JP2009041805A - Food storage - Google Patents

Food storage Download PDF

Info

Publication number
JP2009041805A
JP2009041805A JP2007205302A JP2007205302A JP2009041805A JP 2009041805 A JP2009041805 A JP 2009041805A JP 2007205302 A JP2007205302 A JP 2007205302A JP 2007205302 A JP2007205302 A JP 2007205302A JP 2009041805 A JP2009041805 A JP 2009041805A
Authority
JP
Japan
Prior art keywords
deaeration
food
storage
container
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007205302A
Other languages
Japanese (ja)
Inventor
Mitoko Ishita
美桃子 井下
Kahoru Tsujimoto
かほる 辻本
Yoshiko Kojima
淑子 小嶋
Tsuyoki Hirai
剛樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007205302A priority Critical patent/JP2009041805A/en
Publication of JP2009041805A publication Critical patent/JP2009041805A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a food storage capable of achieving good food preservation state while suppressing increase of power consumption, even when food composed of lump of small pieces is preserved. <P>SOLUTION: A deaerating cycle composed of a deaerating process by a deaerating means 160 and a deaeration releasing process is performed at least one time immediately after storing food inside of a sealed container 161 disposed inside of a switching chamber 111, a gas of a temperature same as a prescribed temperature of the switching chamber 111 is introduced into the sealed container 161 in the deaeration releasing process, thus the fresh air can be easily permeated to a fine space among the small pieces even when the food composed of the lump of small pieces such as minced beef is preserved, the change to a food preservation temperature can be quickened, and a food preservation state superior in freshness keeping property can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、食品貯蔵庫による食品保存に関するものである。   The present invention relates to food preservation by a food storage.

近年、食品の安全や品質に対する認識が高まる中で食品貯蔵庫に対しては安全でおいしくかつ長期間保存できる技術が求められる。また、家庭用の食品貯蔵庫である冷蔵庫においても同様にそのような貯蔵庫を有する機種が好まれる傾向にあるが、単純に食品保存温度を低くすると冷蔵庫の消費電力量が増大してしまう。それに対して食品貯蔵庫内部を常圧よりも真空度の高い環境内で食品保存することで食品保存温度を下げずに食品の品質を維持して長期保存可能としたものがある(例えば、特許文献1参照)。   In recent years, with the growing awareness of food safety and quality, food storage is required to have a technology that is safe, delicious, and can be stored for a long period of time. Similarly, in a refrigerator that is a household food storage, a model having such a storage tends to be preferred. However, simply lowering the food storage temperature increases the power consumption of the refrigerator. On the other hand, there is one that can preserve food quality for a long period of time without lowering the food preservation temperature by preserving food in an environment with a higher degree of vacuum than normal pressure inside the food storage (for example, patent document) 1).

以下、図面を参照しながら、上記従来の食品貯蔵庫について説明する。   Hereinafter, the conventional food storage will be described with reference to the drawings.

図4は、従来の食品貯蔵庫の正面図である。図5は、従来の食品貯蔵庫の風路構成図である。図6は、従来の食品貯蔵庫の真空保存容器断面図である。図4から図6に示すように従来の食品貯蔵庫本体1は最上部に配置され3℃〜5℃程度の温度帯に冷却設定された冷蔵室10と、冷蔵室10に対して開閉自在に構成された冷蔵室ドア11と、冷蔵室10の下方に配置された貯氷室20と、貯氷室20に引出し開閉自在に構成された貯氷室ドア21と、貯氷室20と左右並列に配置され約9℃〜約−20℃程度の温度帯に冷却切替可能な切替室30と、切替室30に引出し開閉自在に構成された切替室ドア31と、貯氷室20と切替室30の下方に配置され3℃から7℃程度の温度帯に冷却設定された野菜室40と、野菜室40に引出し開閉自在に構成された野菜室ドア41と、野菜室40の下方の最下部に配置され−18℃から−20℃程度の温度帯に冷却設定された冷凍室50と、冷凍室50に引出し開閉自在に構成された冷凍室ドア51とから構成される。   FIG. 4 is a front view of a conventional food storage. FIG. 5 is an air path configuration diagram of a conventional food storage. FIG. 6 is a cross-sectional view of a vacuum storage container of a conventional food storage. As shown in FIG. 4 to FIG. 6, the conventional food storage body 1 is arranged at the uppermost part and is configured to be refrigerated in a temperature range of about 3 ° C. to 5 ° C. and configured to be openable and closable with respect to the refrigerated room 10. The refrigerating room door 11, the ice storage room 20 disposed below the refrigerating room 10, the ice storage room door 21 configured to be openable and closable with respect to the ice storage room 20, and the ice storage room 20 are arranged in parallel in the left-right direction. A switching chamber 30 that can be cooled and switched to a temperature range of about -20 ° C. to about −20 ° C., a switching chamber door 31 that is configured to be openable and closable in the switching chamber 30, and the ice storage chamber 20 and the switching chamber 30. The vegetable room 40 is set to be cooled to a temperature range of about 7 ° C. to 7 ° C., the vegetable room door 41 is configured to be freely opened and closed in the vegetable room 40, and is arranged at the lowermost part below the vegetable room 40. A freezer compartment 50 set in a temperature range of about −20 ° C., and a freezer compartment 0 consists drawer openably configured freezing compartment door 51..

冷蔵室ドア11には各貯蔵室の温度や状態の設定をしたり現在の様子を表示する操作パネル60を備える。   The refrigerator compartment door 11 is provided with an operation panel 60 for setting the temperature and state of each storage room and displaying the current state.

切替室30には切替室ドア31の開時に出し入れでき、内部の空気を脱気状態に保持可能な真空密閉保存容器70を備える。   The switching chamber 30 is provided with a vacuum sealed storage container 70 that can be taken in and out when the switching chamber door 31 is opened and that can keep the internal air in a deaerated state.

真空密閉保存容器70は例えばポリサルファンなどのしなりのある軟樹脂材料で形成された容器本体71、フタ72と、フタ72を容器本体に密閉固着するパッキン73と、フタ72に設けられ真空密閉保存容器70内の気体を外部に吐き出す通気孔74と、通気孔74を通じて内部から外部へは気体を流出するが外部から内部への気体流入は阻止可能な逆止弁75とから構成される。   The vacuum sealed storage container 70 is provided with a container body 71, a lid 72, a packing 73 for sealing and fixing the lid 72 to the container body, and a vacuum provided on the lid 72. The container body 71 is made of a soft resin material such as polysulfane. A vent hole 74 that discharges the gas in the hermetic storage container 70 to the outside, and a check valve 75 that flows out the gas from the inside to the outside through the vent hole 74 but can prevent the gas inflow from the outside to the inside. .

また、食品貯蔵庫本体1は貯蔵室内の空気と熱交換を行ない冷気を発生させる冷凍サイクル(図示せず)を備え、冷凍サイクルで発生した冷気を各貯蔵室に導入して所定の設定温度に冷却保持する冷却風路80を有する。   The food storage body 1 includes a refrigeration cycle (not shown) that exchanges heat with the air in the storage chamber to generate cold air. The cold air generated in the refrigeration cycle is introduced into each storage chamber and cooled to a predetermined set temperature. A cooling air passage 80 is held.

冷却風路80には熱交換を行ない冷気を発生する冷却器81と、冷却器81で発生した冷気を送り出すファンモータ82と、冷凍室50まで冷気を導く冷凍室送風路83と、他の貯蔵室に冷気を導く各室送風路84と、各室送風路84内に備えられ各貯蔵室への冷気の導入量を調節する冷蔵ダンパ85、貯氷ダンパ86、切替ダンパ87、冷凍ダンパ88とを備える。   A cooling unit 81 that exchanges heat to generate cooling air in the cooling air passage 80, a fan motor 82 that sends out the cooling air generated by the cooling device 81, a freezer compartment air passage 83 that guides the cold air to the freezer compartment 50, and other storages Each room air passage 84 for introducing cold air to the room, and a refrigeration damper 85, an ice storage damper 86, a switching damper 87, and a refrigeration damper 88 provided in each room air passage 84 for adjusting the amount of cold air introduced into each storage room Prepare.

