JP2009036682A - 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法 - Google Patents

渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法 Download PDF

Info

Publication number
JP2009036682A
JP2009036682A JP2007202368A JP2007202368A JP2009036682A JP 2009036682 A JP2009036682 A JP 2009036682A JP 2007202368 A JP2007202368 A JP 2007202368A JP 2007202368 A JP2007202368 A JP 2007202368A JP 2009036682 A JP2009036682 A JP 2009036682A
Authority
JP
Japan
Prior art keywords
eddy current
hardened layer
current sensor
probe
layer depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007202368A
Other languages
English (en)
Inventor
Takashi Ueki
貴司 植木
Tomokazu Okuno
友和 奥野
Hiroyoshi Kato
博良 加藤
Ryuma Kato
龍馬 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007202368A priority Critical patent/JP2009036682A/ja
Publication of JP2009036682A publication Critical patent/JP2009036682A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】、渦電流効果を利用した非破壊検査技術であって、鋼材の表面焼入れの硬化層深さを、検査雰囲気の温度が変動しても精度を低下させることなく検査できるものを提案し、製造時にインラインでの全数検査の実現に寄与する。
【解決手段】硬化層深さ検査装置10に、同心状又は同軸状に配置された物理的構造の異なる二つの検出コイル32・33を、励磁コイル31に同心状に内挿して成るプローブと、センサ本体12とを備えた渦電流センサ13と、評価装置15とを備える。前記渦電流センサ13にて、前記励磁コイル31に交流電流を流して磁場を発生させるとともに、前記磁場により被検体Wに発生した渦電流を検出した前記二つの検出コイル32・33の検出信号を受信して、これらの検出信号の差に基づく値を評価装置15に出力し、前記評価装置にて、前記渦電流センサの出力値を前記閾値と比較して被検体Wの硬化層深さの良否を評価する。
【選択図】図4

