JP2009042038A - Evaluation method and evaluation device for physical property of thin film - Google Patents

Evaluation method and evaluation device for physical property of thin film Download PDF

Info

Publication number
JP2009042038A
JP2009042038A JP2007206667A JP2007206667A JP2009042038A JP 2009042038 A JP2009042038 A JP 2009042038A JP 2007206667 A JP2007206667 A JP 2007206667A JP 2007206667 A JP2007206667 A JP 2007206667A JP 2009042038 A JP2009042038 A JP 2009042038A
Authority
JP
Japan
Prior art keywords
temperature
sample
thin film
refractive index
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007206667A
Other languages
Japanese (ja)
Other versions
JP5120927B2 (en
Inventor
Kenji Ito
賢志 伊藤
Yoshinori Kobayashi
慶規 小林
Hisataka Oka
壽崇 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007206667A priority Critical patent/JP5120927B2/en
Publication of JP2009042038A publication Critical patent/JP2009042038A/en
Application granted granted Critical
Publication of JP5120927B2 publication Critical patent/JP5120927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable pressure/temperature polarization analysis/measurement method aimed at finding physical properties such as the film thickness L, refractive index n, extinction coefficient k, etc. of a thin-film specimen at specific pressure and temperature by measuring polarization parameters (Ψ, Δ) of the specimen while continuously changing the temperature of the thin-film specimen in a wide range, thereby evaluating the quantity, size, specific surface area, and thermal expansion coefficient, of nano-holes, and thermo-optical characteristics, etc. accompanying decomposition/desorption. <P>SOLUTION: As to a polarization analyzer, a specimen is disposed in a specimen evaluation chamber provided with an optically transparent window. The window is provided with an optical surface which remains vertical to incident light applied to the specimen mounted on a specimen table even if the pressure and temperature of gas are changed in the evaluation chamber, and an optical surface which remains vertical to reflected light reflected from the specimen even if temperature is changed. It is thereby made possible to find the refractive index, extinction coefficient, or film thickness of the specimen at various temperatures in a prescribed atmosphere having various pressures. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サブミクロンの膜厚を持つ薄膜試料を対象とし、該薄膜試料設置空間を真空から大気圧(約1013hPa)以上の範囲の圧力、好ましくは、1Paから1020hPaの範囲の圧力としながら、該薄膜試料を極低温から超高温の温度範囲、好ましくは、低温域(-196℃以上0℃未満)、中温域(0℃以上200℃未満)又は高温域(200℃以上600℃以下)の温度範囲の所定温度に制御して、該薄膜試料の膜厚及び屈折率を測定する方法および該温度領域を特定の速度で温度変化させつつ、該膜厚及び屈折率の温度依存性を測定する方法であり、測定結果を解析して、該薄膜試料の、空孔構造に依存した気体分子の吸脱着特性、線膨張率および分解脱離挙動に関連した熱特性等を評価するものである。半導体薄膜材料等の機能発現に関連したナノ空孔率およびナノ構造変化等の物性評価に適用可能となる技術に関する。   The present invention is directed to a thin film sample having a submicron film thickness, and the thin film sample installation space is set to a pressure in the range of vacuum to atmospheric pressure (about 1013 hPa) or higher, preferably in the range of 1 Pa to 1020 hPa. The thin film sample is in a temperature range from extremely low temperature to very high temperature, preferably in a low temperature range (-196 ° C. or higher and lower than 0 ° C.), middle temperature range (0 ° C. or higher and lower than 200 ° C.) A method of measuring the film thickness and refractive index of the thin film sample by controlling to a predetermined temperature in the temperature range, and measuring the temperature dependence of the film thickness and refractive index while changing the temperature range at a specific speed. This method analyzes the measurement results and evaluates the adsorption and desorption characteristics of gas molecules depending on the pore structure, the thermal expansion related to the coefficient of linear expansion and the decomposition and desorption behavior of the thin film sample. The present invention relates to a technique that can be applied to the evaluation of physical properties such as nanoporosity and nanostructure change related to the functional expression of semiconductor thin film materials and the like.

次世代半導体ULSI開発においては、信号遅延の原因となる寄生容量を減少させるために絶縁膜の低誘電率化(ロウ・ケー化)が必要不可欠となっている。ゾルゲル・スピンコート法およびプラズマ化学気相堆積法等の各種製膜方法において作製された低誘電率膜(ロウ・ケー膜)として適用可能な薄膜材料の高感度物性評価が重要となっている。   In the development of next-generation semiconductor ULSI, it is indispensable to reduce the dielectric constant (low-case) of the insulating film in order to reduce the parasitic capacitance that causes signal delay. It is important to evaluate the high-sensitivity properties of thin film materials that can be used as low dielectric constant films (low-Ke films) produced by various film forming methods such as sol-gel spin coating and plasma chemical vapor deposition.

誘電率は、マクスウェルの方程式、電束密度が誘電率と電場の積に等しく、磁束密度が透磁率と磁場の強さの積に等しいという関係に基づいて屈折率に関係づけることができる。   The dielectric constant can be related to the refractive index based on Maxwell's equation, where the electric flux density is equal to the product of the dielectric constant and the electric field, and the magnetic flux density is equal to the product of the magnetic permeability and the strength of the magnetic field.

薄膜の屈折率測定には偏光解析測定方法が利用されているが、偏光解析測定方法は、薄膜の膜質や1原子層以下の誤差で膜厚を分析する代表的な方法として、古くから知られている手法である。   The ellipsometric measurement method is used to measure the refractive index of the thin film, but the ellipsometric measurement method has long been known as a representative method for analyzing the film thickness with a thin film quality and an error of one atomic layer or less. It is a technique.

偏光解析測定方法は、基板上に堆積した薄膜試料に特定の偏光状態の光を入射し、試料から反射される光のうち、電界が入射面に平行な成分(p成分:p偏波)の反射率Rpと、電界が入射面に垂直な成分(s成分:s偏波)の反射率Rsとの比ρ=Rp/Rsを測定することにより、試料の屈折率n、消衰係数k(nとkを合わせて複素屈折率と呼ぶ)および膜厚L等を求める手法である。 In the ellipsometry measurement method, light of a specific polarization state is incident on a thin film sample deposited on a substrate, and the electric field of the component reflected from the sample is parallel to the incident surface (p component: p polarization). reflectance R p and an electric field component perpendicular to the plane of incidence: by measuring the ratio [rho = R p / R s of the reflectivity R s of (s component s-polarized), the refractive index n of the sample, extinction This is a technique for obtaining an attenuation coefficient k (referred to as a complex refractive index by combining n and k), a film thickness L, and the like.

測定結果は一般には複素数であり、虚数単位iを用いてρ=tanΨexp(iΔ)と表すことができる。ここで、Ψ(Psi)とΔ(Delta)は、測定する光(反射光)の偏光状態を表すパラメータであり、Ψは前記p成分と前記s成分との間の振幅反射率比を、Δは該p成分と該s成分との間の位相差をそれぞれ示す。このρは、薄膜試料の屈折率n、消衰係数kおよび膜厚Lに依存する値であることから、偏光解析測定方法を用いて反射光の偏光状態、つまり、前記偏光パラメータ(Ψ、Δ)を決定した上、適切なモデルを適用することにより、試料の屈折率、消衰係数および膜厚を求めることが可能となる。   The measurement result is generally a complex number, and can be expressed as ρ = tanΨexp (iΔ) using the imaginary unit i. Here, Ψ (Psi) and Δ (Delta) are parameters representing the polarization state of the light to be measured (reflected light), and Ψ is an amplitude reflectance ratio between the p component and the s component, Δ Indicates the phase difference between the p component and the s component, respectively. Since ρ is a value that depends on the refractive index n, the extinction coefficient k, and the film thickness L of the thin film sample, the polarization state of the reflected light, that is, the polarization parameters (Ψ, Δ ), And by applying an appropriate model, the refractive index, extinction coefficient, and film thickness of the sample can be obtained.

絶縁膜の誘電率を低減させる有効な方策の一つは、誘電率が1である空孔を絶縁材料中に形成して低誘電率化する方法である。このため、半導体産業においては、絶縁材料に分子サイズレベルの空孔(ナノ空孔)を導入する技術の開発が活発にすすめられている。物質中のナノ空孔は、空孔径に応じて、2nm以下をミクロ孔、2nm-50nmをメソ孔、50nm以上をマクロ孔に分類される。薄膜材料中にナノ空孔を形成する方法の一つがポロゲン法である。
前記ポロゲン法では、熱的に不安定な有機系原料と、比較的安定な別の有機系もしくは無機系原料との、混合原料から前駆体複合膜を作製し、該前駆体複合膜中にナノメートルスケールの凝集体として分散したポロゲン(不安定有機相)を熱分解して、該ポロゲンが分解した後に残った空間として空孔が形成される。
One effective measure for reducing the dielectric constant of the insulating film is a method of reducing the dielectric constant by forming holes having a dielectric constant of 1 in the insulating material. For this reason, in the semiconductor industry, development of technology for introducing pores (nanopores) at a molecular size level into an insulating material has been actively promoted. Nanopores in a substance are classified as micropores with a size of 2 nm or less, mesopores with 2 nm-50 nm, and macropores with a thickness of 50 nm or more, depending on the pore diameter. One method for forming nanopores in a thin film material is the porogen method.
In the porogen method, a precursor composite film is prepared from a mixed raw material of a thermally unstable organic raw material and another organic or inorganic raw material that is relatively stable, and a nanocomposite is formed in the precursor composite film. The porogen (unstable organic phase) dispersed as metric-scale aggregates is thermally decomposed, and voids are formed as spaces left after the porogen is decomposed.

前記ポロゲン法を応用した多孔質薄膜に関連して、ゾルゲル・スピンコートにより作製されたポロゲン含有薄膜試料のキュアリングおよび空孔形成過程の解析、熱安定性、表面改質による吸湿特性に関する公知の研究がある。   In relation to the porous thin film using the porogen method, the known porogen-containing thin film sample prepared by sol-gel spin coating is cured and analyzed for pore formation process, thermal stability, and moisture absorption characteristics by surface modification. There is research.