以上のように構成された冷蔵庫について、以下その動作を説明する。   About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.

まず、食品貯蔵庫本体1の運転により冷却器81にて冷気が発生し、ファンモータ82で強制的に冷気を循環させながら必要に応じて各ダンパが作用することにより各貯蔵室が設定された温度に冷却保持される。   First, cold air is generated in the cooler 81 by the operation of the food storage body 1, and each storage chamber is set by operating each damper as necessary while forcibly circulating the cold air by the fan motor 82. Is kept cooled.

また、切替室ドア31を開けて真空密閉保存容器70を取り出し、食品を収容後に再び真空密閉保存容器70を切替室30に入れると真空密閉保存容器70が冷却されるが、真空密閉保存容器70内部の体積変化は微小であるためボイルシャルルの法則により真空密閉保存容器70内部の圧力が減少する。   Further, when the switching chamber door 31 is opened, the vacuum sealed storage container 70 is taken out, and after the food is stored, when the vacuum sealed storage container 70 is put into the switching chamber 30 again, the vacuum sealed storage container 70 is cooled. Since the internal volume change is very small, the pressure inside the vacuum sealed storage container 70 decreases according to Boyle Charles' law.

この時、収容する食品の温度が高いほど温度差が大きいので圧力減少度が増す。容器本体71、フタ72の材料をポリカーボネイトのような硬い樹脂で形成した場合、温度の高い食品を収容すると環境ホルモンの一種であるビスフェノールAが流出する恐れがあるがポリサルファンは環境ホルモンの危険性が無いので安全に食品を保存できる。   At this time, the higher the temperature of the food to be stored, the greater the temperature difference, and thus the degree of pressure reduction increases. If the container body 71 and the lid 72 are made of a hard resin such as polycarbonate, there is a risk that bisphenol A, which is a kind of environmental hormone, will flow out when food with a high temperature is stored. Since there is no sex, food can be stored safely.

また、切替室30から取り出し時にしなりのあるフタ72を押圧するとフタ72の変形により真空密閉保存容器70内部の圧力が増すので通気孔74を通じて内部の気体が流出するが、押圧を解除しても逆止弁75により外部から内部への気体流入を阻止されたままフタ72の変形が解除されるので真空密閉保存容器70内部の圧力が更に減少する。   Further, when the flexible lid 72 is pressed when taken out from the switching chamber 30, the pressure inside the vacuum sealed storage container 70 increases due to the deformation of the lid 72, so that the internal gas flows out through the vent hole 74, but the pressure is released. However, since the deformation of the lid 72 is released while the check valve 75 prevents the gas from flowing from the outside to the inside, the pressure inside the vacuum sealed storage container 70 further decreases.

いずれの場合においても圧力減少後の真空密閉保存容器70はパッキン73と逆止弁75とにより脱気状態を保持され、切替室30の設定温度が低いほど冷却されて高い真空度状態を実現することができる。   In any case, the vacuum sealed storage container 70 after the pressure reduction is kept in the deaerated state by the packing 73 and the check valve 75, and is cooled as the set temperature of the switching chamber 30 is lowered to realize a high vacuum state. be able to.

このように高い真空度でかつ低温で食品を保存することにより細菌の増加、食品の酸化、酵素の反応を抑制することができ、常圧環境下でより低い温度で保存した場合と同等の保存期間が得られるので食品貯蔵庫本体1の消費電力量を増加させることなく使い勝手の良い食品貯蔵庫を得ることができる。
特開2005−55031号公報
By storing food at a high vacuum level and low temperature in this way, it is possible to suppress bacterial growth, food oxidation, and enzyme reaction, and the same level of storage as when stored at a lower temperature under atmospheric pressure. Since the period is obtained, a convenient food storage can be obtained without increasing the power consumption of the food storage body 1.
JP-A-2005-55031

しかしながら、上記従来の構成では温度の高い食品を収容する場合、ボイルシャルルの法則により、圧力変化度が大きくなるので、容器内圧力が低い状態になるため、食品保存に優れるが、例えばミンチやばら肉などの生肉で小片集合体からなる食品を保存する場合には初期の温度が低いので圧力減少度が小さくなり、更に密閉されているので食品内部まで冷却されるのにより長い時間を必要とする為、細菌の増加、食品の酸化、酵素の反応を抑制することが難しく良い食品保存状態を得られにくいという課題があった。例えば切替室30の設定を−8℃程度のソフトフリージングに設定してミンチを冷却する場合には−1℃〜−5℃の最大氷結晶生成帯の通過速度が遅いことで食品表面の変色度や細胞損傷度が大きくなるので外観や味の品質を劣化させてしまう。   However, in the case of storing food with high temperature in the above conventional configuration, the pressure change degree is large according to Boyle's law, so that the pressure in the container is low, so that food storage is excellent. When storing food consisting of small pieces of aggregate with raw meat, etc., the initial temperature is low, so the degree of pressure decrease is small, and since it is sealed, it takes longer time to cool down to the inside of the food However, it is difficult to suppress the increase of bacteria, food oxidation, and enzyme reaction, and it is difficult to obtain a good food preservation state. For example, when the setting of the switching chamber 30 is set to soft freezing of about −8 ° C. to cool the mince, the discoloration degree of the food surface is slow because the passing speed of the maximum ice crystal formation zone of −1 ° C. to −5 ° C. is slow. As the degree of cell damage increases, the quality of appearance and taste deteriorates.

本発明は上記従来の課題を解決するものであり、小片集合体からなる食品などの内部まで冷却するのに時間を要する食品でも保鮮性に優れた食品保存状態を得られる食品貯蔵庫を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a food storage that can obtain a food preservation state excellent in freshness even for foods that require time to cool to the inside such as foods composed of small pieces. With the goal.

上記従来の課題を解決するために、本発明の食品貯蔵庫は、貯蔵室内に食品を収容した直後に脱気手段にて脱気し、所定時間後に貯蔵室の所定温度と同一温度のガスを貯蔵室内に導入する脱気工程と脱気解除工程からなる脱気サイクルを少なくとも1回有するとしたものである。   In order to solve the above conventional problems, the food storage of the present invention is deaerated by the deaeration means immediately after the food is stored in the storage chamber, and stores a gas having the same temperature as the predetermined temperature in the storage chamber after a predetermined time. It has at least one degassing cycle comprising a degassing step and a degassing release step to be introduced into the room.

