WO2018193919A1 - Rack shaft and method for manufacturing rack shaft - Google Patents

Rack shaft and method for manufacturing rack shaft Download PDF

Info

Publication number
WO2018193919A1
WO2018193919A1 PCT/JP2018/015117 JP2018015117W WO2018193919A1 WO 2018193919 A1 WO2018193919 A1 WO 2018193919A1 JP 2018015117 W JP2018015117 W JP 2018015117W WO 2018193919 A1 WO2018193919 A1 WO 2018193919A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rack
rack teeth
crushing
teeth
Prior art date
Application number
PCT/JP2018/015117
Other languages
French (fr)
Japanese (ja)
Inventor
真楽 吉川
井出 典数
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018193919A1 publication Critical patent/WO2018193919A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F1/00Making gear teeth by tools of which the profile matches the profile of the required surface
    • B23F1/08Making gear teeth by tools of which the profile matches the profile of the required surface by broaching; by broach-milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/20Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/28Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by broaching; by broach-milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/26Racks

Definitions

  • the present invention relates to a rack shaft and a method for manufacturing the rack shaft.
  • a dual pinion type electric power steering device in which steering torque by a driver and steering assist torque by an electric motor are independently input to a rack shaft is known.
  • a dual pinion type electric power steering apparatus it has been proposed to reduce the weight by forming a rack shaft from a hollow or cylindrical member (JP 2004-523365A, JP 2014-124767A).
  • first rack teeth are formed on a hollow first bar by forging.
  • a hollow second shaft is joined to the first shaft by friction welding, and second rack teeth are formed on the second shaft by cutting.
  • both the first and second rack teeth are formed by forging.
  • the shaft In the forging process, the shaft is plastically deformed according to the pressure applied to the shaft. Therefore, in order to form rack teeth, it is necessary to apply a large pressure to the shaft, and when the pressure is applied to the shaft, the shaft may rotate around the axis with respect to the mold. If the shaft rotates about the axis with respect to the mold at the time of forming the second rack tooth, the phase angle of the second rack tooth with respect to the first rack tooth shifts, and the phase angle accuracy of the first rack tooth and the second rack tooth decreases. To do.
  • the second rack teeth are formed by cutting a second shaft whose outer surface and inner surface are circular. Therefore, the thickness between the bottom of the second rack teeth and the inner surface of the second shaft decreases from the end in the tooth width direction of the second rack teeth toward the center, and the strength at the center is the lowest. If the second shaft is made thicker in order to increase the strength at the central portion, the portion other than the central portion becomes thicker than necessary, and the weight of the rack shaft increases.
  • An object of the present invention is to reduce the weight of the rack shaft while improving the phase angle accuracy of the first rack teeth and the second rack teeth.
  • the present invention relates to a rack shaft that converts the rotational motion of the first and second pinion gears into a linear motion.
  • the rack shaft includes a hollow shaft body, and first and second rack teeth provided on the shaft body and meshing with the first and second pinion gears, respectively.
  • the crushed portion is formed by crushing in the radial direction and includes a flat portion on the outer surface, and at least one of the first and second rack teeth is formed in the crushed portion by cutting.
  • a method for manufacturing a rack shaft includes a first rack tooth forming step for forming a first rack tooth on a hollow shaft body, and a second rack tooth for forming a second rack tooth on the shaft body. And forming a crushing portion including a flat portion on the outer surface by crushing the shaft main body in the radial direction, and crushing after forming the first rack teeth. Forming a second rack tooth on the part by cutting.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus including a rack shaft according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the rack shaft according to the first embodiment of the present invention.
  • 3A is a cross-sectional view taken along line IIIA-IIIA shown in FIG. 3B is a cross-sectional view taken along line IIIB-IIIB shown in FIG. 4A.
  • 3C is a cross-sectional view taken along the line IIIC-IIIC shown in FIG.
  • FIG. 4A is a view for explaining a method of manufacturing the rack shaft shown in FIG. 2, and shows a step of forming a first crushing portion in the shaft body.
  • FIG. 4B is a view for explaining a method of manufacturing the rack shaft shown in FIG.
  • FIG. 5 is a cross-sectional view of a rack shaft according to the second embodiment of the present invention, corresponding to FIG.
  • FIG. 6A is a diagram for explaining a method of manufacturing the rack shaft shown in FIG. 5 and shows a step of forming first rack teeth on the shaft body.
  • FIG. 6B is a view for explaining a method of manufacturing the rack shaft shown in FIG. 5 and shows a step of forming a crushing portion in the shaft body.
  • FIG. 7 is a cross-sectional view of a rack shaft according to the third embodiment of the present invention, corresponding to FIG.
  • FIG. 8A is a cross-sectional view showing a modified example of the crushed portion, and corresponds to FIG. 3C.
  • FIG. 8B is a cross-sectional view showing another modified example of the crushed portion, corresponding to FIG. 3C.
  • FIG. 9 is a cross-sectional view of a rack shaft according to a comparative example, corresponding to FIG. 3C.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus 100 including a rack shaft 50 according to the first embodiment of the present invention.
  • the electric power steering device 100 is a dual pinion type electric power steering device in which the steering force by the driver and the assist driving force by the electric motor 21 are independently input to the rack shaft 50.
  • the electric power steering apparatus 100 includes a steering mechanism 10 that steers the wheels 2 of the vehicle according to the rotation of the steering wheel 1 to which the steering force is input by the driver, and an assist mechanism 20 that assists the driver's steering force. And a control device 30 for controlling the assist amount of the steering force.
  • the steering mechanism 10 includes a steering shaft 11 that is connected to the steering wheel 1 and rotates according to the rotation of the steering wheel 1, and a rack shaft 50 that steers the vehicle wheel 2 according to the rotation of the steering shaft 11. .
  • the rack shaft 50 is connected to the wheel 2 via the tie rod 3.
  • the steering shaft 11 has an input shaft 13 connected to the steering wheel 1 and an output shaft 15 connected to the input shaft 13 via a torsion bar 14.
  • the output shaft 15 is provided with a first pinion gear 16 that meshes with the rack shaft 50.
  • the assist mechanism 20 includes an electric motor 21 that is a power source of assist force, a worm shaft 22 that is coupled to the output shaft of the electric motor 21, a worm wheel 23 that meshes with the worm shaft 22, and a pinion that is coupled to the worm wheel 23. And a shaft 24.
  • the pinion shaft 24 is provided with a second pinion gear 25 that meshes with the rack shaft 50.
  • the control device 30 includes a torque sensor 31 that detects the steering torque applied to the torsion bar 14 based on the relative rotation between the input shaft 13 and the output shaft 15, and a rotation angle sensor 32 that detects the rotation angle of the pinion shaft 24.
  • the steering angle sensor 34 that detects the rotation angle (steering angle) of the steering wheel 1, the motor rotation angle sensor 35 that is configured by a resolver and detects the rotation angle of the electric motor 21, and the controller 33 that controls the operation of the electric motor 21. And having.
  • the controller 33 controls the driving of the electric motor 21 based on the steering torque detected by the torque sensor 31 and the rotation angle of the electric motor 21 detected by the motor rotation angle sensor 35.
  • the controller 33 may control the driving of the electric motor 21 in consideration of the steering angle detected by the steering angle sensor 34 in addition to the steering torque and the rotation angle of the electric motor 21. Further, the controller 33 may control the driving of the electric motor 21 in consideration of the rotation angle of the pinion shaft 24 detected by the rotation angle sensor 32.
  • the rotation angle of the pinion shaft 24 detected by the rotation angle sensor 32 is used, the turning angle of the wheel 2 can be accurately grasped.
  • the detection result of the rotation angle sensor 32 is also used in control of a VDC (Vehicle Dynamics Control) or the like that suppresses a side slip or the like of the vehicle.
  • VDC Vehicle Dynamics Control
  • the rack shaft 50 includes a shaft main body 51 and first and second rack teeth 52 and 53 provided on the outer periphery of the shaft main body 51.
  • the first rack teeth 52 mesh with the first pinion gear 16 of the output shaft 15, and the second rack teeth 53 mesh with the second pinion gear 25 of the pinion shaft 24.
  • the shaft body 51 is connected to the wheel 2 via the tie rod 3.
  • Rotational force of the steering wheel 1 is transmitted to the output shaft 15 via the input shaft 13 and the torsion bar 14.
  • the rotational force of the output shaft 15 is converted into a force in the axial direction of the rack shaft 50 (the left-right direction of the vehicle) via the first pinion gear 16 and transmitted to the rack shaft 50. For this reason, when the steering wheel 1 is steered, the rack shaft 50 moves in the axial direction, and the vehicle wheel 2 is snaked according to the movement of the rack shaft 50.
  • Rotational force of the electric motor 21 is transmitted to the pinion shaft 24 via the worm shaft 22 and the worm wheel 23.
  • the rotational force of the pinion shaft 24 is converted into a force in the axial direction of the rack shaft 50 (the left-right direction of the vehicle) and transmitted to the rack shaft 50. For this reason, when the electric motor 21 is rotationally driven, a steering assist thrust is applied to the rack shaft 50 and the steering of the steering wheel 1 is assisted.
  • the rack shaft 50 is formed from a metal material (for example, carbon steel). As shown in FIG. 2, the shaft body 51 of the rack shaft 50 is formed in a hollow shape.
  • the shaft body 51 may be formed as a single hollow member that does not include a joint portion, or may be formed by joining a plurality of hollow members. When the rack shaft 50 is formed as one hollow member that does not include a joint portion, it is easy to ensure the coaxiality of the rack shaft 50.
  • a seamless tube or an electric resistance tube can be used as the hollow member that does not include the joint portion. Since the seamless pipe and the electric resistance welded pipe do not include the joint portion, the joining work can be omitted. Furthermore, you may perform processes, such as a swaging process and a drawing process, to a seamless pipe or an electric sewing pipe.
  • the shaft body 51 includes first and second crushing parts 54 and 55 having flat parts 54a and 55a on the outer surface, and an intermediate part 56 provided between the first and second crushing parts 54 and 55. As shown in FIG. 3A, the outer surface and the inner surface of the intermediate portion 56 are formed in a circular shape. As shown in FIG. 2, the 1st and 2nd rack teeth 52 and 53 are formed in the 1st and 2nd crushing parts 54 and 55, respectively.
  • the first crushing portion 54 is formed by crushing a part of the material of the shaft main body 51 whose entire length is formed in a cylindrical shape in the radial direction. Specifically, first, the outer surface of the material of the shaft body 51 is sandwiched between the upper mold 61 and the lower mold 62 of the processing machine 60. Next, the pressing die 63 is inserted into the guide hole 61 a of the upper die 61 to crush a part of the material of the shaft body 51 in the radial direction. Thereby, the first crushing portion 54 is formed in the shaft main body 51. Since a part of the shaft body 51 is crushed to form the first crushed portion 54, a flat portion 54a is formed on the outer surface of the first crushed portion 54 as shown in FIG. 3B.
  • the mandrel 64 When forming the first crushing portion 54, the mandrel 64 is inserted into the shaft body 51 as shown in FIG. 4A. A flat portion 64 a is formed on the outer surface of the mandrel 64, and the pressing die 63 crushes the shaft body 51 toward the flat portion 64 a of the mandrel 64. Therefore, as shown in FIG. 3B, a flat portion 54 b is formed on the inner surface of the first squashed portion 54. Since the flat portions 54a and 54b are formed on the outer and inner surfaces of the first squashed portion 54, the first squashed portion 54 has a uniform thickness.
  • the second crushing portion 55 is formed by crushing a part of the material of the shaft body 51 formed in a cylindrical shape in the radial direction, like the first crushing portion 54. Therefore, flat portions 55a and 55b are formed on the outer surface and the inner surface of the second crushed portion 55 similarly to the first crushed portion 54, and the second crushed portion 55 has a uniform thickness.
  • the first rack teeth 52 are formed in the first crushing portion 54 by cutting. Specifically, a part of the 1st crushing part 54 is cut using the broaching board 70, and a some groove
  • the width of the flat portion 54 a of the first crushing portion 54 corresponds to the tooth width L ⁇ b> 1 of the first rack tooth 52.
  • the depth of the groove formed in the first crushing portion 54 by the cutting process corresponds to the tooth height L ⁇ b> 2 of the first rack tooth 52.
  • the bottom surface of the groove formed in the first crushing portion 54 by cutting is a tooth bottom 52 a of the first rack tooth 52.
  • the tooth tips of the first rack teeth 52 may be further cut.
  • the width of the flat portion 54 a after cutting corresponds to the tooth width L 1 of the first rack tooth 52.
  • the cutting resistance can be reduced by controlling the cutting allowance, the force applied to the shaft main body 51 compared to the case where the first rack teeth 52 are formed by plastic deformation. Can be reduced. Therefore, the shaft body 51 can be prevented from moving with respect to the broaching machine 70 during the cutting process, and the first rack teeth 52 can be formed at a desired phase angle.
  • a flat portion 54 b is formed on the inner surface of the first squashed portion 54. Therefore, the thickness between the bottom 52a of the first rack tooth 52 and the inner surface of the first crushed part 54 is formed by cutting the first crushed part 54 along the flat part 54b to form the first rack tooth 52.
  • L3 is substantially uniform in the tooth width direction of the first rack teeth 52.
  • FIG. 9 is a cross-sectional view of the rack shaft 450, corresponding to FIG. 3C.
  • the first rack teeth 452 are formed by cutting a material of the shaft body 451 whose outer surface and inner surface are circular. Specifically, first, a cutting portion 454 having a flat portion 454a on the outer surface is formed on the material of the shaft body 451 by cutting. Thereafter, a plurality of grooves are formed in the cutting portion 454 by cutting. Thereby, the first rack teeth 452 are formed. Therefore, the width of the flat portion 454a of the cutting portion 454 corresponds to the tooth width L21 of the first rack tooth 452. Further, the depth of the groove formed in the cutting part 454 corresponds to the tooth height L22 of the first rack tooth 452.
  • the thickness between the bottom 452a of the first rack tooth 452 and the inner surface of the shaft main body 451 is the tooth width direction of the first rack tooth 452. It decreases as it goes from both ends to the central portion 452b. That is, the thickness L23 at the central portion 452b is the smallest.
  • the strength of the first rack teeth 452 depends on the thickness between the tooth bottom 452a and the inner surface of the shaft body 451. In order to give the first rack teeth 452 a desired strength, it is necessary to determine the inner diameter D2 of the shaft body 451 in accordance with the thickness L23 in the central portion 452b. Accordingly, in a portion other than the central portion 452b, the thickness between the bottom 452a of the first rack tooth 452 and the inner surface of the shaft body 451 becomes thicker than necessary.
  • the first crushed portion 54 is cut in a state where the flat portion 54 b is formed on the inner surface of the first crushed portion 54. Therefore, the inner diameter D1 of the shaft body 51 is determined in accordance with the thickness L3 at the edge 54c of the flat portion 54b of the first crushed portion 54, whereby the inner surface of the first crushed portion 54 and the entire edge 54c of the flat portion 54b.
  • the strength of the first rack teeth 52 can be increased without making the gap between the first rack teeth 52 and the root 52a unnecessarily thick. Accordingly, the inner diameter D1 of the material of the shaft main body 51 can be increased to make the shaft main body 51 thinner, and the rack shaft 50 can be reduced in weight.
  • the second rack teeth 53 are formed in the second crushing portion 55 by cutting using a broaching machine 70 (see FIG. 4C), similarly to the first rack teeth 52.
  • the cutting resistance can be reduced by controlling the cutting allowance, so that the force applied to the shaft main body 51 compared to the case where the second rack teeth 53 are formed by plastic deformation. Can be reduced. Therefore, it is possible to prevent the shaft body 51 from rotating around the axis with respect to the broaching machine 70 during the cutting process. Accordingly, when the second rack teeth 53 are formed after the first rack teeth 52 are formed, the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52.