Changらは、有機メチルシルセスキオキサン前駆体を用いてシリコン基板上に堆積したゾルゲル・スピンコート薄膜を450℃以下の範囲でキュアリングしたときのポロゲン分解反応を昇温脱離ガス分析法(TDS)により評価した(非特許文献1)。この研究では、250℃までにポロゲンが完全に脱離したことをTDSで確認した後、室温まで急冷した試料の屈折率を評価することにより、誘電率とポロゲン脱離温度との関係を議論している。   Chang et al. Conducted a temperature-programmed desorption gas analysis method for the porogen decomposition reaction when a sol-gel spin-coated thin film deposited on a silicon substrate using an organomethylsilsesquioxane precursor was cured at a temperature of 450 ° C or lower ( TDS) (Non-Patent Document 1). In this study, the relationship between the dielectric constant and the porogen desorption temperature was discussed by evaluating the refractive index of the sample rapidly cooled to room temperature after confirming that the porogen had completely desorbed by 250 ° C. ing.

また、ヘキサメチルジシロキサンを主原料としたプラズマ重合低誘電率膜の耐熱性に関する研究も行われた(非特許文献2)。TDSの評価結果に基づいて耐熱性が良好との結論を得ているが、当該文献では膜特性の温度依存性評価が行われていないため、膜本来の熱安定性に関する知見は得られていない。   In addition, research on the heat resistance of plasma-polymerized low dielectric constant films using hexamethyldisiloxane as the main raw material has been conducted (Non-patent Document 2). Although the conclusion that heat resistance is good based on the TDS evaluation results has not been obtained in this document, knowledge about the inherent thermal stability of the film has not been obtained. .

また、低誘電率膜の吸湿特性に関する研究も行われた(非特許文献3)。正ケイ酸エチル(TEOS)を主原料としたゾルゲル・スピンコート膜に対し、テトラメチルシクロテトラシロキサン(TMCTS)を用いて表面処理することにより得た低誘電率膜中への吸着水の結合状態についてTDSにより評価したところ、空孔中に吸着した水分子は400℃で脱離することが報告されたが、屈折率および誘電率への影響についての議論は、該低誘電率膜において、室温で得られた屈折率および誘電率の測定結果に基づいて行われた。   In addition, research on the moisture absorption characteristics of the low dielectric constant film was also conducted (Non-patent Document 3). Bonding state of adsorbed water in low dielectric constant film obtained by surface treatment with tetramethylcyclotetrasiloxane (TMCTS) on sol-gel spin coat film using ethyl orthosilicate (TEOS) as main raw material As a result of TDS evaluation, it was reported that water molecules adsorbed in the vacancies desorbed at 400 ° C. The measurement was performed based on the measurement results of the refractive index and the dielectric constant obtained in the above.

以上、いずれの研究においても、これまでロウ・ケー膜候補材料の屈折率は、偏光解析測定方法により非接触かつ高感度に測定されたが、広い温度範囲での測定ができなかったため、TDSによる評価結果を参照して、特定の温度で処理された薄膜を室温付近に急冷した薄膜試料の屈折率が評価された。このため、温度変化に伴う屈折率のその場観測による、キュアリング過程における空孔形成温度や熱分解温度などに関する詳細な検討ができないという問題があった。   As described above, in all studies, the refractive index of the raw material for the low-K film has been measured in a non-contact and highly sensitive manner by the ellipsometry measurement method, but it could not be measured in a wide temperature range. With reference to the evaluation results, the refractive index of a thin film sample obtained by rapidly cooling a thin film treated at a specific temperature to near room temperature was evaluated. For this reason, there has been a problem that detailed examination on the vacancy formation temperature and the thermal decomposition temperature in the curing process cannot be made by in-situ observation of the refractive index accompanying the temperature change.

基板上の酸化膜を除去する際に、酸化膜の除去状態に応じて適切な酸化膜除去を行うための半導体装置の製造方法及びその製造装置が発明された(特許文献1)。この発明においては、800℃までの偏光パラメータ(Ψ、Δ)を測定して温度上昇に伴う基板の状態変化をその場分析できる技術が開発された。この発明は、上に述べたロウ・ケー膜材料の屈折率測定に適用できると期待されたが、温度制御方法として冷却装置が付属しない赤外線加熱方式が採用されており、測定対象である薄膜試料は高温度まで急速に昇温されるため、前記偏光パラメータ(Ψ、Δ)が、温度ではなく、時間の関数として取得される。このために特性評価に必要な屈折率および膜厚の温度依存性についての知見が取得できないという問題があった。   A method of manufacturing a semiconductor device and an apparatus for manufacturing the same have been invented for performing appropriate oxide film removal according to the removal state of the oxide film when removing the oxide film on the substrate (Patent Document 1). In the present invention, a technique has been developed in which polarization parameters (Ψ, Δ) up to 800 ° C. can be measured and in-situ analysis of the state change of the substrate accompanying a temperature rise can be made. Although this invention was expected to be applicable to the refractive index measurement of the above-mentioned wax film material, an infrared heating method without a cooling device was adopted as a temperature control method, and the thin film sample to be measured Is rapidly heated to a high temperature, so the polarization parameters (Ψ, Δ) are obtained as a function of time rather than temperature. For this reason, there has been a problem that knowledge about the temperature dependence of the refractive index and film thickness required for characteristic evaluation cannot be obtained.

また、前記発明では試料を真空中に保持した状態で偏光パラメータ(Ψ、Δ)の測定が行われているため、所望の雰囲気および圧力条件での薄膜材料の評価ができない問題があった。   Further, in the invention, since the polarization parameters (Ψ, Δ) are measured while the sample is held in vacuum, there is a problem that the thin film material cannot be evaluated under a desired atmosphere and pressure conditions.

次世代半導体開発において、デバイス中の回路密度が高くなるにつれ配線間距離は短くなる傾向にあり、次世代半導体に採用される最小配線ピッチは45nm以下にまで減少している。高度に微細化された次世代半導体に適応させるためのロウ・ケー膜中の空孔の大きさはできる限り低減させる必要がある。
空孔導入型ロウ・ケー膜材料中に導入される空孔はミクロ孔およびメソ孔であり、薄膜中のミクロ孔およびメソ孔を評価できる超高感度計測法が必要とされている。
In next-generation semiconductor development, as the circuit density in the device increases, the distance between wirings tends to be shorter, and the minimum wiring pitch adopted for next-generation semiconductors has decreased to 45 nm or less. It is necessary to reduce the size of the vacancies in the wax film for adapting to the highly miniaturized next generation semiconductor as much as possible.
The vacancies introduced into the vacancy-introducing waxy film material are micropores and mesopores, and an ultrasensitive measurement method capable of evaluating the micropores and mesopores in the thin film is required.

粉体などのバルク材料中に存在するミクロ孔およびメソ孔の評価には汎用気体吸着法が用いられている(非特許文献4)。この測定法は低温に維持した粉体の表面への、占有面積の分かった気体分子(通常、窒素、クリプトンなど)の吸着量から試料粉体の比表面積および空孔の大きさを求める方法である。
比表面積を評価するための代表的な解析モデルはBrunauer-Emmet-Teller(BET)法とよばれ、導入された気体の相対圧力P/P0(Pは前記気体の圧力、P0は前記気体の飽和蒸気圧)と吸着量qの関係から単分子吸着量を測定し比表面積(BET比表面積)を求める方法である。
A general-purpose gas adsorption method is used to evaluate micropores and mesopores present in bulk materials such as powder (Non-patent Document 4). In this measurement method, the specific surface area of the sample powder and the size of the pores are determined from the amount of adsorption of gas molecules (usually nitrogen, krypton, etc.) whose surface area is known to the surface of the powder maintained at a low temperature. is there.
A typical analytical model for evaluating the specific surface area is called the Brunauer-Emmet-Teller (BET) method. The relative pressure P / P 0 of the introduced gas (P is the pressure of the gas, P 0 is the gas This is a method for determining the specific surface area (BET specific surface area) by measuring the adsorption amount of monomolecules from the relationship between the saturated vapor pressure and the adsorption amount q.

また、試料の温度を一定とした等温条件下にて、吸着分子の圧力Pを真空状態から徐々に飽和蒸気圧P0以下の範囲で変化させながら吸着量qを観測することにより吸着等温線を得ることができる。吸着等温線はナノ空孔の大きさと関係していることが知られている。
空孔径が2nm以上のメソ孔の場合、Kelvin(ケルビン)式に基づいて吸着量の相対圧力依存性から空孔径分布を求めることができる。また、空孔径が2nm以下のミクロ孔に対しては、Dubinin-Astakhov(DA)法などを適応することより空孔径分布が求めることができる。
In addition, under the isothermal condition with the sample temperature kept constant, the adsorption isotherm can be obtained by observing the adsorption amount q while gradually changing the pressure P of the adsorbed molecules from the vacuum state to the saturated vapor pressure P 0 or less. Obtainable. It is known that the adsorption isotherm is related to the size of nanopores.
In the case of mesopores having a pore diameter of 2 nm or more, the pore diameter distribution can be obtained from the relative pressure dependence of the adsorption amount based on the Kelvin equation. For micropores with a pore size of 2 nm or less, the pore size distribution can be obtained by applying the Dubinin-Astakhov (DA) method or the like.

しかし、汎用気体吸着法は感度が低いため、薄膜材料へ適用するためには、測定毎に多量の検体試料を用意する必要があるという問題があった。   However, since the general-purpose gas adsorption method has low sensitivity, there is a problem that a large amount of specimen sample needs to be prepared for each measurement in order to apply it to a thin film material.