Description

本発明は、鋼材の表面焼入れの硬化層深さを非破壊で検査するための技術に関する。
例えば、工作機械、自動車やオートバイのエンジン部品や足回り部品等の機械部品には、高周波焼入れをした鋼材(以下、単に『鋼材』と記載する。)が使用されている。前記高周波焼入れは、金属(導電体)を高周波誘導加熱して行う焼入れである。
鋼材の表面焼入れの硬化層深さについて、有効硬化層深さ及び全硬化層深さが規格されており、鋼材の品質を保証するために、硬化層深さを測定して評価する必要がある。
前記鋼材の表面焼入れの硬化層深さは、サンプルとして抜き取られた鋼材が部分的に切断され、その断面強度がビッカーズ硬度計など各種硬度計にて測定され、その結果から硬化層深さが評価される。しかし、この手法ではサンプルとなる鋼材が必要となり、インラインでの全数検査が不可能である。
そこで、超音波センサや渦電流センサを用いた非破壊計測法にて、鋼材の表面焼入れの硬化層深さが測定されている。
鋼材の導電率は、母材と硬化層に生じるマルテンサイトとの間で差が生じる。従って、渦電流センサを用いて鋼材の表面焼入れの硬化層深さを測定すれば、硬化層深さの変化に伴って検出コイルが検出する電圧(振幅)が変化し、また、検出コイルが検出する電圧は硬化層深さの増加とともに短調に減少するので、これらの現象を利用して硬化層深さを算定することが可能である。
例えば、特許文献1に記載の焼入れ深度測定方法は、励磁コイルで発生させた低周波交流磁場によって鋼材を表面に沿った方向に磁化し、それによって発生する渦電流で誘起される誘導磁場を検出コイルで検出し、該検出コイルの出力電圧を同種鋼材の既知の硬化層の深さと出力電圧の相関データと比較することによって、対象鋼材の硬化層の深さを算出するものである。なお、特許文献1に開示された渦電流センサでは、一組のヘルムホルツ型励磁コイルと、該励磁コイル間に配置された検出コイルと、該検出コイルの内側に設けた外部磁場検出手段を具備するプローブが備えられている。
上記のように渦電流センサを用いる硬化層深さの測定法が提案されているが、渦電流センサでは、測定雰囲気の温度変動に伴い被測定体の透磁率、コイルの抵抗、装置自体の性能などが変動するため、同一被測定体で硬化層深さを測定したとしても測定雰囲気の温度により検出コイルの出力電圧が変動する。よって、測定雰囲気の温度に応じて温度補正などの煩雑な作業が必要となり、また、測定雰囲気の温度が変動しやすい製造現場で硬化層深さを測定することは困難であるという課題がある。
特開2002−14081号公報
上記従来技術に鑑み、本発明では、渦電流効果を利用した非破壊検査技術であって、鋼材の表面焼入れの硬化層深さを、検査雰囲気の温度が変動しても精度を低下させることなく検査を行うことができるものを提案し、製造時にインラインでの全数検査の実現を図る。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、同心状又は同軸状に配置された物理的構造の異なる二つの検出コイルを、励磁コイルに同心状に内挿して成るプローブと、前記プローブに接続されるセンサ本体とを備え、前記センサ本体にて、被検体が前記プローブに挿入された状態で前記励磁コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流を検出した前記二つの検出コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力する、渦電流センサである。
請求項2においては、同心状又は同軸状に配置された物理的構造の異なる二つの自己誘導型コイルで成るプローブと、前記プローブに接続されるセンサ本体とを備え、前記センサ本体にて、被検体が前記プローブに挿入された状態で前記二つの自己誘導型コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流の影響を受けた前記二つの自己誘導型コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力する、渦電流センサである。
請求項3においては、被検体である表面焼入れした鋼材の硬化層深さを検査するための硬化層深さ検査装置であって、前記請求項1又は請求項2に記載の渦電流センサと、前記渦電流センサの出力値を、予め設定された閾値と比較することにより、前記鋼材の表面焼入れの硬化層深さの良否を評価する評価装置とを、備えるものである。
請求項4においては、同心状又は同軸状に配置された物理的構造の異なる二つの検出コイルを励磁コイルに同心状に内挿して成るプローブと、前記プローブに接続されるセンサ本体とを備えた渦電流センサと、前記渦電流センサの出力値に関して鋼材の硬化層深さの良否を判定するための閾値が予め設定された評価装置とを用いて、被検体である表面焼入れした鋼材の硬化層深さを検査するための硬化層深さ検査方法であって、前記渦電流センサにて、被検体が前記プローブに挿入された状態で前記励磁コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流を検出した前記二つの検出コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力するステップと、前記評価装置にて、前記渦電流センサの出力値を前記閾値と比較することにより、前記鋼材の表面焼入れの硬化層深さの良否を評価するステップとを、含むものである。
