JP2009034557A5 - - Google Patents

Download PDF

Info

Publication number
JP2009034557A5
JP2009034557A5 JP2006140833A JP2006140833A JP2009034557A5 JP 2009034557 A5 JP2009034557 A5 JP 2009034557A5 JP 2006140833 A JP2006140833 A JP 2006140833A JP 2006140833 A JP2006140833 A JP 2006140833A JP 2009034557 A5 JP2009034557 A5 JP 2009034557A5
Authority
JP
Japan
Prior art keywords
water
purification
fos
dissolved oxygen
fosac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140833A
Other languages
Japanese (ja)
Other versions
JP2009034557A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006140833A priority Critical patent/JP2009034557A/en
Priority claimed from JP2006140833A external-priority patent/JP2009034557A/en
Publication of JP2009034557A publication Critical patent/JP2009034557A/en
Publication of JP2009034557A5 publication Critical patent/JP2009034557A5/ja
Pending legal-status Critical Current

Links

Description

環境浄化設定剤FOSによる浄化及び2次汚染防止システムPurification by environmental purification setting agent FOS and secondary pollution prevention system

これまでの河川、池、沼、事業所、生活廃水等の浄化は、生物処理[活性汚泥処理法]微生物を使用し排水等を浄化する方法がとられている。
しかし、浄化能力は汚染状況、環境により常に変化し、思うように浄化能力を発揮できないことが多くなってきている。また、浄化設備等の設計通りには生産量の増加や汚染物質により、浄化能力を超え、思うような浄化が出来ず対策を取れない状態のところが多くなっている。
In the past, purification of rivers, ponds, swamps, business establishments, domestic wastewater, etc. has been carried out by purifying wastewater using biological treatment [activated sludge treatment method] microorganisms.
However, the purification capacity is constantly changing depending on the pollution situation and the environment, and the purification capacity cannot be exhibited as expected. In addition, due to increased production and pollutants as designed for purification equipment, there are many places where the purification capacity is exceeded and the desired purification cannot be performed and no countermeasures can be taken.

また、一方では微生物の学術研究等が盛んになされ、浄化に優れた菌種も多く発表されているが、そのまま汚染された場所に投入しても、本来微生物の生息できる環境にふさわしくない為に、浄化能力を十分に発揮できていない。On the other hand, scientific research on microorganisms has been actively carried out, and many types of bacteria with excellent purification have been announced. The purification ability is not fully demonstrated.

従来の技術や排水基準範囲内では窒素、燐、重金属までの除去は十分でなくそのままの排水は河川や海に富栄養化や重金属による汚染を引き起こしやすい。Removal of nitrogen, phosphorus, and heavy metals is not sufficient within the conventional technology and wastewater standard range, and the wastewater as it is tends to cause eutrophication and heavy metal pollution in rivers and seas.

発明が解決しようとする課題Problems to be solved by the invention

自然界には汚染された排水を浄化できる微生物が多く存在する。
しかし、環境条件が合わない為に充分に能力を発揮出来ないばかりか、存在さえ出来なくなってしまう。そこで、環境浄化設定剤FOSを発明した。
特徴は1)水中、土中の水分を利用して、溶存酸素を増加させることができる。
2)ミネラル類、ビタミン類、たんぱく質により微生物の必須栄養素を提供する。
There are many microorganisms in nature that can purify contaminated wastewater.
However, because the environmental conditions do not match, it will not be able to fully demonstrate its ability, and even it will not be able to exist. Therefore, the environmental purification setting agent FOS was invented.
The feature is 1) The dissolved oxygen can be increased by utilizing the water in the water and the soil.
2) Providing essential nutrients of microorganisms with minerals, vitamins and proteins.