これによって、小片集合体からなる食品を保存する場合に、小片の微小空間まで所定温度の冷風を容易に通気可能となり、最も冷却速度が遅い食品内部の冷却を速めることができ、所定の保存温度までの到達時間が短縮できることで、食品全体における氷結晶生成帯の通過温度の高速化と所定温度以上の高温における暴露時間の短縮により保鮮性の向上が可能である。従来の方法で食品内部の冷却速度を本発明と同等レベルを得るためには、例えば、食品と冷却風の温度差を拡大する方法や冷却風の風量を増加させる必要がある。前者は冷凍サイクルの蒸発温度を低下させる必要があり消費電力の増加に加えて、冷却風の絶対湿度も低下し食品の乾燥を促進させ保鮮性が低下する。後者は風量増加により食品の乾燥を促進させ保鮮性が低下し、特に冷却風に直接暴露される食品表面は顕著である。このように、本発明は従来に比して前述した保鮮性向上に加えて、冷却風と食品との熱交換面積が格段に増加するため、本発明の脱気手段の動作による必要エネルギー量は従来の必要エネルギー量(消費電力量)に比べて小さくなり、省エネルギー化を図ることができる。   As a result, when storing food consisting of small pieces of aggregate, it becomes possible to easily vent cool air at a predetermined temperature to the minute space of the small pieces, accelerating the cooling inside the food with the slowest cooling rate, and a predetermined storage temperature. Can be improved by increasing the passing temperature of the ice crystal formation zone in the whole food and shortening the exposure time at a high temperature above a predetermined temperature. In order to obtain the cooling rate inside the food by the conventional method equivalent to that of the present invention, for example, it is necessary to increase the temperature difference between the food and the cooling air or to increase the air volume of the cooling air. In the former case, it is necessary to lower the evaporation temperature of the refrigeration cycle, and in addition to the increase in power consumption, the absolute humidity of the cooling air is also lowered to promote the drying of the food and the freshness is lowered. The latter promotes drying of the food by increasing the air volume and decreases the freshness, and the food surface directly exposed to the cooling air is particularly remarkable. Thus, in addition to improving the freshness as described above, the present invention significantly increases the heat exchange area between the cooling air and the food, so the amount of energy required for the operation of the deaeration means of the present invention is Compared with the conventional required energy amount (power consumption amount), the energy can be saved.

本発明の食品貯蔵庫は、消費電力の増加を抑制しながら、小片集合体からなる食品を保存する場合でも、保鮮性に優れた食品保存状態を得ることができる。   The food storage of the present invention can obtain a food preservation state with excellent freshness even when preserving food consisting of small pieces while suppressing an increase in power consumption.

請求項1に記載の発明は、開口部を有する断熱箱体と、前記開口部を開閉する扉と、前記断熱箱体内部の貯蔵室を所定温度に保持可能な恒温化手段と、前記貯蔵室内部を脱気する脱気手段と、前記脱気手段による脱気作用を解除する脱気解除手段とからなり、前記貯蔵室内に食品を収容した直後から脱気サイクルを少なくとも一回行い、前記脱気サイクルは、前記脱気手段にて前記貯蔵室内を脱気する脱気工程と、前記脱気工程が終了した所定時間後に前記脱気解除手段にて脱気解除を行う脱気解除工程とからなり、前記脱気解除手段は前記貯蔵室の所定温度と同一温度のガスを前記貯蔵室内に導入することにより、これによって、小片集合体からなる食品を保存する場合に、小片の微小空間まで所定温度の冷風を容易に通気可能となり、最も冷却速度が遅い食品内部の冷却を速めることができ、所定の保存温度までの到達時間が短縮できることで、食品全体における氷結晶生成帯の通過温度の高速化と所定温度以上の高温における暴露時間の短縮により保鮮性の向上が可能である。従来の方法で食品内部の冷却速度を本発明と同等レベルを得るためには、例えば、食品と冷却風の温度差を拡大する方法や冷却風の風量を増加させる必要がある。前者は冷凍サイクルの蒸発温度を低下させる必要があり消費電力の増加に加えて、冷却風の絶対湿度も低下し食品の乾燥を促進させ保鮮性が低下する。後者は風量増加により食品の乾燥を促進させ保鮮性が低下し、特に冷却風に直接暴露される食品表面は顕著である。このように、本発明は従来に比して前述した保鮮性向上に加えて、冷却風と食品との熱交換面積が格段に増加するため、本発明の脱気手段の動作による必要エネルギー量は従来の必要エネルギー量(消費電力量)に比べて小さくなり、省エネルギー化を図ることができる。   The invention according to claim 1 is a heat insulating box having an opening, a door for opening and closing the opening, a constant temperature means capable of holding a storage chamber inside the heat insulating box at a predetermined temperature, and the storage chamber The degassing means for degassing the inside and the degassing release means for releasing the degassing action of the degassing means, and at least once the degassing cycle is performed immediately after the food is stored in the storage chamber, and the degassing is performed. The gas cycle includes a degassing step of degassing the storage chamber by the degassing means, and a degassing releasing step of releasing degassing by the degassing releasing means after a predetermined time after the degassing process is completed. The deaeration releasing means introduces a gas having the same temperature as the predetermined temperature of the storage chamber into the storage chamber, thereby preserving the small space of the small pieces when preserving the food consisting of small pieces aggregates. Cool air of temperature can be easily ventilated and The cooling inside the food with a slow cooling rate can be accelerated, and the time to reach the predetermined storage temperature can be shortened, so that the passing temperature of the ice crystal formation zone in the whole food can be increased and the exposure time at a temperature higher than the predetermined temperature can be reduced. Shortening can improve freshness. In order to obtain the cooling rate inside the food by the conventional method equivalent to that of the present invention, for example, it is necessary to increase the temperature difference between the food and the cooling air or to increase the air volume of the cooling air. In the former case, it is necessary to lower the evaporation temperature of the refrigeration cycle, and in addition to the increase in power consumption, the absolute humidity of the cooling air is also lowered to promote the drying of the food and the freshness is lowered. The latter promotes drying of the food by increasing the air volume and decreases the freshness, and the food surface directly exposed to the cooling air is particularly remarkable. Thus, in addition to improving the freshness as described above, the present invention significantly increases the heat exchange area between the cooling air and the food, so the amount of energy required for the operation of the deaeration means of the present invention is Compared with the conventional required energy amount (power consumption amount), the energy can be saved.

請求項2に記載の発明は、請求項1に記載の発明において、貯蔵室内には扉開時に前記貯蔵室内から取り出して開閉自在な密閉容器を備え、恒温化手段は前記密閉容器外周を所定温度のガスが流れることで前記密閉容器を所定温度に保持し、前記密閉容器内部のみに脱気とガス導入とを行なうとすることにより、貯蔵室全体を脱気する場合に比べて脱気空間を限定することで脱気手段の簡素化を図ることができコストダウンを図ることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the storage chamber is provided with a sealed container that can be opened and opened when the door is opened, and the thermostatic means has a predetermined temperature around the outer periphery of the sealed container. As the gas flows, the closed container is kept at a predetermined temperature, and the deaeration space and the gas introduction are performed only inside the closed container. By limiting, deaeration means can be simplified and cost can be reduced.

また、扉開時に密閉容器のみ取り出して食品を出し入れできるので食品収容の手間が軽減でき、使い勝手を良くすることができる。   Moreover, since only the sealed container can be taken out and the food can be taken in and out when the door is opened, the trouble of storing the food can be reduced and the usability can be improved.

また、小片集合体からなる食品を保存した場合、脱気した後の真空度やガス導入量によっては瞬間的なガスの流入により小片が飛散する可能性があり、密閉容器とすることで貯蔵室全体を掃除する手間が省け、密閉容器自身は取り出して容易に洗うことができるので清掃性を向上させることができる。   In addition, when foods composed of small pieces aggregates are stored, depending on the degree of vacuum after degassing and the amount of gas introduced, small pieces may be scattered due to instantaneous gas inflow. The trouble of cleaning the whole can be saved, and the airtight container itself can be taken out and easily washed, so that the cleanability can be improved.