請求項5においては、同心状又は同軸状に配置された物理的構造の異なる二つの自己誘導型コイルで成るプローブと、前記プローブに接続されるセンサ本体とを備えた渦電流センサと、前記渦電流センサの出力値に関して鋼材の硬化層深さの良否を判定するための閾値が予め設定された評価装置とを用いて、被検体である表面焼入れした鋼材の硬化層深さを検査するための硬化層深さ検査方法であって、前記渦電流センサにて、被検体が前記プローブに挿入された状態で前記自己誘導型コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流の影響を受けた前記二つの自己誘導型コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力するステップと、前記評価装置にて、前記渦電流センサの出力値を前記閾値と比較することにより、前記鋼材の表面焼入れの硬化層深さの良否を評価するステップとを、含むものである。
本発明の効果として、以下に示すような効果を奏する。
本発明によれば、渦電流センサに具備される一つのプローブに備えられた二つの検出コイルの検出信号(検出値)の差に基づいて、焼入れ後の鋼材の硬化層深さを推定するので、検査雰囲気の温度が変動しても、温度補正を行わずに精度を低下させることなく検査を行うことができる。これにより、温度が変動し易い製造ラインにおいても検査が可能となり、製造時にインラインでの全数検査の実現に寄与することができる。
次に、発明の実施の形態を説明する。
図1は本発明の一実施例に係る硬化層深さ検査装置の構成を示す図、図2は硬化層深さ検査装置の構成を示すブロック図、図3は評価装置の処理の流れ図である。
図4は実施例1に係るプローブの構成を示す図、図5は被検体と測定結果例を示す図である。
本発明の実施例に係る硬化層深さ検査装置10について説明する。
図1及び図2に示すように、前記硬化層深さ検査装置10は、高周波焼入れを行った後の鋼材を被検体Wとして、該被検体Wの表面焼入れの硬化層深さを測定し、前記硬化層深さが適当であるかを検査するためのものである。
前記硬化層深さ検査装置10には、被検体Wに渦電流を発生させるとともに該渦電流を検出して前記被検体Wの硬化層深さを評価するための値を出力する渦電流センサ13と、前記渦電流センサ13からの出力値に基づいて前記硬化層深さを評価する評価装置15とが備えられる。
まず、前記渦電流センサ13の構成について説明する。
図1、図2及び図4に示すように、前記渦電流センサ13には、励磁コイル31と該励磁コイル31に同心状に内挿された物理的構造の異なる二つの検出コイル32・33とで成るプローブ11と、前記プローブ11に接続されるセンサ本体12とが備えられる。前記センサ本体12では、前記励磁コイル31に交流電流を流して磁場を発生させるとともに、前記磁場により被検体Wに発生した渦電流を検出した前記二つの検出コイル32・33の検出信号を受信し、これらの検出信号の差に基づく値が出力される。
前記渦電流センサ13のプローブ11は、略中心に被検体Wを貫通させる貫通型コイルである。前記渦電流センサ13では、一つの被検体Wが全てのプローブ11・11・11を貫通するように、該プローブ11・11・11は略同軸状に整列配置されて、治具14にて保持される。なお、前記治具14には、プローブ11に挿入された被検体Wを、前記プローブ11と被検体Wとが略同軸状を保持するように支持する機能も併せて備えられる。
なお、本実施例においてプローブ11は一つの渦電流センサ13に3つ備えられているが、本実施形態に限定されるものではなく、被検体Wの形状や測定部位に応じて渦電流センサ13に備えるプローブ11の数を単数又は複数とすることができる。
被検体Wが挿入されたプローブ11の励磁コイル31に交流電流が印加されると、透磁率と電導率の影響を受けて前記被検体Wに渦電流が発生する。この渦電流の電圧Vが、検出コイル32・33にて検出される。
前記プローブ11に具備される二つの検出コイル32・33は、物理的構造が異なり、同一でないが構造的に近似して同じような検出傾向を示すがものが採用される。即ち、前記二つの検出コイル32・33は、径、巻き数、導線の太さ等の物理的構成条件に差異が設けられて、同一被検出体の同一部位を検査したときに同一値が検出されないように構成される。但し、前記二つの検出コイル32・33の物理的構造に大きな差異は設けず、構造的に近似して同じような検出傾向を示すものとされる。
前記センサ本体12は、プローブ11の励磁コイル31に流す交流電流を発振するとともに、該プローブ11の検出コイル32・33の検出値(渦電流の電圧V)に基づいて演算処理を行うものである。
前記センサ本体12には、チャンネル切替回路21と、信号処理回路22と、発振回路23とが設けられる。
前記チャンネル切替回路21は、渦電流センサ13に具備される全てのプローブ11の検出信号を一つの信号処理回路22で処理するために、信号処理回路22及び発振回路23と接続されるプローブ11を切り替えるための回路である。
前記発振回路23は、電流iをプローブ11の励磁コイル31に発振し、該励磁コイル31に交流電流を印加するためのものである。
前記信号処理回路22は、各検出コイル32・33の検出信号(渦電流の電圧V)の差分電圧ΔVを取り出して増幅する差動アンプ22aと、前記差分電圧ΔVから励磁電流である電流iに同期した90°位相差の二つの信号成分を抽出して出力する位相検波部22b及び移相部22eと、前記差分電圧ΔVを増幅したりインピーダンスを変換したりするゲイン部22cと、前記差分電圧ΔVのリップルを除去するフィルタ部22dとが備えられる。前記信号処理回路22では、プローブ11の検出コイル32・33からの検出信号に基づいて演算処理が行われ、被検体Wの硬化層深さを評価するための値として検出コイル32・33で検出された各検出信号の差分電圧ΔVが出力値として評価装置15へ出力される。