理論1Theory 1

溶存酸素を増加させる方法
FOSを水で希釈した場合に硫化ジュテリューム(DSO)が反応し起きうる現象として水の分子レベルで見た場合、エネルギーがその分子に吸収される直接作用と他の分子がエネルギーを吸収し、分子と反応する間接作用に分けることができる。
水分子は励起あるいは電離し、余分なエネルギーを持つため不安定になる。この余分なエネルギーを放出する過程で標的分子の共有結合が切れて2つのラジカルになることがある。切断される結合エネルギーを吸収した部位とは限らない。
重水素から励起あるいは電離したエネルギーは水溶液でまず水分子に吸収され、その後、ヒドロキシラジカル(HO・)、水素ラジカル(H・)、水和電子(eaq−)、H,Hなどのラジカルあるいは分子生成物が生じる。そして、それらの活性体が水中を移動して標的分子と化学反応を起こして作用する。
励起エネルギーは水分子をイオン化したり励起したりする。
水分子のイオン(HO+)は非常に不安定で、10−15秒以内に分解して、HO・とHO+とを生ずる。
水分子から飛び出した電子は、他の水分子の間に捕らえられてeaq−を生ずる。
水和電子は715nmに吸収係数は18500m−1 cm−1の吸収極大をもち、標準還元電位は−2.9mvで、中性の水中での半減期は2.1×10−/sである。
ラジカル同士は反応して
の中和反応のほかに、
のように分子上生成物H,Hを生ずる。従ってH・、HO・の2種のラジカルと、H、Hの2種の分子状生成物及びeaq−を生ずる。
これらが溶液中の溶質と反応することにより科学的過程が起こる。
HO、及びHは酸化力が強く有機物と反応して間接作用の主因をなす。
一方eaq−は還元力を有する。水溶液中では
の平衡があるので、pH4〜9ではeaq− H・が共存し、pH2以下ではH・が重要な還元剤となる。
本発明は硫化ジュテリューム(DSO)の形でPH1.4の安定した形で存在している。
硫酸イオン
水分子の励起あるいは電離し、エネルギー反応のときに硫酸(HSO)を使うと硫酸イオン(SO2−)のほうが水の中のOH−よりイオンでいる傾向が強いので、硫酸イオンはそのまま水溶液中に残りOH−は電子を渡して水と酸素が発生する。
重水素を介在して電荷を与え水の電気分解と同じ作用をさせると、H+は水素となって放出される一方OH−はマイナスのヒドロキシルイオンとよばれる界面活性効果を持ったイオンに変化する。また、ヒドロキシルイオンが発生、消滅を繰り返すという断続的な現象がたえず起こることによって、その結果連続的にマイナスイオンが発生する。このヒドロキシルイオンが難分解有機化合物に働きかけ無害化し、かつ重金属は酸化されることになる。
溶存酸素の発生 表1 図1 グラフ 参照
・ イオン交換水及び蒸留水ともに初期溶存酸素が8.49mg/Lと高かったので、脱気して使用することにした。
・ 脱気水でも溶存酸素の増加がみられた。これは設置の際にある程度の気泡が混入することなどが考えられる。
・ FOSを添加、急激な溶存酸素量の増加がみられる。
・ FOSは土壌改良、浄化、バクテリアの増殖には非常に有効なものと考えられる。
・ 酸素電極の実験も同時に行ったが結果は良好な数値を示し、今までに存在しない働きをする液体であることを確認した。
によって確かめることが出来る。
Method for increasing dissolved oxygen When FOS is diluted with water, deuterium sulfide (D 2 SO 4 ) reacts and can occur as a phenomenon at the molecular level of water. Other molecules absorb energy and can be divided into indirect actions that react with the molecule.
Water molecules become unstable because they are excited or ionized and have extra energy. In the process of releasing this extra energy, the covalent bond of the target molecule may be broken to form two radicals. It is not necessarily the site that has absorbed the binding energy to be cut.
The energy excited or ionized from deuterium is first absorbed by water molecules in the aqueous solution, and thereafter, hydroxy radical (HO.), Hydrogen radical (H.), hydrated electron (eaq-), H 2 , H 2 O 2, etc. The radical or molecular product of Then, these active substances move through water and cause a chemical reaction with the target molecule to act.
Excitation energy ionizes or excites water molecules.
Water molecule ions (H 2 O +) are very unstable and decompose within 10-15 seconds to yield HO. And H 3 O +.
Electrons that jump out of the water molecule are trapped between other water molecules to generate eq−.
Hydrated electrons is the absorption coefficient in 715nm has an absorption maximum of 18500m-1 cm-1, the standard reduction potential in -2.9Mv, half-life in water of neutral at 2.1 × 10- 4 / s is there.
The radicals react
In addition to the neutralization reaction of
As a result, molecular products H 2 and H 2 O 2 are produced. Therefore, two radicals of H. and HO. And two molecular products of H 2 and H 2 O 2 and eq− are generated.
Scientific processes occur when they react with solutes in solution.
HO and H 2 O 2 have strong oxidizing power and react with organic substances to cause indirect action.
On the other hand, eq− has a reducing power. In aqueous solution
Therefore, eq-H · coexists at pH 4 to 9, and H · becomes an important reducing agent at pH 2 or lower.
The present invention exists in a stable form of PH1.4 in the form of deuterium sulfide (D 2 SO 4 ).
When sulfuric acid (H 2 SO 4 ) is used during excitation or ionization of sulfuric acid ion water molecules and energy reaction, sulfate ion (SO 4 2−) tends to be more ionic than OH− in water, Sulfate ions remain in the aqueous solution as they are, and OH- passes electrons to generate water and oxygen.
When deuterium is used to charge and perform the same action as water electrolysis, H + is released as hydrogen, while OH- changes to ions with a surface-active effect called negative hydroxyl ions. . In addition, an intermittent phenomenon in which hydroxyl ions are repeatedly generated and disappears constantly occurs, and as a result, negative ions are continuously generated. This hydroxyl ion acts on the hardly decomposed organic compound to make it harmless, and the heavy metal is oxidized.
Generation of dissolved oxygen Table 1 Fig. 1 Graph Reference ・ Since the initial dissolved oxygen was high at 8.49 mg / L for both ion-exchanged water and distilled water, it was decided to use after deaeration.
・ Increased dissolved oxygen was also observed in deaerated water. This may be due to a certain amount of air bubbles mixed during installation.
・ FOS was added, and the amount of dissolved oxygen increased rapidly.
・ FOS is considered to be very effective for soil improvement, remediation, and bacterial growth.
・ An oxygen electrode experiment was conducted at the same time, but the results showed good values, confirming that the liquid did not exist so far.
Can be confirmed.