請求項3に記載の発明は、請求項1または2に記載の発明において、脱気後に導入するガスの湿度がガス導入先の湿度と異なるとしたものであり、例えば加温保存する場合には乾燥による食品劣化を必要に応じて高湿度のガスを導入することによって劣化を抑制できる。また、冷却保存する場合には逆に乾燥したガスを導入することによって密閉容器内の食品への霜付きを軽減することによって劣化を抑制できる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the humidity of the gas introduced after deaeration is different from the humidity of the gas introduction destination. Deterioration of food due to drying can be suppressed by introducing high-humidity gas as necessary. On the other hand, in the case of cold storage, the deterioration can be suppressed by reducing the frost formation on the food in the sealed container by introducing a dry gas.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、脱気手段は脱気後所定の真空度を保持可能な逆止弁を有し、ガス導入は逆止弁の開放により行なうとするものであり、事前に脱気していることで逆止弁の開放により自動的にガスの導入が行なわれるのでガス導入に対する構造を簡素化でき、コストダウンを図ることができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the deaeration means has a check valve capable of maintaining a predetermined degree of vacuum after deaeration. This is done by opening the check valve. Since the gas is automatically introduced by opening the check valve in advance, the structure for gas introduction can be simplified and the cost can be reduced. Can be planned.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、脱気後のガス導入流量は0.15m/min以上であるとするものであり、小片集合体からなる食品を保存した場合でも小片間の微小空間でのガス流通量が増加することで熱伝達速度が増大し、更に保鮮性に優れた保存状態を得ることができる。 The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the gas introduction flow rate after deaeration is 0.15 m 3 / min or more, and the small piece set Even when a food made of the body is stored, the amount of gas flow in the minute space between the small pieces increases, so that the heat transfer rate increases and a storage state with excellent freshness can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の本実施の形態1における食品貯蔵庫の正面図、図2は同実施の形態の食品貯蔵庫の縦断面図、図3は同実施の形態の食品貯蔵庫の要部縦断面図である。
(Embodiment 1)
FIG. 1 is a front view of a food storage in the first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of the food storage in the same embodiment, and FIG. 3 is a longitudinal sectional view of a main part of the food storage in the same embodiment. is there.

図1から図3において、食品貯蔵庫100の筐体である断熱箱体101は樹脂にて形成された内箱102と金属磁性体にて形成された外箱103との間に断熱材104を充填したものであり、前面開口部101aを有し、仕切壁105,106,107,108により、上部より冷蔵室109、製氷室110、切替室111、野菜室112、冷凍室113と複数の貯蔵室を形成している。但し、製氷室110と切替室111とはそれぞれ左右並列に配置されている。   In FIG. 1 to FIG. 3, a heat insulating box 101 that is a housing of the food storage 100 is filled with a heat insulating material 104 between an inner box 102 made of resin and an outer box 103 made of a metal magnetic material. And has a front opening 101a, and partition walls 105, 106, 107, and 108, from above, a refrigerator room 109, an ice making room 110, a switching room 111, a vegetable room 112, a freezer room 113, and a plurality of storage rooms. Is forming. However, the ice making chamber 110 and the switching chamber 111 are arranged side by side in parallel.

また、各貯蔵室には全閉時に前面開口部101aを閉塞するように断熱箱体101と連結され、各固有の厚さの断熱壁を有する冷蔵室ドア109a、製氷室ドア110a、切替室ドア111a、野菜室ドア112a、冷凍室ドア113aを備える。   In addition, each storage room is connected to the heat insulating box 101 so as to close the front opening 101a when fully closed, and includes a refrigerator door 109a, an ice making room door 110a, and a switching room door each having a heat insulating wall with a specific thickness. 111a, vegetable compartment door 112a, freezer compartment door 113a.

また、冷蔵室ドア109aは右側上下端をそれぞれ回転軸を有する上部ヒンジ114と下部ヒンジ115とで断熱箱体101と回動開閉自在に連結されている。   In addition, the refrigerator door 109a is connected to the heat insulating box 101 so that the upper and lower hinges 114 and 115 each having a rotation axis on the right side and the lower hinge 115 can be freely opened and closed.

その他の貯蔵室ドアは引出し式であり、それぞれ製氷室レール部材110b(図示せず)、切替室レール部材111b(図示せず)、野菜室レール部材112b(図示せず)、冷凍室レール部材113b(図示せず)にて断熱箱体101と各貯蔵室とを連結され、前後方向に開閉自在に構成されている。   The other storage room doors are drawer-type, and are each an ice making room rail member 110b (not shown), a switching room rail member 111b (not shown), a vegetable room rail member 112b (not shown), and a freezer room rail member 113b. (Not shown), the heat insulating box 101 and each storage chamber are connected to each other and configured to be openable and closable in the front-rear direction.

更に各貯蔵室ドアの断熱箱体101側の面は全閉時に前面開口部101aとの間に5mm程度の空間116を有し、空間116は各貯蔵室ドアの断熱箱体101側の面の上下左右4辺に設けられたマグネットを有するガスケット117の磁力にて前面開口部101aにガスケット117を吸着させることで閉塞され、各貯蔵室は略密閉にシールされる。   Furthermore, the surface of each storage room door on the side of the heat insulation box 101 has a space 116 of about 5 mm between the front opening 101a when fully closed, and the space 116 is the surface of the heat storage box door on the side of the heat insulation box 101. The gasket 117 is closed by adsorbing the gasket 117 to the front opening 101a by the magnetic force of the gasket 117 having magnets provided on the upper, lower, left, and right sides, and each storage chamber is sealed substantially hermetically.

また断熱箱体101には食品貯蔵庫100を運転時に冷却する冷凍サイクル118(図示せず)を有する。   The heat insulating box 101 has a refrigeration cycle 118 (not shown) for cooling the food storage 100 during operation.

冷凍サイクル118が作用することにより、冷蔵室109と野菜室112とは約5℃の冷蔵温度帯に、製氷室110と冷凍室113とは約−18℃の冷凍温度帯に冷却保持され、切替室111は約0℃のチルド温度帯,約−1〜−5℃程度のパーシャル温度帯,約−10℃の熟成冷凍温度帯,約−18℃の冷凍温度帯と複数の冷却保持温度帯に変更可能に構成されている。   As the refrigeration cycle 118 acts, the refrigerator compartment 109 and the vegetable compartment 112 are cooled and held in a refrigeration temperature zone of about 5 ° C., and the ice making chamber 110 and the freezer compartment 113 are kept in a refrigeration temperature zone of about −18 ° C. The chamber 111 has a chilled temperature zone of about 0 ° C, a partial temperature zone of about -1 to -5 ° C, an aging freezing temperature zone of about -10 ° C, a freezing temperature zone of about -18 ° C, and a plurality of cooling holding temperature zones. It is configured to be changeable.

パーシャル温度帯においては弱設定で約−1℃、中設定で約−3℃、強設定で約−5℃と更に細かく分類されており、使用者の好みの微凍結状態を選択できる。   In the partial temperature range, it is further classified into about −1 ° C. for the weak setting, about −3 ° C. for the medium setting, and about −5 ° C. for the strong setting, and the user's favorite fine frozen state can be selected.

また、各貯蔵室の湿度は冷凍サイクル118の運転状況により変動するが、通常は冷却保持温度帯が低いほど湿度は低くなる。   Moreover, although the humidity of each store room changes with the driving | running conditions of the refrigerating cycle 118, normally, humidity becomes low, so that a cooling holding | maintenance temperature zone is low.

また、食品貯蔵庫100は使用者が水を補充することにより自動で氷を作ることができる自動製氷機能を有する。   In addition, the food storage 100 has an automatic ice making function that allows the user to automatically make ice by replenishing water.

自動製氷機能は冷蔵室109内に備えられた給水タンク150と、製氷室110内に備えられた自動製氷メカ151と、給水タンク150と自動製氷メカ151とを連結する給水経路152とを有する。   The automatic ice making function includes a water supply tank 150 provided in the refrigerating chamber 109, an automatic ice making mechanism 151 provided in the ice making chamber 110, and a water supply path 152 that connects the water supply tank 150 and the automatic ice making mechanism 151.

使用者が給水タンク150のみを取り出して水道などの水を補充し、再び給水タンク150を冷蔵室109内の所定の位置に設置すると、所定のタイミングで自動で給水経路152を通じて給水タンク150から自動製氷メカ151に所定量の水が供給され、製氷室110内の冷凍温度雰囲気中で冷却され氷となる。   When the user takes out only the water supply tank 150 and replenishes water such as tap water, and installs the water supply tank 150 again at a predetermined position in the refrigerator compartment 109, the water supply tank 150 automatically passes through the water supply path 152 at a predetermined timing. A predetermined amount of water is supplied to the ice making mechanism 151 and is cooled in the freezing temperature atmosphere in the ice making chamber 110 to become ice.