次に、前記評価装置15について説明する。
前記評価装置15は、渦電流センサ13の動作を制御するとともに、前記渦電流センサ13からの出力値を受けて、予め設定された閾値と比較することにより、被検体Wの表面焼入れの硬化層深さの良否を評価するものである。
前記評価装置15は、いわゆる電子計算機であり、前記評価装置15に具備される各手段の動作制御を司る制御手段41、アプリケーションプログラムやデータが格納された記憶手段44、前記記憶手段44に格納されたプログラムを実行して演算処理を行う演算手段42、前記評価装置15へ情報を入力するための入力手段43、及び演算結果を出力する出力手段45等で構成される。
前記評価装置15では、出力手段45にて渦電流センサ13の出力値とともに、前記出力値に基づく被検体Wの被検体Wの表面焼入れの硬化層深さの良否が評価が出力される。前記評価装置15では、渦電流センサ13の出力値に対する閾値が予め設定され、渦電流センサ13の出力値と閾値とを比較することにより、被検体Wの表面焼入れの硬化層深さの良否が評価される。
なお、図5では、図4に示す構成のプローブ11を備えた渦電流センサ13を用いて、表面焼入れの硬化層深さが既知である図5に示す形状のヨークシャフトを被検体Wとして、各部位ア・イ・ウについて測定したときの出力値と硬化層深さ(焼入れ深さ)が示されている。図5より、被検体Wの硬化層深さと渦電流センサ13の出力値とは比例関係にあることがわかる。
前記記憶手段44には硬化層深さ検査プログラムが格納される。この硬化層深さ検査プログラムが演算手段42にて実行されることにより、電子計算機は評価装置15として機能することとなる。
また、前記記憶手段44には、渦電流センサ13の発振回路23にて発振される周波数、位相、及び信号処理回路22における増幅レベル等の測定条件や、渦電流センサ13の出力値、後述する渦電流センサ13の出力値に対する閾値等の、各種データが格納される。
続いて、上記構成の硬化層深さ検査装置10を用いた被検体Wの表面焼入れの硬化層深さの検査方法を、図3を用いて、評価装置15で行われる処理の流れに沿って説明する。
検査の準備段階として、測定条件が評価装置15に設定され、また、渦電流センサ13のプローブ11に被検体Wが挿入される。なお、前記被検体Wは、プローブ11の内周との距離(リフトオフ)が略一定となるように配置される。
検査が開始されると、まず、評価装置15より渦電流センサ13のセンサ本体12に対して動作信号が送られ、次のステップ(S1)〜(S3)の処理が渦電流センサ13にて行われる。
始めに、前記センサ本体12のチャンネル切替回路21にて、硬化層深さ検査装置10に具備されるプローブ11・11・11のうち一つと信号処理回路22及び発振回路23が接続される(S1)。
続いて、前記センサ本体12の発振回路23にて、プローブ11の励磁コイル31に電流iが印加される(S2)。これにより前記励磁コイル31に発生した低周波交流磁場にて、被検体Wが磁化されて生じる渦電流で誘導磁場が誘起される。前記誘導磁場は、検出コイル32・33にて検出されることとなる。
そして、前記センサ本体12の信号処理回路22にて、検出コイル32・33の検出信号が処理される(S3)。
前記信号処理回路22では、検出コイル32・33の検出信号の差(差分電圧)に基づく値が評価装置15に出力される。
上述のように渦電流センサ13から出力値を得た評価装置15では(S4のYES)、予め設定された閾値と前記出力値とが比較演算される(S5)。さらに、評価装置15では、前記比較演算の結果に基づいて硬化層深さの良否が判定され(S6)、判定結果や渦電流センサ13からの出力値等が併せて出力手段45にて表示出力される(S7)。
そして、渦電流センサ13に具備される全てのプローブ11・11・11での渦電流の検出が終了するまで上記(S1)〜(S7)に示す各ステップの処理が繰り返されて、検査が終了する。
上記の硬化層深さ検査装置10及び検査方法によれば、渦電流センサ13のプローブ11に二つの検出コイル32・33を備え、これらの検出信号の差に基づく出力値にて被検体Wの硬化層深さが推定され、評価される。
前記渦電流センサ13の出力値は、渦電流センサ13のプローブ11に具備される各検出コイル32・33の検出信号そのものと比較して、検査雰囲気の温度の変動に対する変動が小さい若しくは僅かである。よって、検査雰囲気の温度の変動しても、温度補正等の煩雑な操作又は処理を行うことなく、精度良く被検体Wの硬化層深さの評価を行うことができる。これにより、温度が変動し易い製造ラインにおいても検査が可能となり、製造時にインラインでの全数検査の実現に寄与することができる。
また、検査雰囲気の温度補正を不要とするために、二つの渦電流センサを備えて標準試験片と被検体Wとを同時に検査するタイプの硬化層深さ検査装置も存在するが、本発明に係る硬化層深さ検査装置10及び検査方法によれば、二つの検出コイル32・33の検出値の差に基づいて硬化層深さが推定されるため、標準試験片と被検体Wとを同時に検査する必要はない。
さらに、前記硬化層深さ検査装置10に具備される渦電流センサ13に、複数のプローブ11・11・11を備えることによれば、プローブ11を移動させる手間なく高速に検査を行うことができ、また、プローブ11を移動させるためのモータ等の駆動手段が不要となり安価に硬化層深さ検査装置10を構成することができる。