少量の多孔質薄膜試料に対して気体吸着測定方法を適用するために、蒸気圧の低い、有機溶媒や水を吸着子として利用した方法が発明された(特許文献2)。しかしながら、室温での測定に限定されているため、吸着分子として利用できる物質は、蒸気圧が低く、比較的分子量の大きい有機溶媒や多くの材料との相互作用が強い水に限定される。このため、分子径が大きい吸着分子を利用した場合、吸着分子よりも大きい空孔の測定に制約されるという問題がある。より深刻には、試料との相互作用が強い吸着分子では膨潤効果が無視できないという原理的な問題がある。   In order to apply the gas adsorption measurement method to a small amount of porous thin film sample, a method using an organic solvent or water having a low vapor pressure as an adsorbent was invented (Patent Document 2). However, since it is limited to measurement at room temperature, a substance that can be used as an adsorbed molecule is limited to water having a low vapor pressure and a strong interaction with an organic solvent having a relatively large molecular weight and many materials. For this reason, when an adsorbed molecule having a large molecular diameter is used, there is a problem in that it is limited to measurement of vacancies larger than the adsorbed molecule. More seriously, there is a principle problem that the swelling effect cannot be ignored for adsorbed molecules having strong interaction with the sample.

多くの物質に対する相互作用が小さく、かつ、より小さい空孔を検出できる吸着分子として、窒素やアルゴンなどの気体を利用するためには、試料を吸着気体の沸点温度、例えば、窒素の場合には-196℃、という極低温まで冷却しなければならないという問題があり、特許文献2による発明では解決されていない。
日本国特許第3253932号 米国特許明細書第6319736号 S. Y. Chang, et al., Journal of theElectrochemical Society, vol.151(6), pp.F146F152 (2004). Y. Shioya, et al., Journal of theElectrochemical Society, vol.151(1), pp.C56C61 (2004). Y. Uchida, et al., MicroelectronicEngineering, vol.83, pp.2126-2129 (2006). S.M. Gregg and K.S. Sing: Adsorption,Surface Area and Porosity (Academic Press, London, 1982).
In order to use a gas such as nitrogen or argon as an adsorbed molecule that has a small interaction with many substances and can detect smaller vacancies, the sample should have a boiling point temperature of the adsorbed gas, for example, in the case of nitrogen. There is a problem that it has to be cooled to an extremely low temperature of −196 ° C., which is not solved by the invention of Patent Document 2.
Japanese Patent No. 3253932 US Pat. No. 6,319,736 SY Chang, et al., Journal of the Electrochemical Society, vol.151 (6), pp.F146F152 (2004). Y. Shioya, et al., Journal of the Electrochemical Society, vol. 151 (1), pp. C56C61 (2004). Y. Uchida, et al., MicroelectronicEngineering, vol.83, pp.2126-2129 (2006). SM Gregg and KS Sing: Adsorption, Surface Area and Porosity (Academic Press, London, 1982).

本発明の課題は、薄膜試料の環境を真空又は大気圧以下の特定圧力の気体雰囲気の条件として、前記薄膜試料の温度を低温域(0℃未満)、中温域(0℃以上200℃未満)から高温域(200℃以上)の範囲において連続的に変化させながら、前記薄膜試料の偏光パラメータ(Ψ、Δ)を測定することにより、前記薄膜試料の、特定圧力および特定温度条件、または、圧力と温度を変えながら、膜厚Lおよび屈折率n、消衰係数k等の物性を求め、圧力及び温度を変えて得られた測定結果を解析して、ナノ空孔の量と大きさや比表面積、熱膨張率、分解脱離に伴う熱光学特性などの評価を目的とした、圧力変化可能かつ温度可変偏光解析測定方法を提供することである。なお、本願明細書においては、「温度又は圧力を変化させる」とは、温度又は圧力の少なくとも一方を変化させることを意味する。   The object of the present invention is to set the temperature of the thin film sample in a low temperature range (less than 0 ° C.) and a medium temperature range (0 ° C. or more and less than 200 ° C.), with the environment of the thin film sample being a vacuum or a gas atmosphere having a specific pressure of atmospheric pressure or less To measuring the polarization parameters (Ψ, Δ) of the thin film sample while continuously changing in the range from high temperature to 200 ° C. While changing the temperature, obtain physical properties such as the film thickness L, refractive index n, extinction coefficient k, etc., and analyze the measurement results obtained by changing the pressure and temperature to determine the amount and size of the nanopores and the specific surface area. Another object of the present invention is to provide a pressure-variable and temperature-variable ellipsometric measurement method for the purpose of evaluating the coefficient of thermal expansion, thermo-optical characteristics associated with decomposition and desorption. In the present specification, “changing temperature or pressure” means changing at least one of temperature and pressure.

測定対象となる薄膜試料の環境を真空条件もしくは大気とは異なる特定の雰囲気条件とし、前記条件で前記薄膜試料の偏光パラメータ(Ψ、Δ)を測定して屈折率n、消衰係数kおよび膜厚Lを決定できるようにするため、光学窓を設けた試料評価室を開発し、前記試料評価室を備えた温度可変偏光解析測定装置を開発した。   The environment of the thin film sample to be measured is set to a vacuum condition or a specific atmospheric condition different from the atmosphere, and the polarization parameters (Ψ, Δ) of the thin film sample are measured under the above conditions to determine the refractive index n, the extinction coefficient k, and the film In order to be able to determine the thickness L, a sample evaluation chamber provided with an optical window was developed, and a temperature variable ellipsometry measurement apparatus equipped with the sample evaluation chamber was developed.

図1には前記温度可変偏光解析測定装置の概要を示した。以下に各部の機能について説明する。   FIG. 1 shows an outline of the temperature variable ellipsometry measuring apparatus. The function of each part will be described below.

前記温度可変偏光解析測定装置が備える前記光学窓を備える試料評価室は、薄膜試料(3)を配置する台(4)を備えた筐体(試料評価室:5)に光学窓(1)が結合されており、当該光学窓(1)は、入射光(11)および試料面からの反射光(12)が、それぞれ垂直に通過するように設置された光学面を備えている。   The sample evaluation chamber provided with the optical window provided in the temperature variable ellipsometry measuring device has an optical window (1) in a housing (sample evaluation chamber: 5) provided with a stage (4) on which a thin film sample (3) is arranged. The optical window (1) is coupled and has an optical surface installed so that the incident light (11) and the reflected light (12) from the sample surface pass vertically.

前記試料台(4)にはヒータ及び図1には示さない冷媒導入用ポンプを利用して冷媒流入口(23)から導入した冷媒を輸送する金属配管を備えており、試料台(4)に設置された温度センサで試料温度をモニタしながら温度制御器で前記冷媒導入用ポンプおよび前記ヒータの出力を制御することにより、薄膜試料(3)を、冷媒温度以上からヒータにより昇温可能温度以下までの範囲で任意温度に保持することができる。
冷媒には、液体ヘリウム、液体水素、液体窒素、液体アルゴン、液体酸素などの低温液体が利用可能である。
制御可能な温度範囲は、以下に示す下限温度および上限温度の範囲とすることができる。前記下限温度は利用する冷媒液体の沸点に依存して決定することができ、例えば、液体ヘリウム温度(-269℃)、液体水素温度(-253℃)、液体窒素温度(-196℃)、液体アルゴン温度(-186℃)、液体酸素温度(-183℃)、などのいずれかにできる。また、前記上限温度はヒータの出力に依存して決めることができ、例えば、数百℃、好ましくは、600℃にできる。
The sample stage (4) is provided with a metal pipe for transporting the refrigerant introduced from the refrigerant inlet (23) using a heater and a refrigerant introduction pump not shown in FIG. By controlling the output of the refrigerant introduction pump and the heater with the temperature controller while monitoring the sample temperature with the installed temperature sensor, the thin film sample (3) is heated from the refrigerant temperature to the temperature that can be raised by the heater. It can be kept at an arbitrary temperature in the range up to.
A low-temperature liquid such as liquid helium, liquid hydrogen, liquid nitrogen, liquid argon, or liquid oxygen can be used as the refrigerant.
The controllable temperature range can be a range of the lower limit temperature and the upper limit temperature shown below. The lower limit temperature can be determined depending on the boiling point of the refrigerant liquid used, for example, liquid helium temperature (-269 ° C), liquid hydrogen temperature (-253 ° C), liquid nitrogen temperature (-196 ° C), liquid Argon temperature (-186 ° C), liquid oxygen temperature (-183 ° C), etc. The upper limit temperature can be determined depending on the output of the heater. For example, it can be several hundred degrees Celsius, preferably 600 degrees Celsius.

前記光学窓を設けた試料評価室は、気密性が十分確保されており、バルブ(19)を閉じた後、排気ポンプ(22)により薄膜試料(3)の環境を1Pa以下の真空状態に保持することができる。前記試料評価室内の真空度は、真空計(18)でモニタできる。   The sample evaluation chamber provided with the optical window is sufficiently airtight and after the valve (19) is closed, the environment of the thin film sample (3) is kept in a vacuum state of 1 Pa or less by the exhaust pump (22). can do. The degree of vacuum in the sample evaluation chamber can be monitored with a vacuum gauge (18).

雰囲気調整用気体ボンベ(16)に所定の気体を保持し、前記試料評価室へ導入することにより、真空から大気圧程度までの圧力範囲、好ましくは、1Paから1020hPaの圧力範囲、にある任意圧力に保持した、雰囲気とすることができる。前記試料評価室内の圧力は圧力計(17)でモニタできる。   By holding a predetermined gas in the atmosphere adjustment gas cylinder (16) and introducing it into the sample evaluation chamber, an arbitrary pressure in a pressure range from vacuum to about atmospheric pressure, preferably in a pressure range of 1 Pa to 1020 hPa The atmosphere can be maintained. The pressure in the sample evaluation chamber can be monitored with a pressure gauge (17).

また、3方向バルブ(21)を気体放出口(25)側へ切り替えることにより、試料評価室内へ雰囲気調整用気体ボンベ(16)内の気体を所定の流量でフローさせながら測定することができる。流速は、流量計(20)でモニタできる。   Further, by switching the three-way valve (21) to the gas discharge port (25) side, measurement can be performed while the gas in the atmosphere adjustment gas cylinder (16) is flowed into the sample evaluation chamber at a predetermined flow rate. The flow rate can be monitored with a flow meter (20).

