JP2009041674A - Gear member, gear mechanism, and manufacturing method of gear member - Google Patents

Gear member, gear mechanism, and manufacturing method of gear member Download PDF

Info

Publication number
JP2009041674A
JP2009041674A JP2007207767A JP2007207767A JP2009041674A JP 2009041674 A JP2009041674 A JP 2009041674A JP 2007207767 A JP2007207767 A JP 2007207767A JP 2007207767 A JP2007207767 A JP 2007207767A JP 2009041674 A JP2009041674 A JP 2009041674A
Authority
JP
Japan
Prior art keywords
gear
diameter
groove
peripheral surface
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007207767A
Other languages
Japanese (ja)
Inventor
Hironori Yamazaki
寛範 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2007207767A priority Critical patent/JP2009041674A/en
Priority to CNA2008101442808A priority patent/CN101363530A/en
Publication of JP2009041674A publication Critical patent/JP2009041674A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear member which does not produce variation of inside diameter and has high torque intensity even if two members are interconnected by press fitting and to provide a gear mechanism with the gear member and a manufacturing method of the gear member. <P>SOLUTION: The gear member 1 has a structure in which the connected part 11c of a small diameter gear 11 is inserted with force to the connected hole 12b of a large diameter gear 12. The inner peripheral surface of the connected hole 12b is flat and a groove portion 11b is formed in the outer peripheral face of the connected part 11c and when the connected part 11c of the small diameter gear 11 is press-fitted to the connected hole 12b of the large diameter gear 12, the inner peripheral face of the connected hole 12b is plastically deformed so as to disposed between the grooves 11b, the small diameter gear 11 and the large diameter gear 12 can be connected with high intensity. Further, when the connected part 11c is press-fitted into the connected hole 12b, a large load is not applied to the connected part 11c side and the inner diameter dimension of the connected part 11c never shrinks. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の部材を連結してなる歯車部材、この歯車部材を備えた歯車機構、および当該歯車部材の製造方法に関するものである。   The present invention relates to a gear member formed by connecting a plurality of members, a gear mechanism including the gear member, and a method for manufacturing the gear member.

モータ等の回転数を減速させる減速機においては、スペース的な制約により、例えば、径の異なる2つの歯車を同軸状に備えた段付き歯車部材を用いた構成が知られている。但し、このような構成の歯車部材では、切削加工により2つの歯車を一体に作製することが困難である。   In a reduction gear that reduces the rotational speed of a motor or the like, for example, a configuration using a stepped gear member that is coaxially provided with two gears having different diameters is known due to space limitations. However, with the gear member having such a configuration, it is difficult to integrally manufacture the two gears by cutting.

そこで、小径歯車および大径歯車を各々、別個に切削加工により作製した後、小径歯車の連結部を大径歯車の連結穴に圧入することで、小径歯車と大径歯車とを一体化することが提案されている。但し、小径歯車の連結部を大径歯車の連結穴に圧入する際の圧入代が大きいと、小径歯車と大径歯車との間のトルク強度を増大させることができる一方で、圧入時、小径歯車の連結部が変形して小径歯車の内径寸法が小さくなってしまい、歯車部材に支軸を通した状態で歯車部材がスムーズに回転しなくなるという問題点がある。また、小径歯車の連結部を大径歯車の連結穴に圧入する際の圧入代が小さいと、小径歯車の内径寸法の変動は小さく抑えることはできるが、小径歯車と大径歯車との間のトルク強度が低下するという問題点がある。   Therefore, after the small-diameter gear and the large-diameter gear are separately manufactured by cutting, the small-diameter gear and the large-diameter gear are integrated by press-fitting the small-diameter gear coupling portion into the large-diameter gear coupling hole. Has been proposed. However, if the press-fitting allowance for press-fitting the small-diameter gear coupling portion into the large-diameter gear coupling hole is large, the torque strength between the small-diameter gear and the large-diameter gear can be increased. There is a problem that the connecting portion of the gear is deformed and the inner diameter of the small-diameter gear is reduced, and the gear member does not rotate smoothly in a state where the support shaft is passed through the gear member. In addition, if the press-fitting allowance for press-fitting the connecting portion of the small-diameter gear into the connecting hole of the large-diameter gear is small, fluctuations in the inner-diameter dimension of the small-diameter gear can be suppressed, but the small-diameter gear and the large-diameter gear There is a problem that the torque intensity is lowered.

ここで、小径歯車の連結部の外周面には溝を形成しておく一方、大径歯車の連結穴に内歯を形成しておき、小径歯車の連結部の外周面に形成した溝と、大径歯車の連結穴に形成した内歯とを嵌合させることが提案されている(特許文献1参照)。
特開昭61−31764号公報
Here, while a groove is formed on the outer peripheral surface of the connecting portion of the small-diameter gear, inner teeth are formed in the connecting hole of the large-diameter gear, and a groove formed on the outer peripheral surface of the connecting portion of the small-diameter gear, It has been proposed to fit an internal tooth formed in a connecting hole of a large-diameter gear (see Patent Document 1).
JP 61-31764 A

しかしながら、特許文献1に記載の歯車部材では、大径歯車の連結穴に内歯を形成するには多大な手間がかかるという問題点がある。また、小径歯車の連結部の外周面に形成した溝と、大径歯車の内歯とを嵌合させる構成では、加工精度によっては軸線方向に強固に連結できないという問題点がある。   However, the gear member described in Patent Document 1 has a problem in that it takes a lot of labor to form internal teeth in the connecting hole of the large-diameter gear. Moreover, in the structure which fits the groove | channel formed in the outer peripheral surface of the connection part of a small diameter gear, and the internal tooth of a large diameter gear, there exists a problem that it cannot connect firmly in an axial direction depending on processing precision.

さらに、小径歯車の連結部の外周面に形成した溝と大径歯車の内歯とを嵌合させる構成では、加工精度によって圧入代が大きくなっている場合、小径歯車の内径寸法が小さくなってしまい、歯車部材に支軸を通した状態で歯車部材がスムーズに回転しなくなるという問題点を解消することは不可能である。   Further, in the configuration in which the groove formed on the outer peripheral surface of the connecting portion of the small-diameter gear and the internal teeth of the large-diameter gear are fitted, the inner diameter dimension of the small-diameter gear becomes small when the press-fitting allowance is large due to processing accuracy. Therefore, it is impossible to eliminate the problem that the gear member does not rotate smoothly while the support shaft is passed through the gear member.

以上の問題に鑑みて、本発明の課題は、2つの部材を圧入により連結した場合でもトルク強度が高く、かつ、円筒状に形成する場合でも内径寸法の変動が発生しない歯車部材、この歯車部材を備えた歯車機構、および当該歯車部材の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a gear member that has high torque strength even when two members are connected by press-fitting and that does not vary in inner diameter even when formed in a cylindrical shape, and this gear member. The gear mechanism provided with this invention, and the manufacturing method of the said gear member.

上記課題を解決するために、本発明では、外周面に複数の歯が形成された第1歯車部、および該第1歯車部に対して同軸状の連結部が軸線方向でずれた位置に形成された第1部材と、前記連結部が嵌合する連結穴を備えた第2部材とからなる歯車部材において、前記連結部の外周面には、前記第1歯車部の歯溝の延長線と半径方向で重なる位置に溝部が形成され、前記連結穴の内周面は、前記溝部の間に入り込むように塑性変形していることを特徴とする。   In order to solve the above-described problems, in the present invention, a first gear portion having a plurality of teeth formed on the outer peripheral surface, and a coaxial connecting portion with respect to the first gear portion are formed at positions shifted in the axial direction. In the gear member composed of the first member made and the second member having the connection hole into which the connection portion is fitted, an extension line of the tooth groove of the first gear portion is formed on the outer peripheral surface of the connection portion. A groove portion is formed at a position overlapping in the radial direction, and the inner peripheral surface of the connection hole is plastically deformed so as to enter between the groove portions.