続いて、硬化層深さ検査装置10の渦電流センサ13に具備されるプローブ11の構成について、下記実施例1〜4で説明する。
まず、実施例1に係る渦電流センサ13のプローブ11について説明する。
図4に示すように、プローブ11は相互誘導型であって、同軸状に近接して配置された物理的構造の異なる二つの検出コイル32・33を、励磁コイル31に同心状に内挿して成るものである。前記『同軸状に配置』するとは、検出コイル32・33を共通の軸心上に軸方向に並置することを意味する。
本実施例において、前記第一の検出コイル32よりも第二の検出コイル33の方が外径がやや大きく、これらの検出コイル32・33は、径に差異を設けることにて、同一被検出体の同一部位を検査したときに同一値が検出されないように構成される。
前記励磁コイル31、第一の検出コイル32、並びに第二の検出コイル33は、何れも内周に被検体Wを挿通可能な貫通型コイルである。前記励磁コイル31の内周よりも、第一の検出コイル32及び第二の検出コイル33の外径は小さく、励磁コイル31の内周に第一の検出コイル32及び第二の検出コイル33が配置される。
なお、前記第一の検出コイル32及び第二の検出コイル33において、コイルの内径断面積に対する被検体Wの断面積の割合(充填率)が90%以上になるように、コイルの大きさを選定することが、精度を良好とするために望ましい。
前記励磁コイル31の両端部には環状の支持盤51・52が設けられ、また、励磁コイル31の内部に挿入される第一の検出コイル32と第二の検出コイル33との間には環状のスペーサ53が設けられる。なお、コイル間の影響を小さくするためやコイルの位置を保持するために二つの検出コイル32・33にスペーサ53が介挿されるが、前記二つの検出コイル32・33間の距離はより短い方が被検体Wの同一部位を検査するうえで望ましい。
このようにして、二枚の支持盤51・52に、間にスペーサ53を介挿した検出コイル32・33が挟まれて、プローブ11が一体的に構成される。なお、前記励磁コイル31に対して、前記第一の検出コイル32及び第二の検出コイル33の巻き数(軸方向長さ)は半分程度として、励磁コイル31の軸方向長さ内に、第一の検出コイル32及び第二の検出コイル33が収まるように設計される。
上記構成のプローブ11を備えた渦電流センサ13にて、被検体Wを測定した場合、例えば図5に示すように、渦電流センサ13の出力値と被検体Wの硬化層深さ(焼入れ深さ)とが反比例関係を有するという結果が得られる。よってこの場合、硬化層深さ検査装置10の評価装置15では、有効な硬化層の深さの境界値に対応する渦電流センサ13の出力値の閾値が設定され、前記渦電流センサ13の出力値が前記閾値を超えた場合に、被検体Wの表面焼入れの硬化層の深さが不良であると判定される。
実施例2に係る渦電流センサ13のプローブ11について説明する。
図6は実施例2に係るプローブの構成を示す図、図7は実施例2に係るプローブを備えた渦電流センサでの測定結果例を示す図である。
図6に示すように、プローブ11は相互誘導型であって、二層に重ねて同心状に配置された物理的構造の異なる二つの検出コイル32・33を、励磁コイル31に同心状に内挿して成るものである。なお、前記『同心状に配置』するとは、検出コイル32・33が半径方向に重なるような配置関係を意味する。
前記励磁コイル31、第一の検出コイル32、並びに第二の検出コイル33は、何れも内周に被検体Wを挿通可能な貫通型コイルである。前記励磁コイル31の内周よりも、第一の検出コイル32の外径は小さく、前記第一の検出コイル32の内径よりも前記第二の検出コイル33の外径は小さく、励磁コイル31の内周に第一の検出コイル32が配置され、第一の検出コイル32の内周に第二の検出コイル33が配置される。なお、第二の検出コイル33において、コイルの内径断面積に対する被検体Wの断面積の割合(充填率)が90%以上になるようにコイルの大きさを選定することが、精度を良好とするために望ましい。
前記励磁コイル31、第一の検出コイル32、及び第二の検出コイル33は、何れも軸方向同一側に支持盤31a・32a・33aが設けられており、これが連結されることによって、プローブ11が一体的に構成される。
実施例2に係るプローブ11は、前記実施例1に記載のプローブ11と比較して、軸方向の厚みを小さく構成することが可能であり、局部的に被検体Wを検査する場合に適している。
上記構成のプローブ11を備えた渦電流センサ13にて、被検体Wを測定した場合、例えば図7に示すように、渦電流センサ13の出力値と被検体Wの硬化層深さ(焼入れ深さ)とが反比例関係を有するという結果が得られる。よってこの場合、硬化層深さ検査装置10の評価装置15では、有効な硬化層の深さの境界値に対応する渦電流センサ13の出力値の閾値が設定され、前記渦電流センサ13の出力値が前記閾値を超えた場合に、被検体Wの表面焼入れの硬化層の深さが不良であると判定される。
実施例3に係る渦電流センサ13のプローブ11について説明する。
図8は実施例3に係るプローブの構成を示す図、図9は実施例3に係るプローブを備えた渦電流センサでの測定結果例を示す図である。
図8に示すように、プローブ11には、二層に重ねて同心状に配置された物理的構造の異なる二つの自己誘導型コイル(第一の自己誘導コイル34と第二の自己誘導コイル35)が備えられる。これらのコイル34・35は何れも貫通型コイルである。