光源(9)、検出部(10)および偏光解析測定制御器(8)を備える偏光パラメータ測定システムは、光源(9)から出力される白色光を偏光子により直線偏光に変えて入射光(11)とし、基板面に垂直な方向に対して角度θで入射させ、試料薄膜の影響を受けた反射光(12)は楕円偏光として試料面で反射される光を、検出部(10)に内蔵された検光子を経た後、光の強度を測定し偏光パラメータ(Ψ、Δ)を求める。ただし、入射光の直線偏光の軸はp方向(光軸に垂直な面と入射光及び反射光を含む面との交線の方向)と、s方向(光軸に垂直な面内でp方向に垂直な方向)に対して傾いている。   A polarization parameter measurement system including a light source (9), a detection unit (10), and an ellipsometric measurement controller (8) converts white light output from the light source (9) into linearly polarized light by a polarizer and converts incident light (11 The reflected light (12) that is incident at an angle θ with respect to the direction perpendicular to the substrate surface and reflected by the sample thin film is reflected in the sample surface as elliptically polarized light in the detector (10). After passing through the analyzer, the intensity of the light is measured to obtain the polarization parameters (Ψ, Δ). However, the axis of linear polarization of incident light is in the p direction (the direction of the intersection of the plane perpendicular to the optical axis and the plane containing the incident light and reflected light) and the s direction (p direction in the plane perpendicular to the optical axis). In a direction perpendicular to

偏光解析測定で得られた偏光パラメータ(Ψ、Δ)および偏光成分の複素反射率から屈折率n、消衰係数k、膜厚Lを求める方法(H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectmetry: A User's Guide, John Wiley & Sons, Inc., New York, 1999.)を以下に述べる。   Method of obtaining refractive index n, extinction coefficient k, and film thickness L from polarization parameters (Ψ, Δ) obtained by ellipsometry measurement and complex reflectance of polarization component (HG Tompkins and WA McGahan, Spectroscopic Ellipsometry and Reflectmetry: A User's Guide, John Wiley & Sons, Inc., New York, 1999.)

入射光と試料面の法線とのなす角をθとすると、各波長λにおける試料の複素屈折率N =n−ikと偏光パラメータ(Ψ、Δ)との関係を説明する。前記のように、反射光のΨ(又はtanΨ)およびΔ(又はcosΔ)を測定することにより、真空もしくは大気圧程度の希薄気体中(屈折率〜1)におかれた薄膜に対して、各波長λにおける屈折率nと消衰係数kが、以下の式から求められる。

Figure 2009042038
Figure 2009042038
The relationship between the complex refractive index N = n−ik of the sample and the polarization parameters (ψ, Δ) at each wavelength λ will be described, where θ is the angle formed between the incident light and the normal of the sample surface. As described above, by measuring the Ψ (or tan Ψ) and Δ (or cos Δ) of the reflected light, each thin film placed in a rare gas (refractive index ˜1) in a vacuum or atmospheric pressure is measured. The refractive index n and the extinction coefficient k at the wavelength λ are obtained from the following equations.
Figure 2009042038
Figure 2009042038

膜厚Lは、基板上の薄膜試料における光学干渉効果を利用して求められ、より具体的には、薄膜表面の界面1と薄膜と基板界面2の間で多重反射を受けた各偏光成分の反射率とフレネルの反射係数rとの関係から求められる。

Figure 2009042038
Figure 2009042038
The film thickness L is obtained by using the optical interference effect in the thin film sample on the substrate. More specifically, the film thickness L of each polarization component subjected to multiple reflections between the interface 1 on the thin film surface and between the thin film and the substrate interface 2. It is obtained from the relationship between the reflectance and the Fresnel reflection coefficient r.
Figure 2009042038
Figure 2009042038

ここでβ=2πλLNcosφであり、各rは上付で示される偏光成分についての下付で示される界面での反射に対応し、φは試料面の法線に対する入射光の膜内での角度を示し、屈折率nの薄膜に対してはスネルの法則からnsinφ=sinθの関係が成り立つ。   Here, β = 2πλLNcosφ, and each r corresponds to the reflection at the interface indicated by the subscript for the polarization component indicated by the superscript, and φ represents the angle of the incident light within the film with respect to the normal of the sample surface As shown, the relationship of nsinφ = sinθ is established from Snell's law for a thin film having a refractive index n.

前記偏光パラメータの測定結果に対して前記数式1から数式4に基づいたモデルで解析することにより、試料薄膜の屈折率n、消衰係数kおよび膜厚Lを求めることができる。   By analyzing the measurement result of the polarization parameter using a model based on Equations 1 to 4, the refractive index n, the extinction coefficient k, and the film thickness L of the sample thin film can be obtained.

以上で説明した温度可変偏光解析測定装置を用いることにより、試料設置室内を、真空から大気圧以上の範囲の圧力、好ましくは、1Paから1020hPaの範囲の圧力、としながら、極低温から超高温の広い温度範囲、好ましくは、低温域(-196℃以上0℃未満)、中温域(0℃以上200℃未満)および高温域(200℃以上600℃以下)の温度範囲、の間で試料温度を所定の速度にて昇温もしくは降温もしくはその両方を行うことによって、特定温度および特定圧力における薄膜試料を偏光解析法により測定し、薄膜試料の屈折率n、消衰係数kおよび膜厚Lの温度依存性、および、特定温度での異なる圧力条件での屈折率n、消衰係数kおよび膜厚Lを観測可能とし、さらに、前記屈折率n、消衰係数kおよび膜厚Lの温度微小差分から熱膨張率および熱光学係数を算出し、それぞれの温度依存性を評価することができる。   By using the temperature variable ellipsometry measuring device described above, the sample chamber is set to a pressure in the range from vacuum to atmospheric pressure or higher, preferably in the range from 1 Pa to 1020 hPa, and from extremely low to very high temperature. Set the sample temperature within a wide temperature range, preferably the low temperature range (-196 ° C or higher and lower than 0 ° C), middle temperature range (0 ° C or higher and lower than 200 ° C), and high temperature range (200 ° C or higher and lower than 600 ° C). A thin film sample at a specific temperature and a specific pressure is measured by ellipsometry by raising or lowering the temperature at a predetermined speed or both, and the temperature of the refractive index n, extinction coefficient k, and film thickness L of the thin film sample is measured. Dependence, and the refractive index n, extinction coefficient k, and film thickness L under different pressure conditions at a specific temperature can be observed, and the temperature difference of the refractive index n, extinction coefficient k, and film thickness L Calculate the coefficient of thermal expansion and the thermo-optic coefficient from Each temperature dependency can be evaluated.

<屈折率と密度の関係>
オランダの理論物理学者ローレンツ(Hendrik−Lorenz)が、光を伝える媒質エーテルを純電磁的なものという考えから放置させ、透明な材料における光の屈折率と密度ρに関してLorentz−Lorenz(ローレンツ−ローレンス)の式

Figure 2009042038
を導き出した。Aは物質に固有の定数である。 <Relation between refractive index and density>
Dutch theoretical physicist Hendrik-Lorenz leaves the medium ether that transmits light out of the idea that it is purely electromagnetic, and in terms of the refractive index and density ρ of light in a transparent material, Lorentz-Lorenz Formula of
Figure 2009042038
Derived. A is a constant specific to the substance.

<屈折率と空孔率の関係>
ρと空孔率VpはVp=(ρ0−ρ)/ρ0=1−ρ/ρ0の式で関係づけられる。ここで、ρ0は空孔率がゼロに対応する骨格密度である。前記数式5によるローレンツ・ローレンスの関係から屈折率nと空孔率Vpの関係は以下のように表される。

Figure 2009042038
ここで下付の添え字、sk、filmは、薄膜試料を構成する骨格部分の屈折率および空孔を含んだ膜全体の屈折率にそれぞれ対応する。この式から膜中の空孔量が増加すると膜の屈折率nfilmは減少する。 <Relation between refractive index and porosity>
ρ and the porosity V p are related by the equation V p = (ρ 0 −ρ) / ρ 0 = 1−ρ / ρ 0 . Here, ρ 0 is a skeleton density corresponding to zero porosity. From the Lorentz-Lawrence relationship according to Equation 5, the relationship between the refractive index n and the porosity V p is expressed as follows.
Figure 2009042038
Here, the subscripts sk and film respectively correspond to the refractive index of the skeleton part constituting the thin film sample and the refractive index of the entire film including the holes. From this equation, as the amount of pores in the film increases, the refractive index n film of the film decreases.

<熱膨張率>
熱膨張率は温度の上昇によって物体の長さおよび体積が膨張する割合を1℃あたりで示した値で定義される。温度の上昇に対応して長さが変化する割合を線膨張率という。温度x℃における長さLxと線膨張率αは以下の関係がある。

Figure 2009042038
ここでΔLは伸び、ΔTは温度上昇である。
<熱光学係数>
公知の文献(Z. Zhang, et al., Polymer, vol.47, pp.4893-4896 (2006).)によると、屈折率nの温度依存性から求められる熱光学係数dn/dTには以下の関係がある。
Figure 2009042038
<Coefficient of thermal expansion>
The coefficient of thermal expansion is defined by a value indicating the rate at which the length and volume of an object expand with increasing temperature per 1 ° C. The rate at which the length changes in response to an increase in temperature is called the linear expansion coefficient. The length Lx at the temperature x ° C. and the linear expansion coefficient α have the following relationship.
Figure 2009042038
Here, ΔL is elongation and ΔT is temperature rise.
<Thermo-optic coefficient>
According to a known document (Z. Zhang, et al., Polymer, vol. 47, pp. 4893-4896 (2006)), the thermo-optic coefficient dn / dT obtained from the temperature dependence of the refractive index n is There is a relationship.
Figure 2009042038

前記数式においてξは、体積膨張率(=3α)、(∂n/∂T)ρは密度が一定のときの項を、それぞれ示している。(ρ∂n/∂ρ)Tは屈折率の密度依存性から求められる値であるが、前記数式5によるローレンツ−ローレンスの式を利用すると、屈折率nは密度ρで置き換えることができることから、密度の温度変化のみに依存する項と読み替えることができる。つまり、単位温度あたりの密度減少量、いいかえれば、単位温度あたりの空孔率増加量、が大きい場合、左辺(-dn/dT)の絶対値は、より大きな値を示すことが明らかである。 In the above formula, ξ represents a volume expansion coefficient (= 3α), and (∂n / ∂T) ρ represents a term when the density is constant. Since Utilizing Lawrence equation refractive index n can be replaced with the density ρ, - (ρ∂n / ∂ρ) T but is a value determined from the density dependence of the refractive index, the Lorentz by Equation 5 It can be read as a term that depends only on the temperature change of density. That is, it is clear that the absolute value of the left side (-dn / dT) shows a larger value when the amount of density decrease per unit temperature, in other words, the amount of increase in porosity per unit temperature, is large.