理論2Theory 2

ミネラルの溶出には天然鉱物を使用する。通常はCa,Si,Al,Fe等のミネラルの酸化物で構成されているが、黒雲母系統にはミネラルの種類が20〜40種と多い。こをFOS原液で溶解、溶出するとAl,Fe,Mg,K,P,Ti,Ca,Mn,Na酸塩、それらの複塩、錯塩或いは酸化物として水に溶解しイオン状態で存在している。このミネラル分が特に微生物処理(活性汚泥法)に微生物に有利に働く。Natural minerals are used for mineral elution. Normally, it is composed of oxides of minerals such as Ca, Si, Al, Fe, etc., but the biotite system has many types of minerals of 20 to 40 types. When this is dissolved and eluted in the FOS stock solution, it is dissolved in water as Al, Fe, Mg, K, P, Ti, Ca, Mn, and Na salts, their double salts, complex salts, or oxides and exists in an ionic state. . This mineral content works particularly favorably for microorganisms in microbial treatment (activated sludge process).

窒素、燐、重金属吸着、分解方法について
代表的ろ材には活性炭が使用される。主として微細孔形状に基づく吸着能、着色、汚染物、廃ガス等を吸着し、媒体から除去して浄化するのに有効なものである。しかし、吸着能力には限界があり、交換、再生、等を行わなければならず、使用期間は高価な割には不経済である。これは浄化コストには非常に不利なことである。
Activated carbon is used as a typical filter medium for nitrogen, phosphorus, heavy metal adsorption and decomposition methods. It is effective for adsorbing mainly adsorbing ability based on the fine pore shape, coloring, contaminants, waste gas, etc., removing it from the medium and purifying it. However, there is a limit to the adsorption capacity, and replacement, regeneration, etc. must be performed, and the period of use is uneconomical for an expensive period. This is very disadvantageous for purification costs.