つまり、渦電流センサ13には、同心状に配置された物理的構造の異なる二つの自己誘導コイル34・35及びセンサ本体12とが備えられる。この渦電流センサ13のプローブ11を構成するコイルは自己誘導型であるため、前記渦電流センサ13では、前記自己誘導コイル34・35に交流電流を流して磁場を発生させるとともに、前記磁場により被検体Wに発生した渦電流の影響を受けた前記二つの自己誘導コイル34・35の検出信号(電圧値)を受信して、これらの検出信号の差に基づく値を出力することとなる。
前記第一の自己誘導コイル34の内径よりも前記第二の自己誘導コイル35の外径は小さく、第一の自己誘導コイル34の内周に第二の自己誘導コイル35が配置される。つまり、本実施例において、二つの自己誘導型コイル34・35は、コイルの軸方向長さ(巻き数)は略同一であるが、コイルの径が異なる点で物理的構造が異なる。
なお、第二の自己誘導コイル35において、コイルの内径断面積に対する被検体Wの断面積の割合(充填率)が90%以上になるように、コイルの大きさを選定することが、精度を良好とするために望ましい。
第一の自己誘導コイル34及び第二の自己誘導コイル35は、何れも軸方向同一側に、支持盤34a・35aが設けられており、これが連結されることによって、プローブ11が一体的に構成される。
実施例3に係るプローブ11は、前記実施例1に記載のプローブ11と比較して、軸方向の厚みを小さく構成することが可能であり、局部的に被検体Wを検査する場合に適している。
上記構成のプローブ11を備えた渦電流センサ13にて、被検体Wを測定した場合、例えば図9に示すように、渦電流センサ13の出力値と被検体Wの硬化層深さ(焼入れ深さ)とが正比例関係を有するという結果が得られる。よってこの場合、硬化層深さ検査装置10の評価装置15では、有効な硬化層の深さの境界値に対応する渦電流センサ13の出力値の閾値が設定され、前記渦電流センサ13の出力値が前記閾値よりも小さくなった場合に、被検体Wの表面焼入れの硬化層の深さが不良であると判定される。
実施例4に係る渦電流センサ13のプローブ11について説明する。
図10は実施例4に係るプローブの構成を示す図、図11は実施例4に係るプローブを備えた渦電流センサでの測定結果例を示す図である。
図10に示すように、プローブ11には、同軸状に近接して配置された物理的構造の異なる二つの自己誘導型コイル(第一の自己誘導コイル34と第二の自己誘導コイル35)が備えられる。
つまり、渦電流センサ13には、同軸状に配置された物理的構造の異なる二つの自己誘導コイル34・35で成るプローブ11及びセンサ本体12が備えられる。この渦電流センサ13のプローブ11を構成するコイルは自己誘導型であるため、前記渦電流センサ13では、前記自己誘導コイル34・35に交流電流を流して磁場を発生させるとともに、前記磁場により被検体Wに発生した渦電流の影響を受けた前記二つの自己誘導コイル34・35の検出信号(電圧値)を受信して、これらの検出信号の差に基づく値を出力することとなる。
前記第一の自己誘導コイル34と第二の自己誘導コイル35との間に環状のスペーサ53を介挿したものが、二枚の環状の支持盤51・52にて挟み込まれた状態とされ、プローブ11が一体的に構成される。本実施例において、二つの自己誘導型コイル34・35は、コイルの軸方向長さ(巻き数)は略同一であるが、コイルの径が異なる点で物理的構造が異なる。
なお前記二つの自己誘導型コイル34・35間の距離はより短い方が被検体Wの同一部位を検査するうえで望ましい。
また、第一の自己誘導コイル34及び第二の自己誘導コイル35において、コイルの内径断面積に対する被検体Wの断面積の割合(充填率)が90%以上になるように、コイルの大きさを選定することが、精度を良好とするために望ましい。
上記構成のプローブ11を備えた渦電流センサ13にて、被検体Wを測定した場合、例えば図11に示すように、渦電流センサ13の出力値と被検体Wの硬化層深さ(焼入れ深さ)とが反比例関係を有するという結果が得られる。よってこの場合、硬化層深さ検査装置10の評価装置15では、有効な硬化層の深さの境界値に対応する渦電流センサ13の出力値の閾値が設定され、前記渦電流センサ13の出力値が前記閾値よりも大きくなった場合に、被検体Wの表面焼入れの硬化層の深さが不良であると判定される。
なお、上記実施例1〜4において、図5、図7、図9及び図11に示す測定結果例に関して、各プローブ11に具備される第一の検出コイル32と第二の検出コイル33(又は第一の自己誘導コイル34と第二の自己誘導コイル35)の導電率によって、渦電流センサ13の出力値と硬化層深さとの正比例・反比例関係が異なり、また、出力値も異なる。よって、硬化層深さ検査装置10では、各プローブ11について出力値の特性を得るための試験を行ったうえで、評価装置15に閾値並びに硬化層の深さの良否判定基準が設定される。
本発明の一実施例に係る硬化層深さ検査装置の構成を示す図。 硬化層深さ検査装置の構成を示すブロック図。 評価装置の処理の流れ図。 実施例1に係るプローブの構成を示す図。 被検体と測定結果例を示す図。 実施例2に係るプローブの構成を示す図。 実施例2に係るプローブを備えた渦電流センサでの測定結果例を示す図。 実施例3に係るプローブの構成を示す図。 実施例3に係るプローブを備えた渦電流センサでの測定結果例を示す図。 実施例4に係るプローブの構成を示す図。 実施例4に係るプローブを備えた渦電流センサでの測定結果例を示す図。
符号の説明
W 被検体
10 硬化層深さ検査装置
11 プローブ
12 センサ本体
13 渦電流センサ
14 治具
31 励磁コイル
32 検出コイル
33 検出コイル