シリカを始めとした無機酸化物や有機絶縁膜候補材料など、熱膨張率および(∂n/∂T)ρの変動が比較的小さい薄膜試料においては、前記数式の左辺項-dn/dTに対する空孔率の変動による寄与は大きくなり、前記左辺項-dn/dTの温度依存性を測定することにより、空孔率の温度変化を高感度に解析することが可能となる。 For thin-film samples with relatively small variations in thermal expansion coefficient and (∂n / ∂T) ρ , such as silica and other inorganic oxides and organic insulating film candidate materials, the empty space for the left-hand side term -dn / dT in the above equation is used. The contribution due to the variation in porosity increases, and by measuring the temperature dependence of the left-hand side term -dn / dT, it becomes possible to analyze the temperature change of the porosity with high sensitivity.

<屈折率と低温域での気体分子吸着>
薄膜試料の膜組成が一定の場合、屈折率が1の空孔形成により膜全体の屈折率nfilmは減少するが、空孔に屈折率nadの分子が吸着した場合、吸着分子の量に応じて観測される膜の屈折率nobは増加する。ここで、吸着分子で埋められた空孔量Vf

Figure 2009042038
の関係を用いて測定できる。 <Refractive index and adsorption of gas molecules at low temperatures>
When the film composition of the thin film sample is constant, when the refractive index is decreased the refractive index n film of the entire membrane by pore formation of 1, the molecules of the refractive index n ad the pores is adsorbed, the amount of adsorbed molecules Accordingly, the refractive index nob of the observed film increases. Here, the void volume V f filled with adsorbed molecules is
Figure 2009042038
It can be measured using the relationship.

吸着分子で埋められた空孔量Vfは吸着分子の吸着量qに比例する。数式9に基づいて、観測された屈折率から吸着分子で埋められた空孔量Vfを算出するためには、吸着分子の屈折率と空孔の屈折率(=1)の差が偏光解析方法における測定誤差(約1/(100n))に比べて十分大きい必要がある。ヘプタン(室温における屈折率:1.38579)、液体窒素(-195.35℃における屈折率:1.1985)、液体アルゴン(-187.61℃における屈折率:1.2312)、液体クリプトン(屈折率:1.3)、液体水素(屈折率:1.112)など、気体吸着法で利用される各気体分子の屈折率は空孔の屈折率(=1)よりも十分大きいため、前記気体を多孔質薄膜試料への吸着分子として適用することができる。 The amount of holes V f filled with adsorbed molecules is proportional to the adsorbed amount q of adsorbed molecules. Based on Equation 9, the difference between the refractive index of the adsorbed molecule and the refractive index of the vacancy (= 1) is calculated by ellipsometry in order to calculate the void volume V f filled with the adsorbed molecule from the observed refractive index. It must be sufficiently large compared to the measurement error (about 1 / (100n)) in the method. Heptane (refractive index at room temperature: 1.38579), liquid nitrogen (refractive index at -195.35 ° C: 1.1985), liquid argon (refractive index at -187.61 ° C: 1.2312), liquid krypton (refractive index: 1.3), liquid hydrogen (refractive index) : The refractive index of each gas molecule used in the gas adsorption method such as 1.112) is sufficiently larger than the refractive index of the pores (= 1), so the gas can be applied as an adsorbed molecule to the porous thin film sample. it can.

気体分子の空孔への吸着量qと空孔径Dとの関係は公知の研究にて詳細に検討されている。公知の文献(R.Z.Wang, et al., Int. J. Energy Res.,vol.23, pp.887-898 (1999).)によると、圧力Pの等圧条件下では、空孔への分子吸着量qと空孔径Dおよび絶対温度TKの関係は、

Figure 2009042038
で表されることが知られている。ここで、P0は吸着分子の飽和蒸気圧、q0は全空孔に吸着したときの最大吸着量、βは吸着分子および試料に依存する定数である。 The relationship between the amount q of adsorbed gas molecules in the vacancies and the pore diameter D has been studied in detail in known studies. According to known literature (RZWang, et al., Int. J. Energy Res., Vol.23, pp.887-898 (1999)), under the isobaric condition of pressure P, molecular adsorption to the pores The relationship between quantity q, hole diameter D and absolute temperature T K is
Figure 2009042038
It is known that Here, P 0 is the saturated vapor pressure of the adsorbed molecule, q 0 is the maximum adsorption amount when adsorbed in all the vacancies, and β is a constant depending on the adsorbed molecule and the sample.

前記数式10の関係から、所定の圧力Pの等圧条件で温度を降下させていくと、より小さい空孔径の空孔を持つ試料ほど、より高温側で吸着量が増加し始めることが明らかである。前記数式9の関係は、ミクロ孔、もしくは、メソ孔を含有した水素吸蔵材料に関する公知の研究(X. Zhao, et al., Science,vol.306, pp.1012-1015 (2004).)によって応用されており、有用性が実験的に支持されている。   From the relationship of Equation 10, it is clear that when the temperature is lowered under the isobaric condition of the predetermined pressure P, the adsorption amount starts to increase on the higher temperature side as the sample has pores with smaller pore diameters. is there. The relationship of Equation 9 is based on a known study (X. Zhao, et al., Science, vol. 306, pp. 1012-1015 (2004).) Concerning hydrogen storage materials containing micropores or mesopores. It has been applied and its usefulness has been experimentally supported.

これまでに詳細に述べた通り、熱光学係数が薄膜試料の密度、すなわち、空孔率に依存することに着目して、0℃以上600℃以下の温度範囲で測定可能な温度可変偏光解析装置を開発することにより、低誘電率絶縁膜材料中の空孔形成過程などの、非接触、かつ、その場観測を可能とした。   As described in detail so far, paying attention to the fact that the thermo-optic coefficient depends on the density of the thin film sample, that is, the porosity, a temperature variable ellipsometer capable of measuring in the temperature range from 0 ° C to 600 ° C Has been developed to enable non-contact and in-situ observation of the formation of vacancies in low dielectric constant insulating film materials.

さらに、下限温度を、例えば、液体ヘリウム温度や液体窒素温度など、極低温度まで拡張することにより、これまで室温において行われていた気体吸着偏光解析測定を、液体窒素温度などの極低温において行うことが可能になった。本発明における測定装置に備えられた圧力変化可能な試料設置室内の雰囲気として、窒素、アルゴン、クリプトンなどの気体を選択可能であり、前記気体を吸着分子とすることにより、本発明による装置を適用した気体吸着測定を可能とした。また、溶媒吸着では測定不可能だった、空孔径のより小さいミクロ孔も含んだ空孔径分布の観測を可能とした。   Further, by extending the lower limit temperature to an extremely low temperature such as liquid helium temperature or liquid nitrogen temperature, gas adsorption ellipsometry measurement performed at room temperature so far is performed at an extremely low temperature such as liquid nitrogen temperature. It became possible. A gas such as nitrogen, argon or krypton can be selected as the atmosphere in the sample installation chamber equipped with the measuring apparatus according to the present invention, and the apparatus according to the present invention is applied by using the gas as an adsorbed molecule. Enabled gas adsorption measurement. In addition, it became possible to observe the pore size distribution including micro pores with smaller pore sizes, which could not be measured by solvent adsorption.

発明を実施するための最良の形態を図面を用いて説明する。   The best mode for carrying out the invention will be described with reference to the drawings.

本発明による実施例として、乾燥窒素気流下、600℃で30分間焼鈍して前処理したシリカ・スパッタ薄膜の(a)20℃における膜厚L20=1.0[μm]で除することにより規格化した膜厚L/L20、および、(b)波長630nmの光に対する屈折率nの中温域および高温域における温度依存性を図2に示した。前記シリカ・スパッタ膜は、高周波マグネトロンスパッタリング堆積装置を利用して、プロセスパラメータとして、高周波放電出力450W、共存アルゴンガス圧力0.1Pa、スパッタターゲットSiO2、堆積時間120分の各条件で作製した。 As an example according to the present invention, a silica sputtered thin film pretreated by annealing at 600 ° C. for 30 minutes under a stream of dry nitrogen was normalized by dividing by (a) film thickness L 20 = 1.0 [μm] at 20 ° C. FIG. 2 shows the film thickness L / L 20 and the temperature dependency of (b) the refractive index n with respect to light having a wavelength of 630 nm in the middle temperature range and the high temperature range. The silica-sputtered film was prepared using a high-frequency magnetron sputtering deposition apparatus under the following conditions as process parameters: high-frequency discharge output 450 W, coexisting argon gas pressure 0.1 Pa, sputter target SiO 2 , deposition time 120 minutes.