  • the second crushing part 55 is cut with the flat part 55b formed on the inner surface of the second crushing part 55. Therefore, similarly to the first rack teeth 52, the strength of the first rack teeth 52 is increased without increasing the thickness between the inner surface of the second crushing portion 55 and the tooth bottom 53a of the second rack teeth 53 more than necessary. be able to. Accordingly, the inner diameter D1 of the material of the shaft main body 51 can be increased to make the shaft main body 51 thinner, and the rack shaft 50 can be reduced in weight.
  • the first and second rack teeth 52, 53 are formed by cutting the first and second crushing portions 54, 55, respectively, the first and second rack teeth 52, 53 are connected to a common broach. It can be molded using the board 70. Therefore, the manufacturing cost of the rack shaft 50 can be reduced.
  • the first and second rack teeth 52 and 53 are formed.
  • the second crushing portion 55 may be formed to form the second rack teeth 53.
  • the second rack teeth 53 are formed on the second crushing portion 55 by cutting.
  • the cutting resistance can be reduced by controlling the cutting allowance, so that the force applied to the shaft main body 51 compared to the case where the second rack teeth 53 are formed by plastic deformation. Can be reduced. Therefore, the shaft body 51 can be prevented from rotating around the axis during cutting. Therefore, by forming the second rack teeth 53 after forming the first rack teeth 52, the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52. The phase angle accuracy of the teeth 52 and the second rack teeth 53 can be improved.
  • the second crushing portion 55 is formed by crushing the shaft body 51 in the radial direction. Therefore, the inner surface of the second crushing portion 55 is deformed inward in the radial direction of the shaft body 51. Therefore, the shaft body 51 can be thinned while increasing the strength of the second rack teeth 53 formed by cutting the second crushing portion 55, and the rack shaft 50 can be reduced in weight.
  • the second crushing portion 55 has a uniform thickness. For this reason, the gap between the inner surface of the second crushing portion 55 and the root 53a of the second rack tooth 53 is not made thicker than necessary over the entire width between both edges of the flat portion 55b in the tooth width direction of the second rack tooth 53. The strength of the second rack teeth 53 can be increased. Therefore, the rack shaft 50 can be reduced in weight.
  • both the first and second rack teeth 52 and 53 are formed in the first and second crushing portions 54 and 55 by cutting. Therefore, both the first and second rack teeth 52 and 53 can be formed using the common broaching machine 70, and the manufacturing cost of the rack shaft 50 can be reduced.
  • a rack shaft 250 according to a second embodiment of the present invention will be described with reference to FIGS. 5, 6A, and 6B.
  • differences from the first embodiment will be mainly described.
  • the same or corresponding components as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the electric power steering apparatus including the rack shaft 250 is substantially the same as the electric power steering apparatus 100 shown in FIG. 1, the description and illustration thereof are omitted here.
  • the rack shaft 250 includes a hollow shaft body 51 and first and second rack teeth 252 and 53 formed on the outer periphery of the shaft body 251.
  • the first rack teeth 252 are formed by forging on a part of the material of the shaft body 51 whose overall length is formed in a cylindrical shape. Specifically, as shown in FIG. 6A, first, the outer surface of the shaft body 51 before processing is sandwiched between the upper mold 81 and the lower mold 82 of the forging machine 80 and the mandrel 84 is inserted into the shaft body 51. To do. Next, the forging die 83 is inserted into the guide hole 81 a of the upper die 81 to crush the shaft body 51. Thereby, a part of the shaft body 51 is plastically deformed, and the first rack teeth 252 are formed.
  • the first rack teeth 252 are formed according to the shape of the forging die 83. Therefore, the first rack teeth 252 can be formed in a complicated shape such as VGR (Variable Gear Ratio).
  • the second rack teeth 53 are formed in the second crushing portion 55 by cutting. Specifically, after the first rack teeth 252 are formed by forging, the outer surface of the shaft body 51 is sandwiched between the upper mold 61 and the lower mold 62 of the processing machine 60. Next, the pressing die 63 is inserted into the guide hole 61 a of the upper die 61 to crush the shaft body 51. Thereby, the 2nd crushing part 55 is formed. Thereafter, a part of the second crushing portion 55 is cut to form a plurality of grooves. Thereby, the 2nd rack tooth
  • the first rack teeth 252 are formed by forging. Therefore, the first rack teeth 252 can be formed according to the shape of the forging die 83, and the rack shaft 250 having the rack teeth having a complicated shape such as VGR can be easily manufactured. Further, since the second rack teeth 53 are formed in the second crushing portion 55 by cutting, the second rack teeth 53 have a desired phase difference with respect to the first rack teeth 252 having a complicated shape previously formed on the shaft body 51 by forging. The rack shaft 250 can be reduced in weight while forming the second rack teeth 53.
  • a rack shaft 350 according to a third embodiment of the present invention will be described with reference to FIG.
  • differences from the first and second embodiments will be mainly described, and in the figure, the same or corresponding configurations as those described in the first and second embodiments are denoted by the same reference numerals. Description is omitted.
  • the electric power steering apparatus including the rack shaft 350 is substantially the same as the electric power steering apparatus 100 shown in FIG. 1, the description and illustration thereof are omitted here.
  • the shaft main body 351 of the rack shaft 350 includes a hollow first shaft portion 351a having a predetermined thickness t1, and a second shaft portion 351b in which the thickness t2 is thicker than the thickness t1 of the first shaft portion 351a. And having.
  • the first shaft portion 351a and the second shaft portion 351b are joined together and formed as an integrated hollow member.
  • the first shaft portion 351a and the second shaft portion 351b are joined by, for example, friction welding.
  • the first rack teeth 252 are formed on the first shaft portion 351a by forging. Since the thickness of the first shaft portion 351a is thin, the first shaft portion 351a can be easily plastically deformed by forging. Therefore, the first rack teeth 252 can be easily formed.
  • the second crushing portion 55 is formed on the second shaft portion 351b, and the second rack teeth 53 are formed on the second crushing portion 55 by cutting. Since the thickness of the 2nd shaft part 351b is thick, the thickness of the 2nd crushing part 55 can be thickened, and the intensity
  • the first and second rack teeth 252 and 53 are formed by a processing method suitable for the first and second shaft portions 351a and 351b having different thicknesses. Therefore, an increase in the weight of the rack shaft 350 can be reduced and the rack shaft 350 can be easily manufactured.
  • the rack shaft 350 by forming the first rack teeth 252 on the first shaft portion 351a and then forming the second rack teeth 53, the first rack teeth 252 having a complicated shape formed by the forging process can be obtained.
  • the rack shaft 250 can be reduced in weight while forming the second rack teeth 53 with a desired phase difference.
  • the second crushing portion 55 is formed by inserting the mandrel 64 into the shaft main body 51 and crushing the shaft main body 51 in the radial direction. Is formed with a flat portion 55b.
  • the present invention is not limited to this, and the second squashed part 55 may be formed in a state where the mandrel 64 is not inserted into the shaft body 51, and the flat part 55 b is formed on the inner surface of the second squashed part 55. It does not have to be.
  • the inner surface of the second crushing portion 55 may protrude or protrude toward the radially inner side of the shaft body 51.
  • the inner surface of the second crushing portion 55 may be recessed toward the radially outer side of the shaft body 51. That is, the inner surface of the second crushed portion 55 only needs to be deformed radially inward and crushed as compared with the shapes of the inner surfaces of the shaft bodies 51 and 351 before processing.
  • the inner surface of the first crushed portion 54 may be crushed as compared with the shapes of the inner surfaces of the shaft main bodies 51 and 351 before processing.
  • the width of the flat portion 55a of the second crushing portion 55 is smaller than the outer diameter of the shaft bodies 51 and 351.
  • This invention is not limited to this, You may form the 2nd crushing part 55 so that the width
  • the first crushed portion 54 is formed so that the width of the flat portion 54a of the first crushed portion 54 is equal to or larger than the outer diameter of the shaft body 51 before processing, and the tooth width of the first rack teeth 52 is increased. Also good.
  • the second crushing portion 55 has substantially the same thickness as that of the shaft bodies 51 and 351 before processing.
  • This invention is not limited to this, You may form the 2nd crushing part 55 so that the thickness of the flat part 55a of the 2nd crushing part 55 may become thicker than the thickness of the shaft main bodies 51 and 351 before a process. In this case, the tooth height of the second rack teeth 53 can be increased.
  • the first crushing part 54 is formed so that the thickness of the flat part 54a of the first crushing part 54 is thicker than the thickness of the shaft body 51 before processing, and the tooth height of the first rack teeth 52 is increased. Also good.
  • a flat portion may be formed in a region other than the first and second rack teeth 52, 53, 252 on the outer surfaces of the shaft bodies 51, 351. By bringing a pressure pad (not shown) into contact with such a flat portion, the rotation of the rack shafts 50, 250, and 350 can be regulated.
  • Such flat portions may be formed over the entire length of the shaft bodies 51 and 351, or may be formed only in the vicinity of the first rack teeth 52 and 252 or the second rack teeth 53.
  • the first rack teeth 52 and 252 and the second rack teeth 53 are formed in the same phase, but the first rack teeth 52 and 252 and the second rack teeth 53 are formed in different phases. May be.
  • the first rack teeth 52 and 252 mesh with the first pinion gear 16 of the output shaft 15 and the second rack teeth 53 mesh with the second pinion gear 25 of the pinion shaft 24.
  • the invention is not limited to this form.
  • the first rack teeth 52 and 252 may mesh with the second pinion gear 25 of the pinion shaft 24, and the second rack teeth 53 may mesh with the first pinion gear 16 of the output shaft 15.
  • the rotational force of the steering wheel 1 is transmitted to the rack shafts 50, 250, 350 via the second rack teeth 53
  • the rotational force of the electric motor 21 is transmitted to the rack shafts 50, 250 via the first rack teeth 52, 252. , 350 may be transmitted.
  • This embodiment relates to rack shafts 50, 250, and 350 that convert the rotational motions of the first and second pinion gears 16 and 25 into linear motions.
  • the rack shafts 50, 250, 350 are provided in the hollow shaft main bodies 51, 351 and the shaft main bodies 51, 351, and the first and second rack teeth 52, 53 that mesh with the first and second pinion gears 16, 25, respectively.
  • , 252 and the shaft main bodies 51, 351 are formed by crushing in the radial direction and have first and second crushing portions 54, 55 including flat portions 54 a, 55 a on the outer surface. Is formed in the second crushing portion 55 by cutting.
  • the second rack teeth 53 are formed in the second crushing portion 55 by cutting.
  • the cutting resistance can be reduced by controlling the cutting allowance, and therefore, in addition to the case where the second rack teeth 53 are formed by plastic deformation, in addition to the shaft main bodies 51 and 351.
  • the force that can be reduced can be reduced. Therefore, it is possible to prevent the shaft bodies 51 and 351 from rotating around the axis during cutting. Therefore, by forming the second rack teeth 53 after forming the first rack teeth 52 and 252, the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52 and 252.
  • the second crushing portion 55 is formed by crushing the shaft main bodies 51 and 351 in the radial direction.
  • the shaft main body 51 can be made thin while increasing the strength of the second rack teeth 53 formed by cutting the second crushing portion 55. Accordingly, the rack shafts 50, 250, and 350 can be reduced in weight while improving the phase angle accuracy of the first rack teeth 52 and the second rack teeth 53.
  • the first and second crushing parts 54 and 55 have a uniform thickness.
  • the second crushing portion 55 has a uniform thickness. Therefore, the second rack without increasing the thickness between the inner surface of the second crushed portion 55 and the bottom 53a of the second rack tooth 53 over the entire length between both edges 55c of the flat portion 55b of the second crushed portion 55.
  • the strength of the teeth 53 can be increased. Therefore, the rack shafts 50, 250, and 350 can be reduced in weight.
  • the first and second rack teeth 52, 53 are formed in the first and second crushing portions 54, 55 by cutting.
  • the first and second rack teeth 52 and 53 are formed in the first and second crushing portions 54 and 55 by cutting. Therefore, both the first and second rack teeth 52 and 53 can be formed using the common broaching machine 70, and the manufacturing cost of the rack shaft 50 can be reduced.
  • the first rack teeth 252 are formed on the shaft bodies 51 and 351 by forging, and the second rack teeth 53 are formed on the second crushing portion 55 by cutting.
  • the first rack teeth 252 are formed by forging. Therefore, the first rack teeth 252 can be formed according to the shape of the forging die 83, and the rack shafts 250 and 350 having the first rack teeth 252 having a complicated shape such as VGR (Variable Gear Ratio) can be easily obtained. Can be manufactured. Further, since the second rack teeth 53 are formed in the second crushing portion 55 by cutting, a desired phase difference with respect to the first rack teeth 252 having a complicated shape previously formed on the shaft body 351 by forging. The rack shafts 250 and 350 can be reduced in weight while forming the second rack teeth 53.
  • VGR Very Gear Ratio
  • the shaft body 351 has a first shaft portion 351a and a second shaft portion 351b having a thickness t2 larger than the thickness t1 of the first shaft portion 351a, and the first rack teeth 252 are
  • the second crushing portion 55 is provided on the second shaft portion 351b.
  • the first shaft portion 351a since the thickness t1 of the first shaft portion 351a is thin, the first shaft portion 351a can be easily plastically deformed by forging, and the first rack teeth 252 can be easily formed.
  • the 2nd crushing part 55 is provided in the 2nd shaft part 351b which has thick thickness t2. Therefore, the strength of the second crushed portion 55 can be increased, and damage to the second crushed portion 55 when the second rack teeth 53 are formed by cutting can be prevented. Therefore, the rack shaft 350 can be easily manufactured.
  • the shaft main bodies 51 and 351 are formed of one hollow member that does not include a joint portion.
  • the shaft main bodies 51 and 351 are formed of one hollow member that does not include a joint portion.
  • a hollow member that does not include a joint portion for example, a seamless tube or an electric sewing tube can be used. Since the seamless pipe and the electric resistance welded pipe do not include the joint portion, the joining work can be omitted.
  • the present embodiment relates to a method of manufacturing the rack shafts 50, 250, 350 including the first and second rack teeth 52, 53, 252 that mesh with the first and second pinion gears 16, 25, respectively.
  • the manufacturing method of the rack shafts 50, 250, and 350 includes a first rack tooth forming step of forming the first rack teeth 52 and 252 on the hollow shaft main bodies 51 and 351, and the second rack teeth 53 on the shaft main bodies 51 and 351.
  • a second rack tooth forming step wherein the second rack tooth forming step includes crushing the shaft bodies 51 and 351 in the radial direction to form the second crushing portion 55, and the first rack teeth 52, Forming the second rack teeth 53 on the second crushing portion 55 by cutting after the 252 is formed.
  • the second rack teeth 53 are formed on the second crushing portion 55 by cutting.
  • the shaft main bodies 51 and 351 can be prevented from rotating around the axis during the cutting process, and the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52 and 252.
  • the second crushing portion 55 is formed by crushing the shaft main bodies 51 and 351 in the radial direction. Therefore, the inner surface of the second crushing portion 55 is deformed radially inward of the shaft main bodies 51 and 351.
  • the shaft main bodies 51 and 351 can be thinned while increasing the strength of the second rack teeth 53.
  • the rack shafts 50, 250, 350 can be reduced in weight while improving the phase angle accuracy of the first rack teeth 52, 252 and the second rack teeth 53.
  • the first rack tooth forming step includes forming the first rack teeth 52 and 252 on the shaft bodies 51 and 351 by forging.
  • the first rack teeth 252 are formed by forging. Therefore, the first rack teeth 252 can be formed according to the shape of the forging die 83, and the rack shafts 250 and 350 having the first rack teeth 252 having a complicated shape such as VGR (Variable Gear Ratio) can be easily obtained. Can be manufactured.
  • VGR Variable Gear Ratio
  • the second rack teeth 53 are formed on the second crushing portion 55 after the first rack teeth 252 are formed by forging, a desired position is obtained with respect to the first rack teeth 252 having a complicated shape.
  • the rack shafts 250 and 350 can be reduced in weight while forming the second rack teeth 53 by the phase difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Steering Mechanism (AREA)
  • Gears, Cams (AREA)
  • Forging (AREA)