本システムは2種の鉱物を使い上記の問題を解決した。1つは珪藻土を1100℃で焼結しセラミック化したものを使用し、木炭の5千から6千倍の超多孔、超微細構造を持ち非常に効率の良い資材で、これと劣化石炭、低品質石炭を併用する。石炭は特に熱カロリーが高い必要はなく、熱源として利用価値のない品質のものをFOS(環境浄化設定剤)で処理することによって、灰成分が溶出し、多孔体となる。この使用したFOSはそのまま水質浄化剤として利用できる。通常の石炭系活性炭製造の場合は硫酸、塩酸等で処理をする。また、その酸類は使用した後、中和をするがFOSの場合はその必要がなく、そのまま排水処理剤として使用出来るため、コストの削減及び薬品による2次汚染を防ぐことも大きなメリットとなる。This system solved the above problems using two kinds of minerals. One is a ceramic made by sintering diatomaceous earth at 1100 ° C, and it is a very efficient material with an ultra-porous and ultra-fine structure 5,000 to 6,000 times that of charcoal. Use quality coal together. Coal does not need to have particularly high heat calories, and ash components are eluted and processed into a porous material by treating a quality having no utility value as a heat source with FOS (environmental purification setting agent). The used FOS can be used as it is as a water purification agent. In the case of normal coal-based activated carbon production, it is treated with sulfuric acid, hydrochloric acid or the like. In addition, the acid is neutralized after use, but in the case of FOS, it is not necessary and can be used as it is as a wastewater treatment agent. Therefore, it is a great merit to reduce cost and prevent secondary contamination by chemicals.

この上記で処理した鉱物資材をFOSACという。FOSACは従来使用されている活性炭のように頻繁な交換を必要としない。1年に1度程度摩耗、消耗することから全体の10%程度の補充で済ませることで良い。また、このFOSACの内部は年間を通して、5〜10℃の内部温度を保持することから寒冷地にも適する。その結果、バクテリアが生息しやすい環境となっている。また、現在使用されている砕石、プラスチック等のハニカム方式は生物膜が多く発生し、パイプを詰まらせたり、河川等の再汚染を発生させたりしている。This mineral material treated above is called FOSAC. FOSAC does not require frequent replacement as conventionally used activated carbon. Since it is worn and consumed about once a year, it is sufficient to replenish about 10% of the whole. Moreover, since the inside of this FOSAC maintains an internal temperature of 5-10 degreeC throughout the year, it is suitable also for a cold district. As a result, the environment is prone to bacteria. In addition, the honeycomb system such as crushed stones and plastics currently used has a large amount of biofilm, which clogs pipes and causes recontamination of rivers and the like.

実施例1)し尿、肥料成分混入家畜用井戸水
0.1m/分流速 急速濾過機としてテスト 飲料水として適合
実施例2)池、沼水の処理
30分処理 0.1m/分流速 N.Pの吸着により池、沼、濠の浄化に効果あり
実施例3)食品加工場排水
500m分流速/日処理 排水基準 適合 塩素処理の効果 大
実施例4)六価クロムを含むクロムメッキ廃液
六価クロムを含むメッキ廃水100リットルをFOSAC2Kgを充填したカドミウムカラムに流速5リットル/時で流下させ経過を測定
完全除去 メッキ廃液に効果 大
処理水にJIS K 0120の規定する方法でヒメダカの養魚試験において48時間以内に死亡したヒメダカはいない。
Example 1 Livestock well water mixed with human waste and fertilizer components
0.1 m 3 / min flow rate Tested as a rapid filter Suitable as drinking water Example 2) Treatment of ponds and marshes
30-minute treatment 0.1 m 3 / minute flow rate Example 3) Wastewater from food processing plants.
500m 3 minutes flow rate / day treatment Effluent standard conformity Effect of chlorination Large example 4) Chromium plating waste solution containing hexavalent chromium 100 liters of plating waste water containing hexavalent chromium in a cadmium column packed with 2 kg of FOSAC at a flow rate of 5 liters / hour Flow down and measure progress
Complete removal Effective for plating waste liquid No large-sized medaka died within 48 hours in the fish farming test of medaka by the method specified in JIS K 0120 in large treated water.