図2に示す結果から明らかなように、室温付近における屈折率は、非多孔質シリカの文献値1.45と一致している。図2に示される測定温度範囲における屈折率および膜厚の測定値の傾きから、測定温度範囲(0℃−600℃)における、線膨張率αおよび熱光学係数-dn/dTを算出して表1に示した。

Figure 2009042038
As is clear from the results shown in FIG. 2, the refractive index near room temperature is in agreement with the literature value of 1.45 for nonporous silica. The linear expansion coefficient α and the thermo-optic coefficient −dn / dT in the measurement temperature range (0 ° C.-600 ° C.) are calculated from the gradient of the measured refractive index and film thickness in the measurement temperature range shown in FIG. It was shown in 1.
Figure 2009042038

表1にはプラズマ化学気相堆積(PECVD)法により作製したポリシロキサン薄膜(以下、「シロキサン薄膜」)の線膨張率αおよび熱光学係数-dn/dTも示している。前記シロキサン薄膜は、ヘキサメチルジシロキサンおよびシクロヘキセンオキシドの4:1相対量の混合原料をアルゴンおよび酸素の12:8の相対量の混合ガスで希釈し、高周波放電出力200W、反応炉内圧力150Pa、基板温度250℃、堆積時間5分の各条件でシリコン基板上に作製した薄膜を乾燥窒素気流下、600℃で焼鈍することにより得られたものである。   Table 1 also shows the linear expansion coefficient α and the thermo-optic coefficient −dn / dT of a polysiloxane thin film (hereinafter “siloxane thin film”) produced by plasma enhanced chemical vapor deposition (PECVD). The siloxane thin film is prepared by diluting a mixed raw material of 4: 1 relative amount of hexamethyldisiloxane and cyclohexene oxide with a mixed gas of a relative amount of 12: 8 of argon and oxygen, high frequency discharge output 200 W, reactor pressure 150 Pa, It was obtained by annealing a thin film produced on a silicon substrate under conditions of a substrate temperature of 250 ° C. and a deposition time of 5 minutes at 600 ° C. in a dry nitrogen stream.

本発明の他の実施例として、PECVD法により作製した有機-無機複合薄膜中のポロゲンの温度上昇による熱分解脱離に伴う空孔形成の解析結果について説明する。   As another embodiment of the present invention, an analysis result of vacancy formation accompanying pyrolysis and desorption due to temperature rise of porogen in an organic-inorganic composite thin film produced by PECVD will be described.

図3にはPECVD法により作製したポロゲン含有シリカ薄膜の波長630nmの光に対する屈折率の温度依存性を示した。   FIG. 3 shows the temperature dependence of the refractive index of a porogen-containing silica thin film prepared by PECVD with respect to light having a wavelength of 630 nm.

前記ポロゲン含有シリカ薄膜は、正ケイ酸エチル(TEOS)およびシクロヘキサンの5:3相対量の混合原料をアルゴンガス10の相対量で希釈し、高周波放電出力200W、反応炉内圧力150Pa、基板温度80℃、堆積時間12分の各条件でシリコン基板上に作製することにより得られたものである。室温における膜厚は0.8[μm]である。   The porogen-containing silica thin film is prepared by diluting a mixed raw material of 5: 3 relative amount of normal ethyl silicate (TEOS) and cyclohexane with a relative amount of argon gas 10, high-frequency discharge output 200 W, reactor pressure 150 Pa, substrate temperature 80 It was obtained by fabricating on a silicon substrate under the conditions of ° C. and deposition time of 12 minutes. The film thickness at room temperature is 0.8 [μm].

図4にはPECVD法により作製した、ポロゲン含有シロキサン薄膜の波長630nmの光に対する温度依存性を示した。   FIG. 4 shows the temperature dependence of the porogen-containing siloxane thin film prepared by PECVD with respect to light having a wavelength of 630 nm.

前記ポロゲン含有シロキサン薄膜は、ヘキサメチルジシロキサンおよびシクロヘキサンの4:3相対量の混合原料をアルゴンガス12の相対量で希釈し、高周波放電出力200W、反応炉内圧力150Pa、基板温度100℃、堆積時間15分の各条件でシリコン基板上に作製することにより得られたものである。室温における膜厚は0.5[μm]である。   The porogen-containing siloxane thin film is prepared by diluting a 4: 3 relative mixed raw material of hexamethyldisiloxane and cyclohexane with a relative amount of argon gas 12, high-frequency discharge output 200 W, reactor pressure 150 Pa, substrate temperature 100 ° C., deposition It was obtained by producing on a silicon substrate under each condition for 15 minutes. The film thickness at room temperature is 0.5 [μm].

図3および図4で示されるように、600℃まで加熱後、室温まで冷却した薄膜の屈折率は加熱前の薄膜の屈折率に比べて大きく減少しており、ポロゲンの熱分解脱離により空孔が形成され、空孔率が増大したことを示している。   As shown in FIG. 3 and FIG. 4, the refractive index of the thin film heated to 600 ° C. and then cooled to room temperature is greatly reduced compared to the refractive index of the thin film before heating, and empty due to the pyrolytic desorption of the porogen. It shows that holes were formed and the porosity increased.

数式6およびそれぞれの薄膜試料を形成する骨格成分の屈折率(シリカ薄膜:1.45、シロキサン薄膜:1.49)を利用して、加熱後の薄膜の20℃における屈折率から求められた空孔率は、それぞれ33%、および30%である。   Using Equation 6 and the refractive index of the skeletal component forming each thin film sample (silica thin film: 1.45, siloxane thin film: 1.49), the porosity determined from the refractive index at 20 ° C. of the heated thin film is 33% and 30% respectively.

これら薄膜試料の温度上昇時の熱光学係数-dn/dTの温度依存性を図5に示した。   The temperature dependence of the thermo-optic coefficient -dn / dT at the time of temperature rise of these thin film samples is shown in FIG.

表1に示されるシリカ薄膜およびシロキサン薄膜の熱光学係数に比べて、ポロゲンを含有した各薄膜の熱光学係数は測定温度範囲で十分に大きく、ポロゲン含有薄膜の熱光学係数の変化はポロゲンの熱分解による空孔形成にともなう空孔率の変動が支配的であること示している。   Compared to the thermo-optic coefficients of the silica thin film and siloxane thin film shown in Table 1, the thermo-optic coefficient of each thin film containing porogen is sufficiently large in the measurement temperature range, and the change in the thermo-optic coefficient of the porogen-containing thin film is the heat of the porogen. It shows that the fluctuation of porosity with the formation of pores due to decomposition is dominant.

図5に示されるそれぞれ薄膜試料の結果を詳細に見ると、ポロゲン含有シリカ薄膜の測定結果では、ポロゲンの脱離に伴う、急激な空孔形成を原因とするピークは約150℃、約280℃、約480℃に、また、ポロゲン含有シロキサン薄膜の測定結果では、空孔形成を原因とする、約400℃にややブロードなピークが観測された。本結果から、測定した2種類のポロゲン含有薄膜の空孔形成温度が異なることが明らかである。本発明により、ポロゲン法による空孔形成過程のその場観測が可能なことが示された。   When the results of the respective thin film samples shown in FIG. 5 are examined in detail, in the measurement results of the porogen-containing silica thin film, the peaks due to rapid vacancy formation accompanying porogen desorption are about 150 ° C. and about 280 ° C. In the measurement results of the porogen-containing siloxane thin film, a slightly broad peak was observed at about 400 ° C. due to vacancy formation. From this result, it is clear that the measured pore formation temperatures of the two types of porogen-containing thin films are different. According to the present invention, it was shown that in-situ observation of the vacancy formation process by the porogen method is possible.

図6は本発明のさらに他の実施例を示す結果である。低速陽電子寿命測定方法で決定したそれぞれの空孔径が1.7nmおよび4.0nmである、ミクロ孔含有シリカ系薄膜およびメソ孔含有シリカ系薄膜を薄膜試料として用いた。薄膜試料を試料評価室内に設置した後、試料評価室内を1Pa以下の真空として、120℃で数分間焼鈍して前処理した後、試料評価室内が1013hPaとなるように乾燥アルゴンを導入した。アルゴン圧力を1013hPaに保持したまま、試料温度を降下させながら、偏光解析測定を行った。図6には各温度で測定した各薄膜試料の波長630nmの光に対する屈折率nと、120℃で測定した波長630nmの光に対する屈折率n120との差Δn=n−n120の温度依存性を示した。 FIG. 6 shows the results showing still another embodiment of the present invention. A micropore-containing silica-based thin film and a mesopore-containing silica-based thin film, each having a pore diameter determined by the slow positron lifetime measurement method of 1.7 nm and 4.0 nm, were used as thin film samples. After the thin film sample was placed in the sample evaluation chamber, the sample evaluation chamber was preliminarily annealed at 120 ° C. for several minutes under a vacuum of 1 Pa or less, and then dry argon was introduced so that the sample evaluation chamber was 1013 hPa. Ellipsometric measurement was performed while decreasing the sample temperature while maintaining the argon pressure at 1013 hPa. FIG. 6 shows the temperature dependence of the difference Δn = n−n 120 between the refractive index n of light at a wavelength of 630 nm of each thin film sample measured at each temperature and the refractive index n 120 of light at a wavelength of 630 nm measured at 120 ° C. showed that.

図7には、図6に示される、各薄膜試料で測定された屈折率の温度依存性に対して、数式9を適用することにより求められたVfの試料温度依存性を示した。上述の通り、Vfは空孔内に吸着した気体分子の量を反映する。図7の結果が示しているとおり、温度を減少させていくと、空孔径の大きいメソ孔含有シリカ系薄膜のVfが増大を開始する温度よりも高い温度である-40℃付近で、空孔径の小さいミクロ孔含有シリカ系薄膜のVfが増大し始めている。本結果により、本発明を適用することにより、ナノ空孔構造解析が可能であることが示された。 FIG. 7 shows the sample temperature dependency of V f obtained by applying Equation 9 to the temperature dependency of the refractive index measured for each thin film sample shown in FIG. As described above, V f reflects the amount of gas molecules adsorbed in the vacancies. As the result of FIG. 7 shows, when the temperature is decreased, the mesopore-containing silica-based thin film having a large pore diameter has a vacancy around −40 ° C., which is higher than the temperature at which V f starts to increase. V f of a microporous silica-based thin film having a small pore diameter has begun to increase. From this result, it was shown that the nanopore structure analysis is possible by applying the present invention.