Abstract

This rack shaft (50) is provided with: a hollow shaft body (51); and first and second rack teeth (52, 53) respectively meshing with first and second pinion gears (16, 25). The shaft body (51) has a second compressed section (55) which is formed compressed radially and which includes a flat section (55a) on the outer surface thereof. The second rack teeth (53) are formed by cutting on the second compressed section (55).

Description

ラックシャフト及びラックシャフトの製造方法Rack shaft and method for manufacturing rack shaft
 本発明は、ラックシャフト及びラックシャフトの製造方法に関する。 The present invention relates to a rack shaft and a method for manufacturing the rack shaft.
 電動パワーステアリング装置として、ドライバによる操舵トルクと電動モータによる操舵補助トルクとがそれぞれ独立してラックシャフトに入力されるデュアルピニオン式の電動パワーステアリング装置が知られている。デュアルピニオン式の電動パワーステアリング装置において、ラックシャフトを中空又は円筒状の部材から形成して軽量化することが提案されている(JP2004-523365A、JP2014-124767A)。 As the electric power steering device, a dual pinion type electric power steering device in which steering torque by a driver and steering assist torque by an electric motor are independently input to a rack shaft is known. In a dual pinion type electric power steering apparatus, it has been proposed to reduce the weight by forming a rack shaft from a hollow or cylindrical member (JP 2004-523365A, JP 2014-124767A).
 JP2004-523365Aに開示されるラックシャフトの製造では、まず、円筒形のシャフトの一部を鍛造金型内に配置し、鍛造加工によりシャフトに第1ラック歯を形成する。その後、鍛造金型からシャフトを取り出し、鍛造金型内にシャフトの別の部分を配置し、鍛造加工によりシャフトに第2ラック歯を形成する。 In manufacturing the rack shaft disclosed in JP2004-523365A, first, a part of a cylindrical shaft is placed in a forging die, and first rack teeth are formed on the shaft by forging. Thereafter, the shaft is taken out from the forging die, another portion of the shaft is disposed in the forging die, and second rack teeth are formed on the shaft by forging.
 JP2014-124767Aに開示されるラックシャフトの製造では、まず、鍛造加工により中空の第1バーに第1ラック歯を形成する。次に、この第1シャフトに摩擦圧接により中空の第2シャフトを接合し、切削加工により第2シャフトに第2ラック歯を形成する。 In manufacturing the rack shaft disclosed in JP2014-124767A, first, first rack teeth are formed on a hollow first bar by forging. Next, a hollow second shaft is joined to the first shaft by friction welding, and second rack teeth are formed on the second shaft by cutting.
 JP2004-523365Aに開示されるラックシャフトの製造では、第1及び第2ラック歯の両方が鍛造加工により形成される。鍛造加工では、シャフトに加えられる圧力の大きさに応じてシャフトが塑性変形する。そのため、ラック歯を形成するためには大きい圧力をシャフトに加える必要があり、圧力をシャフトに加える際にシャフトが金型に対して軸周りに回転することがある。第2ラック歯の形成時にシャフトが金型に対して軸周りに回転すると、第1ラック歯に対する第2ラック歯の位相角がずれ、第1ラック歯と第2ラック歯の位相角精度が低下する。 In manufacturing the rack shaft disclosed in JP 2004-523365A, both the first and second rack teeth are formed by forging. In the forging process, the shaft is plastically deformed according to the pressure applied to the shaft. Therefore, in order to form rack teeth, it is necessary to apply a large pressure to the shaft, and when the pressure is applied to the shaft, the shaft may rotate around the axis with respect to the mold. If the shaft rotates about the axis with respect to the mold at the time of forming the second rack tooth, the phase angle of the second rack tooth with respect to the first rack tooth shifts, and the phase angle accuracy of the first rack tooth and the second rack tooth decreases. To do.
 JP2014-124767Aに開示されるラックシャフトの製造では、第2ラック歯は、外面及び内面が円形の第2シャフトに切削加工により形成される。そのため、第2ラック歯の歯底と第2シャフトの内面との間の厚みは、第2ラック歯の歯幅方向における端部から中央部に向うにつれ減少し、中央部における強度が最も低い。中央部における強度を高めるために第2シャフトを厚くすると、中央部以外の部分が必要以上に厚くなり、ラックシャフトの重量が増加する。 In the manufacture of the rack shaft disclosed in JP2014-124767A, the second rack teeth are formed by cutting a second shaft whose outer surface and inner surface are circular. Therefore, the thickness between the bottom of the second rack teeth and the inner surface of the second shaft decreases from the end in the tooth width direction of the second rack teeth toward the center, and the strength at the center is the lowest. If the second shaft is made thicker in order to increase the strength at the central portion, the portion other than the central portion becomes thicker than necessary, and the weight of the rack shaft increases.
 本発明は、第1ラック歯と第2ラック歯の位相角精度を向上させつつラックシャフトを軽量化することを目的とする。 An object of the present invention is to reduce the weight of the rack shaft while improving the phase angle accuracy of the first rack teeth and the second rack teeth.
 本発明は、第1及び第2ピニオンギアの回転運動を直線運動に変換するラックシャフトに係る。本発明のある態様によれば、ラックシャフトは、中空のシャフト本体と、シャフト本体に設けられ、第1及び第2ピニオンギアにそれぞれ噛み合う第1及び第2ラック歯と、を備え、シャフト本体は、径方向に潰すことによって形成され外面に平坦部を含む潰し部を有し、第1及び第2ラック歯の少なくとも一方は、潰し部に切削加工により形成される。 The present invention relates to a rack shaft that converts the rotational motion of the first and second pinion gears into a linear motion. According to an aspect of the present invention, the rack shaft includes a hollow shaft body, and first and second rack teeth provided on the shaft body and meshing with the first and second pinion gears, respectively. The crushed portion is formed by crushing in the radial direction and includes a flat portion on the outer surface, and at least one of the first and second rack teeth is formed in the crushed portion by cutting.
 また、本発明は、第1及び第2ピニオンギアにそれぞれ噛み合う第1及び第2ラック歯を備えるラックシャフトの製造方法に係る。本発明のある態様によれば、ラックシャフトの製造方法は、中空のシャフト本体に第1ラック歯を形成する第1ラック歯形成工程と、シャフト本体に第2ラック歯を形成する第2ラック歯形成工程と、を備え、第2ラック歯形成工程は、シャフト本体を径方向に押し潰すことによって、外面に平坦部を含む潰し部を形成することと、第1ラック歯を形成した後に、潰し部に切削加工により第2ラック歯を形成することと、を含む。 Further, the present invention relates to a method for manufacturing a rack shaft having first and second rack teeth that mesh with first and second pinion gears, respectively. According to an aspect of the present invention, a method for manufacturing a rack shaft includes a first rack tooth forming step for forming a first rack tooth on a hollow shaft body, and a second rack tooth for forming a second rack tooth on the shaft body. And forming a crushing portion including a flat portion on the outer surface by crushing the shaft main body in the radial direction, and crushing after forming the first rack teeth. Forming a second rack tooth on the part by cutting.
図1は、本発明の第1実施形態に係るラックシャフトを備える電動パワーステアリング装置の構成図である。FIG. 1 is a configuration diagram of an electric power steering apparatus including a rack shaft according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係るラックシャフトの断面図である。FIG. 2 is a cross-sectional view of the rack shaft according to the first embodiment of the present invention. 図3Aは、図2に示すIIIA-IIIA線に沿う断面図である。3A is a cross-sectional view taken along line IIIA-IIIA shown in FIG. 図3Bは、図4Aに示すIIIB-IIIB線に沿う断面図である。3B is a cross-sectional view taken along line IIIB-IIIB shown in FIG. 4A. 図3Cは、図2に示すIIIC-IIIC線に沿う断面図である。3C is a cross-sectional view taken along the line IIIC-IIIC shown in FIG. 図4Aは、図2に示すラックシャフトを製造する方法を説明するための図であり、シャフト本体に第1潰し部を形成する工程を示す。FIG. 4A is a view for explaining a method of manufacturing the rack shaft shown in FIG. 2, and shows a step of forming a first crushing portion in the shaft body. 図4Bは、図2に示すラックシャフトを製造する方法を説明するための図であり、シャフト本体に第2潰し部を形成する工程を示す。FIG. 4B is a view for explaining a method of manufacturing the rack shaft shown in FIG. 2 and shows a step of forming the second crushing portion in the shaft body. 図4Cは、図2に示すラックシャフトを製造する方法を説明するための図であり、第1潰し部に第1ラック歯を形成する工程を示す。FIG. 4C is a view for explaining a method of manufacturing the rack shaft shown in FIG. 2 and shows a step of forming first rack teeth in the first crushing portion. 図5は、本発明の第2実施形態に係るラックシャフトの断面図であり、図2に対応して示す。FIG. 5 is a cross-sectional view of a rack shaft according to the second embodiment of the present invention, corresponding to FIG. 図6Aは、図5に示すラックシャフトを製造する方法を説明するための図であり、シャフト本体に第1ラック歯を形成する工程を示す。FIG. 6A is a diagram for explaining a method of manufacturing the rack shaft shown in FIG. 5 and shows a step of forming first rack teeth on the shaft body. 図6Bは、図5に示すラックシャフトを製造する方法を説明するための図であり、シャフト本体に潰し部を形成する工程を示す。FIG. 6B is a view for explaining a method of manufacturing the rack shaft shown in FIG. 5 and shows a step of forming a crushing portion in the shaft body. 図7は、本発明の第3実施形態に係るラックシャフトの断面図であり、図2に対応して示す。FIG. 7 is a cross-sectional view of a rack shaft according to the third embodiment of the present invention, corresponding to FIG. 図8Aは、潰し部の変形例を示す断面図であり、図3Cに対応して示す。FIG. 8A is a cross-sectional view showing a modified example of the crushed portion, and corresponds to FIG. 3C. 図8Bは、潰し部の別の変形例を示す断面図であり、図3Cに対応して示す。FIG. 8B is a cross-sectional view showing another modified example of the crushed portion, corresponding to FIG. 3C. 図9は、比較例に係るラックシャフトの断面図であり、図3Cに対応して示す。FIG. 9 is a cross-sectional view of a rack shaft according to a comparative example, corresponding to FIG. 3C.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1実施形態>
 図1は、本発明の第1実施形態に係るラックシャフト50を備える電動パワーステアリング装置100の構成図である。電動パワーステアリング装置100は、運転者による操舵力と電動モータ21によるアシスト駆動力とがそれぞれ独立してラックシャフト50に入力されるデュアルピニオン式の電動パワーステアリング装置である。
<First Embodiment>
FIG. 1 is a configuration diagram of an electric power steering apparatus 100 including a rack shaft 50 according to the first embodiment of the present invention. The electric power steering device 100 is a dual pinion type electric power steering device in which the steering force by the driver and the assist driving force by the electric motor 21 are independently input to the rack shaft 50.
 電動パワーステアリング装置100は、運転者によって操舵力が入力されるステアリングホイール1の回転に応じて車両の車輪2を転舵させる転舵機構10と、運転者の操舵力をアシストするアシスト機構20と、操舵力のアシスト量を制御する制御装置30と、を備える。 The electric power steering apparatus 100 includes a steering mechanism 10 that steers the wheels 2 of the vehicle according to the rotation of the steering wheel 1 to which the steering force is input by the driver, and an assist mechanism 20 that assists the driver's steering force. And a control device 30 for controlling the assist amount of the steering force.
 転舵機構10は、ステアリングホイール1に連結されステアリングホイール1の回転に応じて回転するステアリングシャフト11と、ステアリングシャフト11の回転に応じて車両の車輪2を転舵させるラックシャフト50と、を有する。ラックシャフト50は、タイロッド3を介して車輪2に連結される。 The steering mechanism 10 includes a steering shaft 11 that is connected to the steering wheel 1 and rotates according to the rotation of the steering wheel 1, and a rack shaft 50 that steers the vehicle wheel 2 according to the rotation of the steering shaft 11. . The rack shaft 50 is connected to the wheel 2 via the tie rod 3.
 ステアリングシャフト11は、ステアリングホイール1に連結された入力シャフト13と、入力シャフト13にトーションバー14を介して連結された出力シャフト15と、を有する。出力シャフト15には、ラックシャフト50と噛み合う第1ピニオンギア16が設けられる。 The steering shaft 11 has an input shaft 13 connected to the steering wheel 1 and an output shaft 15 connected to the input shaft 13 via a torsion bar 14. The output shaft 15 is provided with a first pinion gear 16 that meshes with the rack shaft 50.
 アシスト機構20は、アシスト力の動力源である電動モータ21と、電動モータ21の出力シャフトに連結されたウォームシャフト22と、ウォームシャフト22と噛み合うウォームホイール23と、ウォームホイール23に連結されるピニオンシャフト24と、を有する。ピニオンシャフト24にはラックシャフト50と噛み合う第2ピニオンギア25が設けられる。 The assist mechanism 20 includes an electric motor 21 that is a power source of assist force, a worm shaft 22 that is coupled to the output shaft of the electric motor 21, a worm wheel 23 that meshes with the worm shaft 22, and a pinion that is coupled to the worm wheel 23. And a shaft 24. The pinion shaft 24 is provided with a second pinion gear 25 that meshes with the rack shaft 50.
 制御装置30は、入力シャフト13と出力シャフト15との相対回転に基づいてトーションバー14に付与される操舵トルクを検出するトルクセンサ31と、ピニオンシャフト24の回転角度を検出する回転角度センサ32と、ステアリングホイール1の回転角度(操舵角度)を検出する操舵角度センサ34と、レゾルバによって構成され電動モータ21の回転角度を検出するモータ回転角度センサ35と、電動モータ21の作動を制御するコントローラ33と、を有する。 The control device 30 includes a torque sensor 31 that detects the steering torque applied to the torsion bar 14 based on the relative rotation between the input shaft 13 and the output shaft 15, and a rotation angle sensor 32 that detects the rotation angle of the pinion shaft 24. The steering angle sensor 34 that detects the rotation angle (steering angle) of the steering wheel 1, the motor rotation angle sensor 35 that is configured by a resolver and detects the rotation angle of the electric motor 21, and the controller 33 that controls the operation of the electric motor 21. And having.
 コントローラ33は、トルクセンサ31によって検出される操舵トルクと、モータ回転角度センサ35によって検出される電動モータ21の回転角度と、に基づいて電動モータ21の駆動を制御する。なお、コントローラ33は、操舵トルク及び電動モータ21の回転角度に加えて、操舵角度センサ34によって検出される操舵角度を考慮して、電動モータ21の駆動を制御してもよい。さらに、コントローラ33は、回転角度センサ32によって検出されるピニオンシャフト24の回転角度を考慮して電動モータ21の駆動を制御してもよい。 The controller 33 controls the driving of the electric motor 21 based on the steering torque detected by the torque sensor 31 and the rotation angle of the electric motor 21 detected by the motor rotation angle sensor 35. The controller 33 may control the driving of the electric motor 21 in consideration of the steering angle detected by the steering angle sensor 34 in addition to the steering torque and the rotation angle of the electric motor 21. Further, the controller 33 may control the driving of the electric motor 21 in consideration of the rotation angle of the pinion shaft 24 detected by the rotation angle sensor 32.
 回転角度センサ32によって検出されるピニオンシャフト24の回転角度を用いれば、車輪2の転舵角を正確に把握することができる。回転角度センサ32の検出結果は、車両の横滑り等を抑制するVDC(Vehicle Dynamics Control)等の制御においても用いられる。 If the rotation angle of the pinion shaft 24 detected by the rotation angle sensor 32 is used, the turning angle of the wheel 2 can be accurately grasped. The detection result of the rotation angle sensor 32 is also used in control of a VDC (Vehicle Dynamics Control) or the like that suppresses a side slip or the like of the vehicle.
 ラックシャフト50は、シャフト本体51と、シャフト本体51の外周に設けられる第1及び第2ラック歯52,53と、を備える。第1ラック歯52は、出力シャフト15の第1ピニオンギア16に噛み合い、第2ラック歯53は、ピニオンシャフト24の第2ピニオンギア25に噛み合う。シャフト本体51は、タイロッド3を介して車輪2に連結される。 The rack shaft 50 includes a shaft main body 51 and first and second rack teeth 52 and 53 provided on the outer periphery of the shaft main body 51. The first rack teeth 52 mesh with the first pinion gear 16 of the output shaft 15, and the second rack teeth 53 mesh with the second pinion gear 25 of the pinion shaft 24. The shaft body 51 is connected to the wheel 2 via the tie rod 3.
 ステアリングホイール1の回転力は、入力シャフト13、トーションバー14を介して出力シャフト15に伝達される。出力シャフト15の回転力は、第1ピニオンギア16を介してラックシャフト50の軸方向(車両の左右方向)の力に変換されてラックシャフト50に伝達される。このため、ステアリングホイール1が操舵されると、ラックシャフト50が軸方向に移動し、車両の車輪2がラックシャフト50の移動に応じて転蛇される。 Rotational force of the steering wheel 1 is transmitted to the output shaft 15 via the input shaft 13 and the torsion bar 14. The rotational force of the output shaft 15 is converted into a force in the axial direction of the rack shaft 50 (the left-right direction of the vehicle) via the first pinion gear 16 and transmitted to the rack shaft 50. For this reason, when the steering wheel 1 is steered, the rack shaft 50 moves in the axial direction, and the vehicle wheel 2 is snaked according to the movement of the rack shaft 50.