溶存酸素試験 イオン交換水及び蒸留水ともに初期溶存酸素が8.49mg/Lと高かったので、脱気して使用することにした。脱気水でも溶存酸素の増加がみられた。これは設置の際ある程度の気泡が混入することなどが考えられる。FOSを添加後急激な溶存酸素量の増加がみられた。Dissolved oxygen test Since the initial dissolved oxygen of ion-exchanged water and distilled water was as high as 8.49 mg / L, it was decided to use after deaeration. There was also an increase in dissolved oxygen in deaerated water. This may be due to a certain amount of bubbles being mixed. There was a sharp increase in the amount of dissolved oxygen after the addition of FOS. FOSACによる簡易浄化装置 1)浄化対象水にFOSを添加する。タイマーによる自動運転、もしくは手動 2)FOS処理水をタンクにポンプアップする。3)タンク内にはFOS処理をしたFOSACが入っている。4)FOSACで処理した水は再生水として利用あるいは循環させさらに浄化する。5)このシステムは活性炭の様に交換頻度は少なく、1年に1度不足分の補充で良い。6)窒素、燐、メッキ工場排水のような金属イオン等の汚染浄化も可能。7)富栄養化を防止できる。8)殺菌剤、殺虫剤、農薬汚染された水を浄化することができる。9)既存の浄化施設を利用し、従来よりも浄化能力をアップできる。Simple purification device by FOSAC 1) Add FOS to water to be purified. Automatic operation by timer or manual 2) Pump up FOS treated water to tank. 3) FOSAC that has undergone FOS processing is contained in the tank. 4) Water treated with FOSAC is used or recycled as reclaimed water for further purification. 5) This system has a low replacement frequency like activated carbon, and can be replenished once a year. 6) Contamination purification of metal ions such as nitrogen, phosphorus and plating factory effluent is also possible. 7) Can prevent eutrophication. 8) It can purify water contaminated with fungicides, insecticides and pesticides. 9) Utilizing existing purification facilities, the purification capacity can be improved as compared with the past. チャート システムチャート図Chart system chart diagram

JP2006140833A 2006-04-19 2006-04-19 Purification and secondary pollution prevention system using environmental purification setting agent fos Pending JP2009034557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140833A JP2009034557A (en) 2006-04-19 2006-04-19 Purification and secondary pollution prevention system using environmental purification setting agent fos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140833A JP2009034557A (en) 2006-04-19 2006-04-19 Purification and secondary pollution prevention system using environmental purification setting agent fos

Publications (2)

Publication Number Publication Date
JP2009034557A JP2009034557A (en) 2009-02-19
JP2009034557A5 true JP2009034557A5 (en) 2009-04-02

Family

ID=40436993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140833A Pending JP2009034557A (en) 2006-04-19 2006-04-19 Purification and secondary pollution prevention system using environmental purification setting agent fos

Country Status (1)

Country Link
JP (1) JP2009034557A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110754A (en) * 2008-10-07 2010-05-20 Akira Haneda Method of manufacturing water purification material, water purification method, and solution for water purification

Similar Documents

Publication Publication Date Title
Talaiekhozani et al. An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater
Khan et al. Degradation of sulfolane in aqueous media by integrating activated sludge and advanced oxidation process
Chaturvedi et al. Removal of iron for safe drinking water
Kurniawan et al. Resource recovery toward sustainability through nutrient removal from landfill leachate
Jianlong et al. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass
US20170362108A1 (en) Hybrid activated iron-biological water treatment system and method
Gingras et al. Biological reduction of perchlorate in ion exchange regenerant solutions containing high salinity and ammonium levels
Jahan et al. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review
Katsoyiannis et al. Use of iron-and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater
US5169532A (en) Method for biological removal of cyanides, thiocyanate and toxic heavy metals from highly alkaline environments
CN105253986B (en) A kind of denitrifier
JP3820180B2 (en) Purification method for contaminated soil
Muhammad et al. Coupled physicochemical and bacterial reduction mechanisms for passive remediation of sulfate-and metal-rich acid mine drainage
Biswas Evaluation of various method and efficiencies for treatment of effluent from iron and steel industry–a review
Khan et al. Integration of aerobic granulation and UV/H 2 O 2 processes in a continuous flow system for the degradation of sulfolane in contaminated water
JP4065226B2 (en) Method for purifying contaminated soil and contaminated groundwater
JP2012071295A (en) Water treatment method using aquatic plant
JP2004202357A (en) Method for purifying organic compound-polluted object
CN204644026U (en) A kind of device adopting PhotoelectrochemicalTechnique Technique to remove ammonia nitrogen in water
Yazdian et al. Effect of metal nanoparticles on biological denitrification process: a review
JP2009034557A5 (en)
Bodzek et al. Treatment of landfill leachate
Mekya et al. Feasibility of using non-vegetated baffled submerged constructed wetland system for removal of heavy metals, COD and nutrients from hyper-saline hazardous landfill leachate
JP2009034557A (en) Purification and secondary pollution prevention system using environmental purification setting agent fos
CN211734103U (en) Copper ammonia complex effluent disposal system