2走査処理で回転させてから第1走査処理で距離情報を取得)に行う構成としたが、これに限らず、走査角度と測定距離との対応付けを行うことで連続的(第2走査処理で回転させつつ、第1走査処理で距離情報を取得)に行う構成とすることもできる。
また、上記実施の形態においては、CPU60からの指令信号に基づいて、走査角度範囲および走査単位角度を設定するように構成としたが、これに限らず、3次元距離測定装置200にあらかじめ設定しておく構成とすることもできる。
また、上記実施の形態において、3次元距離測定装置200は、測距センサ212aをy’軸回りに回転させ、2次元距離測定装置212をz軸回りに回転させる構成としたが、これに限らず、測距センサ212aをz軸回りに回転させ、2次元距離測定装置212をy’軸回りに回転させる構成とすることもできる。また、y’軸およびz軸回りに限らず、測距センサ212aの測定方向に対して互いに直交する2つの軸であれば、どの方向の軸回りでもよい。さらに、このような回転機構に限らず、測距センサ212aの測定方向とは異なる第1走査方向に測距センサ212aを移動させ、測距センサ212aの測定方向および第1走査方向とは異なる第2走査方向に測距センサ212aを移動させるように移動機構として構成することもできる。この場合、移動経路の形状としては、直線のほか円弧その他の曲線を採用することができる。回転機構と移動機構の組み合わせることもできる。
また、上記実施の形態においては、図19(a)に示すように、2次元距離測定装置212自身を回転させているが、これに限らず、光学式の測距センサを有する2次元距離測定装置であれば、図19(b)に示すように、測定方向の光軸上に挿入したミラーを回転させてもよい。
図19は、測距センサの測定方向を変更する場合の構成を示す図である。
また、上記実施の形態においては、本発明に係る物体認識装置および物体認識方法を、階段を乗り越える場合について適用したが、これに限らず、階段以外の段差を乗り越える場合についても同様に適用することができる。
また、上記実施の形態においては、本発明に係る物体認識装置および物体認識方法を脚車輪型ロボット100に適用したが、これに限らず、本発明の主旨を逸脱しない範囲で他の場合にも適用可能である。例えば、直動関節で脚構造を実現する脚車輪型ロボットや他の構成のロボット、車両その他の装置に適用することができる。また、認識情報の伝達手段と組み合わせることにより視覚障害者が外界を認識するための手段としての装置、認識方法への展開も考えられる。
脚車輪型ロボット100の正面図である。 脚車輪型ロボット100の側面図である。 3次元距離測定装置200の外観構造を示す図である。 測距センサの走査範囲を示す図である。 脚車輪型ロボット100の移動制御システムを示すブロック図である。 2次元距離測定装置212の制御構造を示すブロック図である。 3次元距離測定装置200の制御構造を示すブロック図である。 2次元距離測定装置212の距離測定の原理を説明するための図である。 第1走査処理および第2走査処理により走査を行った場合を示す図である。 3次元距離測定装置200の距離の計測例を示す図である。 3次元距離測定装置200で実行される物体認識処理を示すフローチャートである。 ハフ変換の原理を説明するための図である。 昇降制御処理を示すフローチャートである。 第1走査処理による測定結果を示すグラフである。 図14の各測定点の回転座標系の距離情報を直交座標系の座標情報に変換した結果を示すグラフである。 直交座標系における測定点、線分接続の結果およびハフ変換の結果を示すグラフである。 線分接続を行わない場合のハフ変換の結果を示すグラフである。 連続面の判定結果を示す図である。 測距センサの測定方向を変更する場合の構成を示す図である。 測距センサの走査角度と測定点間の密度との関係を示す図である。
符号の説明
100 脚車輪型ロボット
10 基体
12 脚部
14〜18 回転関節
20 駆動輪
22、24 脚先センサ
40、50 モータ
42、52 エンコーダ
44、54 ドライバ
70 3軸姿勢センサ
200 3次元距離測定装置
210 センシングプロセッサ
212 2次元距離測定装置
212a 測距センサ
212c、216 モータ
212d、218 エンコーダ
212b、214 ドライバ
220a、220b プーリ
221 ベルト

Claims (6)