 電動モータ21の回転力は、ウォームシャフト22、ウォームホイール23を介してピニオンシャフト24に伝達される。ピニオンシャフト24の回転力は、ラックシャフト50の軸方向(車両の左右方向)の力に変換されてラックシャフト50に伝達される。このため、電動モータ21が回転駆動されると、ラックシャフト50に操舵補助推力が付与され、ステアリングホイール1の操舵が補助される。 Rotational force of the electric motor 21 is transmitted to the pinion shaft 24 via the worm shaft 22 and the worm wheel 23. The rotational force of the pinion shaft 24 is converted into a force in the axial direction of the rack shaft 50 (the left-right direction of the vehicle) and transmitted to the rack shaft 50. For this reason, when the electric motor 21 is rotationally driven, a steering assist thrust is applied to the rack shaft 50 and the steering of the steering wheel 1 is assisted.
 ラックシャフト50は、金属材料(例えば炭素鋼)から形成される。図2に示すように、ラックシャフト50のシャフト本体51は、中空に形成される。シャフト本体51は、接合部を含まない1つの中空の部材として形成されていてもよいし、複数の中空の部材を接合することによって形成されていてもよい。ラックシャフト50が接合部を含まない1つの中空の部材として形成されている場合には、ラックシャフト50の同軸度を確保しやすい。 The rack shaft 50 is formed from a metal material (for example, carbon steel). As shown in FIG. 2, the shaft body 51 of the rack shaft 50 is formed in a hollow shape. The shaft body 51 may be formed as a single hollow member that does not include a joint portion, or may be formed by joining a plurality of hollow members. When the rack shaft 50 is formed as one hollow member that does not include a joint portion, it is easy to ensure the coaxiality of the rack shaft 50.
 接合部を含まない中空部材としては、例えば、シームレス管や電縫管を使用することができる。シームレス管や電縫管は、接合部を含まないので、接合作業を省略することができる。さらに、シームレス管や電縫管にスウェージング加工や引抜加工といった加工を施してもよい。 For example, a seamless tube or an electric resistance tube can be used as the hollow member that does not include the joint portion. Since the seamless pipe and the electric resistance welded pipe do not include the joint portion, the joining work can be omitted. Furthermore, you may perform processes, such as a swaging process and a drawing process, to a seamless pipe or an electric sewing pipe.
 シャフト本体51は、外面に平坦部54a,55aを有する第1及び第2潰し部54,55と、第1及び第2潰し部54,55との間に設けられる中間部56と、を含む。図3Aに示すように、中間部56の外面及び内面は円形に形成される。図2に示すように、第1及び第2ラック歯52,53は、それぞれ、第1及び第2潰し部54,55に形成される。 The shaft body 51 includes first and second crushing parts 54 and 55 having flat parts 54a and 55a on the outer surface, and an intermediate part 56 provided between the first and second crushing parts 54 and 55. As shown in FIG. 3A, the outer surface and the inner surface of the intermediate portion 56 are formed in a circular shape. As shown in FIG. 2, the 1st and 2nd rack teeth 52 and 53 are formed in the 1st and 2nd crushing parts 54 and 55, respectively.
 第1潰し部54は、図4Aに示すように、全長が円筒状に形成されたシャフト本体51の素材の一部を径方向に潰すことによって形成される。具体的には、まず、シャフト本体51の素材の外面を加工機60の上金型61と下金型62とにより挟持する。次に、上金型61の案内孔61aに押し型63を挿入してシャフト本体51の素材の一部を径方向に押し潰す。これにより、第1潰し部54がシャフト本体51に形成される。シャフト本体51の一部が押し潰されて第1潰し部54が形成されるため、図3Bに示すように、第1潰し部54の外面には平坦部54aが形成される。 As shown in FIG. 4A, the first crushing portion 54 is formed by crushing a part of the material of the shaft main body 51 whose entire length is formed in a cylindrical shape in the radial direction. Specifically, first, the outer surface of the material of the shaft body 51 is sandwiched between the upper mold 61 and the lower mold 62 of the processing machine 60. Next, the pressing die 63 is inserted into the guide hole 61 a of the upper die 61 to crush a part of the material of the shaft body 51 in the radial direction. Thereby, the first crushing portion 54 is formed in the shaft main body 51. Since a part of the shaft body 51 is crushed to form the first crushed portion 54, a flat portion 54a is formed on the outer surface of the first crushed portion 54 as shown in FIG. 3B.
 第1潰し部54を形成する際には、図4Aに示すように、シャフト本体51にマンドレル64が挿入される。マンドレル64の外面には平坦部64aが形成され、押し型63は、マンドレル64の平坦部64aに向ってシャフト本体51を押し潰す。したがって、図3Bに示すように、第1潰し部54の内面には平坦部54bが形成される。第1潰し部54の外面及び内面に平坦部54a,54bが形成されるので、第1潰し部54は一様の厚みを有する。 When forming the first crushing portion 54, the mandrel 64 is inserted into the shaft body 51 as shown in FIG. 4A. A flat portion 64 a is formed on the outer surface of the mandrel 64, and the pressing die 63 crushes the shaft body 51 toward the flat portion 64 a of the mandrel 64. Therefore, as shown in FIG. 3B, a flat portion 54 b is formed on the inner surface of the first squashed portion 54. Since the flat portions 54a and 54b are formed on the outer and inner surfaces of the first squashed portion 54, the first squashed portion 54 has a uniform thickness.
 図4Bに示すように、第2潰し部55は、第1潰し部54と同様に、円筒状に形成されたシャフト本体51の素材の一部を径方向に潰すことによって形成される。そのため、第2潰し部55の外面及び内面には、第1潰し部54と同様に平坦部55a,55bが形成され、第2潰し部55は一様の厚みを有する。 As shown in FIG. 4B, the second crushing portion 55 is formed by crushing a part of the material of the shaft body 51 formed in a cylindrical shape in the radial direction, like the first crushing portion 54. Therefore, flat portions 55a and 55b are formed on the outer surface and the inner surface of the second crushed portion 55 similarly to the first crushed portion 54, and the second crushed portion 55 has a uniform thickness.
 図4Cに示すように、第1ラック歯52は、第1潰し部54に切削加工により形成される。具体的には、ブローチ盤70を用いて第1潰し部54の一部を切削して複数の溝を形成する。これにより、第1ラック歯52が形成される。 As shown in FIG. 4C, the first rack teeth 52 are formed in the first crushing portion 54 by cutting. Specifically, a part of the 1st crushing part 54 is cut using the broaching board 70, and a some groove | channel is formed. Thereby, the first rack teeth 52 are formed.
 図3Cに示すように、第1潰し部54の平坦部54aの幅は、第1ラック歯52の歯幅L1に相当する。また、切削加工により第1潰し部54に形成される溝の深さは、第1ラック歯52の歯丈L2に相当する。切削加工により第1潰し部54に形成される溝の底面は、第1ラック歯52の歯底52aとなる。 As shown in FIG. 3C, the width of the flat portion 54 a of the first crushing portion 54 corresponds to the tooth width L <b> 1 of the first rack tooth 52. Further, the depth of the groove formed in the first crushing portion 54 by the cutting process corresponds to the tooth height L <b> 2 of the first rack tooth 52. The bottom surface of the groove formed in the first crushing portion 54 by cutting is a tooth bottom 52 a of the first rack tooth 52.
 なお、第1潰し部54の平坦部54aに切削加工を施して第1ラック歯52を形成した後に、第1ラック歯52の歯先にさらに切削加工を施してもよい。この場合には、切削加工後の平坦部54aの幅が第1ラック歯52の歯幅L1に相当する。 In addition, after performing the cutting process on the flat part 54a of the first crushing part 54 to form the first rack teeth 52, the tooth tips of the first rack teeth 52 may be further cut. In this case, the width of the flat portion 54 a after cutting corresponds to the tooth width L 1 of the first rack tooth 52.
 切削加工による第1ラック歯52の形成では、切削代のコントロールにより切削抵抗を減らすことができるので、塑性変形により第1ラック歯52を形成する場合と比較して、シャフト本体51に加えられる力を小さくすることができる。したがって、切削加工時にシャフト本体51がブローチ盤70に対して移動するのを防止することができ、第1ラック歯52を所望の位相角に形成することができる。 In the formation of the first rack teeth 52 by cutting, since the cutting resistance can be reduced by controlling the cutting allowance, the force applied to the shaft main body 51 compared to the case where the first rack teeth 52 are formed by plastic deformation. Can be reduced. Therefore, the shaft body 51 can be prevented from moving with respect to the broaching machine 70 during the cutting process, and the first rack teeth 52 can be formed at a desired phase angle.
 また、第1潰し部54の内面に平坦部54bが形成される。そのため、平坦部54bに沿って第1潰し部54を切削して第1ラック歯52を形成することにより、第1ラック歯52の歯底52aと第1潰し部54の内面との間の厚みL3は、第1ラック歯52の歯幅方向にほぼ一様となる。 Further, a flat portion 54 b is formed on the inner surface of the first squashed portion 54. Therefore, the thickness between the bottom 52a of the first rack tooth 52 and the inner surface of the first crushed part 54 is formed by cutting the first crushed part 54 along the flat part 54b to form the first rack tooth 52. L3 is substantially uniform in the tooth width direction of the first rack teeth 52.
 ここで、比較例に係るラックシャフト450について、図9を参照して説明する。図9は、ラックシャフト450の断面図であり、図3Cに対応して示す。ラックシャフト450では、第1ラック歯452は、外面及び内面が円形のシャフト本体451の素材に切削加工により形成される。具体的には、まず、シャフト本体451の素材に切削加工により外面に平坦部454aを有する切削部454を形成する。その後、切削加工により切削部454に複数の溝を形成する。これにより、第1ラック歯452が形成される。そのため、切削部454の平坦部454aの幅は、第1ラック歯452の歯幅L21に相当する。また、切削部454に形成される溝の深さは、第1ラック歯452の歯丈L22に相当する。 Here, a rack shaft 450 according to a comparative example will be described with reference to FIG. FIG. 9 is a cross-sectional view of the rack shaft 450, corresponding to FIG. 3C. In the rack shaft 450, the first rack teeth 452 are formed by cutting a material of the shaft body 451 whose outer surface and inner surface are circular. Specifically, first, a cutting portion 454 having a flat portion 454a on the outer surface is formed on the material of the shaft body 451 by cutting. Thereafter, a plurality of grooves are formed in the cutting portion 454 by cutting. Thereby, the first rack teeth 452 are formed. Therefore, the width of the flat portion 454a of the cutting portion 454 corresponds to the tooth width L21 of the first rack tooth 452. Further, the depth of the groove formed in the cutting part 454 corresponds to the tooth height L22 of the first rack tooth 452.
 シャフト本体451の内面が円形の状態でシャフト本体451が切削されるので、第1ラック歯452の歯底452aとシャフト本体451の内面との間の厚みは、第1ラック歯452の歯幅方向における両端部から中央部452bに向うにつれ減少する。つまり、中央部452bにおける厚みL23が最も小さい。 Since the shaft main body 451 is cut while the inner surface of the shaft main body 451 is circular, the thickness between the bottom 452a of the first rack tooth 452 and the inner surface of the shaft main body 451 is the tooth width direction of the first rack tooth 452. It decreases as it goes from both ends to the central portion 452b. That is, the thickness L23 at the central portion 452b is the smallest.
 第1ラック歯452の強度は、歯底452aとシャフト本体451の内面との間の厚みに依存する。第1ラック歯452に所望の強度を持たせるためには、中央部452bにおける厚みL23に合わせてシャフト本体451の内径D2を定める必要がある。したがって、中央部452b以外の部分では、第1ラック歯452の歯底452aとシャフト本体451の内面との間の厚みは必要以上に厚くなる。 The strength of the first rack teeth 452 depends on the thickness between the tooth bottom 452a and the inner surface of the shaft body 451. In order to give the first rack teeth 452 a desired strength, it is necessary to determine the inner diameter D2 of the shaft body 451 in accordance with the thickness L23 in the central portion 452b. Accordingly, in a portion other than the central portion 452b, the thickness between the bottom 452a of the first rack tooth 452 and the inner surface of the shaft body 451 becomes thicker than necessary.
 本実施形態に係るラックシャフト50では、図3C及び図4Cに示すように、第1潰し部54の内面に平坦部54bが形成された状態で、第1潰し部54が切削される。そのため、シャフト本体51の内径D1を第1潰し部54の平坦部54bの縁54cにおける厚みL3に合わせて定めることで、平坦部54bの両縁54c間の全体にわたって第1潰し部54の内面と第1ラック歯52の歯底52aとの間を必要以上に厚くすることなく第1ラック歯52の強度を高めることができる。したがって、シャフト本体51の素材の内径D1を大きくしてシャフト本体51を薄くすることができ、ラックシャフト50を軽量化することができる。 In the rack shaft 50 according to the present embodiment, as shown in FIG. 3C and FIG. 4C, the first crushed portion 54 is cut in a state where the flat portion 54 b is formed on the inner surface of the first crushed portion 54. Therefore, the inner diameter D1 of the shaft body 51 is determined in accordance with the thickness L3 at the edge 54c of the flat portion 54b of the first crushed portion 54, whereby the inner surface of the first crushed portion 54 and the entire edge 54c of the flat portion 54b The strength of the first rack teeth 52 can be increased without making the gap between the first rack teeth 52 and the root 52a unnecessarily thick. Accordingly, the inner diameter D1 of the material of the shaft main body 51 can be increased to make the shaft main body 51 thinner, and the rack shaft 50 can be reduced in weight.
 第2ラック歯53は、第1ラック歯52と同様に、ブローチ盤70(図4C参照)を用いた切削加工により第2潰し部55に形成される。切削加工による第2ラック歯53の形成では、切削代のコントロールにより切削抵抗を減らすことができるので、塑性変形により第2ラック歯53を形成する場合と比較して、シャフト本体51に加えられる力を小さくすることができる。したがって、切削加工時にシャフト本体51がブローチ盤70に対して軸周りに回転するのを防止することができる。これにより、第1ラック歯52を形成した後に第2ラック歯53を形成する際に、第1ラック歯52に対して所望の位相差で第2ラック歯53を形成することができる。 The second rack teeth 53 are formed in the second crushing portion 55 by cutting using a broaching machine 70 (see FIG. 4C), similarly to the first rack teeth 52. In the formation of the second rack teeth 53 by cutting, the cutting resistance can be reduced by controlling the cutting allowance, so that the force applied to the shaft main body 51 compared to the case where the second rack teeth 53 are formed by plastic deformation. Can be reduced. Therefore, it is possible to prevent the shaft body 51 from rotating around the axis with respect to the broaching machine 70 during the cutting process. Accordingly, when the second rack teeth 53 are formed after the first rack teeth 52 are formed, the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52.
 第2潰し部55は、第2潰し部55の内面に平坦部55bが形成された状態で切削される。そのため、第1ラック歯52と同様に、第2潰し部55の内面と第2ラック歯53の歯底53aとの間の厚みを必要以上に厚くすることなく第1ラック歯52の強度を高めることができる。したがって、シャフト本体51の素材の内径D1を大きくしてシャフト本体51を薄くすることができ、ラックシャフト50を軽量化することができる。 The second crushing part 55 is cut with the flat part 55b formed on the inner surface of the second crushing part 55. Therefore, similarly to the first rack teeth 52, the strength of the first rack teeth 52 is increased without increasing the thickness between the inner surface of the second crushing portion 55 and the tooth bottom 53a of the second rack teeth 53 more than necessary. be able to. Accordingly, the inner diameter D1 of the material of the shaft main body 51 can be increased to make the shaft main body 51 thinner, and the rack shaft 50 can be reduced in weight.
 ラックシャフト50では、第1及び第2ラック歯52,53がそれぞれ第1及び第2潰し部54,55に切削加工により形成されるので、第1及び第2ラック歯52,53を共通のブローチ盤70を用いて成形することができる。したがって、ラックシャフト50の製造コストを削減することができる。 In the rack shaft 50, since the first and second rack teeth 52, 53 are formed by cutting the first and second crushing portions 54, 55, respectively, the first and second rack teeth 52, 53 are connected to a common broach. It can be molded using the board 70. Therefore, the manufacturing cost of the rack shaft 50 can be reduced.
 第1実施形態では、第1及び第2潰し部54,55をシャフト本体51に形成した後に、第1及び第2ラック歯52,53が形成される。この順に代えて、第1潰し部54を形成し第1ラック歯52を第1潰し部54に形成した後に、第2潰し部55を形成して第2ラック歯53を形成してもよい。 In the first embodiment, after the first and second crushing portions 54 and 55 are formed on the shaft body 51, the first and second rack teeth 52 and 53 are formed. Instead of this order, after forming the first crushing portion 54 and forming the first rack teeth 52 on the first crushing portion 54, the second crushing portion 55 may be formed to form the second rack teeth 53.