また、製氷室110内には製氷室容器153を備え、製氷室容器153は製氷室ドア110aの開閉に伴って前後方向に移動可能に構成され、自動製氷機能が氷ができたことを検知すると自動製氷メカ151が離氷して製氷室容器153に氷を貯留する。   Further, the ice making chamber 110 is provided with an ice making chamber container 153. The ice making chamber container 153 is configured to be movable in the front-rear direction in accordance with the opening and closing of the ice making chamber door 110a, and when the automatic ice making function detects that ice has been formed. The automatic ice making mechanism 151 is deiced and the ice is stored in the ice making chamber container 153.

その後再び自動製氷メカ151に所定量の水が供給されることで連続的な自動製氷が可能となるが、水を供給するたびに給水タンク150の水が減少していくので再度給水タンク150を取り出して水を補充する必要がある。   After that, by supplying a predetermined amount of water to the automatic ice making mechanism 151 again, continuous automatic ice making becomes possible. However, since the water in the water supply tank 150 decreases every time water is supplied, the water supply tank 150 is again turned on. Must be removed and refilled with water.

本自動製氷機能は約1日で給水タンク150の最大貯水量を製氷できる能力を有する。   This automatic ice making function has the ability to make the maximum amount of water stored in the water supply tank 150 in about one day.

また、切替室111には脱気手段160と、密閉容器161と、ドア開閉検知手段162(図示せず)を備える。   Further, the switching chamber 111 includes a deaeration unit 160, a sealed container 161, and a door opening / closing detection unit 162 (not shown).

密閉容器161は切替室ドア111aの開閉に伴って前後方向に移動可能で、切替室ドア111a開時には密閉容器161のみ取り出し可能に構成されている。   The sealed container 161 can be moved in the front-rear direction as the switching chamber door 111a is opened and closed, and only the sealed container 161 can be taken out when the switching chamber door 111a is opened.

また、脱気手段160は密閉容器161よりも切替室110の奥側に固定配置され、切替室ドア111a閉時には密閉容器161と連結し、ドア開閉検知手段162が切替室ドア111aが閉状態であることを検知すると密閉容器161内部のみを脱気及び脱気解除によるガス導入を行う脱気手段と脱気解除手段とを兼ね備えており、切替室ドア111a開時には密閉容器161との連結を解除するよう構成、制御されている。   Further, the deaeration means 160 is fixedly arranged on the back side of the switching chamber 110 with respect to the sealed container 161, and is connected to the sealed container 161 when the switching chamber door 111a is closed, and the door opening / closing detection means 162 is in the closed state of the switching chamber door 111a. When it detects that there is a degassing means for degassing and degassing the inside of only the sealed container 161 and a degassing canceling means, the connection with the sealed container 161 is released when the switching chamber door 111a is opened. It is configured and controlled.

もし、脱気手段160動作時に切替室ドア111aが開けられた場合にはドア開閉検知手段162からの信号により、ただちに脱気手段160の動作を停止するように制御されている。   If the switching chamber door 111a is opened during the operation of the deaeration unit 160, the operation of the deaeration unit 160 is immediately stopped by a signal from the door opening / closing detection unit 162.

また、切替室ドア111a開時には冷凍サイクル118の動作により発生した冷気が切替室111の冷却保持温度帯に応じて温度、もしくは冷気の流量や流入時間を変えながら切替室111内に流入し、密閉容器161外周を流れることで密閉容器161を所定温度に冷却保持する。   Further, when the switching chamber door 111a is opened, the cold air generated by the operation of the refrigeration cycle 118 flows into the switching chamber 111 while changing the temperature, the flow rate of cold air or the inflow time according to the cooling holding temperature zone of the switching chamber 111, and is sealed. The airtight container 161 is cooled and held at a predetermined temperature by flowing around the outer periphery of the container 161.

密閉容器161は金属などの良熱伝導性材料で形成された容器本体170と、透明な樹脂材料で構成された容器フタ171と、容器本体170と容器フタとを密閉固着する締結部材172とから構成される。   The sealed container 161 includes a container body 170 made of a good heat conductive material such as metal, a container lid 171 made of a transparent resin material, and a fastening member 172 that hermetically fixes the container body 170 and the container lid. Composed.

容器本体170は略直方体形状であり上面開口部全周に縁取られた容器フランジ170aと、奥側側面に設けられた容器通気孔170bとを有する。   The container main body 170 has a substantially rectangular parallelepiped shape, and includes a container flange 170a bordered on the entire upper surface opening and a container vent hole 170b provided on the back side surface.

容器フタ171は容器本体171より一回り大きい略方形板状であり、容器フランジ170aと対向する位置全周に設けられたフタフランジ171aと、フタフランジ171aの下面側でフタフランジ171aの全周に設けられゴムなどの軟質材料で形成されたシール部材171bとを有する。   The container lid 171 has a substantially rectangular plate shape that is slightly larger than the container main body 171. The container flange 171a is provided on the entire circumference of the position facing the container flange 170a, and on the entire circumference of the lid flange 171a on the lower surface side of the lid flange 171a. And a seal member 171b formed of a soft material such as rubber.

締結部材172はゴムなどの軟質材料で形成され、断面略コの字形状の両端部が開放されたひも状であり、締結時には容器フランジ170aとフタフランジ171aとを上下辺で挟み込んで全周覆うことで容器本体170と容器フタ171とを密閉固着する。   The fastening member 172 is formed of a soft material such as rubber and has a string shape with both ends having a substantially U-shaped cross section. When fastening, the container flange 170a and the lid flange 171a are sandwiched between upper and lower sides to cover the entire circumference. Thus, the container body 170 and the container lid 171 are hermetically fixed.

脱気手段160は脱気を行なう脱気部180と、切替室ドア111a閉時に容器通気孔170bと対向して密閉容器161と脱気部180とを連結する連結部190と、連結部190に備えられ密閉容器161内部との通気を所定のタイミングで開放もしくは遮断切替可能な連結部逆止弁191と、脱気部180と連結部190との間から分岐して他端を切替室111内に開放した導入部200と、導入部200の切替室111内に備えられ導入する通気の湿度を低減する吸湿材を有し切替室111内との通気を所定のタイミングで開放もしくは遮断切替可能な導入部逆止弁201と、ドア開閉検知手段162と連動して脱気部180,連結部逆止弁191,導入部逆止弁201をそれぞれ所定のタイミングで動作させる制御手段210(図示せず)を有する。   The deaeration means 160 includes a deaeration part 180 that performs deaeration, a connection part 190 that connects the sealed container 161 and the deaeration part 180 to face the container vent 170b when the switching chamber door 111a is closed, and a connection part 190 A connecting part check valve 191 that can be opened or shut off at a predetermined timing to vent the interior of the sealed container 161 and a degassing part 180 and a connecting part 190 are branched and the other end is inside the switching chamber 111. The introduction section 200 opened in the opening section 200 and a hygroscopic material which is provided in the switching chamber 111 of the introduction section 200 and reduces the humidity of the introduced ventilation can be opened or shut off at a predetermined timing. In conjunction with the introduction part check valve 201 and the door opening / closing detection means 162, the deaeration part 180, the connection part check valve 191, and the control part 210 for operating the introduction part check valve 201 at predetermined timings (FIG. Having without).

制御手段210は脱気工程においては脱気手段として脱気部180の動作と連結逆止弁191の解放とを行ない密閉容器161内部を脱気する。   In the deaeration process, the control unit 210 performs the operation of the deaeration unit 180 and the release of the connection check valve 191 as a deaeration unit to deaerate the inside of the sealed container 161.