  1. 物体上の面または面の境界を認識する物体認識装置であって、
    物体上の測定点までの距離を測定する測距センサと、前記測距センサを走査する走査手段と、前記走査手段の走査範囲で測定可能な前記測定点について前記測距センサの測定結果を取得する測定結果取得手段と、前記測定結果取得手段で取得した測定結果を直交座標系の座標に変換する座標変換手段と、前記座標変換手段で変換された前記測定点間を線で補間する測定点間補間手段と、前記測定点間補間手段で得られた線上の点の座標に基づいてハフ変換により前記直交座標系における線分を検出する線分検出手段と、前記線分検出手段で検出した線分に基づいて物体上の面または面の境界を認識する認識手段とを備えることを特徴とする物体認識装置。
  2. 請求項1において、
    前記認識手段は、前記線分検出手段で検出した線分の端点の座標に基づいて物体上の面の境界を認識することを特徴とする物体認識装置。
  3. 請求項1および2のいずれか1項において、
    前記走査手段は、前記測距センサの測定方向とは異なる第1走査方向に前記測距センサを走査する第1走査手段と、前記測定方向および前記第1走査方向とは異なる第2走査方向に前記測距センサを走査する第2走査手段とからなり、
    前記測定結果取得手段は、前記第1走査手段および前記第2走査手段の走査範囲で測定可能な前記測定点について前記測距センサの測定結果を取得することを特徴とする物体認識装置。
  4. 請求項3において、
    前記認識手段は、前記線分検出手段で検出した線分の端点の座標に基づいて物体上の面を認識することを特徴とする物体認識装置。
  5. 請求項3および4のいずれか1項において、
    前記第1走査手段は、前記測定方向に対して所定角度をなす第1走査軸の回りに前記測距センサを回転させる第1回転手段であり、
    前記第2走査手段は、前記測定方向および前記第1走査軸に対して所定角度をなす第2走査軸の回りに前記測距センサを回転させる第2回転手段であり、
    前記測定結果取得手段は、前記第1回転手段により前記測距センサを回転させながら前記第1回転手段の所定単位角度ごとに前記測距センサの測定結果を取得する第1走査を、前記第2回転手段により前記測距センサを回転させながら前記第2回転手段の所定単位角度ごとに行う第2走査を行うことにより、前記第1回転手段の所定単位角度ごとおよび前記第2回転手段の所定単位角度ごとの前記測定結果を取得することを特徴とする物体認識装置。
  6. 物体上の測定点までの距離を測定する測距センサを用いて物体上の面または面の境界を認識する物体認識方法であって、
    前記測距センサを走査する走査ステップと、前記走査ステップの走査範囲で測定可能な前記測定点について前記測距センサの測定結果を取得する測定結果取得ステップと、前記測定結果取得ステップで取得した測定結果を直交座標系の座標に変換する座標変換ステップと、前記座標変換ステップで変換された前記測定点間を線で補間する測定点間補間ステップと、前記測定点間補間ステップで得られた線上の点の座標に基づいてハフ変換により前記直交座標系における線分を検出する線分検出ステップと、前記線分検出ステップで検出した線分に基づいて物体上の面または面の境界を認識する認識ステップとを含むことを特徴とする物体認識方法。
JP2007209192A 2007-08-10 2007-08-10 物体認識装置および物体認識方法 Pending JP2009042146A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209192A JP2009042146A (ja) 2007-08-10 2007-08-10 物体認識装置および物体認識方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209192A JP2009042146A (ja) 2007-08-10 2007-08-10 物体認識装置および物体認識方法

Publications (1)

Publication Number Publication Date
JP2009042146A true JP2009042146A (ja) 2009-02-26

Family

ID=40443024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209192A Pending JP2009042146A (ja) 2007-08-10 2007-08-10 物体認識装置および物体認識方法

Country Status (1)

Country Link
JP (1) JP2009042146A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931279A (zh) * 2015-07-02 2015-09-23 哈尔滨工业大学 小型履带移动机器人牵引特性测试平台
CN106652028A (zh) * 2016-12-28 2017-05-10 深圳乐行天下科技有限公司 一种环境三维建图方法及装置
JP2018513365A (ja) * 2015-03-31 2018-05-24 アマゾン テクノロジーズ インコーポレイテッド モジュール式lidarシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513365A (ja) * 2015-03-31 2018-05-24 アマゾン テクノロジーズ インコーポレイテッド モジュール式lidarシステム
CN104931279A (zh) * 2015-07-02 2015-09-23 哈尔滨工业大学 小型履带移动机器人牵引特性测试平台
CN106652028A (zh) * 2016-12-28 2017-05-10 深圳乐行天下科技有限公司 一种环境三维建图方法及装置

Similar Documents

Publication Publication Date Title
JP5510081B2 (ja) 障害物回避支援装置、障害物回避支援方法及び移動体
JP2009096335A (ja) 脚型ロボット
JP4241651B2 (ja) 移動装置
JP2009008648A (ja) 3次元距離測定装置及び脚車輪型ロボット
JP2009050936A (ja) 干渉判定装置および脚車輪型ロボット
JP2019512424A (ja) 自動位置配置システム
JP2007310866A (ja) 絶対方位角を利用したロボット及びこれを利用したマップ作成方法
JP2011209845A (ja) 自律移動体、自己位置推定方法、地図情報作成システム
JP2008139035A (ja) 3次元環境計測装置及びそれを備えた移動ロボット
JP2010134742A (ja) 障害物回避機能を有する移動制御装置
JP2007190654A (ja) 脚車輪型ロボット
JP2009110251A (ja) 障害認識装置及びこれを有する自律走行移動体並びにその制御方法
JP6781535B2 (ja) 障害物判定装置及び障害物判定方法
JP2009006984A (ja) 脚車輪型ロボット
JP7221549B2 (ja) 情報処理装置および移動ロボット
JP2009042146A (ja) 物体認識装置および物体認識方法
KR100809379B1 (ko) 삼각영역 직교벡터를 이용한 평면영역 추출 장치 및 그방법
JP2010005718A (ja) 脚式ロボット
JP5358961B2 (ja) 移動ロボット及びレーザレンジセンサの走査速度制御方法
JP2009042145A (ja) 物体認識装置および物体認識方法
EP1768008A1 (en) Mobile vehicle
JP2009006466A (ja) 脚車輪型ロボット
JP2009006982A (ja) 脚車輪型ロボット
JP2008260117A (ja) 脚車輪型ロボット及び脚車輪装置
JP2009042147A (ja) 物体認識装置および物体認識方法