 以上の第1実施形態によれば、以下の効果を奏する。 According to the above 1st Embodiment, there exist the following effects.
 ラックシャフト50では、第1ラック歯52がシャフト本体51に形成された後に、第2ラック歯53が第2潰し部55に切削加工により形成される。切削加工による第2ラック歯53の形成では、切削代のコントロールにより切削抵抗を減らすことができるので、塑性変形により第2ラック歯53を形成する場合と比較して、シャフト本体51に加えられる力を小さくすることができる。そのため、切削加工時にシャフト本体51が軸周りに回転するのを防止することができる。したがって、第1ラック歯52を形成した後に第2ラック歯53を形成することにより、第1ラック歯52に対して所望の位相差で第2ラック歯53を形成することができ、第1ラック歯52と第2ラック歯53の位相角精度を向上させることができる。 In the rack shaft 50, after the first rack teeth 52 are formed on the shaft body 51, the second rack teeth 53 are formed on the second crushing portion 55 by cutting. In the formation of the second rack teeth 53 by cutting, the cutting resistance can be reduced by controlling the cutting allowance, so that the force applied to the shaft main body 51 compared to the case where the second rack teeth 53 are formed by plastic deformation. Can be reduced. Therefore, the shaft body 51 can be prevented from rotating around the axis during cutting. Therefore, by forming the second rack teeth 53 after forming the first rack teeth 52, the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52. The phase angle accuracy of the teeth 52 and the second rack teeth 53 can be improved.
 また、第2潰し部55は、シャフト本体51を径方向に潰すことによって形成される。そのため、第2潰し部55の内面がシャフト本体51の径方向内側に変形する。したがって、第2潰し部55に切削加工により形成される第2ラック歯53の強度を高めつつシャフト本体51を薄くすることができ、ラックシャフト50を軽量化することができる。 Further, the second crushing portion 55 is formed by crushing the shaft body 51 in the radial direction. Therefore, the inner surface of the second crushing portion 55 is deformed inward in the radial direction of the shaft body 51. Therefore, the shaft body 51 can be thinned while increasing the strength of the second rack teeth 53 formed by cutting the second crushing portion 55, and the rack shaft 50 can be reduced in weight.
 また、ラックシャフト50では、第2潰し部55が一様の厚みを有する。そのため、第2ラック歯53の歯幅方向における平坦部55bの両縁間の全体にわたって第2潰し部55の内面と第2ラック歯53の歯底53aとの間を必要以上に厚くすることなく第2ラック歯53の強度を高めることができる。したがって、ラックシャフト50を軽量化することができる。 In the rack shaft 50, the second crushing portion 55 has a uniform thickness. For this reason, the gap between the inner surface of the second crushing portion 55 and the root 53a of the second rack tooth 53 is not made thicker than necessary over the entire width between both edges of the flat portion 55b in the tooth width direction of the second rack tooth 53. The strength of the second rack teeth 53 can be increased. Therefore, the rack shaft 50 can be reduced in weight.
 また、ラックシャフト50では、第1及び第2ラック歯52,53の両方が第1及び第2潰し部54,55に切削加工により形成される。そのため、第1及び第2ラック歯52,53の両方を共通のブローチ盤70を用いて形成することができ、ラックシャフト50の製造コストを低減することができる。 In the rack shaft 50, both the first and second rack teeth 52 and 53 are formed in the first and second crushing portions 54 and 55 by cutting. Therefore, both the first and second rack teeth 52 and 53 can be formed using the common broaching machine 70, and the manufacturing cost of the rack shaft 50 can be reduced.
 <第2実施形態>
 次に、本発明の第2実施形態に係るラックシャフト250について、図5、図6A及び図6Bを参照して説明する。以下では、第1実施形態と異なる点を主に説明し、図中、第1実施形態で説明した構成と同一の構成または相当する構成には同一の符号を付して説明を省略する。また、ラックシャフト250を備える電動パワーステアリング装置は、図1に示す電動パワーステアリング装置100と略同じであるため、ここではその説明及び図示を省略する。
Second Embodiment
Next, a rack shaft 250 according to a second embodiment of the present invention will be described with reference to FIGS. 5, 6A, and 6B. In the following, differences from the first embodiment will be mainly described. In the figure, the same or corresponding components as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Further, since the electric power steering apparatus including the rack shaft 250 is substantially the same as the electric power steering apparatus 100 shown in FIG. 1, the description and illustration thereof are omitted here.
 図5に示すように、ラックシャフト250は、中空のシャフト本体51と、シャフト本体251の外周に形成される第1及び第2ラック歯252,53と、を備える。 As shown in FIG. 5, the rack shaft 250 includes a hollow shaft body 51 and first and second rack teeth 252 and 53 formed on the outer periphery of the shaft body 251.
 第1ラック歯252は、全長が円筒状に形成されたシャフト本体51の素材の一部に鍛造加工により形成される。具体的には、図6Aに示すように、まず、加工前のシャフト本体51の外面を鍛造加工機80の上金型81と下金型82とにより挟持するとともにシャフト本体51にマンドレル84を挿入する。次に、上金型81の案内孔81aに鍛造金型83を挿入してシャフト本体51を押し潰す。これにより、シャフト本体51の一部が塑性変形し、第1ラック歯252が形成される。 The first rack teeth 252 are formed by forging on a part of the material of the shaft body 51 whose overall length is formed in a cylindrical shape. Specifically, as shown in FIG. 6A, first, the outer surface of the shaft body 51 before processing is sandwiched between the upper mold 81 and the lower mold 82 of the forging machine 80 and the mandrel 84 is inserted into the shaft body 51. To do. Next, the forging die 83 is inserted into the guide hole 81 a of the upper die 81 to crush the shaft body 51. Thereby, a part of the shaft body 51 is plastically deformed, and the first rack teeth 252 are formed.
 鍛造加工では、第1ラック歯252は、鍛造金型83の形状に応じて形成される。したがって、第1ラック歯252を、VGR(Variable Gear Ratio)といった複雑な形状に形成することができる。 In the forging process, the first rack teeth 252 are formed according to the shape of the forging die 83. Therefore, the first rack teeth 252 can be formed in a complicated shape such as VGR (Variable Gear Ratio).
 第2ラック歯53は、第2潰し部55に切削加工により形成される。具体的には、第1ラック歯252を鍛造加工により形成した後に、シャフト本体51の外面を加工機60の上金型61と下金型62とにより挟持する。次に、上金型61の案内孔61aに押し型63を挿入してシャフト本体51を押し潰す。これにより、第2潰し部55が形成される。その後、第2潰し部55の一部を切削して複数の溝を形成する。これにより、第2ラック歯53が形成される(図5参照)。 The second rack teeth 53 are formed in the second crushing portion 55 by cutting. Specifically, after the first rack teeth 252 are formed by forging, the outer surface of the shaft body 51 is sandwiched between the upper mold 61 and the lower mold 62 of the processing machine 60. Next, the pressing die 63 is inserted into the guide hole 61 a of the upper die 61 to crush the shaft body 51. Thereby, the 2nd crushing part 55 is formed. Thereafter, a part of the second crushing portion 55 is cut to form a plurality of grooves. Thereby, the 2nd rack tooth | gear 53 is formed (refer FIG. 5).
 以上の第2実施形態によれば、以下の効果を奏する。 According to the above second embodiment, the following effects are obtained.
 ラックシャフト250では、第1ラック歯252が鍛造加工により形成される。そのため、第1ラック歯252を、鍛造金型83の形状に応じて形成することができ、VGRといった複雑な形状のラック歯を有するラックシャフト250を容易に製造することができる。また、第2ラック歯53が第2潰し部55に切削加工により形成されるので、予めシャフト本体51に鍛造加工により形成された複雑な形状の第1ラック歯252に対して所望の位相差で第2ラック歯53を形成しつつ、ラックシャフト250を軽量化することができる。 In the rack shaft 250, the first rack teeth 252 are formed by forging. Therefore, the first rack teeth 252 can be formed according to the shape of the forging die 83, and the rack shaft 250 having the rack teeth having a complicated shape such as VGR can be easily manufactured. Further, since the second rack teeth 53 are formed in the second crushing portion 55 by cutting, the second rack teeth 53 have a desired phase difference with respect to the first rack teeth 252 having a complicated shape previously formed on the shaft body 51 by forging. The rack shaft 250 can be reduced in weight while forming the second rack teeth 53.
 <第3実施形態>
 次に、本発明の第3実施形態に係るラックシャフト350について、図7を参照して説明する。以下では、第1及び第2実施形態と異なる点を主に説明し、図中、第1及び第2実施形態で説明した構成と同一の構成または相当する構成には同一の符号を付して説明を省略する。また、ラックシャフト350を備える電動パワーステアリング装置は、図1に示す電動パワーステアリング装置100と略同じであるため、ここではその説明及び図示を省略する。
<Third Embodiment>
Next, a rack shaft 350 according to a third embodiment of the present invention will be described with reference to FIG. In the following, differences from the first and second embodiments will be mainly described, and in the figure, the same or corresponding configurations as those described in the first and second embodiments are denoted by the same reference numerals. Description is omitted. Further, since the electric power steering apparatus including the rack shaft 350 is substantially the same as the electric power steering apparatus 100 shown in FIG. 1, the description and illustration thereof are omitted here.
 図7に示すように、ラックシャフト350のシャフト本体351は、所定の厚みt1を有する中空の第1シャフト部351aと、厚みt2が第1シャフト部351aの厚みt1よりも厚い第2シャフト部351bと、を有する。第1シャフト部351aと第2シャフト部351bとは互いに接合され、一体化された中空の部材として形成される。第1シャフト部351aと第2シャフト部351bとは、例えば摩擦圧接により接合される。 As shown in FIG. 7, the shaft main body 351 of the rack shaft 350 includes a hollow first shaft portion 351a having a predetermined thickness t1, and a second shaft portion 351b in which the thickness t2 is thicker than the thickness t1 of the first shaft portion 351a. And having. The first shaft portion 351a and the second shaft portion 351b are joined together and formed as an integrated hollow member. The first shaft portion 351a and the second shaft portion 351b are joined by, for example, friction welding.
 第1シャフト部351aには、第1ラック歯252が鍛造加工により形成される。第1シャフト部351aの厚みは薄いので、鍛造加工により第1シャフト部351aを容易に塑性変形させることができる。したがって、第1ラック歯252を容易に形成することができる。 The first rack teeth 252 are formed on the first shaft portion 351a by forging. Since the thickness of the first shaft portion 351a is thin, the first shaft portion 351a can be easily plastically deformed by forging. Therefore, the first rack teeth 252 can be easily formed.
 第2シャフト部351bには、第2潰し部55が形成され、第2潰し部55に切削加工により第2ラック歯53が形成される。第2シャフト部351bの厚みは厚いので、第2潰し部55の厚みを厚くすることができ、第2潰し部55の強度を高めることができる。したがって、切削加工により第2ラック歯53を形成するときの第2潰し部55の破損を防止することができる。 The second crushing portion 55 is formed on the second shaft portion 351b, and the second rack teeth 53 are formed on the second crushing portion 55 by cutting. Since the thickness of the 2nd shaft part 351b is thick, the thickness of the 2nd crushing part 55 can be thickened, and the intensity | strength of the 2nd crushing part 55 can be raised. Accordingly, it is possible to prevent the second crushing portion 55 from being damaged when the second rack teeth 53 are formed by cutting.
 このように、ラックシャフト350では、厚みの異なる第1及び第2シャフト部351a,351bに適した加工方法で第1及び第2ラック歯252,53が形成される。したがって、ラックシャフト350の重量の増加を軽減するとともにラックシャフト350を容易に製造することができる。 Thus, in the rack shaft 350, the first and second rack teeth 252 and 53 are formed by a processing method suitable for the first and second shaft portions 351a and 351b having different thicknesses. Therefore, an increase in the weight of the rack shaft 350 can be reduced and the rack shaft 350 can be easily manufactured.
 ラックシャフト350においても、第1ラック歯252を第1シャフト部351aに形成した後に第2ラック歯53を形成することにより、鍛造加工により形成された複雑な形状の第1ラック歯252に対して所望の位相差で第2ラック歯53を形成しつつ、ラックシャフト250を軽量化することができる。 Also in the rack shaft 350, by forming the first rack teeth 252 on the first shaft portion 351a and then forming the second rack teeth 53, the first rack teeth 252 having a complicated shape formed by the forging process can be obtained. The rack shaft 250 can be reduced in weight while forming the second rack teeth 53 with a desired phase difference.
 (変形例)
 以下のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、上述の異なる実施形態で説明した構成どうしを組み合わせたり、以下の異なる変形例で説明する構成どうしを組み合わせることも可能である。
(Modification)
The following modified examples are also within the scope of the present invention, and the configuration shown in the modified example and the configuration described in the above-described embodiment are combined, the configurations described in the above-described different embodiments are combined, or the following different It is also possible to combine the configurations described in the modification.
 第1、第2及び第3実施形態では、シャフト本体51にマンドレル64を挿入してシャフト本体51を径方向に潰すことによって第2潰し部55が形成されるため、第2潰し部55の内面には平坦部55bが形成される。本発明はこれに限定されず、マンドレル64がシャフト本体51に挿入されていない状態で第2潰し部55が形成されてもよく、第2潰し部55の内面には平坦部55bが形成されていなくてもよい。 In the first, second and third embodiments, the second crushing portion 55 is formed by inserting the mandrel 64 into the shaft main body 51 and crushing the shaft main body 51 in the radial direction. Is formed with a flat portion 55b. The present invention is not limited to this, and the second squashed part 55 may be formed in a state where the mandrel 64 is not inserted into the shaft body 51, and the flat part 55 b is formed on the inner surface of the second squashed part 55. It does not have to be.
 例えば、図8Aに示すように、第2潰し部55の内面は、シャフト本体51の径方向内側に向って隆起又は突出していてもよい。また、図8Bに示すように、第2潰し部55の内面は、シャフト本体51の径方向外側に向って窪んでいてもよい。つまり、第2潰し部55の内面は、径方向内側に変形し、加工前のシャフト本体51,351の内面の形状と比較して潰れていればよい。第1潰し部54の内面についても同様に、加工前のシャフト本体51,351の内面の形状と比較して潰れていればよい。 For example, as shown in FIG. 8A, the inner surface of the second crushing portion 55 may protrude or protrude toward the radially inner side of the shaft body 51. Further, as shown in FIG. 8B, the inner surface of the second crushing portion 55 may be recessed toward the radially outer side of the shaft body 51. That is, the inner surface of the second crushed portion 55 only needs to be deformed radially inward and crushed as compared with the shapes of the inner surfaces of the shaft bodies 51 and 351 before processing. Similarly, the inner surface of the first crushed portion 54 may be crushed as compared with the shapes of the inner surfaces of the shaft main bodies 51 and 351 before processing.
 ラックシャフト50,250,350では、第2潰し部55の平坦部55aの幅は、シャフト本体51,351の外径よりも小さい。本発明はこれに限定されず、第2潰し部55の平坦部55aの幅が加工前のシャフト本体51,351の外径以上になるように第2潰し部55を形成してもよい。この場合には、第2ラック歯53の歯幅を拡大することができる。同様に、第1潰し部54の平坦部54aの幅が加工前のシャフト本体51の外径以上になるように第1潰し部54を形成して第1ラック歯52の歯幅を拡大してもよい。 In the rack shafts 50, 250, and 350, the width of the flat portion 55a of the second crushing portion 55 is smaller than the outer diameter of the shaft bodies 51 and 351. This invention is not limited to this, You may form the 2nd crushing part 55 so that the width | variety of the flat part 55a of the 2nd crushing part 55 may become more than the outer diameter of the shaft main bodies 51 and 351 before a process. In this case, the tooth width of the second rack tooth 53 can be increased. Similarly, the first crushed portion 54 is formed so that the width of the flat portion 54a of the first crushed portion 54 is equal to or larger than the outer diameter of the shaft body 51 before processing, and the tooth width of the first rack teeth 52 is increased. Also good.