また、脱気工程を所定時間動作させる、あるいは所定圧力に到達すると脱気解除工程へ移行し、脱気解除手段として連結逆止弁191と導入部逆止弁201とを同時に開放することで切替室111内の空気を密閉容器161内へ導入する。   Further, the deaeration process is operated for a predetermined time, or when a predetermined pressure is reached, the process proceeds to the deaeration release process, and is switched by simultaneously opening the connection check valve 191 and the introduction check valve 201 as the deaeration release means. Air in the chamber 111 is introduced into the sealed container 161.

これら脱気工程と脱気解除工程とを一連で行うサイクルを脱気サイクルとする。   A cycle in which these degassing step and degassing release step are performed in series is referred to as a degassing cycle.

また、容器通気孔170b,連結部190,連結部逆止弁191,連結部導入部200,導入部逆止弁201はガス導入時の流量が0.15m/min以上となるように構成されている。 Further, the container vent hole 170b, the connecting portion 190, the connecting portion check valve 191, the connecting portion introducing portion 200, and the introducing portion check valve 201 are configured so that the flow rate at the time of gas introduction is 0.15 m 3 / min or more. ing.

また、制御手段210は脱気手段160の動作時において脱気を行なっている時には連結部逆止弁191のみを開放し、ガス導入時には連結部逆止弁191と導入部逆支弁201とを共に開放するように設定されている。   Further, the control means 210 opens only the connection check valve 191 when deaeration is performed during the operation of the deaeration means 160, and both the connection check valve 191 and the introduction check valve 201 are used together when introducing gas. It is set to open.

一方、脱気手段160停止時においては切替室ドア111aが閉まっている時は連結部逆止弁191と導入部逆支弁201とを共に遮断し、切替室ドア111aが開いている時には連結部逆止弁191のみを開放するように設定されている。   On the other hand, when the deaeration means 160 is stopped, when the switching chamber door 111a is closed, the connecting portion check valve 191 and the introduction portion reverse support valve 201 are both shut off, and when the switching chamber door 111a is open, the connecting portion is reversed. It is set so that only the stop valve 191 is opened.

また、連結部逆止弁191と導入部逆支弁201とは例えば食品貯蔵室100が動作せずに制御手段210からの指示が無い場合には遮断状態であるように構成されている。   Further, the connecting portion check valve 191 and the introduction portion reverse support valve 201 are configured to be in a cut-off state when the food storage chamber 100 does not operate and there is no instruction from the control means 210, for example.

例えば、本実施の食品貯蔵庫100においては切替室111の設定温度を−10℃、密閉容器161の容量を20L、1回の脱気で大気圧から約30kPa減圧、切替室ドア111a閉後10秒後に脱気開始、60秒間脱気後120秒間脱気保持、切替室111内の空気を導入して脱気解除し60秒間保持後再び脱気開始という脱気サイクルを240秒おきに9回行ない、最後10回目の脱気をしたまま保存すると約100gの牛ミンチの−10℃到達時間が通常6時間かかるのに対して約5時間ほどに短縮できる。   For example, in the food storage 100 of this embodiment, the set temperature of the switching chamber 111 is −10 ° C., the capacity of the sealed container 161 is 20 L, the pressure is reduced from about 30 kPa from atmospheric pressure by one degassing, and 10 seconds after the switching chamber door 111a is closed. The deaeration cycle is started 9 times every 240 seconds after the start of deaeration, the deaeration holding for 120 seconds after deaeration, the release of deaeration by introducing the air in the switching chamber 111, the deaeration is started after holding for 60 seconds. When the 10th degassing is performed for the last time, the time to reach −10 ° C. of about 100 g of beef mince usually takes 6 hours, but can be shortened to about 5 hours.

また、食品貯蔵庫100が置かれる設置床面220から食品貯蔵庫100の断熱箱体101の上端部までの高さをH11、切替室ドア111a(=製氷室ドア110a)上端部までの高さをH12、野菜室ドア112a上端部までの高さをH13、冷凍室ドア113a上端部までの高さをH14、冷凍室ドア113a凸形状下端部までの高さをH15と設定し、例えば本実施の形態の食品貯蔵庫ではH11を1730mm、H12を860mm、H13を677mm、H14を342mm、H15を6.5mmと設定している。   Further, the height from the installation floor 220 on which the food storage 100 is placed to the upper end of the heat insulating box 101 of the food storage 100 is H11, and the height from the switching chamber door 111a (= ice making door 110a) to the upper end is H12. The height to the upper end of the vegetable compartment door 112a is set to H13, the height to the upper end of the freezer compartment door 113a is set to H14, and the height to the lower end of the freezing compartment door 113a is set to H15. H11 is set to 1730 mm, H12 is set to 860 mm, H13 is set to 677 mm, H14 is set to 342 mm, and H15 is set to 6.5 mm.

また、食品貯蔵庫100の幅をW2、奥行きをD2と設定し、同じく本実施の形態の食品貯蔵庫100ではW2を680mm、D2を690mmと設定している。   Moreover, the width of the food storage 100 is set to W2 and the depth is set to D2. Similarly, in the food storage 100 of the present embodiment, W2 is set to 680 mm and D2 is set to 690 mm.

更に、冷蔵室ドア109aの高さをh11、切替室ドア111a(=製氷室ドア110a)の高さをh12、野菜室ドア32aの高さをh13、冷凍室ドア33aの左右端部の高さをh14と設定し、同じく本実施の形態の食品貯蔵庫ではh11を859mmとして最も大きくし、h13を320mm、h14を330mmとして一番下の冷凍室113を野菜室112よりも大きくし、h12を最も小さい177.5mmに設定している。これによって食品貯蔵庫100の高さに対する冷蔵室ドア30aの割合はh11/H11×100=49.7%で概ね1/2となっている。なお、正確に言うと冷蔵室109の区画高さは冷蔵室ドア109a高さと異なるが、本実施の形態では冷蔵室ドア109a高さにて代替するものとする。   Furthermore, the height of the cold room door 109a is h11, the height of the switching room door 111a (= ice making room door 110a) is h12, the height of the vegetable room door 32a is h13, and the height of the left and right ends of the freezer room door 33a. Is set to h14. Similarly, in the food storage of this embodiment, h11 is 859 mm, which is the largest, h13 is 320 mm, h14 is 330 mm, the lowest freezer compartment 113 is larger than the vegetable compartment 112, and h12 is the most. It is set to a small 177.5 mm. Thereby, the ratio of the refrigerator compartment door 30a with respect to the height of the food storage 100 is h1 / 2 / H11 × 100 = 49.7%, which is approximately ½. To be exact, the compartment height of the refrigerator compartment 109 is different from the height of the refrigerator compartment door 109a, but in the present embodiment, the height of the refrigerator compartment door 109a is used instead.

以上のように構成された食品貯蔵庫について、以下その作用を説明する。   The operation of the food storage configured as described above will be described below.

まず、冷凍サイクル38の作用により切替室111は−10℃に、他の貯蔵室も各設定温度に冷却保持される。   First, due to the action of the refrigeration cycle 38, the switching chamber 111 is kept at -10 ° C., and the other storage chambers are kept at the respective set temperatures.

切替室ドア111aを開けて密閉容器161を取り出し、締結部材172を外して容器フタ171を開けると食品の出し入れができる。   When the switching chamber door 111a is opened to take out the sealed container 161, the fastening member 172 is removed and the container lid 171 is opened, food can be taken in and out.

密閉容器161を取り出す時には制御手段210により連結部逆止弁191が開放されているので容易に密閉容器161と連結部190との連結が解除でき、密閉容器161内部は大気圧に戻る。   When the sealed container 161 is taken out, since the connecting portion check valve 191 is opened by the control means 210, the connection between the sealed container 161 and the connecting portion 190 can be easily released, and the inside of the sealed container 161 returns to atmospheric pressure.