Claims (5)

  1. 同心状又は同軸状に配置された物理的構造の異なる二つの検出コイルを、励磁コイルに同心状に内挿して成るプローブと、
    前記プローブに接続されるセンサ本体とを備え、
    前記センサ本体にて、被検体が前記プローブに挿入された状態で前記励磁コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流を検出した前記二つの検出コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力することを、
    特徴とする渦電流センサ。
  2. 同心状又は同軸状に配置された物理的構造の異なる二つの自己誘導型コイルで成るプローブと、
    前記プローブに接続されるセンサ本体とを備え、
    前記センサ本体にて、被検体が前記プローブに挿入された状態で前記二つの自己誘導型コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流の影響を受けた前記二つの自己誘導型コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力することを、
    特徴とする渦電流センサ。
  3. 被検体である表面焼入れした鋼材の硬化層深さを検査するための硬化層深さ検査装置であって、
    前記請求項1又は請求項2に記載の渦電流センサと、
    前記渦電流センサの出力値を、予め設定された閾値と比較することにより、前記鋼材の表面焼入れの硬化層深さの良否を評価する評価装置とを、
    備えることを特徴とする硬化層深さ検査装置。
  4. 同心状又は同軸状に配置された物理的構造の異なる二つの検出コイルを励磁コイルに同心状に内挿して成るプローブと、前記プローブに接続されるセンサ本体とを備えた渦電流センサと、前記渦電流センサの出力値に関して鋼材の硬化層深さの良否を判定するための閾値が予め設定された評価装置とを用いて、被検体である表面焼入れした鋼材の硬化層深さを検査するための硬化層深さ検査方法であって、
    前記渦電流センサにて、被検体が前記プローブに挿入された状態で前記励磁コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流を検出した前記二つの検出コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力するステップと、
    前記評価装置にて、前記渦電流センサの出力値を前記閾値と比較することにより、前記鋼材の表面焼入れの硬化層深さの良否を評価するステップとを、
    含むことを特徴とする硬化層深さ検査方法。
  5. 同心状又は同軸状に配置された物理的構造の異なる二つの自己誘導型コイルで成るプローブと、前記プローブに接続されるセンサ本体とを備えた渦電流センサと、前記渦電流センサの出力値に関して鋼材の硬化層深さの良否を判定するための閾値が予め設定された評価装置とを用いて、被検体である表面焼入れした鋼材の硬化層深さを検査するための硬化層深さ検査方法であって、
    前記渦電流センサにて、被検体が前記プローブに挿入された状態で前記自己誘導型コイルに交流電流を流して磁場を発生させるとともに、前記磁場により前記被検体に発生した渦電流の影響を受けた前記二つの自己誘導型コイルの検出信号を受信し、これらの検出信号の差に基づく値を出力するステップと、
    前記評価装置にて、前記渦電流センサの出力値を前記閾値と比較することにより、前記鋼材の表面焼入れの硬化層深さの良否を評価するステップとを、
    含むことを特徴とする硬化層深さ検査方法。
JP2007202368A 2007-08-02 2007-08-02 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法 Pending JP2009036682A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202368A JP2009036682A (ja) 2007-08-02 2007-08-02 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202368A JP2009036682A (ja) 2007-08-02 2007-08-02 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法