 ラックシャフト50,250,350では、第2潰し部55は、加工前のシャフト本体51,351の厚みと略同じ厚みを有する。本発明はこれに限定されず、第2潰し部55の平坦部55aの厚みが加工前のシャフト本体51,351の厚みよりも厚くなるように第2潰し部55を形成してもよい。この場合には、第2ラック歯53の歯丈を増加させることができる。同様に、第1潰し部54の平坦部54aの厚みが加工前のシャフト本体51の厚みよりも厚くなるように第1潰し部54を形成して第1ラック歯52の歯丈を増加してもよい。 In the rack shafts 50, 250, and 350, the second crushing portion 55 has substantially the same thickness as that of the shaft bodies 51 and 351 before processing. This invention is not limited to this, You may form the 2nd crushing part 55 so that the thickness of the flat part 55a of the 2nd crushing part 55 may become thicker than the thickness of the shaft main bodies 51 and 351 before a process. In this case, the tooth height of the second rack teeth 53 can be increased. Similarly, the first crushing part 54 is formed so that the thickness of the flat part 54a of the first crushing part 54 is thicker than the thickness of the shaft body 51 before processing, and the tooth height of the first rack teeth 52 is increased. Also good.
 シャフト本体51,351の外面における第1及び第2ラック歯52,53,252以外の領域に平坦部が形成されていてもよい。このような平坦部にプレッシャパッド(図示省略)を当接させることで、ラックシャフト50,250,350の回転を規制することができる。このような平坦部は、シャフト本体51,351の全長に渡って形成されていてもよいし、第1ラック歯52,252か第2ラック歯53の近傍にのみ形成されていてもよい。 A flat portion may be formed in a region other than the first and second rack teeth 52, 53, 252 on the outer surfaces of the shaft bodies 51, 351. By bringing a pressure pad (not shown) into contact with such a flat portion, the rotation of the rack shafts 50, 250, and 350 can be regulated. Such flat portions may be formed over the entire length of the shaft bodies 51 and 351, or may be formed only in the vicinity of the first rack teeth 52 and 252 or the second rack teeth 53.
 ラックシャフト50,250,350では、第1ラック歯52,252と第2ラック歯53とが同位相に形成されるが、第1ラック歯52,252と第2ラック歯53は異なる位相に形成されていてもよい。 In the rack shafts 50, 250, and 350, the first rack teeth 52 and 252 and the second rack teeth 53 are formed in the same phase, but the first rack teeth 52 and 252 and the second rack teeth 53 are formed in different phases. May be.
 また、ラックシャフト50,250,350では、第1ラック歯52,252が出力シャフト15の第1ピニオンギア16に噛み合い第2ラック歯53がピニオンシャフト24の第2ピニオンギア25と噛み合うが、本発明はこの形態に限られない。第1ラック歯52,252がピニオンシャフト24の第2ピニオンギア25に噛み合い第2ラック歯53が出力シャフト15の第1ピニオンギア16と噛み合ってもよい。言い換えれば、ステアリングホイール1の回転力が第2ラック歯53を介してラックシャフト50,250,350に伝達され電動モータ21の回転力が第1ラック歯52,252を介してラックシャフト50,250,350に伝達されてもよい。 In the rack shafts 50, 250, and 350, the first rack teeth 52 and 252 mesh with the first pinion gear 16 of the output shaft 15 and the second rack teeth 53 mesh with the second pinion gear 25 of the pinion shaft 24. The invention is not limited to this form. The first rack teeth 52 and 252 may mesh with the second pinion gear 25 of the pinion shaft 24, and the second rack teeth 53 may mesh with the first pinion gear 16 of the output shaft 15. In other words, the rotational force of the steering wheel 1 is transmitted to the rack shafts 50, 250, 350 via the second rack teeth 53, and the rotational force of the electric motor 21 is transmitted to the rack shafts 50, 250 via the first rack teeth 52, 252. , 350 may be transmitted.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effect of the embodiment of the present invention will be described together.
 本実施形態は、第1及び第2ピニオンギア16,25の回転運動を直線運動に変換するラックシャフト50,250,350に係る。ラックシャフト50,250,350は、中空のシャフト本体51,351と、シャフト本体51,351に設けられ、第1及び第2ピニオンギア16,25にそれぞれ噛み合う第1及び第2ラック歯52,53,252と、を備え、シャフト本体51,351は、径方向に潰すことによって形成され外面に平坦部54a,55aを含む第1及び第2潰し部54,55を有し、第2ラック歯53は、第2潰し部55に切削加工により形成される。 This embodiment relates to rack shafts 50, 250, and 350 that convert the rotational motions of the first and second pinion gears 16 and 25 into linear motions. The rack shafts 50, 250, 350 are provided in the hollow shaft main bodies 51, 351 and the shaft main bodies 51, 351, and the first and second rack teeth 52, 53 that mesh with the first and second pinion gears 16, 25, respectively. , 252, and the shaft main bodies 51, 351 are formed by crushing in the radial direction and have first and second crushing portions 54, 55 including flat portions 54 a, 55 a on the outer surface. Is formed in the second crushing portion 55 by cutting.
 この構成では、第2ラック歯53が第2潰し部55に切削加工により形成される。切削加工による第2ラック歯53の形成では、切削代のコントロールにより切削抵抗を減らすことができるので、塑性変形により第2ラック歯53を形成する場合と比較して、シャフト本体51,351に加えられる力を小さくすることができる。そのため、切削加工時にシャフト本体51,351が軸周りに回転するのを防止することができる。したがって、第1ラック歯52,252を形成した後に第2ラック歯53を形成することにより、第1ラック歯52,252に対して所望の位相差で第2ラック歯53を形成することができる。また、第2潰し部55は、シャフト本体51,351を径方向に潰すことによって形成される。そのため、第2潰し部55の内面は径方向内側に変形する。したがって、第2潰し部55に切削加工により形成される第2ラック歯53の強度を高めつつシャフト本体51を薄くすることができる。これにより、第1ラック歯52と第2ラック歯53の位相角精度を向上させつつラックシャフト50,250,350を軽量化することができる。 In this configuration, the second rack teeth 53 are formed in the second crushing portion 55 by cutting. In the formation of the second rack teeth 53 by cutting, the cutting resistance can be reduced by controlling the cutting allowance, and therefore, in addition to the case where the second rack teeth 53 are formed by plastic deformation, in addition to the shaft main bodies 51 and 351. The force that can be reduced can be reduced. Therefore, it is possible to prevent the shaft bodies 51 and 351 from rotating around the axis during cutting. Therefore, by forming the second rack teeth 53 after forming the first rack teeth 52 and 252, the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52 and 252. . The second crushing portion 55 is formed by crushing the shaft main bodies 51 and 351 in the radial direction. Therefore, the inner surface of the second crushing portion 55 is deformed radially inward. Therefore, the shaft main body 51 can be made thin while increasing the strength of the second rack teeth 53 formed by cutting the second crushing portion 55. Accordingly, the rack shafts 50, 250, and 350 can be reduced in weight while improving the phase angle accuracy of the first rack teeth 52 and the second rack teeth 53.
 また、ラックシャフト50,250,350では、第1及び第2潰し部54,55は、一様の厚みを有する。 In the rack shafts 50, 250, and 350, the first and second crushing parts 54 and 55 have a uniform thickness.
 この構成では、第2潰し部55が一様の厚みを有する。そのため、第2潰し部55の平坦部55bの両縁55c間の全体にわたって第2潰し部55の内面と第2ラック歯53の歯底53aとの間を必要以上に厚くすることなく第2ラック歯53の強度を高めることができる。したがって、ラックシャフト50,250,350を軽量化することができる。 In this configuration, the second crushing portion 55 has a uniform thickness. Therefore, the second rack without increasing the thickness between the inner surface of the second crushed portion 55 and the bottom 53a of the second rack tooth 53 over the entire length between both edges 55c of the flat portion 55b of the second crushed portion 55. The strength of the teeth 53 can be increased. Therefore, the rack shafts 50, 250, and 350 can be reduced in weight.
 また、ラックシャフト50では、第1及び第2ラック歯52,53が第1及び第2潰し部54,55に切削加工により形成される。 Further, in the rack shaft 50, the first and second rack teeth 52, 53 are formed in the first and second crushing portions 54, 55 by cutting.
 この構成では、第1及び第2ラック歯52,53が第1及び第2潰し部54,55に切削加工により形成される。そのため、第1及び第2ラック歯52,53の両方を共通のブローチ盤70を用いて形成することができ、ラックシャフト50の製造コストを低減することができる。 In this configuration, the first and second rack teeth 52 and 53 are formed in the first and second crushing portions 54 and 55 by cutting. Therefore, both the first and second rack teeth 52 and 53 can be formed using the common broaching machine 70, and the manufacturing cost of the rack shaft 50 can be reduced.
 また、ラックシャフト250,350では、第1ラック歯252は、鍛造加工によりシャフト本体51,351に形成され、第2ラック歯53は、第2潰し部55に切削加工により形成される。 In the rack shafts 250 and 350, the first rack teeth 252 are formed on the shaft bodies 51 and 351 by forging, and the second rack teeth 53 are formed on the second crushing portion 55 by cutting.
 この構成では、第1ラック歯252が鍛造加工により形成される。そのため、第1ラック歯252を、鍛造金型83の形状に応じて形成することができ、VGR(Variable Gear Ratio)といった複雑な形状の第1ラック歯252を有するラックシャフト250,350を容易に製造することができる。また、第2ラック歯53が第2潰し部55に切削加工により形成されるので、予めシャフト本体351に鍛造加工により形成された複雑な形状の第1ラック歯252に対して所望の位相差で第2ラック歯53を形成しつつ、ラックシャフト250,350を軽量化することができる。 In this configuration, the first rack teeth 252 are formed by forging. Therefore, the first rack teeth 252 can be formed according to the shape of the forging die 83, and the rack shafts 250 and 350 having the first rack teeth 252 having a complicated shape such as VGR (Variable Gear Ratio) can be easily obtained. Can be manufactured. Further, since the second rack teeth 53 are formed in the second crushing portion 55 by cutting, a desired phase difference with respect to the first rack teeth 252 having a complicated shape previously formed on the shaft body 351 by forging. The rack shafts 250 and 350 can be reduced in weight while forming the second rack teeth 53.
 また、ラックシャフト350では、シャフト本体351は、第1シャフト部351aと、厚みt2が第1シャフト部351aの厚みt1よりも厚い第2シャフト部351bと、を有し、第1ラック歯252は、第1シャフト部351aに設けられ、第2潰し部55は、第2シャフト部351bに設けられる。 In the rack shaft 350, the shaft body 351 has a first shaft portion 351a and a second shaft portion 351b having a thickness t2 larger than the thickness t1 of the first shaft portion 351a, and the first rack teeth 252 are The second crushing portion 55 is provided on the second shaft portion 351b.
 この構成では、第1シャフト部351aの厚みt1が薄いので、鍛造加工により第1シャフト部351aを容易に塑性変形させることができ、第1ラック歯252を容易に形成することができる。また、第2潰し部55が厚い厚みt2を有する第2シャフト部351bに設けられる。そのため、第2潰し部55の強度を高めることができ、切削加工により第2ラック歯53を形成する際の第2潰し部55の破損を防止することができる。したがって、ラックシャフト350を容易に製造することができる。 In this configuration, since the thickness t1 of the first shaft portion 351a is thin, the first shaft portion 351a can be easily plastically deformed by forging, and the first rack teeth 252 can be easily formed. Moreover, the 2nd crushing part 55 is provided in the 2nd shaft part 351b which has thick thickness t2. Therefore, the strength of the second crushed portion 55 can be increased, and damage to the second crushed portion 55 when the second rack teeth 53 are formed by cutting can be prevented. Therefore, the rack shaft 350 can be easily manufactured.
 また、ラックシャフト50,250,350では、シャフト本体51,351は、接合部を含まない1つの中空部材からなる。 Further, in the rack shafts 50, 250, and 350, the shaft main bodies 51 and 351 are formed of one hollow member that does not include a joint portion.
 この構成では、シャフト本体51,351が、接合部を含まない1つの中空部材からなる。接合部を含まない中空部材としては、例えば、シームレス管や電縫管を使用することができる。シームレス管や電縫管は、接合部を含まないので、接合作業を省略することができる。 In this configuration, the shaft main bodies 51 and 351 are formed of one hollow member that does not include a joint portion. As a hollow member that does not include a joint portion, for example, a seamless tube or an electric sewing tube can be used. Since the seamless pipe and the electric resistance welded pipe do not include the joint portion, the joining work can be omitted.
 また、本実施形態は、第1及び第2ピニオンギア16,25にそれぞれ噛み合う第1及び第2ラック歯52,53,252を備えるラックシャフト50,250,350の製造方法に係る。ラックシャフト50,250,350の製造方法は、中空のシャフト本体51,351に第1ラック歯52,252を形成する第1ラック歯形成工程と、シャフト本体51,351に第2ラック歯53を形成する第2ラック歯形成工程と、を備え、第2ラック歯形成工程は、シャフト本体51,351を径方向に押し潰して第2潰し部55を形成することと、第1ラック歯52,252を形成した後に、第2潰し部55に切削加工により第2ラック歯53を形成することと、を含む。 Further, the present embodiment relates to a method of manufacturing the rack shafts 50, 250, 350 including the first and second rack teeth 52, 53, 252 that mesh with the first and second pinion gears 16, 25, respectively. The manufacturing method of the rack shafts 50, 250, and 350 includes a first rack tooth forming step of forming the first rack teeth 52 and 252 on the hollow shaft main bodies 51 and 351, and the second rack teeth 53 on the shaft main bodies 51 and 351. A second rack tooth forming step, wherein the second rack tooth forming step includes crushing the shaft bodies 51 and 351 in the radial direction to form the second crushing portion 55, and the first rack teeth 52, Forming the second rack teeth 53 on the second crushing portion 55 by cutting after the 252 is formed.
 この構成では、第1ラック歯52,252が形成された後に、第2ラック歯53が第2潰し部55に切削加工により形成される。切削加工による第2ラック歯53の形成では、第2潰し部55の一部を除去すればよいので、塑性変形により第2ラック歯53を形成する場合と比較して、シャフト本体51,351に加えられる力は小さい。そのため、切削加工時にシャフト本体51,351が軸周りに回転するのを防止することができ、第1ラック歯52,252に対して所望の位相差で第2ラック歯53を形成することができる。また、第2潰し部55は、シャフト本体51,351を径方向に潰すことによって形成される。そのため、第2潰し部55の内面は、シャフト本体51,351の径方向内側に変形する。したがって、第2ラック歯53の強度を高めつつシャフト本体51,351を薄くすることができる。これにより、第1ラック歯52,252と第2ラック歯53の位相角精度を向上させつつラックシャフト50,250,350を軽量化することができる。 In this configuration, after the first rack teeth 52 and 252 are formed, the second rack teeth 53 are formed on the second crushing portion 55 by cutting. In the formation of the second rack teeth 53 by cutting, it is only necessary to remove a part of the second crushing portion 55. Therefore, compared with the case where the second rack teeth 53 are formed by plastic deformation, The applied force is small. Therefore, the shaft main bodies 51 and 351 can be prevented from rotating around the axis during the cutting process, and the second rack teeth 53 can be formed with a desired phase difference with respect to the first rack teeth 52 and 252. . The second crushing portion 55 is formed by crushing the shaft main bodies 51 and 351 in the radial direction. Therefore, the inner surface of the second crushing portion 55 is deformed radially inward of the shaft main bodies 51 and 351. Therefore, the shaft main bodies 51 and 351 can be thinned while increasing the strength of the second rack teeth 53. As a result, the rack shafts 50, 250, 350 can be reduced in weight while improving the phase angle accuracy of the first rack teeth 52, 252 and the second rack teeth 53.
 また、ラックシャフト250,350の製造方法では、第1ラック歯形成工程は、シャフト本体51,351に鍛造加工により第1ラック歯52,252を形成することを含む。 In the manufacturing method of the rack shafts 250 and 350, the first rack tooth forming step includes forming the first rack teeth 52 and 252 on the shaft bodies 51 and 351 by forging.
 この構成では、第1ラック歯252が鍛造加工により形成される。そのため、第1ラック歯252を、鍛造金型83の形状に応じて形成することができ、VGR(Variable Gear Ratio)といった複雑な形状の第1ラック歯252を有するラックシャフト250,350を容易に製造することができる。また、第1ラック歯252が鍛造加工により形成された後に第2ラック歯53が第2潰し部55に切削加工により形成されるので、複雑な形状の第1ラック歯252に対して所望の位相差で第2ラック歯53を形成しつつ、ラックシャフト250,350を軽量化することができる。 In this configuration, the first rack teeth 252 are formed by forging. Therefore, the first rack teeth 252 can be formed according to the shape of the forging die 83, and the rack shafts 250 and 350 having the first rack teeth 252 having a complicated shape such as VGR (Variable Gear Ratio) can be easily obtained. Can be manufactured. In addition, since the second rack teeth 53 are formed on the second crushing portion 55 after the first rack teeth 252 are formed by forging, a desired position is obtained with respect to the first rack teeth 252 having a complicated shape. The rack shafts 250 and 350 can be reduced in weight while forming the second rack teeth 53 by the phase difference.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2017年4月21日に日本国特許庁に出願された特願2017-084646に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-084646 filed with the Japan Patent Office on April 21, 2017, the entire contents of which are incorporated herein by reference.