食品を収容して密閉容器161を切替室111内に収容すると、ドア開閉検知手段162が切替室ドア111aの閉状態を検知して脱気開始、60秒間脱気後120秒間脱気保持、切替室111内の空気を導入して脱気解除し60秒間保持後再び脱気開始という脱気サイクルを240秒おきに9回繰返し10回目の脱気状態を保持したまま−10℃まで冷却保存される。   When food is stored and the sealed container 161 is stored in the switching chamber 111, the door opening / closing detection means 162 detects the closed state of the switching chamber door 111a, starts degassing, degass for 60 seconds, and holds and degass for 120 seconds. The air in the chamber 111 is introduced to release the deaeration, and after holding for 60 seconds, the deaeration cycle of starting the deaeration again is repeated 9 times every 240 seconds, and cooled and stored at −10 ° C. while maintaining the 10th deaeration state. The

脱気時には制御手段210により連結部逆止弁191のみが開放され、脱気部180が動作することで密閉容器160内部のみが大気圧から約30kPa低い真空度まで脱気される。   At the time of deaeration, only the connecting portion check valve 191 is opened by the control means 210, and only the inside of the sealed container 160 is deaerated from the atmospheric pressure to a vacuum level of about 30 kPa by operating the deaeration unit 180.

一方、切替室111内の空気導入時には制御手段210により連結部逆止弁191と導入部逆支弁201とが共に開放されることで密閉容器161内部と冷凍室113内との圧力差により自動的に冷凍室113内部の空気が密閉容器161内部に導入される。   On the other hand, when air is introduced into the switching chamber 111, the control unit 210 automatically opens both the connecting portion check valve 191 and the introducing portion reverse support valve 201, so that the pressure difference between the inside of the sealed container 161 and the freezing chamber 113 is automatically set. Then, the air inside the freezing chamber 113 is introduced into the sealed container 161.

この時、連結部逆止弁191の吸湿材の作用により切替室111内部より低い湿度の空気が導入されることになる。   At this time, air having a lower humidity than the inside of the switching chamber 111 is introduced by the action of the hygroscopic material of the connecting portion check valve 191.

したがって、密閉容器161内部の食品は霜が付きにくい環境内で急速に冷凍される。   Therefore, the food inside the sealed container 161 is rapidly frozen in an environment where frost is difficult to form.

以上のように本実施の形態においては切替室111内部に脱気手段である脱気部180及び脱気解除手段である連結部逆止弁191を備えた脱気手段160を有し、切替室111内に食品を収容した直後に脱気手段160にて脱気して所定時間後に切替室111内部の空気を脱気解除手段により密閉容器161内部に導入する、脱気工程と脱気解除工程からなる脱気サイクルを少なくとも1回有することにより、例えば牛ミンチのように小片集合体からなる食品を保存する場合でも小片間の微小空間まで新しい空気を容易に通気可能となるので食品保存温度への移行を早めることができ、保鮮性に優れた食品保存状態を得ることができる。   As described above, in the present embodiment, the switching chamber 111 includes the deaeration unit 180 including the deaeration unit 180 serving as the deaeration unit and the connecting portion check valve 191 serving as the deaeration release unit. A deaeration process and a deaeration release process in which air is deaerated by the deaeration means 160 immediately after the food is stored in 111 and the air in the switching chamber 111 is introduced into the sealed container 161 by the deaeration release means after a predetermined time. By having at least one degassing cycle consisting of, for example, when storing food consisting of small pieces such as beef mince, new air can be easily ventilated to the minute space between the small pieces, so that the food storage temperature is reached. Can be accelerated and a food preservation state with excellent freshness can be obtained.

脱気手段160を作用させることにより食品貯蔵庫100の消費電力が増加する場合もあるが、切替室111の設定温度を下げて冷凍サイクル118の能力もしくは運転率を向上させる場合に比べると増加分は微小であり消費電力量の抑制を図ることもできる。   Although the power consumption of the food storage 100 may increase by operating the deaeration means 160, the increase is less than when the set temperature of the switching chamber 111 is lowered to improve the capacity or operating rate of the refrigeration cycle 118. It is very small and power consumption can be suppressed.

また、切替室111内に切替室ドア111a開時に切替室111内から取り出して開閉自在な密閉容器161を備え、恒温化手段は密閉容器161外周を冷凍サイクル118で発生した所定温度の冷気を流すことで密閉容器161を所定温度に保持し、密閉容器161内部のみに脱気と空気導入を行なうとすることにより、切替室111全体を脱気する場合に比べて脱気空間を限定することで脱気手段160の簡素化を図ることができコストダウンを図ることができる。   Further, the switching chamber 111 is provided with a sealed container 161 that can be taken out from the switching chamber 111 when the switching chamber door 111a is opened and can be opened and closed, and the thermostatic means flows cold air at a predetermined temperature generated in the refrigeration cycle 118 around the outer periphery of the sealed container 161. By holding the sealed container 161 at a predetermined temperature and performing deaeration and air introduction only inside the sealed container 161, the deaeration space is limited as compared with the case where the entire switching chamber 111 is deaerated. The deaeration means 160 can be simplified and the cost can be reduced.

また、切替室ドア111a開時に密閉容器161のみ取り出して食品を出し入れできるので食品収容の手間が軽減でき、使い勝手を良くすることができる。   Moreover, since only the sealed container 161 can be taken out and food can be taken in and out when the switching chamber door 111a is opened, the trouble of storing food can be reduced and the usability can be improved.

また、小片集合体からなる食品を保存して空気導入時に瞬間的な空気の流入により小片が飛散した場合でも、切替室111全体を掃除する手間が省け、密閉容器161自身は取り出して容易に洗うことができるので清掃性を向上させることができる。   Further, even when food consisting of small piece aggregates is stored and small pieces are scattered due to instantaneous air inflow when air is introduced, the trouble of cleaning the entire switching chamber 111 is saved, and the sealed container 161 itself is taken out and washed easily. Therefore, the cleaning property can be improved.

脱気後に導入する冷凍室113内部の湿度が密閉容器161内部の湿度より低いことにより密閉容器161内の食品への霜付きを軽減することによって劣化を抑制できる。   Since the humidity inside the freezer compartment 113 introduced after deaeration is lower than the humidity inside the sealed container 161, deterioration can be suppressed by reducing frosting on the food in the sealed container 161.

また、脱気手段160は脱気後所定の真空度を保持可能な連結部逆止弁191と導入部逆止弁201とを有し、切替室111内部の空気導入を連結部逆止弁191と導入部逆止弁201との同時開放により行なうことにより自動的に空気の導入が行なわれるので空気導入に対する構造を簡素化でき、コストダウンを図ることができる。   Further, the deaeration means 160 has a connecting portion check valve 191 and an introducing portion check valve 201 that can maintain a predetermined degree of vacuum after deaeration, and the air introduction in the switching chamber 111 is connected to the connecting portion check valve 191. Since the air is automatically introduced by simultaneously opening the inlet and the check valve 201, the structure for introducing the air can be simplified and the cost can be reduced.

また、脱気後の空気導入流量を0.15m/min以上とすることにより、小片集合体からなる食品を保存した場合でも小片間の微小空間での空気流通量が増加することで熱伝達速度が増大し更に保鮮性に優れた状態を得ることができる。 In addition, by setting the air introduction flow rate after degassing to 0.15 m 3 / min or more, even when food consisting of small pieces aggregates is stored, the amount of air flow in the minute spaces between the small pieces increases, thereby transferring heat. The speed is increased and a state of excellent freshness can be obtained.