半導体産業における次世代半導体開発では信号遅延の原因となる寄生容量を減少させるために絶縁膜の低誘電率(ロウ・ケー)化が必要不可欠であり、シリカなどの絶縁材料にナノ空間を導入して誘電率を大幅に低減させた多孔質ウルトラ ロウ・ケー膜の開発が進められている。本発明は空孔導入型ロウ・ケー膜材料の開発に必要不可欠な物性評価方法を提供する。   In the development of next-generation semiconductors in the semiconductor industry, it is indispensable to lower the dielectric constant of the insulating film in order to reduce the parasitic capacitance that causes signal delay. Nanospace is introduced into insulating materials such as silica. Development of a porous ultra-low K film with a significantly reduced dielectric constant is underway. The present invention provides a physical property evaluation method that is indispensable for the development of a void-introducing type wax-like film material.

半導体デバイスの作製で用いられる有機系薄膜材料は粘弾性体であり、当該材料の熱残留応力と反り変形はデバイス内の金属配線との界面部における剥離など重篤な結果をもたらす。本発明では、これら物性に密接な関係があるガラス転移温度、熱膨張率(熱膨張係数)を高感度評価できる方法を提供する。   The organic thin film material used in the production of a semiconductor device is a viscoelastic body, and the thermal residual stress and warpage deformation of the material have serious consequences such as peeling at the interface with the metal wiring in the device. The present invention provides a method capable of highly sensitive evaluation of the glass transition temperature and the coefficient of thermal expansion (thermal expansion coefficient) that are closely related to these physical properties.

光通信媒体に適用が検討されているアサーマル材料、光スイッチング材料などでは熱光学係数の測定が必要不可欠である。本発明による、温度可変偏光解析測定方法を適用することにより、広い温度領域における熱光学係数の高感度測定が可能になる。プリズムカップリング法では測定不可能なサブミクロンの膜厚をもつ薄膜に対しても適用可能であり、光学薄膜材料の研究開発に貢献できる。   Measurement of the thermo-optic coefficient is indispensable for athermal materials, optical switching materials, and the like that are being studied for application to optical communication media. By applying the temperature variable ellipsometry measurement method according to the present invention, it is possible to perform highly sensitive measurement of the thermo-optic coefficient in a wide temperature range. It can also be applied to thin films with sub-micron thickness that cannot be measured by the prism coupling method, and can contribute to the research and development of optical thin film materials.

光導波路、高感度ガスセンサー、分子分離膜などに適用可能な多孔質薄膜の開発が行われており、薄膜中のナノ空孔の非破壊かつ微小領域での計測技術が重要となっている。本発明による超高感度気体吸着量測定技術が提供する空孔構造評価方法は機能性多孔質薄膜材料の研究開発に貢献する。
水素吸蔵特性をもつ物質を薄膜化することにより吸蔵特性を向上できるという研究成果が示されている。本発明を適用することにより、水素に対する薄膜の吸着特性の高感度評価が可能となる。このため、温室効果ガスの原因と考えられている化石燃料に対する代替クリーンエネルギーとして期待されている水素を貯蔵するための新規材料開発に貢献する。
The development of porous thin films applicable to optical waveguides, high-sensitivity gas sensors, molecular separation membranes, etc. has been carried out, and measurement techniques for non-destructive and microscopic cavities of nano vacancies in the thin films are important. The pore structure evaluation method provided by the ultrasensitive gas adsorption amount measuring technique according to the present invention contributes to the research and development of functional porous thin film materials.
Research results have shown that storage properties can be improved by thinning a material with hydrogen storage properties. By applying the present invention, it is possible to evaluate the adsorption characteristics of the thin film with respect to hydrogen with high sensitivity. For this reason, it contributes to the development of new materials for storing hydrogen, which is expected as an alternative clean energy for fossil fuels that are considered to be the cause of greenhouse gases.

有機ELおよび次世代集積回路などで用いられる、強誘電体、低誘電率膜、封止剤などのデバイス関連材料の熱特性評価や、高分子薄膜のガラス転移解析などの解析に応用可能である。   Applicable to the analysis of thermal properties of device-related materials such as ferroelectrics, low dielectric constant films, sealants, and glass transition analysis of polymer thin films used in organic EL and next-generation integrated circuits. .

圧力調整可能であり、光学窓を有する試料評価室を備えた、温度可変偏光解析測定装置の概略図を示す。1 is a schematic view of a temperature variable ellipsometry measuring apparatus that is capable of pressure adjustment and includes a sample evaluation chamber having an optical window. 乾燥窒素気流下、600℃にて30分間焼鈍して前処理したシリカ・スパッタ薄膜の(a)20℃における膜厚で除することにより規格化した膜厚、および、(b)波長630nmの光に対する屈折率nを、流量0.5L/分の乾燥窒素気流下にて中温域および高温域における温度依存性を示す。Silica sputtered thin film pretreated by annealing at 600 ° C for 30 minutes in a dry nitrogen stream (a) Film thickness normalized by dividing by 20 ° C, and (b) Light with a wavelength of 630 nm Refractive index n with respect to is shown in the temperature dependence in the middle temperature range and the high temperature range under a dry nitrogen stream at a flow rate of 0.5 L / min. PECVD法により作製した、ポロゲン含有シリカ薄膜を試料として、流量0.4L/分の乾燥窒素気流下にて測定した、波長630nmの光に対する屈折率の温度依存性を示した。図中の矢印は温度変化の方向を示す。Using the porogen-containing silica thin film prepared by the PECVD method as a sample, the temperature dependence of the refractive index with respect to light having a wavelength of 630 nm was measured in a dry nitrogen stream at a flow rate of 0.4 L / min. The arrows in the figure indicate the direction of temperature change. PECVD法により作製した、ポロゲン含有シロキサン薄膜を試料として、流量0.4L/分の乾燥窒素気流下にて測定した、波長630nmの光に対する屈折率の温度依存性を示した。図中の矢印は温度変化の方向を示す。Using the porogen-containing siloxane thin film prepared by PECVD method as a sample, the temperature dependence of the refractive index with respect to light having a wavelength of 630 nm was measured in a dry nitrogen stream at a flow rate of 0.4 L / min. The arrows in the figure indicate the direction of temperature change. 図3および図4に示したそれぞれの屈折率の昇温過程の温度微小差分から算出した熱光学係数の温度依存性を示す。The temperature dependence of the thermo-optic coefficient calculated from the temperature minute difference in the temperature rising process of each refractive index shown in FIGS. 3 and 4 is shown. 大気圧(約1013hPa)のアルゴン雰囲気とし、アルゴン流量はゼロの条件で測定した屈折率と、同条件下での120℃における屈折率との差Δnの温度依存性を示す。It shows the temperature dependence of the difference Δn between the refractive index measured under an argon atmosphere at atmospheric pressure (about 1013 hPa) and the argon flow rate being zero and the refractive index at 120 ° C. under the same condition. 図6の結果を数式9に基づいて算出したVfの温度依存性を示す。FIG. 6 shows the temperature dependence of V f calculated from the results of FIG.

符号の説明Explanation of symbols

1:光学窓
2:試料評価室
3:薄膜試料
4:ヒータおよび温度センサを備えた試料台
5:ヒータ・温度センサおよび温度調整器の連結線
6:温度調整器
7:制御用コンピュータ
8:偏光解析測定制御器
9:光源
10:検出部
11:入射光
12:反射光
13:光源および偏光解析測定制御器の連結線
14:偏光解析測定制御器および制御用コンピュータの連結線
15:温度調整器および制御コンピュータの連結線
16:雰囲気調整用気体ボンベ
17:圧力計
18:真空計
19:バルブ
20:流量計
21:3方向バルブ
22:排気ポンプ
23:冷媒用液体供給口
24:冷媒用液体放出口
25:気体放出口
1: Optical window 2: Sample evaluation chamber 3: Thin film sample 4: Sample stage with heater and temperature sensor 5: Connecting line 6 of heater / temperature sensor and temperature controller 6: Temperature controller 7: Control computer 8: Polarization Analysis measurement controller 9: Light source 10: Detection unit 11: Incident light 12: Reflected light 13: Connection line 14 of light source and polarization analysis measurement controller 14: Connection line 15 of polarization analysis measurement controller and control computer 15: Temperature controller And control computer connection line 16: atmosphere adjusting gas cylinder 17: pressure gauge 18: vacuum gauge 19: valve 20: flow meter 21: three-way valve 22: exhaust pump 23: refrigerant liquid supply port 24: refrigerant liquid discharge Outlet 25: Gas outlet

Claims (4)

偏光解析方法において、光学的に透明な窓を設けた試料評価室内に試料を配置し、該窓には、該試料評価室内の気体圧力又は温度を変化させても、試料に照射する入射光に対して垂直な光学面及び試料で反射する反射光に対して垂直な光学面が設けられていることにより、種々な圧力と温度における、試料の屈折率、消衰係数又は膜厚を求めることが可能であることを特徴とする偏光解析方法。   In the ellipsometry method, a sample is placed in a sample evaluation chamber provided with an optically transparent window, and incident light irradiating the sample is changed even if the gas pressure or temperature in the sample evaluation chamber is changed. By providing an optical surface that is perpendicular to the sample and an optical surface that is perpendicular to the reflected light reflected by the sample, the refractive index, extinction coefficient, or film thickness of the sample at various pressures and temperatures can be obtained. An ellipsometry method characterized by being capable. 上記温度は、−196℃から600℃の範囲の温度であることを特徴とする請求項1に記載の偏光解析方法。   The polarization analysis method according to claim 1, wherein the temperature is in a range of −196 ° C. to 600 ° C. 上記圧力は、1Paから1020hPaの範囲の圧力であることを特徴とする請求項1に記載の偏光解析方法。   The polarization analysis method according to claim 1, wherein the pressure is a pressure in a range of 1 Pa to 1020 hPa. 偏光解析装置において、該装置は、試料評価室を具備し、該室は、窓を有しており、該室内には試料台が配置され、該窓には、該試料評価室内の気体圧力又は温度を変化させても、試料台に載置された試料に照射する入射光に対して垂直な光学面及び試料から反射する反射光に対して垂直な光学面が設けられていることを特徴とする偏光解析装置。   In the ellipsometer, the apparatus includes a sample evaluation chamber, and the chamber includes a window, a sample table is disposed in the chamber, and a gas pressure in the sample evaluation chamber or An optical surface perpendicular to the incident light irradiated on the sample placed on the sample stage and an optical surface perpendicular to the reflected light reflected from the sample are provided even when the temperature is changed. Ellipsometer.
JP2007206667A 2007-08-08 2007-08-08 Thin film physical property evaluation method and evaluation apparatus Expired - Fee Related JP5120927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206667A JP5120927B2 (en) 2007-08-08 2007-08-08 Thin film physical property evaluation method and evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206667A JP5120927B2 (en) 2007-08-08 2007-08-08 Thin film physical property evaluation method and evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2009042038A true JP2009042038A (en) 2009-02-26
JP5120927B2 JP5120927B2 (en) 2013-01-16