Claims (8)

  1.  第1及び第2ピニオンギアの回転運動を直線運動に変換するラックシャフトであって、
     中空のシャフト本体と、
     前記シャフト本体に設けられ、前記第1及び第2ピニオンギアにそれぞれ噛み合う第1及び第2ラック歯と、を備え、
     前記シャフト本体は、径方向に潰すことによって形成され外面に平坦部を含む潰し部を有し、
     前記第1及び第2ラック歯の少なくとも一方は、前記潰し部に切削加工により形成される
    ラックシャフト。
    A rack shaft that converts the rotational motion of the first and second pinion gears into linear motion,
    A hollow shaft body;
    First and second rack teeth provided on the shaft body and meshing with the first and second pinion gears, respectively.
    The shaft body has a crushing portion formed by crushing in the radial direction and including a flat portion on the outer surface,
    At least one of the first and second rack teeth is a rack shaft formed by cutting the crushed portion.
  2.  請求項1に記載のラックシャフトであって、
     前記潰し部は、一様の厚みを有する
    ラックシャフト。
    The rack shaft according to claim 1,
    The crushing part is a rack shaft having a uniform thickness.
  3.  請求項1に記載のラックシャフトであって、
     前記第1及び第2ラック歯の両方が前記潰し部に切削加工により形成される
    ラックシャフト。
    The rack shaft according to claim 1,
    A rack shaft in which both the first and second rack teeth are formed in the crushed portion by cutting.
  4.  請求項1に記載のラックシャフトであって、
     前記第1ラック歯は、鍛造加工により前記シャフト本体に形成され、
     前記第2ラック歯は、前記潰し部に切削加工により形成される
    ラックシャフト。
    The rack shaft according to claim 1,
    The first rack teeth are formed on the shaft body by forging,
    The second rack teeth are rack shafts formed by cutting the crushing portion.
  5.  請求項4に記載のラックシャフトであって、
     前記シャフト本体は、第1シャフト部と、厚みが前記第1シャフト部よりも厚い第2シャフト部と、を有し、
     前記第1ラック歯は、前記第1シャフト部に設けられ、
     前記潰し部は、前記第2シャフト部に設けられる
    ラックシャフト。
    The rack shaft according to claim 4,
    The shaft body includes a first shaft portion and a second shaft portion having a thickness larger than that of the first shaft portion,
    The first rack teeth are provided on the first shaft portion,
    The crushing part is a rack shaft provided on the second shaft part.
  6.  請求項1に記載のラックシャフトであって、
     前記シャフト本体は、接合部を含まない1つの中空部材からなる
    ラックシャフト。
    The rack shaft according to claim 1,
    The shaft main body is a rack shaft made of one hollow member that does not include a joint.
  7.  第1及び第2ピニオンギアにそれぞれ噛み合う第1及び第2ラック歯を備えるラックシャフトの製造方法であって、
     中空のシャフト本体に前記第1ラック歯を形成する第1ラック歯形成工程と、
     前記シャフト本体に前記第2ラック歯を形成する第2ラック歯形成工程と、を備え、
     前記第2ラック歯形成工程は、
     前記シャフト本体を径方向に押し潰すことによって、外面に平坦部を含む潰し部を形成することと、
     前記第1ラック歯を形成した後に、前記潰し部に切削加工により前記第2ラック歯を形成することと、を含む
    ラックシャフトの製造方法。
    A method of manufacturing a rack shaft comprising first and second rack teeth that mesh with first and second pinion gears, respectively,
    A first rack tooth forming step of forming the first rack teeth on a hollow shaft body;
    A second rack tooth forming step of forming the second rack teeth on the shaft body,
    The second rack tooth forming step includes:
    Forming a crushing portion including a flat portion on the outer surface by crushing the shaft body in a radial direction;
    A method of manufacturing a rack shaft, comprising: forming the second rack teeth by cutting the crushed portion after forming the first rack teeth.
  8.  請求項7に記載のラックシャフトの製造方法であって、
     前記第1ラック歯形成工程は、前記シャフト本体に鍛造加工により前記第1ラック歯を形成することを含む
    ラックシャフトの製造方法。
    It is a manufacturing method of the rack shaft according to claim 7,
    The first rack tooth forming step is a method of manufacturing a rack shaft, including forming the first rack teeth on the shaft body by forging.
PCT/JP2018/015117 2017-04-21 2018-04-10 Rack shaft and method for manufacturing rack shaft WO2018193919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084646 2017-04-21
JP2017084646A JP6748600B2 (en) 2017-04-21 2017-04-21 Rack shaft and method of manufacturing rack shaft