なお、本実施の形態では脱気後の圧力を大気圧から約30kPa低い真空度、サイクルを10回としたが、食品の保存状態が許す範囲内であれば圧力減少度は小さく、サイクルは少ない方が食品の乾燥や小片集合体からなる食品の飛散を抑制できるので望ましい。   In the present embodiment, the pressure after deaeration is about 30 kPa lower than the atmospheric pressure, and the cycle is 10 times. However, if the food storage condition permits, the pressure decrease is small and the cycle is small. This is desirable because it can suppress drying of the food and scattering of the food consisting of small pieces.

また、脱気手段160の動作をドア開閉検知手段162と連動させるとしたが、例えば冷蔵室ドア109aに脱気手段160の動作スイッチを設けて手動で脱気手段160の動作を開始するとしても良い。その場合には脱気手段160の動作時間が減るので脱気手段160の長期信頼性に関連する部分を簡素化してコストダウンを図ったり、先に密閉容器161に収容していた食品を不用意に乾燥させてしまうことを防止できる。   In addition, although the operation of the deaeration unit 160 is interlocked with the door opening / closing detection unit 162, for example, the operation of the deaeration unit 160 may be started manually by providing an operation switch of the deaeration unit 160 on the refrigerator door 109a. good. In that case, since the operation time of the deaeration means 160 is reduced, the portion related to the long-term reliability of the deaeration means 160 is simplified to reduce the cost, or the food previously stored in the sealed container 161 is not prepared. Can be prevented from drying out.

以上のように、本発明にかかる食品貯蔵庫は、消費電力の増加を抑制しながら小片集合体からなる被保存物を早急に設定温度まで冷却もしくは加温できるので、その他の保温器の用途にも適用できる。   As described above, the food storage according to the present invention can quickly cool or warm the object to be preserved made up of small pieces to a set temperature while suppressing an increase in power consumption, so that it can be used for other incubators. Applicable.

本発明の実施の形態1における食品貯蔵庫の正面図Front view of the food storage in Embodiment 1 of the present invention 同実施の形態の食品貯蔵庫の縦断面図Vertical section of the food storage of the same embodiment 同実施の形態の食品貯蔵庫の要部縦断面図The principal part longitudinal cross-sectional view of the food storage of the embodiment 従来の食品貯蔵庫の正面図Front view of conventional food storage 従来の食品貯蔵庫の風路構成図Airway configuration diagram of conventional food storage 従来の食品貯蔵庫の真空保存容器断面図Cross-sectional view of vacuum storage container of conventional food storage

符号の説明Explanation of symbols

100 食品貯蔵庫
101 断熱箱体
101a 前面開口部
111 切替室(貯蔵室)
111a 切替室ドア(扉)
113 冷凍室(貯蔵室)
160 脱気手段
161 密閉容器
170 容器本体
180 脱気部
190 連結部
191 連結部逆止弁
200 導入部
201 導入部逆止弁
DESCRIPTION OF SYMBOLS 100 Food storage 101 Heat insulation box 101a Front opening 111 Switching room (storage room)
111a Switching room door (door)
113 Freezer room (storage room)
160 Deaeration means 161 Sealed container 170 Container body 180 Deaeration part 190 Connection part 191 Connection part check valve 200 Introduction part 201 Introduction part check valve

Claims (5)

開口部を有する断熱箱体と、前記開口部を開閉する扉と、前記断熱箱体内部の貯蔵室を所定温度に保持可能な恒温化手段と、前記貯蔵室内部を脱気する脱気手段と、前記脱気手段による脱気作用を解除する脱気解除手段とからなり、前記貯蔵室内に食品を収容した直後から脱気サイクルを少なくとも一回行い、前記脱気サイクルは、前記脱気手段にて前記貯蔵室内を脱気する脱気工程と、前記脱気工程が終了した所定時間後に前記脱気解除手段にて脱気解除を行う脱気解除工程とからなり、前記脱気解除手段は前記貯蔵室の所定温度と同一温度のガスを前記貯蔵室内に導入することを特長とする食品貯蔵庫。   A heat insulating box having an opening; a door for opening and closing the opening; a thermostatic means capable of maintaining a storage chamber inside the heat insulating box at a predetermined temperature; and a deaeration means for degassing the storage chamber. The deaeration release means for releasing the deaeration action by the deaeration means, and at least one deaeration cycle is performed immediately after the food is stored in the storage chamber, and the deaeration cycle is applied to the deaeration means. A deaeration step for deaeration of the storage chamber, and a deaeration release step for releasing the deaeration by the deaeration release unit after a predetermined time after the deaeration step is completed. A food storage, wherein a gas having the same temperature as a predetermined temperature in the storage chamber is introduced into the storage chamber. 貯蔵室内には扉開時に前記貯蔵室内から取り出して開閉自在な密閉容器を備え、恒温化手段は前記密閉容器外周を所定温度のガスが流れることで前記密閉容器を所定温度に保持し、前記密閉容器内部のみに脱気とガス導入を行なうことを特徴とする請求項1に記載の食品貯蔵庫。   The storage chamber is provided with a hermetic container that can be opened and closed when the door is opened, and the thermostatic means holds the hermetic container at a predetermined temperature by flowing a gas at a predetermined temperature around the outer periphery of the hermetic container. The food storage according to claim 1, wherein deaeration and gas introduction are performed only inside the container. 脱気後に導入するガスの湿度がガス導入先の湿度と異なることを特徴とする請求項1または2に記載の食品貯蔵庫。   The food storage according to claim 1 or 2, wherein the humidity of the gas introduced after deaeration is different from the humidity of the gas introduction destination. 脱気手段は脱気後所定の真空度を保持可能な逆止弁を有し、ガス導入は逆止弁の開放により行なうことを特徴とする請求項1から3のいずれか一項に記載の食品貯蔵庫。   The degassing means has a check valve capable of maintaining a predetermined degree of vacuum after degassing, and gas introduction is performed by opening the check valve. Food storage. 脱気後のガス導入流量は0.15m/min以上であることを特徴とする請求項1から4のいずれか一項に記載の食品貯蔵庫。 The food reservoir according to any one of claims 1 to 4, wherein a gas introduction flow rate after deaeration is 0.15 m 3 / min or more.
JP2007205302A 2007-08-07 2007-08-07 Food storage Pending JP2009041805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205302A JP2009041805A (en) 2007-08-07 2007-08-07 Food storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205302A JP2009041805A (en) 2007-08-07 2007-08-07 Food storage

Publications (1)

Publication Number Publication Date
JP2009041805A true JP2009041805A (en) 2009-02-26

Family

ID=40442726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205302A Pending JP2009041805A (en) 2007-08-07 2007-08-07 Food storage

Country Status (1)

Country Link
JP (1) JP2009041805A (en)

Similar Documents

Publication Publication Date Title
KR100681983B1 (en) Refrigerator
US9841224B2 (en) Refrigerator appliances with passive storage compartments
JP6080385B2 (en) refrigerator
JP2006308265A (en) Refrigerator
TW571065B (en) Refrigerator
JP2004218924A (en) Refrigerator
KR20040067643A (en) Refrigerator Having Temperature- Controlled Chamber
JP2004251598A (en) Refrigerator
JP2011017472A (en) Refrigerator
JP2010038494A (en) Refrigerator
JP5188363B2 (en) Oxidation suppression cassette and refrigerator equipped with the same
JP4962199B2 (en) Food storage
JP4962200B2 (en) Food storage
JP2009041804A (en) Food storage
JP2009041807A (en) Food storage
JP2006010162A (en) Refrigerator
JP6298982B2 (en) refrigerator
JP2009041805A (en) Food storage
JP2005257208A (en) Refrigerator
JP2009041806A (en) Food storage
JP4764383B2 (en) refrigerator
JP2015040632A (en) Refrigerator
JP2010101566A (en) Refrigerator
JP2018146198A (en) refrigerator
JP2009293808A (en) Refrigerator