本発明では、第1部材の連結部を第2部材の連結穴に圧入することにより、第1部材と第2部材とを連結させて歯車部材を構成する。ここで、前記連結穴の内周面は平坦面であっても、連結部の外周面には溝部が形成されているため、第1部材の連結部を第2部材の連結穴に圧入した際、連結穴の内周面は、溝部の間に入り込むように塑性変形を起こすので、第1部材と第2部材とは、高いトルク強度をもって連結するとともに、軸線方向においても強固に連結する。また、連結部の外周面には溝部が形成されているため、連結部と連結穴との圧入代を大きめに設定しておいても、連結穴の内周面は、溝部の間に入り込むように塑性変形を起こすので、第1部材と第2部材とを確実に圧入することができる。さらに、連結部の外周面において、溝部は第1歯車部の歯溝の延長線と半径方向で重なる位置に形成されており、かかる構造の溝部は、第1歯車部を形成するための歯切り加工を連結部の外周面に対しても行なうことにより形成できるので、歯車部材の製造コストを低減することができる。   In the present invention, the gear member is configured by connecting the first member and the second member by press-fitting the connecting portion of the first member into the connecting hole of the second member. Here, even if the inner peripheral surface of the connecting hole is a flat surface, a groove is formed on the outer peripheral surface of the connecting portion, so when the connecting portion of the first member is press-fitted into the connecting hole of the second member Since the inner peripheral surface of the connecting hole undergoes plastic deformation so as to enter between the groove portions, the first member and the second member are connected with high torque strength and are also firmly connected in the axial direction. Moreover, since the groove part is formed in the outer peripheral surface of a connection part, even if the press-fitting allowance of a connection part and a connection hole is set large, the inner peripheral surface of a connection hole may enter between groove parts. Therefore, the first member and the second member can be reliably press-fitted. Further, on the outer peripheral surface of the connecting portion, the groove portion is formed at a position overlapping with the extension line of the tooth groove of the first gear portion in the radial direction, and the groove portion of such a structure is a gear cutting for forming the first gear portion. Since it can form by performing also with respect to the outer peripheral surface of a connection part, the manufacturing cost of a gear member can be reduced.

本発明は、前記第1部材において少なくとも前記連結部が円筒状に形成されている場合に適用すると効果的である。このように構成すると、歯車部材において連結部の内側に支軸を通して歯車部材を軸線周りに回転させることができる。この場合でも、本発明では、第1部材の連結部を第2部材の連結穴に圧入した際、連結穴の内周面が溝部の間に入り込むように塑性変形を起こすので、連結部の側には大きな負荷がかからない。このため、連結部を連結穴に対する圧入代を大きめに設定しておいても連結部の内径寸法が縮まることがない。それ故、連結部の内側に支軸を確実に通すことができるとともに、歯車部材は、支軸周りにスムーズに回転する。さらに、歯車部材において連結部の内側に支軸(回転軸)を圧入固定する場合でも、第1部材の連結部を第2部材の連結穴に圧入した際、連結部の内径寸法が変動していないので、連結部の内側に支軸(回転軸)を確実に圧入固定することができる。   The present invention is effective when applied to a case where at least the coupling portion is formed in a cylindrical shape in the first member. If comprised in this way, a gear member can be rotated to the surroundings of an axis line through a support shaft inside a connection part in a gear member. Even in this case, in the present invention, when the connecting portion of the first member is press-fitted into the connecting hole of the second member, plastic deformation occurs so that the inner peripheral surface of the connecting hole enters between the groove portions. Does not take a big load. For this reason, even if the press-fitting allowance with respect to the connecting hole is set to be large, the inner diameter dimension of the connecting portion is not reduced. Therefore, the support shaft can be reliably passed inside the connecting portion, and the gear member rotates smoothly around the support shaft. Further, even when the support shaft (rotary shaft) is press-fitted and fixed inside the connecting portion of the gear member, the inner diameter dimension of the connecting portion varies when the connecting portion of the first member is press-fitted into the connecting hole of the second member. Therefore, the support shaft (rotary shaft) can be reliably press-fitted and fixed inside the connecting portion.

本発明において、前記連結部の外径寸法は、前記第1歯車部の歯底円の直径よりも大きいことが好ましい。このような構成を採用した場合、前記溝部の底部は、前記第1歯車部の歯溝底部の延長線上にあって、前記溝部の底部を結ぶ仮想円の直径は、前記第1歯車部の歯底円の直径と等しい構成を採用することができる。このように構成すると、連結部の外周面に溝部を形成する際、第1歯車部を形成するための工具と第1部材とを軸線方向に相対移動させるだけでよく、工具と第1部材との半径方向における相対位置をずらす必要がない。それ故、連結部の外周面に溝部を効率よく形成することができるので、生産性を向上することができる。また、溝加工を行なう前の連結部の外径を所定の寸法に設定しておくだけで、歯切り加工により、第1歯車部に最適な歯たけの歯溝を形成するとともに、連結部に溝部を形成した後、連結部の外周面を削って溝部の深さや圧入代を調整するなどの追加工などを行なわなくても、圧入に適した深さの溝部を連結部に形成することができる。   In the present invention, it is preferable that the outer diameter of the connecting portion is larger than the diameter of the root circle of the first gear portion. When such a configuration is adopted, the bottom portion of the groove portion is on an extension line of the tooth groove bottom portion of the first gear portion, and the diameter of an imaginary circle connecting the bottom portion of the groove portion is determined by the teeth of the first gear portion. A configuration equal to the diameter of the bottom circle can be employed. If comprised in this way, when forming a groove part in the outer peripheral surface of a connection part, it is only necessary to relatively move the tool for forming a 1st gear part, and a 1st member to an axial direction, and a tool, a 1st member, There is no need to shift the relative position in the radial direction. Therefore, since the groove portion can be efficiently formed on the outer peripheral surface of the connecting portion, the productivity can be improved. In addition, by setting the outer diameter of the connecting portion before grooving to a predetermined size, an optimum tooth gap is formed in the first gear portion by gear cutting, and the groove portion is formed in the connecting portion. After forming the groove portion, the groove portion having a depth suitable for press-fitting can be formed in the connecting portion without performing an additional process such as cutting the outer peripheral surface of the connecting portion to adjust the depth or press-fitting allowance of the groove portion. .

本発明において、前記第2部材は、外周面に複数の歯が形成された第2歯車部を備えている構成を採用することができる。このように構成すると、本発明を適用した歯車部材が2つの歯車部を備えているので、本発明を適用した歯車部材を1つ用いるだけで、単体の歯車を2つ配置したのと同様な機能を発揮する。それ故、スペース面で制約のある場合でも、歯車機構を組み込むことができる。   In the present invention, the second member may include a second gear portion having a plurality of teeth formed on the outer peripheral surface. If comprised in this way, since the gear member to which this invention is applied is provided with two gear parts, it is the same as having arrange | positioned two single gears only by using one gear member to which this invention is applied. Demonstrate the function. Therefore, a gear mechanism can be incorporated even when space is limited.

本発明において、前記第1部材は金属製であって前記第2部材が樹脂製であるなど、前記第1部材と前記第2部材とは異なる材料で形成してもよい。但し、前記第1部材および前記第2部材のいずれをも金属製とした場合には、極めて強い強度を備えた歯車部材を構成でき、減速機などといった大きなトルクが加わる歯車機構に用いるのに適している。   In the present invention, the first member and the second member may be formed of different materials, for example, the first member is made of metal and the second member is made of resin. However, when both the first member and the second member are made of metal, a gear member having extremely strong strength can be formed, which is suitable for use in a gear mechanism that applies a large torque such as a speed reducer. ing.

本発明に係る歯車部材は、少なくとも1つが用いられて歯車機構に用いられる。この場合、前記歯車部材は、2つ以上が用いられて減速機構を構成していることが好ましい。本発明に係る歯車部材は、トルク強度が高いので、減速機などといった大きなトルクが加わる歯車機構に用いるのに適している。   At least one gear member according to the present invention is used for a gear mechanism. In this case, it is preferable that two or more gear members are used to form a speed reduction mechanism. Since the gear member according to the present invention has high torque strength, it is suitable for use in a gear mechanism to which a large torque such as a reduction gear is applied.

本発明では、外周面に複数の歯が形成された第1歯車部、および該第1歯車部に対して同軸状の連結部が軸線方向でずれた位置に形成された第1部材と、前記連結部が嵌合する連結穴を備えた第2部材とからなる歯車部材の製造方法において、前記第2部材の形成工程では、前記連結穴の内周面を平坦面にしておく一方、前記第1部材の形成工程では、前記第1歯車部の歯溝を形成する歯切り加工を前記連結部の外周面にも行なって当該連結部において前記第1歯車部の歯溝の延長線と半径方向で重なる位置に溝部を形成し、前記第1部材と前記第2部材の連結工程では、前記連結部を前記連結穴に圧入することを特徴とする。   In the present invention, a first gear portion having a plurality of teeth formed on the outer peripheral surface, and a first member formed at a position where a coaxial connecting portion is shifted in the axial direction with respect to the first gear portion, In the manufacturing method of the gear member including the second member provided with the connecting hole into which the connecting portion is fitted, in the step of forming the second member, the inner peripheral surface of the connecting hole is made flat, In the step of forming one member, gear cutting for forming a tooth groove of the first gear portion is also performed on the outer peripheral surface of the connecting portion, and the extension line of the tooth groove of the first gear portion and the radial direction in the connecting portion. In the step of connecting the first member and the second member, the connecting portion is press-fitted into the connecting hole.

本発明では、第1部材の連結部を第2部材の連結穴に圧入した際、連結穴の内周面は、溝部の間に入り込むように塑性変形を起こすので、第1部材と第2部材とは、高いトルク強度をもって連結するとともに、軸線方向においても強固に連結する。また、連結部の外周面には溝部が形成されているため、連結部と連結穴との圧入代を大きめに設定しておいても、連結穴の内周面は、溝部の間に入り込むように塑性変形を起こすので、第1部材と第2部材とを確実に圧入することができる。さらに、連結部の外周面において、溝部は第1歯車部の歯溝の延長線と半径方向で重なる位置に形成されており、かかる構造の溝部は、第1歯車部を形成するための歯切り加工を連結部の外周面に対しても行なうことにより形成できるので、歯車部材の製造コストを低減することができる。   In the present invention, when the connecting portion of the first member is press-fitted into the connecting hole of the second member, the inner peripheral surface of the connecting hole causes plastic deformation so as to enter between the groove portions, so the first member and the second member Is connected with high torque strength and is also firmly connected in the axial direction. Moreover, since the groove part is formed in the outer peripheral surface of a connection part, even if the press-fitting allowance of a connection part and a connection hole is set large, the inner peripheral surface of a connection hole may enter between groove parts. Therefore, the first member and the second member can be reliably press-fitted. Further, on the outer peripheral surface of the connecting portion, the groove portion is formed at a position overlapping with the extension line of the tooth groove of the first gear portion in the radial direction, and the groove portion of such a structure is a gear cutting for forming the first gear portion. Since it can form by performing also with respect to the outer peripheral surface of a connection part, the manufacturing cost of a gear member can be reduced.

本発明において、前記連結工程を行なう時点では、前記第1部材の硬度を前記第2部材の硬度よりも高くしておくことが好ましい。このように構成すると、第1部材の連結部を第2部材の連結穴に圧入した際、溝部の間に入り込むように連結穴の内周面が塑性変形を起こしやすい。   In the present invention, it is preferable that the hardness of the first member is higher than the hardness of the second member at the time of performing the connecting step. If comprised in this way, when the connection part of a 1st member is press-fit in the connection hole of a 2nd member, the inner peripheral surface of a connection hole will raise | generate a plastic deformation easily so that it may enter between groove parts.

本発明において、前記第1部材および前記第2部材は金属材料から形成されており、前記第1部材に対しては前記連結工程の前に硬化処理を行い、前記第2部材に対しては前記連結工程の後に硬化処理を行うことが好ましい。このように構成すると、前記第1部材および前記第2部材の双方について硬度を高めることができるので、摺動性を改善できる。また、前記圧入工程の際、前記第1部材の硬度が前記第2部材の硬度よりも高い状態にあるので、第1部材の連結部を第2部材の連結穴に圧入した際、溝部の間に入り込むように連結穴の内周面が塑性変形を起こしやすい。さらに、圧入工程の後、第2部材に硬化処理を行なうので、溝部の間に入り込んだ金属を硬化させることができ、第1部材と第2部材とを強固に固定することができる。   In the present invention, the first member and the second member are made of a metal material, the first member is subjected to a curing process before the connecting step, and the second member is It is preferable to perform a hardening process after a connection process. If comprised in this way, since hardness can be raised about both the said 1st member and the said 2nd member, slidability can be improved. Further, since the hardness of the first member is higher than the hardness of the second member during the press-fitting step, when the connecting portion of the first member is press-fitted into the connecting hole of the second member, The inner peripheral surface of the connecting hole tends to undergo plastic deformation so as to enter. Furthermore, since the hardening process is performed on the second member after the press-fitting step, the metal that has entered between the grooves can be hardened, and the first member and the second member can be firmly fixed.

本発明では、連結穴の内周面は平坦面であっても、連結部の外周面には溝部が形成されているため、第1部材の連結部を第2部材の連結穴に圧入した際、連結穴の内周面は、溝部の間に入り込むように塑性変形を起こすので、第1部材と第2部材とは、高いトルク強度をもって連結するとともに、軸線方向においても強固に連結する。また、連結部の外周面には溝部が形成されているため、連結部と連結穴との圧入代を大きめに設定しておいても、連結穴の内周面は、溝部の間に入り込むように塑性変形を起こすので、第1部材と第2部材とを確実に圧入することができる。さらに、連結部の外周面において、溝部は第1歯車部の歯溝の延長線と半径方向で重なる位置に形成されており、かかる構造の溝部は、第1歯車部を形成するための歯切り加工を連結部の外周面に対しても行なうことにより形成できるので、歯車部材の製造コストを低減することができる。さらにまた、連結部が円筒状に形成されている場合でも、第1部材の連結部を第2部材の連結穴に圧入した際、連結穴の内周面が溝部の間に入り込むように塑性変形を起こすので、連結部の側には大きな負荷がかからない。このため、連結部を連結穴に対する圧入代を大きめに設定しておいても連結部の内径寸法が縮まることがない。   In the present invention, even if the inner peripheral surface of the connecting hole is a flat surface, a groove is formed on the outer peripheral surface of the connecting portion, so when the connecting portion of the first member is press-fitted into the connecting hole of the second member Since the inner peripheral surface of the connecting hole undergoes plastic deformation so as to enter between the groove portions, the first member and the second member are connected with high torque strength and are also firmly connected in the axial direction. Moreover, since the groove part is formed in the outer peripheral surface of a connection part, even if the press-fitting allowance of a connection part and a connection hole is set large, the inner peripheral surface of a connection hole may enter between groove parts. Therefore, the first member and the second member can be reliably press-fitted. Further, on the outer peripheral surface of the connecting portion, the groove portion is formed at a position overlapping with the extension line of the tooth groove of the first gear portion in the radial direction, and the groove portion of such a structure is a gear cutting for forming the first gear portion. Since it can form by performing also with respect to the outer peripheral surface of a connection part, the manufacturing cost of a gear member can be reduced. Furthermore, even when the connecting portion is formed in a cylindrical shape, when the connecting portion of the first member is press-fitted into the connecting hole of the second member, plastic deformation is performed so that the inner peripheral surface of the connecting hole enters between the groove portions. Therefore, a large load is not applied to the connection side. For this reason, even if the press-fitting allowance with respect to the connecting hole is set to be large, the inner diameter dimension of the connecting portion is not reduced.

図面を参照して、本発明を適用した歯車部材、この歯車部材を備えた歯車機構、およびこの歯車部材の製造方法について説明する。   A gear member to which the present invention is applied, a gear mechanism provided with the gear member, and a method for manufacturing the gear member will be described with reference to the drawings.

(歯車機構の全体構成)
図1(a)、(b)は各々、本発明を適用した歯車機構の平面図および構成図である。図1(a)、(b)に示すように、本形態の歯車機構100は、一対の端板101、102の間で原動軸51の回転を出力軸56へと減速して伝える減速機構を構成している。図1(a)、(b)には、原動軸51と出力軸56とが同一軸線状に配置され、出力軸56の周りに4本の支軸52〜55が配置された例を示してある。なお、図1(b)では、支軸52、53が同一軸線上に位置し、支軸54、55が同一軸線上に位置するように表してあるが、図1(a)に示すように、支軸52〜55は各々、出力軸56の周りで端板101、102あるいは地板(図示せず)によって両端が保持されている。また、図1(b)では、原動軸51および出力軸56に対する軸受の図示が省略されているが、原動軸51および出力軸56は各々、軸線周りに回転可能である。
(Whole structure of gear mechanism)
1A and 1B are a plan view and a configuration diagram of a gear mechanism to which the present invention is applied, respectively. As shown in FIGS. 1A and 1B, the gear mechanism 100 according to the present embodiment includes a reduction mechanism that transmits the rotation of the driving shaft 51 to the output shaft 56 while reducing the rotation between the pair of end plates 101 and 102. It is composed. FIGS. 1A and 1B show an example in which the driving shaft 51 and the output shaft 56 are arranged on the same axis, and four support shafts 52 to 55 are arranged around the output shaft 56. is there. In FIG. 1 (b), the support shafts 52 and 53 are located on the same axis and the support shafts 54 and 55 are located on the same axis, but as shown in FIG. 1 (a). Each of the support shafts 52 to 55 is held at both ends by the end plates 101 and 102 or a ground plate (not shown) around the output shaft 56. Further, in FIG. 1B, illustration of bearings for the driving shaft 51 and the output shaft 56 is omitted, but the driving shaft 51 and the output shaft 56 can each rotate about an axis.

図1(b)に示すように、原動軸51には歯車2が原動軸51と一体に回転可能に固着されている。支軸52の外周には、大径歯車3aと小径歯車3bとが同軸状に一体に構成された段付き歯車3が回転可能に支持されている。支軸53には段付きの歯車部材1cが圧入により固定され、支軸53は回転軸として機能する。支軸54には段付きの歯車部材1aが圧入により固定され、支軸54は回転軸として機能する。支軸55には段付きの歯車部材1eが圧入により固定され、支軸55は回転軸として機能する。出力軸56には、大径歯車4aと小径歯車4bとが同軸状に一体に構成された段付き歯車4と、段付きの歯車部材1bと、段付きの歯車部材1dとが出力軸56に対して相対回転可能に支持されているとともに、出力軸56には歯車5が出力軸56と一体に回転可能に配置されている。   As shown in FIG. 1B, the gear 2 is fixed to the driving shaft 51 so as to be rotatable integrally with the driving shaft 51. On the outer periphery of the support shaft 52, a stepped gear 3 in which a large-diameter gear 3a and a small-diameter gear 3b are integrally formed coaxially is rotatably supported. A stepped gear member 1c is fixed to the support shaft 53 by press fitting, and the support shaft 53 functions as a rotation shaft. A stepped gear member 1a is fixed to the support shaft 54 by press fitting, and the support shaft 54 functions as a rotation shaft. A stepped gear member 1e is fixed to the support shaft 55 by press fitting, and the support shaft 55 functions as a rotation shaft. The output shaft 56 includes a stepped gear 4 in which a large-diameter gear 4 a and a small-diameter gear 4 b are integrally formed coaxially, a stepped gear member 1 b, and a stepped gear member 1 d. The gear 5 is disposed on the output shaft 56 so as to be rotatable integrally with the output shaft 56.

このように構成した歯車機構100では、原動軸51の回転は、歯車2、段付き歯車3、段付き歯車4、歯車部材1a、歯車部材1b、歯車部材1c、歯車部材1d、歯車部材1e、歯車5に向けて減速されながらこの順に伝達されて、出力軸56から出力される。   In the gear mechanism 100 configured as described above, the rotation of the driving shaft 51 includes the gear 2, the stepped gear 3, the stepped gear 4, the gear member 1a, the gear member 1b, the gear member 1c, the gear member 1d, the gear member 1e, The gears 5 are transmitted in this order while being decelerated toward the gear 5 and output from the output shaft 56.

従って、歯車のうち、段付き歯車3、段付き歯車4は比較的小さなトルクが加わるだけあるため、安価な樹脂製歯車を用いることができる。なお、前段側に配置された歯車2については、圧入強度を確保するという観点から真鍮製の平歯車が用いられている。これに対して、最終段の歯車5には大きなトルクが加わるので、金属製の平歯車が用いられている。また、比較的後段側に配置された歯車部材1a〜1eには、比較的大きなトルクが加わるため、樹脂製歯車を用いることができないが、歯車部材1a〜1eに示すような複合歯車を金属製とする場合、ホブカッターで小径歯車部を形成する際、大径歯車部が邪魔になる。従って、歯車部材1a〜1eについては、図2および図3を参照して説明する構成を採用してある。   Therefore, among the gears, the stepped gear 3 and the stepped gear 4 have only a relatively small torque applied thereto, so that an inexpensive resin gear can be used. In addition, about the gear 2 arrange | positioned at the front | former stage side, the spur gear made from a brass is used from a viewpoint of ensuring press-fit strength. In contrast, since a large torque is applied to the gear 5 at the final stage, a metal spur gear is used. Further, since a relatively large torque is applied to the gear members 1a to 1e arranged on the relatively rear side, a resin gear cannot be used. However, a composite gear as shown in the gear members 1a to 1e is made of metal. In this case, when the small diameter gear portion is formed by the hob cutter, the large diameter gear portion becomes an obstacle. Therefore, about the gear members 1a-1e, the structure demonstrated with reference to FIG. 2 and FIG. 3 is employ | adopted.

(歯車部材1a〜1eの構成)
図2(a)、(b)、(c)、(d)は各々、本発明を適用した歯車部材の断面図、歯車部材に用いた小径歯車の断面図、歯車部材に用いた大径歯車の断面図、および小径歯車の側面図であり、図2(d)において溝部分にはピッチの狭い斜線を付してある。また、歯車部材1a〜1eの基本的な構成は、同一であるため、以下の説明では、歯車部材1a〜1eを区別せず、歯車部材1として説明する。
(Configuration of gear members 1a to 1e)
2 (a), 2 (b), 2 (c) and 2 (d) are respectively a sectional view of a gear member to which the present invention is applied, a sectional view of a small diameter gear used for the gear member, and a large diameter gear used for the gear member. FIG. 2D is a cross-sectional view of FIG. 2 and a side view of the small-diameter gear. In FIG. Moreover, since the fundamental structure of the gear members 1a-1e is the same, in the following description, the gear members 1a-1e are demonstrated as the gear member 1 without distinguishing.

図2(a)に示すように、本形態の歯車部材1(歯車部材1a〜1e)は、円筒状の小径歯車11(第1部材)と、円盤状の大径歯車12(第2部材)とを連結した構造を有しており、本形態において、小径歯車11および大径歯車12はいずれも、同一の金属材料(例えば、炭素鋼SUM24Lや炭素鋼S45Cなど)で構成されている。   As shown in FIG. 2A, the gear member 1 (gear members 1a to 1e) of the present embodiment includes a cylindrical small-diameter gear 11 (first member) and a disk-shaped large-diameter gear 12 (second member). In this embodiment, both the small diameter gear 11 and the large diameter gear 12 are made of the same metal material (for example, carbon steel SUM24L, carbon steel S45C, etc.).

図2(b)、(d)に示すように、小径歯車11には軸線方向に同一の内径をもって延びた軸穴11eが形成されている。また、小径歯車11の軸線方向における一方端側には、外周面に複数の歯を備えた第1歯車部11aが形成されている一方、小径歯車11の軸線方向における他方端側は、外周面に溝部11bを備えた連結部11cが形成されている。ここで、第1歯車部11aの歯溝、および溝部11bは、小径歯車11の軸線方向と平行に直線的に延びている。   As shown in FIGS. 2B and 2D, the small diameter gear 11 is formed with a shaft hole 11e extending with the same inner diameter in the axial direction. A first gear portion 11a having a plurality of teeth on the outer peripheral surface is formed on one end side in the axial direction of the small-diameter gear 11, while the other end side in the axial direction of the small-diameter gear 11 is on the outer peripheral surface. The connection part 11c provided with the groove part 11b is formed. Here, the tooth groove of the first gear portion 11 a and the groove portion 11 b extend linearly in parallel with the axial direction of the small-diameter gear 11.

本形態では、連結部11cの外径d1は、第1歯車部11aの歯先円直径d4よりも小さく、第1歯車部11aと連結部11cとの境界部分には段部11dが形成されている。また、連結部11cの外径d1は、第1歯車部11aの歯底円の直径d2よりも大きく設定されている。   In this embodiment, the outer diameter d1 of the connecting portion 11c is smaller than the tooth tip diameter d4 of the first gear portion 11a, and a step portion 11d is formed at the boundary portion between the first gear portion 11a and the connecting portion 11c. Yes. Further, the outer diameter d1 of the connecting portion 11c is set larger than the diameter d2 of the root circle of the first gear portion 11a.

ここで、溝部11bは、第1歯車部11aの歯溝の延長線に対して半径方向に重なる位置に形成されている。本形態において、溝部11bの底部は、第1歯車部11aの歯溝底部の延長線上に位置しているため、溝部11bと第1歯車部11aの歯溝とは連続し、溝部11bの底部を結ぶ仮想円の直径d5は、第1歯車部11aの歯底円の直径d2と等しい。   Here, the groove part 11b is formed in the position which overlaps with the extended line of the tooth groove of the 1st gear part 11a in a radial direction. In this embodiment, since the bottom of the groove 11b is located on the extension line of the tooth bottom of the first gear portion 11a, the groove 11b and the tooth groove of the first gear 11a are continuous, and the bottom of the groove 11b is The diameter d5 of the virtual circle to be connected is equal to the diameter d2 of the root circle of the first gear portion 11a.

図2(c)に示すように、大径歯車12は、外周面に複数の歯が形成された第2歯車部12aを備えており、中央には、小径歯車11の連結部11cを圧入するための連結穴12bが形成されている。連結穴12bの内径d3は、連結部11cの外径d1よりもわずかに小さく、第1歯車部11aの歯先円直径d4よりも小さく設定されている。また、連結穴12bの内周面は平坦面になっている。   As shown in FIG. 2C, the large-diameter gear 12 includes a second gear portion 12a having a plurality of teeth formed on the outer peripheral surface, and the connecting portion 11c of the small-diameter gear 11 is press-fitted in the center. A connecting hole 12b is formed. The inner diameter d3 of the connecting hole 12b is set slightly smaller than the outer diameter d1 of the connecting portion 11c and smaller than the tooth tip circle diameter d4 of the first gear portion 11a. Moreover, the inner peripheral surface of the connection hole 12b is a flat surface.

このように構成した小径歯車11および大径歯車12を用いて、図2(a)に示す歯車部材1を製造する際は、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入し、小径歯車11の段部11dと大径歯車12の内周縁とを当接させる。これにより、図2(a)に示すような小径歯車11と大径歯車12とが一体化した歯車部材1を得ることができる。   When the gear member 1 shown in FIG. 2A is manufactured using the small-diameter gear 11 and the large-diameter gear 12 configured as described above, the connecting portion 11c of the small-diameter gear 11 is connected to the connecting hole 12b of the large-diameter gear 12. The step 11d of the small diameter gear 11 and the inner peripheral edge of the large diameter gear 12 are brought into contact with each other. Thereby, the gear member 1 in which the small diameter gear 11 and the large diameter gear 12 are integrated as shown in FIG. 2A can be obtained.

(歯車部材の製造方法)
次に、図2に加えて、図3を参照しながら、歯車部材1の製造方法を説明するとともに、歯車部材1の構成を詳述する。図3は、本発明を適用した歯車部材1を構成する小径歯車11の製造方法を示す説明図である。
(Manufacturing method of gear member)
Next, the manufacturing method of the gear member 1 will be described with reference to FIG. 3 in addition to FIG. 2, and the configuration of the gear member 1 will be described in detail. FIG. 3 is an explanatory view showing a method for manufacturing the small-diameter gear 11 constituting the gear member 1 to which the present invention is applied.

歯車部材1を製造するにあたって、まず、図2(c)を参照して説明した大径歯車12を製造しておく。この大径歯車12の形成工程では、連結穴12bの内周面を平坦面にしておく。   In manufacturing the gear member 1, first, the large-diameter gear 12 described with reference to FIG. In the step of forming the large-diameter gear 12, the inner peripheral surface of the connecting hole 12b is made flat.

これに対して、図2(b)、(d)に示す小径歯車11を製造するには、まず、図3(a)に示すように、金属製の円筒状のブランク111を作製する。ブランク111には、外周面における径の大きさが異なる2つの胴部111a、111bが構成されており、胴部111aの外径(図2(b)に示す第1歯車部11aの歯先円直径d4)は、胴部111bの外径(図2(b)に示す連結部11cの外径d1)よりも大きい。   On the other hand, in order to manufacture the small-diameter gear 11 shown in FIGS. 2B and 2D, first, as shown in FIG. 3A, a metal cylindrical blank 111 is manufactured. The blank 111 is configured with two barrel portions 111a and 111b having different diameters on the outer peripheral surface, and the outer diameter of the barrel portion 111a (the tip circle of the first gear portion 11a shown in FIG. 2B). The diameter d4) is larger than the outer diameter of the trunk portion 111b (the outer diameter d1 of the connecting portion 11c shown in FIG. 2B).

次に、ブランク111の中心軸線と平行に延びる仮想線L1にホブカッター9の刃先を合わせた後、ブランク111の中心軸線と平行にホブカッター9とブランク111とを相対移動させ、ブランク111の外周面に対して歯切り加工を施す。その結果、図3(b)に示すように、胴部111aには第1歯車部11aの歯溝が形成されるとともに、胴部111bには、歯車部11aの歯溝の延長線上に溝部11bが形成される。なお、ホブカッター9の回転速度は例えば、4000〜6000rpmに設定される。   Next, after aligning the cutting edge of the hob cutter 9 with a virtual line L1 extending in parallel with the central axis of the blank 111, the hob cutter 9 and the blank 111 are relatively moved in parallel with the central axis of the blank 111, Gear cutting is performed. As a result, as shown in FIG. 3B, a tooth groove of the first gear portion 11a is formed in the body portion 111a, and a groove portion 11b is formed on the extension portion of the tooth groove of the gear portion 11a in the body portion 111b. Is formed. The rotation speed of the hob cutter 9 is set to 4000 to 6000 rpm, for example.

次に、図3(b)に示すように、ホブカッター9とブランク111とを周方向に相対移動させた後、図3(a)を参照して説明した歯切り加工を繰り返す。その結果、ブランク111の外周面において軸線方向にずれた領域には、ブランク111の全周にわたって、第1歯車部11aの歯溝、および溝部11bが形成され、図2(b)、(d)に示すように、軸線方向にずれた領域に第1歯車部11aおよび連結部11cを備えた小径歯車11が形成される。   Next, as shown in FIG. 3B, the hob cutter 9 and the blank 111 are relatively moved in the circumferential direction, and then the gear cutting described with reference to FIG. 3A is repeated. As a result, in the region shifted in the axial direction on the outer peripheral surface of the blank 111, the tooth groove of the first gear portion 11a and the groove portion 11b are formed over the entire periphery of the blank 111, and FIGS. As shown, the small-diameter gear 11 including the first gear portion 11a and the connecting portion 11c is formed in a region shifted in the axial direction.

次に、小径歯車11に対しては熱処理、および塩浴軟窒化による表面硬化処理を施すことにより、小径歯車11の硬度、および耐摩耗性を向上させる。これに対して、大径歯車12に対しては、かかる表面硬化処理を行なわない。   Next, the hardness and wear resistance of the small-diameter gear 11 are improved by subjecting the small-diameter gear 11 to heat treatment and surface hardening treatment by salt bath soft nitriding. On the other hand, the surface hardening process is not performed on the large-diameter gear 12.

次に、連結工程において、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入し、図2(a)に示すように、小径歯車11の連結部11cを大径歯車12の連結穴12bに嵌合した歯車部材1を形成する。   Next, in the connecting step, the connecting portion 11c of the small diameter gear 11 is press-fitted into the connecting hole 12b of the large diameter gear 12, and the connecting portion 11c of the small diameter gear 11 is inserted into the large diameter gear 12 as shown in FIG. The gear member 1 fitted into the connecting hole 12b is formed.

最後に、大径歯車12に対して熱処理、および塩浴軟窒化による表面硬化処理を施す。その際、歯車部材1全体に表面硬化処理が施され、歯車部材1が完成する。   Finally, the large diameter gear 12 is subjected to heat treatment and surface hardening treatment by salt bath soft nitriding. At that time, the entire gear member 1 is subjected to surface hardening treatment, and the gear member 1 is completed.

(本形態の主な効果)
以上説明したように、本形態における歯車部材1は、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入することにより、小径歯車11と大径歯車12とを連結させて歯車部材1を構成する。ここで、連結穴12bの内周面は平坦面であっても、連結部11cの外周面には溝部11bが形成されているため、連結部11cと連結穴12bとの圧入代を大きめに設定しておいても、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入した際、連結穴12bの内周面は、溝部11bの間に入り込むように塑性変形を起こす。しかも、小径歯車11と大径歯車12との連結工程を行なう時点では、小径歯車11の硬度が前記大径歯車12の硬度よりも高いので、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入した際、溝部11bの間に入り込むように連結穴12bの内周面が塑性変形を起こしやすい。従って、小径歯車11と大径歯車12とは、高いトルク強度をもって連結するとともに、軸線方向においても強固に連結する。それ故、図1に示す歯車機構100において、大きなトルクが加わる歯車部材1a〜歯車部材1eなどとして用いることができる。しかも、小径歯車11と大径歯車12とは別部材で構成され、かつ、強固に連結されているので、小径歯車11と大径歯車12との歯数比を大きく設定し、減速比を大きくすることもできる。
(Main effects of this form)
As described above, the gear member 1 according to the present embodiment connects the small-diameter gear 11 and the large-diameter gear 12 by press-fitting the coupling portion 11c of the small-diameter gear 11 into the coupling hole 12b of the large-diameter gear 12. The member 1 is configured. Here, even if the inner peripheral surface of the connecting hole 12b is a flat surface, since the groove portion 11b is formed on the outer peripheral surface of the connecting portion 11c, the press-fitting allowance between the connecting portion 11c and the connecting hole 12b is set to be large. Even when the connecting portion 11c of the small-diameter gear 11 is press-fitted into the connecting hole 12b of the large-diameter gear 12, the inner peripheral surface of the connecting hole 12b undergoes plastic deformation so as to enter between the groove portions 11b. Moreover, since the hardness of the small-diameter gear 11 is higher than the hardness of the large-diameter gear 12 at the time when the small-diameter gear 11 and the large-diameter gear 12 are connected, the connecting portion 11c of the small-diameter gear 11 is connected to the large-diameter gear 12. When press-fitted into the connecting hole 12b, the inner peripheral surface of the connecting hole 12b is likely to undergo plastic deformation so as to enter between the groove portions 11b. Therefore, the small-diameter gear 11 and the large-diameter gear 12 are coupled with high torque strength and are also firmly coupled in the axial direction. Therefore, the gear mechanism 100 shown in FIG. 1 can be used as the gear member 1a to the gear member 1e to which a large torque is applied. In addition, since the small-diameter gear 11 and the large-diameter gear 12 are formed of separate members and are firmly connected, the gear ratio between the small-diameter gear 11 and the large-diameter gear 12 is set large, and the reduction ratio is increased. You can also

また、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入した際、連結穴12bの内周面が溝部11bの間に入り込むように塑性変形を起こすので、連結部11cの側には大きな負荷がかからない。しかも、小径歯車11と大径歯車12との連結工程を行なう時点では、小径歯車11の硬度が大径歯車12の硬度よりも高いので、小径歯車11の連結部11cを大径歯車12の連結穴12bに圧入した際、溝部11bの間に入り込むように連結穴12bの内周面が塑性変形を起こしやすく、連結部11cの側には大きな負荷がかからない。このため、連結部11cを連結穴12bに対する圧入代を大きめに設定しておいても連結部11cの内径寸法が縮まることがない。それ故、連結部11cの内側に支軸を確実に通すことができるとともに、歯車部材1を段付きの歯車部材1b、1dとして用いた場合、段付きの歯車部材1b、1dは、支軸56周りにスムーズに回転する。また、歯車部材1を段付きの歯車部材1a、1c、1eとして用いた場合、歯車部材1a、1c、1eの内側に支軸54、53、55(回転軸)を確実に圧入固定することができる。   Further, when the connecting portion 11c of the small-diameter gear 11 is press-fitted into the connecting hole 12b of the large-diameter gear 12, plastic deformation occurs so that the inner peripheral surface of the connecting hole 12b enters between the groove portions 11b. Does not take a big load. Moreover, since the hardness of the small-diameter gear 11 is higher than the hardness of the large-diameter gear 12 when the small-diameter gear 11 and the large-diameter gear 12 are coupled, the coupling portion 11c of the small-diameter gear 11 is coupled to the large-diameter gear 12. When press-fitted into the hole 12b, the inner peripheral surface of the connecting hole 12b is likely to be plastically deformed so as to enter between the grooves 11b, and a large load is not applied to the connecting part 11c side. For this reason, even if the coupling part 11c is set to have a large press-fitting allowance for the coupling hole 12b, the inner diameter dimension of the coupling part 11c does not shrink. Therefore, the support shaft can be surely passed through the inside of the connecting portion 11c, and when the gear member 1 is used as the stepped gear members 1b and 1d, the stepped gear members 1b and 1d are connected to the support shaft 56. Rotates smoothly around. Further, when the gear member 1 is used as the stepped gear members 1a, 1c, and 1e, the support shafts 54, 53, and 55 (rotating shafts) can be reliably press-fitted and fixed inside the gear members 1a, 1c, and 1e. it can.

さらに、連結部11cの外周面において、溝部11bは第1歯車部11aの歯溝の延長線と半径方向に重なる位置に形成されており、かかる構造の溝部11bは、第1歯車部11aを形成するための歯切り加工を連結部11cの外周面に対しても行なうことにより形成できるので、歯車部材1の製造コストを低減することができる。   Further, on the outer peripheral surface of the connecting portion 11c, the groove portion 11b is formed at a position overlapping the extension line of the tooth groove of the first gear portion 11a in the radial direction, and the groove portion 11b having such a structure forms the first gear portion 11a. Therefore, the gear member 1 can be manufactured at a lower cost because the gear cutting process can be performed on the outer peripheral surface of the connecting portion 11c.

さらにまた、連結部11cの外径d1は、第1歯車部11aの歯底円の直径d2よりも大きいため、溝部11bの底部が第1歯車部11aの歯溝底部の延長線上にあって、溝部11bの底部を結ぶ仮想円の直径d5を第1歯車部11aの歯底円の直径d2と等しい構成を採用することができる。すなわち、連結部11cの溝加工前の外径d1を第1歯車部11aの歯底円の直径d2よりも大きく設定してあるため、連結部11cの外周面に溝部11bを形成する際、第1歯車部11aを形成するためのホブカッター9と小径歯車11とを軸線方向に相対移動させるだけで、第1歯車部11aに歯溝を形成することができるとともに、連結部11cの外周面に溝部11bを形成できるので、ホブカッター9と小径歯車11との半径方向における相対位置をずらす必要がない。それ故、連結部11cの外周面に溝部11bを効率よく形成することができるので、工期の短縮および生産性の向上を図ることができる。   Furthermore, since the outer diameter d1 of the connecting portion 11c is larger than the diameter d2 of the tooth bottom circle of the first gear portion 11a, the bottom portion of the groove portion 11b is on the extension line of the tooth bottom portion of the first gear portion 11a, A configuration in which the diameter d5 of the imaginary circle connecting the bottom of the groove 11b is equal to the diameter d2 of the root circle of the first gear portion 11a can be employed. That is, since the outer diameter d1 of the connecting portion 11c before the groove processing is set larger than the diameter d2 of the root circle of the first gear portion 11a, when forming the groove portion 11b on the outer peripheral surface of the connecting portion 11c, A tooth groove can be formed in the first gear portion 11a only by relatively moving the hob cutter 9 and the small-diameter gear 11 for forming the one gear portion 11a in the axial direction, and the groove portion can be formed on the outer peripheral surface of the connecting portion 11c. Since 11b can be formed, it is not necessary to shift the relative position of the hob cutter 9 and the small-diameter gear 11 in the radial direction. Therefore, since the groove part 11b can be efficiently formed in the outer peripheral surface of the connection part 11c, a construction period can be shortened and productivity can be improved.

しかも、図3(a)に示す胴部111aの外径(図2(b)に示す第1歯車部11aの歯先円直径d4)を胴部111bの外径(図2(b)に示す連結部11cの外径d1)よりも大きく設定してあるので、歯切り加工により、第1歯車部11aに最適な歯たけの歯溝を形成するとともに、連結部11cに溝部11b形成した後、連結部11cの外周面を削って溝部11bの深さや圧入代を調整するなどの追加工などを行なわなくても、圧入に適した深さの溝部11bを連結部11cに形成することができる。   In addition, the outer diameter of the trunk portion 111a shown in FIG. 3A (the tip diameter d4 of the first gear portion 11a shown in FIG. 2B) is the outer diameter of the barrel portion 111b (FIG. 2B). Since the outer diameter d1) of the connecting portion 11c is set larger than the outer diameter d1), an optimum tooth gap is formed in the first gear portion 11a by gear cutting, and after the groove portion 11b is formed in the connecting portion 11c, the connecting portion 11c is connected. The groove portion 11b having a depth suitable for press-fitting can be formed in the connecting portion 11c without performing an additional process such as adjusting the depth and press-fitting allowance of the groove portion 11b by cutting the outer peripheral surface of the portion 11c.

また、小径歯車11は金属製であって大径歯車12が樹脂製であるなど、小径歯車11と大径歯車12とは異なる材料で形成してもよいが、本形態では、小径歯車11および大径歯車12のいずれをも金属製としているので、極めて強い強度を備えた歯車部材1を構成でき、減速機などといった大きなトルクが加わる歯車機構100に用いるのに適している。   The small-diameter gear 11 may be formed of a material different from that of the small-diameter gear 11 and the large-diameter gear 12 such as the metal and the large-diameter gear 12 are made of resin. Since all of the large-diameter gears 12 are made of metal, the gear member 1 having extremely strong strength can be configured and is suitable for use in the gear mechanism 100 to which a large torque such as a reduction gear is applied.

[変形例]
上記形態では、小径歯車11および大径歯車12のいずれをも金属製としたが、加わるトルクの大きさによっては、小径歯車11は金属製であって大径歯車12が樹脂製であってもよい。
[Modification]
In the above embodiment, both the small diameter gear 11 and the large diameter gear 12 are made of metal. However, depending on the magnitude of applied torque, the small diameter gear 11 may be made of metal and the large diameter gear 12 may be made of resin. Good.

また、上記形態では、溝部11bの底部が第1歯車部11aの歯溝底部の延長線上にあって、溝部11bの底部を結ぶ仮想円の直径d5を第1歯車部11aの歯底円の直径と等しい構成を採用したが、図4(a)に示すように、第1歯車部11aの歯溝の延長線と半径方向に重なる位置に溝部11bが形成されているが、溝部11bの底部が第1歯車部11aの歯溝底部よりも深い位置にある構成、すなわち、溝部11bの底部を結ぶ仮想円の直径d5が、第1歯車部11aの歯底円の直径d2より小さい構成を採用してもよい。また、図4(b)に示すように、第1歯車部11aの歯溝の延長線と半径方向に重なる位置に溝部11bが形成されているが、溝部11bの底部が第1歯車部11aの歯溝底部よりも浅い位置にある構成、すなわち、溝部11bの底部を結ぶ仮想円の直径d5が、第1歯車部11aの歯底円の直径d2より大きい構成を採用してもよい。   Moreover, in the said form, the bottom part of the groove part 11b exists on the extension line | wire of the tooth groove bottom part of the 1st gear part 11a, and the diameter d5 of the virtual circle which connects the bottom part of the groove part 11b is made into the diameter of the tooth base circle of the 1st gear part 11a. 4A, the groove portion 11b is formed at a position overlapping the extension line of the tooth groove of the first gear portion 11a in the radial direction, as shown in FIG. 4A, but the bottom portion of the groove portion 11b is A configuration that is deeper than the bottom of the tooth groove of the first gear portion 11a, that is, a configuration in which the diameter d5 of the imaginary circle that connects the bottom of the groove 11b is smaller than the diameter d2 of the bottom circle of the first gear portion 11a is adopted. May be. Further, as shown in FIG. 4B, the groove 11b is formed at a position that overlaps the extension line of the tooth groove of the first gear portion 11a in the radial direction, but the bottom of the groove 11b is the first gear portion 11a. A configuration that is shallower than the bottom of the tooth gap, that is, a configuration in which the diameter d5 of the imaginary circle connecting the bottom of the groove 11b is larger than the diameter d2 of the bottom circle of the first gear portion 11a may be employed.

さらに、上記形態では、第1歯車部11aの歯溝の延長線と半径方向に重なる位置の全てに溝部11bが形成したが、図4(c)に示すように、第1歯車部11aの歯溝の延長線と半径方向に重なる位置の一部のみに溝部11bを形成してもよい。   Furthermore, in the above embodiment, the groove portion 11b is formed at all positions that overlap the extension line of the tooth groove of the first gear portion 11a in the radial direction. However, as shown in FIG. 4C, the teeth of the first gear portion 11a are formed. The groove 11b may be formed only in a part of the position overlapping with the extended line of the groove in the radial direction.

さらにまた、上記形態では、第1歯車部11aの歯溝と溝部11bが繋がっているように形成されているが、図4(d)に示すように、溝部11bと第1歯車部11aの歯溝とが繋がっていない構成や、図4(e)に示すように、溝部11bが分断されている構成を採用してもよい。   Furthermore, in the above embodiment, the tooth groove of the first gear portion 11a and the groove portion 11b are connected, but as shown in FIG. 4D, the teeth of the groove portion 11b and the first gear portion 11a are formed. You may employ | adopt the structure which is not connected with the groove | channel, or the structure where the groove part 11b is parted as shown in FIG.4 (e).

また、本発明は、小径歯車11の連結部11cが円筒状になっていない場合において、小径歯車11の連結部を大径歯車12の連結穴12bに圧入する場合にも適用することができる。   The present invention can also be applied to a case where the connecting portion of the small diameter gear 11 is press-fitted into the connecting hole 12b of the large diameter gear 12 when the connecting portion 11c of the small diameter gear 11 is not cylindrical.

(a)、(b)は各々本発明を適用した歯車機構の平面図および構成図である。(A), (b) is the top view and block diagram of the gear mechanism to which this invention is applied, respectively. (a)、(b)、(c)、(d)は各々、本発明を適用した歯車部材の断面図、歯車部材に用いた小径歯車の断面図、歯車部材に用いた大径歯車の断面図、および小径歯車の側面図である。(A), (b), (c), (d) is a sectional view of a gear member to which the present invention is applied, a sectional view of a small-diameter gear used for the gear member, and a sectional view of a large-diameter gear used for the gear member, respectively. It is a figure and a side view of a small diameter gear. 本発明を適用した歯車部材に用いた小径歯車の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the small diameter gear used for the gear member to which this invention is applied. 本発明を適用した歯車部材に用いた小径歯車の変形例を示す説明図である。It is explanatory drawing which shows the modification of the small diameter gear used for the gear member to which this invention is applied.

符号の説明Explanation of symbols

1(1a〜1e) 歯車部材
11 小径歯車(第1部材)
11a 第1歯車部
11b 溝部
11c 連結部
12 大径歯車(第2部材)
12a 第2歯車部
12b 連結穴
100 歯車機構
1 (1a to 1e) Gear member 11 Small diameter gear (first member)
11a 1st gear part 11b Groove part 11c Connection part 12 Large diameter gear (2nd member)
12a Second gear portion 12b Connecting hole 100 Gear mechanism

Claims (11)

外周面に複数の歯が形成された第1歯車部、および該第1歯車部に対して同軸状の連結部が軸線方向でずれた位置に形成された第1部材と、前記連結部が嵌合する連結穴を備えた第2部材とからなる歯車部材において、
前記連結部の外周面には、前記第1歯車部の歯溝の延長線と半径方向で重なる位置に溝部が形成され、
前記連結穴の内周面は、前記溝部の間に入り込むように塑性変形していることを特徴とする歯車部材。
A first gear portion having a plurality of teeth formed on the outer peripheral surface, a first member formed at a position where a coaxial connecting portion is displaced in the axial direction with respect to the first gear portion, and the connecting portion is fitted. In the gear member composed of the second member having the connecting hole to be joined,
On the outer peripheral surface of the connecting portion, a groove portion is formed at a position overlapping with an extension line of the tooth groove of the first gear portion in the radial direction,
An inner peripheral surface of the connecting hole is plastically deformed so as to enter between the groove portions.
前記第1部材は、少なくとも前記連結部が円筒状に形成されていることを特徴とする請求項1に記載の歯車部材。   The gear member according to claim 1, wherein at least the connection portion of the first member is formed in a cylindrical shape. 前記連結部の外径寸法は、前記第1歯車部の歯底円の直径よりも大きいことを特徴とする請求項1または2に記載の歯車部材。   3. The gear member according to claim 1, wherein an outer diameter dimension of the connecting portion is larger than a diameter of a root circle of the first gear portion. 前記溝部の底部は、前記第1歯車部の歯溝底部の延長線上にあって、
前記溝部の底部を結ぶ仮想円の直径は、前記第1歯車部の歯底円の直径と等しいことを特徴とする請求項3に記載の歯車部材。
The bottom of the groove is on an extension line of the tooth bottom of the first gear part,
4. The gear member according to claim 3, wherein a diameter of a virtual circle connecting the bottom portions of the groove portions is equal to a diameter of a tooth bottom circle of the first gear portion.
前記第2部材は、外周面に複数の歯が形成された第2歯車部を備えていることを特徴とする請求項1乃至4の何れか一項に記載の歯車部材。   The gear member according to any one of claims 1 to 4, wherein the second member includes a second gear portion having a plurality of teeth formed on an outer peripheral surface thereof. 前記第1部材および前記第2部材は、金属製であることを特徴とする請求項1乃至5の何れか一項に記載の歯車部材。   The gear member according to any one of claims 1 to 5, wherein the first member and the second member are made of metal. 請求項1乃至6の何れか一項に記載の歯車部材を少なくとも1つ備えていることを特徴とする歯車機構。   A gear mechanism comprising at least one gear member according to any one of claims 1 to 6. 前記歯車部材を2つ以上備え、
当該歯車部材により減速機構が構成されていることを特徴とする請求項7に記載の歯車機構。
Comprising two or more gear members,
The gear mechanism according to claim 7, wherein a speed reduction mechanism is constituted by the gear member.
外周面に複数の歯が形成された第1歯車部、および該第1歯車部に対して同軸状の連結部が軸線方向でずれた位置に形成された第1部材と、前記連結部が嵌合する連結穴を備えた第2部材とからなる歯車部材の製造方法において、
前記第2部材の形成工程では、前記連結穴の内周面を平坦面にしておく一方、
前記第1部材の形成工程では、前記第1歯車部の歯溝を形成する歯切り加工を前記連結部の外周面にも行なって当該連結部において前記第1歯車部の歯溝の延長線と半径方向で重なる位置に溝部を形成し、
前記第1部材と前記第2部材の連結工程では、前記連結部を前記連結穴に圧入することを特徴とする歯車部材の製造方法。
A first gear portion having a plurality of teeth formed on the outer peripheral surface, a first member formed at a position where a coaxial connecting portion is displaced in the axial direction with respect to the first gear portion, and the connecting portion is fitted. In the manufacturing method of the gear member composed of the second member having the connecting hole to be joined,
In the step of forming the second member, while keeping the inner peripheral surface of the connection hole flat,
In the step of forming the first member, gear cutting for forming a tooth groove of the first gear portion is also performed on the outer peripheral surface of the connecting portion, and an extension line of the tooth groove of the first gear portion is connected to the connecting portion. A groove is formed at a position overlapping in the radial direction,
In the connecting step between the first member and the second member, the connecting portion is press-fitted into the connecting hole.
前記連結工程を行なう時点では、前記第1部材の硬度を前記第2部材の硬度よりも高くしておくことを特徴とする請求項9に記載の歯車部材の製造方法。   The method for manufacturing a gear member according to claim 9, wherein at the time of performing the connecting step, the hardness of the first member is set higher than the hardness of the second member. 前記第1部材および前記第2部材は金属材料から形成されており、
前記第1部材に対しては前記連結工程の前に硬化処理を行い、
前記第2部材に対しては前記連結工程の後に硬化処理を行うことを特徴とする請求項10に記載の歯車部材の製造方法。
The first member and the second member are made of a metal material,
The first member is subjected to a curing process before the connecting step,
The gear member manufacturing method according to claim 10, wherein the second member is subjected to a curing process after the connecting step.
JP2007207767A 2007-08-09 2007-08-09 Gear member, gear mechanism, and manufacturing method of gear member Pending JP2009041674A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007207767A JP2009041674A (en) 2007-08-09 2007-08-09 Gear member, gear mechanism, and manufacturing method of gear member
CNA2008101442808A CN101363530A (en) 2007-08-09 2008-07-30 Gear component, gear mechanism and production method of gear component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207767A JP2009041674A (en) 2007-08-09 2007-08-09 Gear member, gear mechanism, and manufacturing method of gear member

Publications (1)

Publication Number Publication Date
JP2009041674A true JP2009041674A (en) 2009-02-26

Family

ID=40390063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207767A Pending JP2009041674A (en) 2007-08-09 2007-08-09 Gear member, gear mechanism, and manufacturing method of gear member

Country Status (2)

Country Link
JP (1) JP2009041674A (en)
CN (1) CN101363530A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033123A (en) * 2009-07-31 2011-02-17 Namiki Precision Jewel Co Ltd Stepped reduction gear and method of manufacturing the same
JP2012228941A (en) * 2011-04-26 2012-11-22 Bridgestone Corp Rubber crawler manufacturing method and rubber crawler
KR101360497B1 (en) 2011-04-12 2014-02-07 스미도모쥬기가이고교 가부시키가이샤 Manufacturing method of gear structure and intermediate structure of gear structure
JP2016125562A (en) * 2014-12-26 2016-07-11 オリエンタルモーター株式会社 Gear structure
US11592096B2 (en) 2019-08-30 2023-02-28 Fanuc Corporation Light-weight gear and manufacturing method thereof, manufacturing method of gear train, and robot

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730811B1 (en) * 2011-07-08 2016-08-24 Toyota Jidosha Kabushiki Kaisha Method for manufacturing multi-stage gear
JP5836007B2 (en) * 2011-08-22 2015-12-24 日本電産サンキョー株式会社 Gear mechanism and geared motor
CN104691872A (en) * 2015-03-02 2015-06-10 胡和萍 Colored lamp packing machine driving gear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147897A (en) * 1981-03-10 1982-09-11 Tokyo Shibaura Electric Co Lamp breakage monitor
JPS62166358A (en) * 1986-01-20 1987-07-22 Hitachi Metals Ltd Toner for developing electrostatic charge image
JPH032307U (en) * 1989-05-29 1991-01-10
JPH0347186U (en) * 1989-09-18 1991-05-01
JP2004301213A (en) * 2003-03-31 2004-10-28 Nikon Corp Driving force transmission mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147897A (en) * 1981-03-10 1982-09-11 Tokyo Shibaura Electric Co Lamp breakage monitor
JPS62166358A (en) * 1986-01-20 1987-07-22 Hitachi Metals Ltd Toner for developing electrostatic charge image
JPH032307U (en) * 1989-05-29 1991-01-10
JPH0347186U (en) * 1989-09-18 1991-05-01
JP2004301213A (en) * 2003-03-31 2004-10-28 Nikon Corp Driving force transmission mechanism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033123A (en) * 2009-07-31 2011-02-17 Namiki Precision Jewel Co Ltd Stepped reduction gear and method of manufacturing the same
KR101360497B1 (en) 2011-04-12 2014-02-07 스미도모쥬기가이고교 가부시키가이샤 Manufacturing method of gear structure and intermediate structure of gear structure
JP2012228941A (en) * 2011-04-26 2012-11-22 Bridgestone Corp Rubber crawler manufacturing method and rubber crawler
JP2016125562A (en) * 2014-12-26 2016-07-11 オリエンタルモーター株式会社 Gear structure
US11592096B2 (en) 2019-08-30 2023-02-28 Fanuc Corporation Light-weight gear and manufacturing method thereof, manufacturing method of gear train, and robot
US11906027B2 (en) 2019-08-30 2024-02-20 Fanuc Corporation Light-weight gear and manufacturing method thereof, manufacturing method of gear train, and robot

Also Published As

Publication number Publication date
CN101363530A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
JP2009041674A (en) Gear member, gear mechanism, and manufacturing method of gear member
JP6408819B2 (en) Method for producing hollow rack bar
JP5093003B2 (en) Spline shaft and method for manufacturing spline shaft
JP2015205581A (en) Rack shaft and method for manufacturing rack shaft
US10005490B2 (en) Electric power steering apparatus
JP5586929B2 (en) Method for manufacturing constant velocity universal joint
JPS62251522A (en) Method of connecting rotating shaft
EP3643582B1 (en) Shaft for steering device, method for manufacturing shaft for steering device, and electric power steering device
WO2010024083A1 (en) Tripod uniform-motion universal joint and method for manufacturing the same
CN104813076A (en) Ring gear mounting structure
JP3897225B2 (en) Caulking method
JP6468362B2 (en) Electric power steering apparatus and assembly method thereof
US20200040946A1 (en) Propeller shaft and production method for same
EP2738408B1 (en) Cruciform-shaft universal joint and method for producing same
EP3132869A1 (en) Method of making shaft
JP2555486B2 (en) Method of forming helical spline with stopper on rotating shaft
JP6434539B2 (en) Power steering apparatus and manufacturing method thereof
JP6555249B2 (en) Electric power steering apparatus and assembly method thereof
JP2001298901A (en) Geared motor
JP2007040320A (en) Cold-forged bevel gear spindle
JP2010038296A (en) Drive pinion shaft and manufacturing method of the drive pinion shaft
WO2018193919A1 (en) Rack shaft and method for manufacturing rack shaft
JP2009072841A (en) Manufacturing method for worm wheel and worm reduction gear
JP2017048920A (en) Worm wheel, worm reduction gear and electric power steering device
JPH06207623A (en) Steering rod and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207