Publications (1)

Publication Number Publication Date
JP2009036682A true JP2009036682A (ja) 2009-02-19

Family

ID=40438726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202368A Pending JP2009036682A (ja) 2007-08-02 2007-08-02 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法

Country Status (1)

Country Link
JP (1) JP2009036682A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098218A1 (ja) * 2009-02-25 2010-09-02 住友金属工業株式会社 浸炭検知方法
JP2013211354A (ja) * 2012-03-30 2013-10-10 Ebara Corp 渦電流センサ並びに研磨方法および装置
JP2014126376A (ja) * 2012-12-25 2014-07-07 Ntn Corp 焼入れ品質検査装置および焼入れ品質検査方法
WO2015107725A1 (ja) * 2014-01-20 2015-07-23 新東工業株式会社 表面特性検査装置及び表面特性検査方法
JP2016001123A (ja) * 2014-06-11 2016-01-07 株式会社東海理化電機製作所 渦電流式変位センサ
CN110346447A (zh) * 2019-07-09 2019-10-18 兰州理工大学 一种花萼状平面涡流传感器的优化方法
JP6768990B1 (ja) * 2019-02-21 2020-10-14 株式会社テイエルブイ プローブ

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098218A1 (ja) * 2009-02-25 2010-09-02 住友金属工業株式会社 浸炭検知方法
JP2010197222A (ja) * 2009-02-25 2010-09-09 Sumitomo Metal Ind Ltd 浸炭検知方法
CN102422153A (zh) * 2009-02-25 2012-04-18 住友金属工业株式会社 渗碳检测方法
JP2013211354A (ja) * 2012-03-30 2013-10-10 Ebara Corp 渦電流センサ並びに研磨方法および装置
CN103358222A (zh) * 2012-03-30 2013-10-23 株式会社荏原制作所 涡电流传感器以及研磨方法和装置
JP2014126376A (ja) * 2012-12-25 2014-07-07 Ntn Corp 焼入れ品質検査装置および焼入れ品質検査方法
JP6052713B2 (ja) * 2014-01-20 2016-12-27 新東工業株式会社 表面特性検査方法
US9964520B2 (en) 2014-01-20 2018-05-08 Sintokogio, Ltd. Surface property inspection device and method
KR20160111438A (ko) * 2014-01-20 2016-09-26 신토고교 가부시키가이샤 표면 특성 검사 장치 및 표면 특성 검사 방법
US20160341699A1 (en) * 2014-01-20 2016-11-24 Sintokogio, Ltd. Surface property inspection device and method
WO2015107725A1 (ja) * 2014-01-20 2015-07-23 新東工業株式会社 表面特性検査装置及び表面特性検査方法
JP2016224073A (ja) * 2014-01-20 2016-12-28 新東工業株式会社 表面特性検査装置及び表面特性検査方法
CN106415261A (zh) * 2014-01-20 2017-02-15 新东工业株式会社 表面特性检查装置以及表面特性检查方法
KR102159779B1 (ko) 2014-01-20 2020-09-25 신토고교 가부시키가이샤 표면 특성 검사 장치 및 표면 특성 검사 방법
TWI641818B (zh) * 2014-01-20 2018-11-21 新東工業股份有限公司 表面特性檢查方法
CN106415261B (zh) * 2014-01-20 2019-07-23 新东工业株式会社 表面特性检查装置以及表面特性检查方法
JP2016001123A (ja) * 2014-06-11 2016-01-07 株式会社東海理化電機製作所 渦電流式変位センサ
JP6768990B1 (ja) * 2019-02-21 2020-10-14 株式会社テイエルブイ プローブ
CN110346447A (zh) * 2019-07-09 2019-10-18 兰州理工大学 一种花萼状平面涡流传感器的优化方法
CN110346447B (zh) * 2019-07-09 2022-12-16 兰州理工大学 一种花萼状平面涡流传感器的优化方法

Similar Documents

Publication Publication Date Title
JP4905560B2 (ja) 渦流計測用センサ、及び、渦流計測用センサによる検査方法
JP5850414B2 (ja) 表面特性検査装置及び表面特性検査方法
DK2108120T3 (en) Method and device for non-destructive testing using eddy currents
US7696747B2 (en) Electromagnetic induction type inspection device and method
JP2009036682A (ja) 渦電流センサ、硬化層深さ検査装置及び硬化層深さ検査方法
JP4975142B2 (ja) 渦流計測用センサ及び渦流計測方法
JP4998821B2 (ja) 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置
JP5383597B2 (ja) 渦電流検査装置および検査方法
JP2007040865A (ja) 硬化層深さ・未焼入れ・異材判定の非破壊測定法
JP2009031224A (ja) 渦電流センサ、焼き入れ深さ検査装置、および焼入れ深さ検査方法
JP5233909B2 (ja) 渦流式検査装置、及び、渦流式検査方法
KR101254300B1 (ko) 이중코아를 이용한 도체두께 탐상장치
RU2694428C1 (ru) Измерительный тракт вихретокового дефектоскопа для контроля труб
JP2013224916A (ja) 研削焼け判定装置および研削焼け判定方法
JP6015954B2 (ja) 電磁誘導型検査装置及び電磁誘導型検査方法
US10775347B2 (en) Material inspection using eddy currents
Fukuoka et al. Flaw detection for microcrack in spring steel and estimation of crack shape with eddy current testing
Rifai et al. Fuzzy logic error compensation scheme for eddy current testing measurement on mild steel superficial crack
JP2002055083A (ja) 渦電流探傷プローブ
JP5747666B2 (ja) 焼入れ鋼のオーバーヒート検出方法
Hillmann et al. A new Barkhausen noise technique for applications at miniaturized geometries
JP2009092549A (ja) 渦流検査プローブ及び渦流検査装置
JP2011252787A (ja) 焼入れ品質検査装置
JPH08145954A (ja) 渦電流探知試験方法及び渦電流探知試験装置