Publications (1)

Publication Number Publication Date
WO2018193919A1 true WO2018193919A1 (en) 2018-10-25

Family

ID=63856593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015117 WO2018193919A1 (en) 2017-04-21 2018-04-10 Rack shaft and method for manufacturing rack shaft

Country Status (2)

Country Link
JP (1) JP6748600B2 (en)
WO (1) WO2018193919A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369661B2 (en) * 2020-04-24 2023-10-26 株式会社日立インダストリアルプロダクツ How to replace rotor shaft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603172U (en) * 1983-06-22 1985-01-11 トヨタ自動車株式会社 Rack bar of rack and pinion type steering gear
JPH05345231A (en) * 1992-06-15 1993-12-27 Sumitomo Metal Ind Ltd Manufacture of rack tube
KR100799935B1 (en) * 2006-11-27 2008-01-31 주식회사 코우 Rack forming method of rack bar
JP2014124767A (en) * 2012-12-27 2014-07-07 Neturen Co Ltd Apparatus and method for rack production
JP2014214810A (en) * 2013-04-25 2014-11-17 高周波熱錬株式会社 Double pinion-type rack bar

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000734A (en) * 2007-06-25 2009-01-08 Nsk Ltd Rack and producing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603172U (en) * 1983-06-22 1985-01-11 トヨタ自動車株式会社 Rack bar of rack and pinion type steering gear
JPH05345231A (en) * 1992-06-15 1993-12-27 Sumitomo Metal Ind Ltd Manufacture of rack tube
KR100799935B1 (en) * 2006-11-27 2008-01-31 주식회사 코우 Rack forming method of rack bar
JP2014124767A (en) * 2012-12-27 2014-07-07 Neturen Co Ltd Apparatus and method for rack production
JP2014214810A (en) * 2013-04-25 2014-11-17 高周波熱錬株式会社 Double pinion-type rack bar

Also Published As

Publication number Publication date
JP6748600B2 (en) 2020-09-02
JP2018179271A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US20150298721A1 (en) Rack shaft and method for manufacturing rack shaft
CN108290600B (en) Method for producing toothed bars
EP3643582B1 (en) Shaft for steering device, method for manufacturing shaft for steering device, and electric power steering device
JP6790572B2 (en) Steering device
US9415794B2 (en) Telescopic steering device
JP2007062477A (en) Steering device
JP2009041674A (en) Gear member, gear mechanism, and manufacturing method of gear member
WO2018193919A1 (en) Rack shaft and method for manufacturing rack shaft
EP2738408B1 (en) Cruciform-shaft universal joint and method for producing same
JP6179765B2 (en) An intermediate shaft, an intermediate shaft manufacturing method, and an electric power steering apparatus.
JP3881801B2 (en) Rack shaft
JP2008215558A (en) Worm gear device and method of manufacturing worm wheel
WO2022264559A1 (en) Gear and steering device
JP7452302B2 (en) Steering shaft
JP6191344B2 (en) Rack shaft for dual pinion type electric power steering apparatus, method for manufacturing the same, and dual pinion type electric power steering apparatus
JP7180169B2 (en) Joint
JP2017089688A (en) Manufacturing method of rack bar
KR101541381B1 (en) Pulley of Electric PowerSteering
JP2018167780A (en) Rack shaft and electric power steering device
US20220072602A1 (en) Linear motion shaft for steering device, steering device, and method of manufacturing these
CN117916035A (en) Rack bar and steering device
JP2005113936A (en) Joint member and its machining method
JP2024021738A (en) Electric power steering device and manufacturing method for rack bar
JP2017087819A (en) Manufacturing method for rack bar
JP2021105441A (en) Rack bar and steering device and rack bar manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787001

Country of ref document: EP

Kind code of ref document: A1