Family

ID=40442931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206667A Expired - Fee Related JP5120927B2 (en) 2007-08-08 2007-08-08 Thin film physical property evaluation method and evaluation apparatus

Country Status (1)

Country Link
JP (1) JP5120927B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064512A (en) * 2009-09-16 2011-03-31 National Institute For Materials Science Porosity measuring system
WO2012161287A1 (en) * 2011-05-24 2012-11-29 コニカミノルタアドバンストレイヤー株式会社 Thermal-responsiveness measurement method for thin-film shaped raw material and thin-film film thickness measurement device
CN108287126A (en) * 2018-03-23 2018-07-17 中国计量科学研究院 Nano particle diameter measuring system
WO2018186378A1 (en) * 2017-04-03 2018-10-11 三菱重工業株式会社 Method for evaluating structure used for nuclide transmutation reaction, evaluating device, structure manufacturing device provided with same, and nuclide transmutation system
US20230077298A1 (en) * 2021-09-06 2023-03-09 Korea Institute Of Geoscience And Mineral Resources Raman analysis apparatus capable of real-time analysis under elevated temperature and pressure conditions and unit cell for raman analysis adapted thereto
KR102532993B1 (en) * 2022-11-30 2023-05-16 주식회사 엔비컨스 System for measuring thickness and air permeability of film
CN116678833A (en) * 2023-08-04 2023-09-01 北京天工科仪空间技术有限公司 Device and method for researching laser damage resistance of material or element influenced by pollutants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054306A1 (en) * 1998-08-28 2001-12-27 Baklanov Mikhail Rodionovich Apparatus and method for determining porosity
JP2004020405A (en) * 2002-06-18 2004-01-22 National Institute Of Advanced Industrial & Technology Optical method of measuring physical property using polarized light and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054306A1 (en) * 1998-08-28 2001-12-27 Baklanov Mikhail Rodionovich Apparatus and method for determining porosity
JP2004020405A (en) * 2002-06-18 2004-01-22 National Institute Of Advanced Industrial & Technology Optical method of measuring physical property using polarized light and apparatus therefor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CSNC200758980715; 山地  正洋  Masahiro  Yamaji: '分光エリプソメトリその場測定法を用いた低誘電率膜の熱膨張係数の評価  Thermal Expansion Coefficients o' 2005年(平成17年)秋季 第66回応用物理学会学術講演会講演予稿集 第2分冊  Extended Abstracts 第2巻, 20050907, p.695, (社)応用物理学会 *
CSNC200759020877; 山地  正洋  Masahiro  Yamaji: 'ポーラスシリカlow-k膜熱膨張係数の空孔率および骨格依存性  Effects of Porosity and Skeletal Struc' 2006年(平成18年)春季 第53回応用物理学関係連合講演会講演予稿集 第2分冊  Extended Abstrac 第2巻, 20060322, p.882, (社)応用物理学会 *
JPN6012024620; 山地  正洋  Masahiro  Yamaji: 'ポーラスシリカlow-k膜熱膨張係数の空孔率および骨格依存性  Effects of Porosity and Skeletal Struc' 2006年(平成18年)春季 第53回応用物理学関係連合講演会講演予稿集 第2分冊  Extended Abstrac 第2巻, 20060322, p.882, (社)応用物理学会 *
JPN6012024621; 山地  正洋  Masahiro  Yamaji: '分光エリプソメトリその場測定法を用いた低誘電率膜の熱膨張係数の評価  Thermal Expansion Coefficients o' 2005年(平成17年)秋季 第66回応用物理学会学術講演会講演予稿集 第2分冊  Extended Abstracts 第2巻, 20050907, p.695, (社)応用物理学会 *
JPN6012024623; T.Oka 他: '"Porogen approach for the fabrication of plasma-polymerized nanoporous polysiloxane films"' The Journal of Physical Chemistry B Vol.110, No.41, 20060915, pp.20172-20176 *
JPN7011004037; H.Yao, 他: '"Temperature dependence of optical properties of GaAs"' Journal of Applied Physics Vol.70, No.6, 19910915, pp.3261-3267 *
JPN7012001796; M.R.Baklanov 他: '"Determination of pore size distribution in thin films by ellipsometric porosimetry"' Journal of Vacuum Science and Technology B Vol.18, No.3, 2000, pp.1385-1391 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064512A (en) * 2009-09-16 2011-03-31 National Institute For Materials Science Porosity measuring system
WO2012161287A1 (en) * 2011-05-24 2012-11-29 コニカミノルタアドバンストレイヤー株式会社 Thermal-responsiveness measurement method for thin-film shaped raw material and thin-film film thickness measurement device
US11630055B2 (en) 2017-04-03 2023-04-18 Mitsubishi Heavy Industries, Ltd. Method for evaluating structure used for nuclide transmutation reaction, evaluation device, structure manufacturing device provided with same, and nuclide transmutation system
WO2018186378A1 (en) * 2017-04-03 2018-10-11 三菱重工業株式会社 Method for evaluating structure used for nuclide transmutation reaction, evaluating device, structure manufacturing device provided with same, and nuclide transmutation system
CN110462751A (en) * 2017-04-03 2019-11-15 三菱重工业株式会社 The evaluation method of tectosome for nucleic conversion reaction, evaluating apparatus, have its tectosome manufacturing device and nucleic converting system
EP3584802A4 (en) * 2017-04-03 2020-04-01 Mitsubishi Heavy Industries, Ltd. Method for evaluating structure used for nuclide transmutation reaction, evaluating device, structure manufacturing device provided with same, and nuclide transmutation system
CN110462751B (en) * 2017-04-03 2023-01-24 三菱重工业株式会社 Method and device for evaluating structure for nuclide conversion reaction, device for manufacturing structure provided with same, and nuclide conversion system
CN108287126B (en) * 2018-03-23 2021-07-09 中国计量科学研究院 Nanoparticle size measurement system
CN108287126A (en) * 2018-03-23 2018-07-17 中国计量科学研究院 Nano particle diameter measuring system
US20230077298A1 (en) * 2021-09-06 2023-03-09 Korea Institute Of Geoscience And Mineral Resources Raman analysis apparatus capable of real-time analysis under elevated temperature and pressure conditions and unit cell for raman analysis adapted thereto
US11921047B2 (en) * 2021-09-06 2024-03-05 Korea Institute Of Geoscience And Mineral Resources Raman analysis apparatus capable of real-time analysis under elevated temperature and pressure conditions
KR102532993B1 (en) * 2022-11-30 2023-05-16 주식회사 엔비컨스 System for measuring thickness and air permeability of film
WO2024117686A1 (en) * 2022-11-30 2024-06-06 주식회사 엔비컨스 Film thickness and air permeability measurement system
CN116678833A (en) * 2023-08-04 2023-09-01 北京天工科仪空间技术有限公司 Device and method for researching laser damage resistance of material or element influenced by pollutants
CN116678833B (en) * 2023-08-04 2023-10-13 北京天工科仪空间技术有限公司 Device and method for researching laser damage resistance of material or element influenced by pollutants

Also Published As

Publication number Publication date
JP5120927B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5120927B2 (en) Thin film physical property evaluation method and evaluation apparatus
Baklanov et al. Determination of pore size distribution in thin films by ellipsometric porosimetry
JP4869478B2 (en) Apparatus and method for determining porosity
Ogieglo et al. Spectroscopic ellipsometry analysis of a thin film composite membrane consisting of polysulfone on a porous α-alumina support
Bjorkqvist et al. Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor
WO2012012437A2 (en) Temperature response sensing and classification of analytes with porous optical films
Baklanov et al. Quantification of processing damage in porous low dielectric constant films
Echeverría et al. Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: Determination of the isosteric enthalpy of adsorption
Yeatman et al. Characterisation of microporous sol-gel films for optical device applications: Code: F15
Gallego‐Gómez et al. Tunable visual detection of dew by bare artificial opals
Chao et al. Thin films of mesoporous silica: characterization and applications
Vanstreels et al. Effect of bake/cure temperature of an advanced organic ultra low-k material on the interface adhesion strength to metal barriers
Horowitz et al. Towards better control of sol-gel film processing for optical device applications
Efremov et al. Vacuum ellipsometry as a method for probing glass transition in thin polymer films
Benes et al. CO2 sorption of a thin silica layer determined by spectroscopic ellipsometry
Hyun et al. Synthesis of low-k porous silica films via freeze drying
Bourgeois et al. Ellipsometry porosimetry (EP): thin film porosimetry by coupling an adsorption setting with an optical measurement, highlights on additional adsorption results
Rouessac et al. Characterisation of mesostructured TiO2 thin layers by ellipsometric porosimetry
Baklanov et al. Characterisation of low-k dielectric films by ellipsometric porosimetry
Yoshimoto et al. Comparison study of mesoporous thin films characterized by low-energy positron lifetime spectroscopy and flow-type ellipsometric porosimetry
Takada et al. Mechanical property and network structure of porous silica films
Lee et al. Effect of the pore structure on the properties of nanoporous silsesquioxane thin film
Negoro et al. Nondestructive characterization of a series of periodic porous silica films by in situ spectroscopic ellipsometry in a vapor cell
Wormeester et al. CO2 sorption of a ceramic separation membrane
Marsik et al. Spectroscopic ellipsometry and ellipsometric porosimetry studies of CVD low‐k dielectric films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120814

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees