JP2009033819A - Overcurrent relay device with voltage suppression - Google Patents

Overcurrent relay device with voltage suppression Download PDF

Info

Publication number
JP2009033819A
JP2009033819A JP2007192967A JP2007192967A JP2009033819A JP 2009033819 A JP2009033819 A JP 2009033819A JP 2007192967 A JP2007192967 A JP 2007192967A JP 2007192967 A JP2007192967 A JP 2007192967A JP 2009033819 A JP2009033819 A JP 2009033819A
Authority
JP
Japan
Prior art keywords
phase
voltage
circuit
short
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007192967A
Other languages
Japanese (ja)
Inventor
Masami Takenaka
正実 竹中
Yoshiaki Date
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007192967A priority Critical patent/JP2009033819A/en
Publication of JP2009033819A publication Critical patent/JP2009033819A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overcurrent relay device with voltage suppression, for preventing power failure from spreading, even two overcurrent relays with voltage suppression are installed. <P>SOLUTION: Among first-third current transformers 3<SB>1</SB>-3<SB>3</SB>, the first and second current transformers 3<SB>1</SB>and 3<SB>2</SB>are sum-connected and the second and third current transformers 3<SB>2</SB>and 3<SB>3</SB>are sum-connected. Upon detecting short-circuit failure on the basis of a first short-circuit current I<SB>Ry1</SB>to be inputted from the first and second current transformers 3<SB>1</SB>and 3<SB>2</SB>sum-connected, an interline voltage V<SB>TR</SB>and an R-phase voltage V<SB>R</SB>, a first overcurrent relay 50<SB>1</SB>with voltage suppression integrally interrupts first-third breakers 2<SB>1</SB>-2<SB>3</SB>provided on each of phases of a power transmission line. Upon detecting short-circuit failure on the basis of a second short-circuit current I<SB>Ry2</SB>to be inputted from the second and third current transformers 3<SB>2</SB>and 3<SB>3</SB>sum-connected, the interline voltage V<SB>TR</SB>and the R-phase voltage V<SB>R</SB>, a second overcurrent relay 50<SB>2</SB>with voltage suppression integrally interrupts the first-third breakers 2<SB>1</SB>-2<SB>3</SB>provided on each of phases of the power transmission line. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電圧抑制付過電流継電装置に関し、特に、短絡事故から三相交流回路を保護するための電圧抑制付過電流継電装置に関する。   The present invention relates to an overcurrent relay device with voltage suppression, and more particularly to an overcurrent relay device with voltage suppression for protecting a three-phase AC circuit from a short circuit accident.

従来、三相交流回路では、短絡事故から三相交流回路を保護するために、過電流継電器(OC)を相ごとに設置している(たとえば下記の特許文献1参照)。   Conventionally, in a three-phase AC circuit, an overcurrent relay (OC) is installed for each phase in order to protect the three-phase AC circuit from a short circuit accident (see, for example, Patent Document 1 below).

また、短絡事故の検出を電流値のみで行うと負荷電流と短絡電流との区別がつかないことがあるため、電圧値に応じて電流検出感度を補正する機能を具備した電圧抑制付過電流継電器が使用されている。   Moreover, if the detection of a short-circuit accident is performed only with the current value, the load current and the short-circuit current may not be distinguished. Therefore, the overcurrent relay with voltage suppression has a function of correcting the current detection sensitivity according to the voltage value. Is used.

たとえば、図10に示すように、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の変流器(CT)31〜33に第1乃至第3の電圧抑制付過電流継電器(OCV)41〜43をそれぞれ接続するとともに、母線に設置された計器用変圧器6から、第1の電圧抑制付過電流継電器41にはR相−S相の線間電圧VRSを入力し、第2の電圧抑制付過電流継電器42にはS相−T相の線間電圧VSTを入力し、第3の電圧抑制付過電流継電器43にはT相−R相の線間電圧VTRを入力し、送配電線に短絡事故が発生したときには、事故様相に応じて第1乃至第3の電圧抑制付過電流継電器41〜43が以下のように動作して、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断するようにしている。
(1)R相−S相間の短絡事故の場合
送配電線のR相およびS相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびS相−T相の線間電圧VSTが生じるので、第1および第2の電圧抑制付過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相およびT相に短絡電流が流れるとともにS相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRが生じるので、第2および第3の電圧抑制付過電流継電器42,43が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のR相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびT相−R相の線間電圧VTRが生じるので、第1および第3の電圧抑制付過電流継電器41,43が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相、S相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRが生じるので、第1乃至第3の電圧抑制付過電流継電器41〜43が動作して第1乃至第3の遮断器21〜23を一括遮断する。
For example, as shown in FIG. 10, the first to third current transformers (CT) 3 1 to 3 3 installed in the R-phase, S-phase, and T-phase of the transmission / distribution line respectively. Overcurrent relays with voltage suppression (OCV) 4 1 to 4 3 are connected to each other, and from the transformer for instrument 6 installed on the bus, the first overcurrent relay with voltage suppression 4 1 has an R phase-S phase. of the line enter the voltage V RS, the 2 second overcurrent relay with voltage suppression 4 enter the line voltage V ST of S phase -T phase, the third voltage suppression with overcurrent relay 4 3 inputs the line voltage V TR of the T-phase -R phase, when the short circuit occurs in the electric transmission, the first to third biasing voltage suppression overcurrent relay 41 to 3 in accordance with the accident appearance operates as follows, R-phase of the transmission and distribution lines, collectively blocking the first to third circuit breaker 2 1 to 2 3 of which are respectively installed on the S-phase and T-phase It has to.
(1) In the case of a short-circuit accident between the R phase and the S phase A short circuit current flows in the R phase and the S phase of the transmission and distribution line, and the line voltage V RS between the R phase and the S phase and the line voltage V between the S phase and the T phase. Since ST occurs, the first and second overcurrent relays 4 1 , 4 2 with voltage suppression operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(2) In the case of a short circuit accident between the S phase and the T phase A short circuit current flows in the S phase and T phase of the transmission and distribution line, and the S phase-T phase line voltage V ST and the T phase-R phase line voltage V Since TR occurs, the second and third overcurrent relays with voltage suppression 4 2 and 4 3 operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(3) Short-circuit accident between T-phase and R-phase Short-circuit current flows in the R-phase and T-phase of the transmission and distribution line, and the R-S phase line voltage V RS and the T-phase-R phase line voltage V Since TR occurs, the first and third overcurrent relays 4 1 , 4 3 with voltage suppression operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(4) In the case of a short circuit accident between R phase, S phase and T phase Short circuit current flows in R phase, S phase and T phase, line voltage V RS between R phase and S phase, and line between S phase and T phase Since the voltage V ST and the T-phase to R-phase line voltage V TR are generated, the first to third overcurrent relays 4 1 to 4 3 with voltage suppression operate and the first to third circuit breakers 2 1 collectively shut off to 2 3.

また、末端回路の送配電線などでは、短絡電流が2相に流れることを利用し、電圧抑制付過電流継電器を2相にだけ設置して、設備コストの抑制を図っている。たとえば、図11に示すように、送配電線のR相、S相およびT相のうちR相およびT相にそれぞれ設置された第1および第2の変流器31,32に第1および第2の電圧抑制付過電流継電器41,42をそれぞれ接続するとともに、母線に設置された計器用変圧器6から、第1の電圧抑制付過電流継電器41にはR相−S相の線間電圧VRSを入力し、第2の電圧抑制付過電流継電器42にはT相−R相の線間電圧VTRを入力して、送配電線に短絡事故が発生したときには、事故様相に応じて第1および第2の電圧抑制付過電流継電器41,42が以下のように動作して、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断するようにしている。
(1)R相−S相間の短絡事故の場合
送配電線のR相に短絡電流が流れるとともにR相−S相の線間電圧VRSが生じるので、第1の電圧抑制付過電流継電器41が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のT相に短絡電流が流れるとともにT相−R相の線間電圧VTRが生じるので、第2の電圧抑制付過電流継電器42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のR相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびT相−R相の線間電圧VTRが生じるので、第1および第2の電圧抑制付過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびT相−R相の線間電圧VTRが生じるので、第1および第2の電圧抑制付過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
特開平8−005659号公報
Moreover, in the power transmission / distribution line of the terminal circuit, etc., the short circuit current flows in two phases, and the overcurrent relay with voltage suppression is installed only in the two phases to reduce the equipment cost. For example, as shown in FIG. 11, the first and second current transformers 3 1 and 3 2 respectively installed in the R phase and the T phase among the R phase, S phase, and T phase of the transmission and distribution lines And the second overcurrent relay with voltage suppression 4 1 , 4 2 are connected to each other, and from the transformer 6 for the instrument installed on the bus, the first overcurrent relay with voltage suppression 4 1 is connected to the R-phase-S. enter the line voltage V RS phases, the 2 second overcurrent relay with voltage suppression 4 to input line voltage V TR of the T-phase -R phase, when the short circuit occurs in the electric transmission The first and second voltage suppression overcurrent relays 4 1 , 4 2 operate as follows according to the accident situation, and are installed in the R phase, S phase and T phase of the transmission and distribution lines, respectively. The first to third circuit breakers 2 1 to 2 3 are collectively cut off.
(1) In the case of a short circuit accident between the R phase and the S phase Since a short circuit current flows in the R phase of the transmission and distribution line and a line voltage V RS between the R phase and the S phase is generated, the first overcurrent relay with voltage suppression 4 1 operates to collectively shut off the first to third circuit breakers 2 1 to 2 3 .
(2) In the case of a short circuit accident between the S phase and the T phase Since a short circuit current flows in the T phase of the transmission and distribution line and a line voltage V TR between the T phase and the R phase is generated, the second overcurrent relay with voltage suppression 4 2 operates to collectively shut off the first to third circuit breakers 2 1 to 2 3 .
(3) Short-circuit accident between T-phase and R-phase Short-circuit current flows in the R-phase and T-phase of the transmission and distribution line, and the R-S phase line voltage V RS and the T-phase-R phase line voltage V Since TR occurs, the first and second overcurrent relays with voltage suppression 4 1 and 4 2 operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase A short circuit current flows in the R phase and the T phase, and the line voltage V RS between the R phase and the S phase and the line voltage V TR between the T phase and the R phase. Therefore, the first and second overcurrent relays with voltage suppression 4 1 , 4 2 operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
JP-A-8-005659

しかしながら、送配電線ごとに電圧抑制付過電流継電器を2台または3台ずつ設置しているため、以下に示すような問題があった。
(1)電圧抑制付過電流継電器の設置台数を3台よりも2台として設備コストの削減を図りたいという要請がある。
(2)電圧抑制付過電流継電器の設置台数が2台である場合には、自回路の短絡事故から三相交流回路を保護することも可能であるが、電圧抑制付過電流継電器を設置していない相と他回路にまたがる短絡事故については検出することができないため、電源側の短絡保護継電器で三相交流回路を保護することになるので、停電の範囲が拡大する。
However, since two or three overcurrent relays with voltage suppression are installed for each transmission / distribution line, there are the following problems.
(1) There is a request to reduce the equipment cost by setting the number of overcurrent relays with voltage suppression to two instead of three.
(2) If the number of overcurrent relays with voltage suppression is two, it is possible to protect the three-phase AC circuit from a short circuit accident of its own circuit, but an overcurrent relay with voltage suppression is installed. Short circuit accidents that do not extend to other phases and other circuits cannot be detected, and the three-phase AC circuit is protected by the short-circuit protection relay on the power supply side, thus expanding the range of power outages.

本発明の目的は、電圧抑制付過電流継電器の設置台数を2台としても停電の範囲の拡大を防止することができる電圧抑制付過電流継電装置を提供することにある。   An object of the present invention is to provide an overcurrent relay device with voltage suppression that can prevent the expansion of the power outage range even when the number of overcurrent relays with voltage suppression is set to two.

本発明の電圧抑制付過電流継電装置は、短絡事故から三相交流回路を保護するための電圧抑制付過電流継電装置であって、前記三相交流回路の第1の相に設置された第1の変流器(31)と、前記三相交流回路の第2の相に設置された、かつ、前記第1の変流器と和接続された第2の変流器(32)と、前記三相交流回路の第3の相に設置された、かつ、前記第2の変流器と和接続された第3の変流器(33)と、前記和接続された第1および第2の変流器から入力される第1の短絡電流(IRy1)と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する第1の電圧抑制付過電流継電器(501)と、前記和接続された第2および第3の変流器から入力される第2の短絡電流(IRy2)と前記電圧情報とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断する第2の電圧抑制付過電流継電器(502)とを具備することを特徴とする。
ここで、前記第1および第2の電圧抑制付過電流継電器が、前記電圧情報から求めた所定の組合せの1つの線間電圧(VTR)および1つの相電圧(VR)を用いて、該線間電圧が所定の第1の電圧値(k1)以下であると短絡事故が発生したと判定するとともに、該線間電圧が該第1の電圧値よりも大きい所定の第2の電圧値(k2)以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が所定の角度範囲(α)内だけ遅れているか進んでいると短絡事故が発生したと判定してもよい。
前記第1および第2の電圧抑制付過電流継電器が、前記線間電圧が前記第2の電圧値以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ遅れている場合に、前記三相交流回路の第1の相と第2の相との間の短絡事故であると判定し、前記線間電圧が前記第2の電圧値以下であり、かつ、短絡事故前の前記線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ進んでいる場合に、前記三相交流回路の前記第2の相と第3の相との間の短絡事故であると判定し、前記線間電圧が前記第1の電圧値以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ遅れていたり進んでいたりしておらず、かつ、短絡事故前の前記相電圧の位相を基準として該相電圧の位相が所定の他の角度範囲(β)内だけ進んでいる場合に、前記三相交流回路の前記第1の相と前記第3の相との間の短絡事故であると判定し、前記線間電圧が前記第1の電圧値以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ遅れていたり進んでいたりしておらず、かつ、短絡事故前の前記相電圧の位相を基準として該相電圧の位相が前記他の角度範囲内だけ遅れていたり進んでいたりしていない場合に、前記三相交流回路の前記第1の相と前記第2の相と前記第3の相との間の短絡事故であると判定してもよい。
前記第1および第2の電圧抑制付過電流継電器が、短絡事故が発生したと判定すると、前記線間電圧を用いて抑制電圧(VRy)を算出し、該算出した抑制電圧に応じて電流整定値を規定する電圧抑制特性によって決定される電流整定値を前記第1および第2の短絡電流の振幅が超えた場合に、前記第1乃至第3の遮断器を一括遮断してもよい。
前記三相交流回路の前記第1の相と前記第2の相との間の短絡事故である場合には、前記第2の電圧抑制付過電流継電器のみが動作して前記第1乃至第3の遮断器を一括遮断し、前記三相交流回路の前記第2の相と前記第3の相との間の短絡事故である場合には、前記第1の電圧抑制付過電流継電器のみが動作して前記第1乃至第3の遮断器を一括遮断してもよい。
The overcurrent relay device with voltage suppression of the present invention is an overcurrent relay device with voltage suppression for protecting a three-phase AC circuit from a short-circuit accident, and is installed in a first phase of the three-phase AC circuit. The first current transformer (3 1 ) and the second current transformer (3) installed in the second phase of the three-phase AC circuit and connected to the first current transformer. 2 ) and a third current transformer (3 3 ) installed in the third phase of the three-phase AC circuit and connected to the second current transformer. When a short circuit fault is detected based on the first short circuit current (I Ry1 ) input from the first and second current transformers and the voltage information of the three phase AC circuit, each phase of the three phase AC circuit is detected. the first to third circuit breaker installed and (2 1 to 2 3) the first voltage suppression with overcurrent relay for collectively blocking (50 1), second and third variable which is the sum connected Upon detection of a short circuit on the basis of a second short-circuit current which is inputted from the vessel and (I Ry2) to said voltage information, it said first to third second overcurrent relay with voltage suppression for collectively blocking the circuit breaker (50 2 ).
Here, the first and second voltage suppression overcurrent relays use one line voltage (V TR ) and one phase voltage (V R ) in a predetermined combination obtained from the voltage information, When the line voltage is equal to or lower than the predetermined first voltage value (k1), it is determined that a short-circuit accident has occurred, and the predetermined second voltage value is greater than the first voltage value. A short-circuit accident occurs when the phase of the line voltage is delayed or advanced by a predetermined angle range (α) with respect to the phase of the line voltage before the short-circuit accident as a reference. May be determined.
The first and second overcurrent relays with voltage suppression are configured such that the line voltage is less than or equal to the second voltage value and the line voltage is based on a phase of the line voltage before a short circuit accident. When the phase is delayed only within the angular range, it is determined that there is a short-circuit accident between the first phase and the second phase of the three-phase AC circuit, and the line voltage is the second voltage. And when the phase of the line voltage advances only within the angle range with reference to the phase of the line voltage before the short-circuit accident, the second phase of the three-phase AC circuit It is determined that there is a short circuit accident with the third phase, the line voltage is equal to or less than the first voltage value, and the line voltage is based on the phase of the line voltage before the short circuit accident. The phase of the phase voltage is not delayed or advanced by the angle range, and the phase voltage before the short circuit accident A short-circuit accident between the first phase and the third phase of the three-phase AC circuit when the phase of the phase voltage is advanced by a predetermined other angle range (β) as a reference. The line voltage is less than or equal to the first voltage value, and the phase of the line voltage is delayed or advanced by the angle range with reference to the phase of the line voltage before the short circuit accident. The three-phase alternating current when the phase voltage phase is not delayed or advanced within the other angle range with reference to the phase voltage phase before the short-circuit accident. It may be determined that there is a short circuit accident between the first phase, the second phase, and the third phase of the circuit.
When the first and second overcurrent relays with voltage suppression determine that a short-circuit accident has occurred, a suppression voltage (V Ry ) is calculated using the line voltage, and a current is generated according to the calculated suppression voltage. When the amplitudes of the first and second short circuit currents exceed the current set value determined by the voltage suppression characteristic that defines the set value, the first to third circuit breakers may be collectively cut off.
In the case of a short circuit accident between the first phase and the second phase of the three-phase AC circuit, only the second overcurrent relay with voltage suppression operates and the first to third In the case of a short circuit accident between the second phase and the third phase of the three-phase AC circuit, only the first overcurrent relay with voltage suppression operates. Then, the first to third circuit breakers may be collectively disconnected.

本発明の電圧抑制付過電流継電装置は、三相交流回路の第1および第2の相にそれぞれ設置された第1および第2の変流器を和接続するとともに三相交流回路の第2および第3の相にそれぞれ設置された第2および第3の変流器を和接続することにより、電圧抑制付過電流継電器の設置台数を2台としても、自回路および他回路にまたがる短絡事故を確実に検出して停電の範囲の拡大を防止することができるという効果を奏する。   The overcurrent relay device with voltage suppression according to the present invention connects the first and second current transformers respectively installed in the first and second phases of the three-phase AC circuit and connects the first and second current transformers. Short-circuit across the circuit and other circuits even if the number of overcurrent relays with voltage suppression is two by connecting the second and third current transformers installed in the second and third phases respectively. There is an effect that it is possible to reliably detect an accident and prevent the expansion of the power outage range.

上記の目的を、送配電線の第1および第2の相にそれぞれ設置された第1および第2の変流器を和接続するとともに、第2の変流器と送配電線の第3の相に設置された第3の変流器とを和接続し、第1の電圧抑制付過電流継電器が、和接続された第1および第2の変流器から入力される第1の短絡電流と送配電線の所定の組合せの1つの線間電圧および1つの相電圧とに基づいて短絡事故を検出すると、送配電線の各相に設置された第1乃至第3の遮断器を一括遮断するとともに、第2の電圧抑制付過電流継電器が、和接続された第1および第3の変流器から入力される第2の短絡電流と送配電線所定の組合せの1つの線間電圧および1つの相電圧とに基づいて短絡事故を検出すると、第1乃至第3の遮断器を一括遮断することにより実現した。   For the above purpose, the first and second current transformers installed in the first and second phases of the transmission / distribution line are connected together, and the second current transformer and the third of the transmission / distribution line are connected. A first short-circuit current that is input from the first and second current transformers that are sum-connected to the third current transformer that is installed in the phase. When a short circuit fault is detected based on one line voltage and one phase voltage of a predetermined combination of power transmission and distribution lines, the first to third circuit breakers installed in each phase of the transmission and distribution lines are collectively shut off In addition, the overcurrent relay with the second voltage suppression has a line voltage of a predetermined combination of the second short-circuit current and the transmission / distribution line input from the first and third current transformers connected in sum. When a short-circuit accident is detected based on one phase voltage, it is realized by collectively shutting off the first to third circuit breakers. .

以下、本発明の電圧抑制付過電流継電装置の実施例について図面を参照して説明する。
本発明の一実施例による電圧抑制付過電流継電装置は、図1に示すように、送配電線のR相およびS相にそれぞれ設置された、かつ、和接続された第1および第2の変流器31,32と、送配電線のT相に設置された、かつ、第2の変流器32と和接続された第3の変流器33と、和接続された第1および第2の変流器31,32から入力される第1の短絡電流IRy1と母線に設置された計器用変圧器6から入力される電圧情報(R相、S相およびT相の相電圧)から求めたT相−R相の線間電圧VTRおよびR相の相電圧VRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する第1の電圧抑制付過電流継電器501と、和接続された第2および第3の変流器32,33から入力される第2の短絡電流IRy2と計器用変圧器6から入力される電圧情報から求めたT相−R相の線間電圧VTRおよびR相の相電圧VRとに基づいて短絡事故を検出すると、第1乃至第3の遮断器21〜23を一括遮断する第2の電圧抑制付過電流継電器502とを具備する。
Embodiments of an overcurrent relay device with voltage suppression according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the overcurrent relay device with voltage suppression according to one embodiment of the present invention is installed in the R phase and the S phase of the transmission and distribution lines, respectively, and the first and second connected in sum. a current transformer 3 1, 3 2, installed in the T-phase of the transmission and distribution lines, and a third current transformer 3 3 which is a second current transformer 3 2 and OR connection, is the sum connected The first short-circuit current I Ry1 input from the first and second current transformers 3 1 and 3 2 and the voltage information (R-phase, S-phase and When a short circuit accident is detected on the transmission / distribution line based on the T-phase-R line voltage V TR and the R-phase phase voltage V R obtained from the T-phase phase voltage), the R-phase, S a phase and T-phase to the first to third circuit breaker 2 1 to 2 3 first voltage overcurrent relay 50 1 with suppressed for collectively blocking the installed respectively, the second and third are the sum connected Current transformers 3 2, 3 3 and the second short-circuit current I Ry2 and between T phase -R phase of the line obtained from the voltage information input from the potential transformer 6 Voltage V TR and R-phase inputted from the When a short circuit accident is detected based on the phase voltage V R , a second overcurrent relay with voltage suppression 50 2 is provided that collectively cuts off the first to third circuit breakers 2 1 to 2 3 .

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、図2(a)に示すようにR相の負荷電流IRとS相の負荷電流ISとが120°の位相差で第1および第2の変流器31,32をそれぞれ流れるため、和接続された第1および第2の変流器31,32から第1の電圧抑制付過電流継電器501に入力される第1の負荷電流I1はR相の負荷電流IRとS相の負荷電流ISとのベクトル和となり、第1の負荷電流I1の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅となる。
1=IR+IS
|I1|=|IR+IS|=|IR|=|IS
同様に、図2(a)に示すようにS相の負荷電流ISとT相の負荷電流ITとが120°の位相差で第2および第3の変流器32,33をそれぞれ流れるため、和接続された第2および第3の変流器32,33から第2の電圧抑制付過電流継電器502に入力される第2の負荷電流I2はS相の負荷電流ISとT相の負荷電流ITとのベクトル和となり、第2の負荷電流I2の振幅はS相の負荷電流IS(T相の負荷電流IT)の振幅となる。
2=IS+IT
|I2|=|IS+IT|=|IS|=|IT
Therefore, when the load currents flowing in the R phase, S phase, and T phase of the transmission and distribution line when no short circuit accident has occurred are represented by I R , I S , and I T , as shown in FIG. Since the phase load current I R and the S phase load current I S flow through the first and second current transformers 3 1 and 3 2 with a phase difference of 120 °, respectively, the sum-connected first and second currents The first load current I 1 input from the current transformers 3 1 and 3 2 to the first overcurrent relay 50 1 with voltage suppression is the difference between the R-phase load current I R and the S-phase load current I S. A vector sum is obtained, and the amplitude of the first load current I 1 is the amplitude of the R-phase load current I R (the S-phase load current I S ).
I 1 = I R + I S
| I 1 | = | I R + I S | = | I R | = | I S |
Similarly, as shown in FIG. 2A, the second and third current transformers 3 2 and 3 3 are connected with a phase difference of 120 ° between the S-phase load current I S and the T-phase load current I T. Since the current flows respectively, the second load current I 2 input from the second and third current transformers 3 2 , 3 3 connected to the sum to the second overcurrent relay 50 2 with voltage suppression is an S-phase load. The vector sum of the current I S and the T-phase load current I T is obtained, and the amplitude of the second load current I 2 is the amplitude of the S-phase load current I S (T-phase load current I T ).
I 2 = I S + I T
| I 2 | = | I S + I T | = | I S | = | I T |

また、第1および第2の電圧抑制付過電流継電器501,502は、T相−R相の線間電圧VTRの位相が210°でかつR相の相電圧VRの位相が0°であることを基準として動作する(図2(b)参照)。 Further, in the first and second overcurrent relays 50 1 and 50 2 with voltage suppression, the phase of the T-phase to R-phase line voltage V TR is 210 ° and the phase of the R-phase voltage V R is 0. It operates on the basis of being ° (see FIG. 2B).

このため、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、第1および第2の電圧抑制付過電流継電器501,502は、T相−R相の線間電圧VT Rが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VT Rが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する(以下の(1)式および(2)式参照)。
T R≦[{(110/31/2)×1.5}2+(85/2)21/2
≦(95.262+42.521/2
≦104.3(V) (1)
α≧30°−tan-1(42.5/95.26)
≧5.95(°) (2)
For this reason, the line voltage V RS between the R phase and the S phase at the time of the short circuit accident between the R phase and the S phase of the transmission and distribution line and the line voltage V ST between the S phase and the T phase at the time of the short circuit accident between the S phase and the T phase. Is 85 V of short-circuit accident detection sensitivity, the first and second overcurrent relays 50 1 , 50 2 with voltage suppression have a T-phase to R-phase line voltage V TR of a predetermined first voltage value k1 = It is determined that a short-circuit accident has occurred on the condition that it is 85 V or less, and the T-phase to R-phase line voltage V TR is a predetermined second voltage value k2 = 104.3 V or less, and a short-circuit accident proceed whether the phase of the previous T-phase -R phase of the line voltage V TR of the phase = 210 ° of the time short circuit as a reference T phase -R phase line voltage V TR of delayed by a predetermined angular range α (5.95 ° ≦ α ≦ 30 ° or −30 ° ≦ α ≦ −5.95 °) The following (1) and reference (2) below).
V TR ≦ [{(110/3 1/2 ) × 1.5} 2 + (85/2) 2 ] 1/2
≦ (95.26 2 +42.5 2 ) 1/2
≦ 104.3 (V) (1)
α ≧ 30 ° -tan −1 (42.5 / 95.26)
≧ 5.95 (°) (2)

また、第1および第2の電圧抑制付過電流継電器501,502は、短絡事故が発生したと判定すると、以下のようにして、事故様相を判定するとともに、事故様相の判定の結果に応じて抑制電圧VRyを算出する。 Further, when the first and second overcurrent relays with voltage suppression 50 1 and 50 2 determine that a short-circuit accident has occurred, the first and second overcurrent relays 50 1 and 50 2 determine the accident aspect and the result of the determination of the accident aspect as follows. Accordingly, the suppression voltage V Ry is calculated.

(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、第1および第2の電圧抑制付過電流継電器501,502は、R相−S相間の短絡事故と判定する(図3(a)参照)。
R相−S相間の短絡事故が発生すると、図5に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、和接続された第1および第2の変流器31,32から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、図5に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル和となり、第1の短絡電流IRy1の振幅は“0”となる(図4(a)参照。なお、図4においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。)。
Ry1=IFR+IFS=0
|IRy1|=|IFR+IFS|=0
また、和接続された第2および第3の変流器32,33から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、図5に破線の太矢印で示すようにS相の短絡電流IFSとなり、第2の短絡電流IRy2の振幅はS相の短絡電流IFSの振幅となる(図4(a)参照)。
Ry2=IFS
|IRy2|=|IFS
第1および第2の電圧抑制付過電流継電器501,502は、T相−R相の線間電圧VTRを用いて抑制電圧VRyを次式により算出する。
Ry=2×V×cos(60°+α)
ここで、V=VTR∠(210°+α)
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、第1および第2の電圧抑制付過電流継電器501,502は、S相−T相間の短絡事故と判定する(図3(b)参照)。
S相−T相間の短絡事故が発生すると、図6に破線の太矢印で示すように送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、和接続された第1および第2の変流器31,32から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、図6に実線の太矢印で示すようにS相の短絡電流IFSとなり、第1の短絡電流IRy1の振幅はS相の短絡電流IFSの振幅となる(図4(b)参照)。
Ry1=IFS
|IRy1|=|IFS
また、和接続された第2および第3の変流器32,33から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、図6に破線の太矢印で示すようにS相の短絡電流IFSとT相の短絡電流IFTとのベクトル和となり、第2の短絡電流IRy2の振幅は“0”となる(図4(b)参照)。
Ry2=IFS+IFT=0
|IRy2|=|IFS+IFT|=0
第1および第2の電圧抑制付過電流継電器501,502は、T相−R相の線間電圧VTRを用いて抑制電圧VRyを次式により算出する。
Ry=2×V×cos(60°+α)
ここで、V=VTR∠(210°−α)
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が所定の他の角度範囲β(6.76°≦β≦60°、(3)式参照)内だけ進んでいる(−β)場合に、第1および第2の電圧抑制付過電流継電器501,502は、T相−R相間の短絡事故と判定する(図3(c)参照)。
β≧60°−tan-1[42.5/{110/(2×31/2)}]
≧6.76(°) (3)
T相−R相間の短絡事故が発生すると、図7に破線の矢印で示すように送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、和接続された第1および第2の変流器31,32から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、図7に実線の太矢印で示すようにR相の短絡電流IFRとなり、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となる(図4(c)参照)。
Ry1=IFR
|IRy1|=|IFR
また、和接続された第2および第3の変流器32,33から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、図7に破線の太矢印で示すようにT相の短絡電流IFTとなり、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となる(図4(c)参照)。
Ry2=IFT
|IRy2|=|IFT
第1および第2の電圧抑制付過電流継電器501,502は、T相−R相の線間電圧VTRを用いて抑制電圧VRyを次式により算出する。
Ry=V
ここで、V=VTR∠210°
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が他の角度範囲β内だけ遅れていたり進んでいたりしていない(すなわち、−6.76°よりも大きくて6.76°よりも小さい)ことを条件に、第1および第2の電圧抑制付過電流継電器501,502は、R相−S相−T相間の短絡事故と判定する(図3(d)参照)。
R相−S相−T相間の短絡事故が発生すると、図8に破線の矢印で示すように送配電線のR相、S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、和接続された第1および第2の変流器31,32から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、図8に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル和となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅となる(図4(d)参照)。
Ry1=IFR+IFS
|IRy1|=|IFR+IFS|=|IFR|=|IFS
また、和接続された第2および第3の変流器32,33から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、図8に破線の太矢印で示すようにS相の短絡電流IFSとT相の短絡電流IFTとのベクトル和となり、第2の短絡電流IRy2の振幅はS相の短絡電流IFS(T相の短絡電流IFT)の振幅となる(図4(d)参照)。
Ry2=IFS+IFT
|IRy2|=|IFS+IFT|=|IFS|=|IFT
第1および第2の電圧抑制付過電流継電器501,502は、T相−R相の線間電圧VTRを用いて抑制電圧VRyを次式により算出する。
Ry=V
ここで、V=VTR∠210°
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by an angle range α (+ α) with reference to the phase = 210 °, the first and second overcurrent relays with voltage suppression 50 1 , 50 2 is determined as a short circuit accident between the R phase and the S phase (see FIG. 3A).
When a short circuit accident occurs between the R phase and the S phase, an R phase short circuit current I FR flows in the R phase of the transmission / distribution line in the internal direction as shown by a broken arrow in FIG. While the short-circuit current I FS phase flows to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Therefore, the first short-circuit current I Ry1 input to the first overcurrent relay with voltage suppression 50 1 from the first and second current transformers 3 1 and 3 2 connected in sum is shown by a solid line in FIG. As indicated by the thick arrow, the vector sum of the R-phase short-circuit current I FR and the S-phase short-circuit current I FS is obtained, and the amplitude of the first short-circuit current I Ry1 is “0” (see FIG. 4A). In FIG. 4, the short-circuit currents I FR , I FS and I FT flowing in the inner direction of the transmission / distribution line are solid arrows, and the short-circuit currents I FR , I FS and I FT flowing in the outer direction of the transmission / distribution line are (Indicated by a dashed-dotted arrow).
I Ry1 = I FR + I FS = 0
| I Ry1 | = | I FR + I FS | = 0
Further, the second short-circuit current I Ry2 input from the second and third current transformers 3 2 and 3 3 connected in sum to the second overcurrent relay 50 2 with voltage suppression is shown by a broken line in FIG. As indicated by the thick arrow, the S-phase short-circuit current I FS is obtained , and the amplitude of the second short-circuit current I Ry2 is the amplitude of the S-phase short-circuit current I FS (see FIG. 4A).
I Ry2 = I FS
| I Ry2 | = | I FS |
The first and second overcurrent relays with voltage suppression 50 1 , 50 2 calculate the suppression voltage V Ry by the following formula using the T-phase to R-phase line voltage V TR .
V Ry = 2 × V × cos (60 ° + α)
Here, V = V TR ∠ (210 ° + α)
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is The first and second overcurrent relays with voltage suppression 50 1 when the phase of the line voltage V TR of T phase-R phase is advanced only within the angle range α (−α) with respect to the phase = 210 °. , 50 2 are determined as a short-circuit accident between the S phase and the T phase (see FIG. 3B).
When a short circuit accident S phase -T phase occurs, the short-circuit current I FS of S-phase flows inwardly into S phase of the transmission and distribution lines, as shown by the dashed thick arrows in FIG. 6, the T-phase of the transmission and distribution lines short-circuit current I FT T-phase is flowing to the outside direction, the R-phase of the transmission and distribution lines does not flow a short-circuit current I FR of R-phase.
Therefore, the first short-circuit current I Ry1 input from the first and second current transformers 3 1 and 3 2 connected in sum to the first overcurrent relay 50 1 with voltage suppression is shown by a solid line in FIG. As indicated by a thick arrow, the S-phase short-circuit current I FS is obtained , and the amplitude of the first short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS (see FIG. 4B).
I Ry1 = I FS
| I Ry1 | = | I FS |
Further, the second short-circuit current I Ry2 input to the second overcurrent relay with voltage suppression 50 2 from the second and third current transformers 3 2 and 3 3 connected in sum is shown by a broken line in FIG. As indicated by the thick arrow, the vector sum of the S-phase short-circuit current I FS and the T-phase short-circuit current I FT is obtained, and the amplitude of the second short-circuit current I Ry2 is “0” (see FIG. 4B). .
I Ry2 = I FS + I FT = 0
| I Ry2 | = | I FS + I FT | = 0
The first and second overcurrent relays with voltage suppression 50 1 , 50 2 calculate the suppression voltage V Ry by the following formula using the T-phase to R-phase line voltage V TR .
V Ry = 2 × V × cos (60 ° + α)
Here, V = V TR ∠ (210 ° −α)
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the R-phase phase voltage V R before the short circuit accident is 0 ° as a reference, and the phase of the R-phase phase voltage V R has a predetermined other angle range β (6.76 ° ≦ β ≦ 60 °, see equation (3)) (−β), the first and second overcurrent relays with voltage suppression 50 1 , 50 2 have a short circuit accident between the T phase and the R phase. Determination is made (see FIG. 3C).
β ≧ 60 ° -tan −1 [42.5 / {110 / (2 × 3 1/2 )}]
≧ 6.76 (°) (3)
When a short-circuit accident between the T-phase and the R-phase occurs, a T-phase short-circuit current I FT flows in the T-phase of the transmission / distribution line in the internal direction as shown by the broken arrow in FIG. While the short-circuit current I FR phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Therefore, the first short-circuit current I Ry1 input to the first overcurrent relay with voltage suppression 50 1 from the first and second current transformers 3 1 and 3 2 connected in sum is represented by a solid line in FIG. As indicated by the thick arrow, the R-phase short-circuit current I FR is obtained , and the amplitude of the first short-circuit current I Ry1 is the amplitude of the R-phase short-circuit current I FR (see FIG. 4C).
I Ry1 = I FR
| I Ry1 | = | I FR
Further, the second short-circuit current I Ry2 input to the second overcurrent relay 50 2 with voltage suppression from the second and third current transformers 3 2 and 3 3 connected in sum is represented by a broken line in FIG. As indicated by the thick arrow, the T-phase short-circuit current I FT is obtained , and the amplitude of the second short-circuit current I Ry2 is the amplitude of the T-phase short-circuit current I FT (see FIG. 4C).
I Ry2 = I FT
| I Ry2 | = | I FT |
The first and second overcurrent relays with voltage suppression 50 1 , 50 2 calculate the suppression voltage V Ry by the following formula using the T-phase to R-phase line voltage V TR .
V Ry = V
Here, V = V TR ∠210 °
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 .. is smaller than .95 °), and the phase of the R phase voltage V R before the short-circuit accident is 0 ° or the phase of the R phase voltage V R is delayed or advanced by another angle range β. The first and second overcurrent relays with voltage suppression 50 1 , 50 2 are R on the condition that the first and second voltage suppression overcurrent relays 50 1 , 50 2 are not deviated (ie, larger than −6.76 ° and smaller than 6.76 °) It is determined as a short-circuit accident between phase S, phase S, and phase T (see FIG. 3D).
When a short circuit accident occurs between the R phase, the S phase, and the T phase, the short circuit current I FR of the R phase to the R phase, the S phase, and the T phase of the transmission and distribution line as shown by the broken arrows in FIG. The current I FS and the T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 °.
Therefore, the first short-circuit current I Ry1 input to the first overcurrent relay 50 1 with voltage suppression from the first and second current transformers 3 1 and 3 2 connected in sum is represented by a solid line in FIG. As indicated by the thick arrows, the vector sum of the R-phase short-circuit current I FR and the S-phase short-circuit current I FS is obtained, and the amplitude of the first short-circuit current I Ry1 is the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 4D).
I Ry1 = I FR + I FS
| I Ry1 | = | I FR + I FS | = | I FR | = | I FS |
Further, the second short-circuit current I Ry2 input from the second and third current transformers 3 2 and 3 3 connected in sum to the second overcurrent relay 50 2 with voltage suppression is shown by a broken line in FIG. As indicated by the thick arrow, the vector sum of the S-phase short-circuit current I FS and the T-phase short-circuit current I FT is obtained, and the amplitude of the second short-circuit current I Ry2 is the S-phase short-circuit current I FS I FT ) (see FIG. 4D).
I Ry2 = I FS + I FT
| I Ry2 | = | I FS + I FT | = | I FS | = | I FT |
The first and second overcurrent relays 50 1 and 50 2 with voltage suppression use the T-phase to R-phase line voltage V TR to calculate the suppression voltage V Ry according to the following equation.
V Ry = V
Here, V = V TR ∠210 °

第1および第2の電圧抑制付過電流継電器501,502は、抑制電圧VRyに応じて電流整定値の倍率を規定する電圧抑制特性(図9参照)によって決定される電流整定値を第1および第2の短絡電流IRy1,IRy2の振幅が超えた場合には、第1乃至第3の遮断器21〜23を一括遮断する。
なお、R相−S相間の短絡事故の場合には、第1の短絡電流IRy1の振幅が“0”となるが、第2の電圧抑制付過電流継電器502の動作によって第1乃至第3の遮断器21〜23が一括遮断されるので、問題ない。また、S相−T相間の短絡事故の場合には、第2の短絡電流IRy2の振幅が“0”となるが、第1の電圧抑制付過電流継電器501の動作によって第1乃至第3の遮断器21〜23が一括遮断されるので、問題ない。
The first and second overcurrent relays 50 1 , 50 2 with voltage suppression have a current set value determined by a voltage suppression characteristic (see FIG. 9) that defines the magnification of the current set value according to the suppression voltage V Ry . when the amplitude of the first and second short-circuit current I Ry1, I Ry2 is exceeded, collectively blocking the first to third circuit breaker 2 1 to 2 3.
In the case of a short-circuit accident between the R-phase and the S-phase, the amplitude of the first short-circuit current I Ry1 becomes “0”, but the first to first currents are controlled by the operation of the second overcurrent relay with voltage suppression 50 2 . Since the 3 circuit breakers 2 1 to 2 3 are collectively cut off, there is no problem. In the case of a short-circuit accident between the S-phase and the T-phase, the amplitude of the second short-circuit current I Ry2 becomes “0”, but the first to the second currents are controlled by the operation of the first overcurrent relay 50 1 with voltage suppression. Since the 3 circuit breakers 2 1 to 2 3 are collectively cut off, there is no problem.

以上の説明では、送配電線のR相およびS相に設置された第1および第2の変流器31,32を和接続するとともに、送配電線のS相およびT相に設置された第2および第3の変流器32,33を和接続したが、和接続する2つの変流器は他の組合せでもよい。
また、T相−R相の線間電圧VTRおよびR相の相電圧VRを用いたが、表1に丸印で示す電圧の組合せのいずれか1つを用いてもよい。ただし、上述した短絡事故発生判定条件および事故様相判定条件を電圧の組合せに応じて変更する必要がある。

Figure 2009033819
In the above description, the first and second current transformers 3 1 and 3 2 installed in the R phase and the S phase of the transmission / distribution line are connected together and installed in the S phase and the T phase of the transmission / distribution line. Although the second and third current transformers 3 2 and 3 3 are sum-connected, the two current transformers to be sum-connected may be in other combinations.
Further, although the T-phase-R phase line voltage V TR and the R-phase phase voltage V R are used, any one of the voltage combinations indicated by circles in Table 1 may be used. However, it is necessary to change the short-circuit accident occurrence determination condition and the accident aspect determination condition described above according to the combination of voltages.
Figure 2009033819

本発明による電圧抑制付過電流継電装置では、送配電線につき和接続された変流器および電圧抑制付過電流継電器を2組使用することにより、他回路にまたがる短絡事故があった場合には、自回路のいずれかの相に短絡電流が流れるため、2台の電圧抑制付過電流継電器の少なくとも一方によってこの短絡事故を確実に検出することができる。   In the overcurrent relay device with voltage suppression according to the present invention, when two sets of current transformers and overcurrent relays with voltage suppression are used in combination for the transmission and distribution lines, there is a short-circuit accident that spans other circuits. Since a short-circuit current flows in any phase of its own circuit, this short-circuit accident can be reliably detected by at least one of the two overcurrent relays with voltage suppression.

以上では、送配電線において使用される電圧抑制付過電流継電器との組合せで和接続された変流器について説明したが、和接続された変流器は、送配電線以外の三相交流回路において使用されている電圧抑制付過電流継電器と組み合わせても、同様の効果を得ることができる。   In the above, the current transformer connected in combination with the overcurrent relay with voltage suppression used in the transmission / distribution line has been described. However, the current transformer connected in the sum is a three-phase AC circuit other than the transmission / distribution line. The same effect can be obtained even when combined with the overcurrent relay with voltage suppression used in the above.

本発明の一実施例による電圧抑制付過電流継電装置について説明するための図である。It is a figure for demonstrating the overcurrent relay apparatus with a voltage suppression by one Example of this invention. 短絡事故が発生していないときに図1に示した第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の負荷電流I1,I2と、第1および第2の電圧抑制付過電流継電器501,502に入力されるT相−R相の線間電圧VTRおよびR相の相電圧VRについて説明するための図である。First and second load currents I 1 and I 2 input to the first and second voltage suppression overcurrent relays 50 1 and 50 2 shown in FIG. is a diagram for explaining the phase voltage V R of the first and second voltage suppression with overcurrent relay 50 1, 50 between the lines of the T-phase -R phase to be input to the second voltage V TR and R-phase. 短絡事故が発生したときに図1に示した第1および第2の電圧抑制付過電流継電器501,502に入力されるT相−R相の線間電圧VTRおよびR相の相電圧VRについて説明するための図である。When a short-circuit accident occurs, the T-phase-R line voltage V TR and the R-phase phase voltage input to the first and second overcurrent relays 50 1 , 50 2 with voltage suppression shown in FIG. it is a diagram for explaining V R. 短絡事故が発生したときに図1に示した第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。For the first and second biasing voltage suppression overcurrent relay 50 1, 50 2 to the first and second input respectively of the short-circuit current I Ry1, I Ry2 be described as shown in FIG. 1 when a short circuit accident occurs FIG. 送配電線のR相−S相間に短絡事故が発生した場合に図1に示した第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。When a short circuit accident occurs between the R-phase and the S-phase of the transmission / distribution line, the first and second input respectively to the first and second overcurrent relays 50 1 and 50 2 with voltage suppression shown in FIG. it is a diagram for explaining a short-circuit current I Ry1, I Ry2. 送配電線のS相−T相間に短絡事故が発生した場合に図1に示した第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。When a short circuit accident occurs between the S phase and the T phase of the transmission / distribution line, the first and second input respectively to the first and second overcurrent relays 50 1 and 50 2 with voltage suppression shown in FIG. it is a diagram for explaining a short-circuit current I Ry1, I Ry2. 送配電線のT相−R相間に短絡事故が発生した場合に図1に示した第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。When a short circuit accident occurs between the T phase and the R phase of the transmission / distribution line, the first and second input respectively to the first and second overcurrent relays 50 1 and 50 2 with voltage suppression shown in FIG. it is a diagram for explaining a short-circuit current I Ry1, I Ry2. 送配電線のR相−S相−T相間に短絡事故が発生した場合に図1に示した第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。The first and second overcurrent relays 50 1 and 50 2 with voltage suppression shown in FIG. 1 when a short circuit accident occurs between the R phase, the S phase, and the T phase of the transmission / distribution line, respectively. it is a diagram for explaining a second short-circuit current I Ry1, I Ry2. 電圧抑制特性の一例を示す図である。It is a figure which shows an example of a voltage suppression characteristic. 電圧抑制付過電流継電器を送配電線の各相に設置して短絡事故からの保護を図る従来方法を説明するための図である。It is a figure for demonstrating the conventional method which installs the overcurrent relay with a voltage suppression in each phase of a power transmission and distribution line, and protects from a short circuit accident. 末端回路の送配電線などで電圧抑制付過電流継電器を2相にだけ設置して短絡事故からの保護を図る従来方法を説明するための図である。It is a figure for demonstrating the conventional method which aims at the protection from a short circuit accident by installing the overcurrent relay with a voltage suppression only in two phases by the transmission / distribution line etc. of a terminal circuit.

符号の説明Explanation of symbols

1 電源
1〜23 第1乃至第3の遮断器
1〜33 第1乃至第3の変流器
1〜43 第1乃至第3の電圧抑制付過電流継電器
6 計器用変圧器
501,502 第1および第2の電圧抑制付過電流継電器
R,IS,IT 負荷電流
1,I2 第1および第2の負荷電流
FR,IFS,IFT 短絡電流
Ry1,IRy2 第1および第2の短絡電流
R,VS,VT 相電圧
RS,VST,VTR 線間電圧
Ry 抑制電圧
θ インピーダンス角
k1,k2 第1および第2の電圧値
α,β 角度範囲
1 power 2 1 to 2 3 first to third circuit breaker 3 1 to 3 3 first to third current transformer 41 to 3 first to third voltage overcurrent relay 6 potential transformers with suppressed 50 1 , 50 2 first and second overcurrent relays with voltage suppression I R , I S , IT load currents I 1 , I 2 first and second load currents I FR , I FS , I FT short-circuited current I Ry1, I Ry2 first and second short-circuit current V R, V S, V T-phase voltage V RS, V ST, V TR line voltage V Ry suppression voltage θ impedance angle k1, k2 first and second Voltage value α, β Angle range

Claims (5)

短絡事故から三相交流回路を保護するための電圧抑制付過電流継電装置であって、
前記三相交流回路の第1の相に設置された第1の変流器(31)と、
前記三相交流回路の第2の相に設置された、かつ、前記第1の変流器と和接続された第2の変流器(32)と、
前記三相交流回路の第3の相に設置された、かつ、前記第2の変流器と和接続された第3の変流器(33)と、
前記和接続された第1および第2の変流器から入力される第1の短絡電流(IRy1)と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断する第1の電圧抑制付過電流継電器(501)と、
前記和接続された第2および第3の変流器から入力される第2の短絡電流(IRy2)と前記電圧情報とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断する第2の電圧抑制付過電流継電器(502)と、
を具備することを特徴とする、電圧抑制付過電流継電装置。
An overcurrent relay device with voltage suppression for protecting a three-phase AC circuit from a short circuit accident,
A first current transformer (3 1 ) installed in the first phase of the three-phase AC circuit;
A second current transformer (3 2 ) installed in the second phase of the three-phase alternating current circuit and connected to the first current transformer;
A third current transformer (3 3 ) installed in the third phase of the three-phase AC circuit and connected in union with the second current transformer;
When a short-circuit fault is detected based on the first short-circuit current (I Ry1 ) input from the sum-connected first and second current transformers and voltage information of the three-phase AC circuit, the three-phase AC A first overcurrent relay with voltage suppression (50 1 ) that collectively shuts off first to third circuit breakers (2 1 to 2 3 ) installed in each phase of the circuit;
When a short circuit fault is detected based on the second short circuit current (I Ry2 ) input from the sum-connected second and third current transformers and the voltage information, the first to third circuit breakers are detected. A second overcurrent relay with voltage suppression (50 2 ) that simultaneously shuts off
An overcurrent relay device with voltage suppression, comprising:
前記第1および第2の電圧抑制付過電流継電器が、前記電圧情報から求めた所定の組合せの1つの線間電圧(VTR)および1つの相電圧(VR)を用いて、該線間電圧が所定の第1の電圧値(k1)以下であると短絡事故が発生したと判定するとともに、該線間電圧が該第1の電圧値よりも大きい所定の第2の電圧値(k2)以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が所定の角度範囲(α)内だけ遅れているか進んでいると短絡事故が発生したと判定することを特徴とする、請求項1記載の電圧抑制付過電流継電装置。 The first and second overcurrent relays with voltage suppression use the one line voltage (V TR ) and one phase voltage (V R ) in a predetermined combination obtained from the voltage information, If the voltage is equal to or lower than the predetermined first voltage value (k1), it is determined that a short circuit accident has occurred, and the predetermined second voltage value (k2) in which the line voltage is larger than the first voltage value It is determined that a short circuit accident has occurred if the phase of the line voltage is delayed or advanced by a predetermined angle range (α) with reference to the phase of the line voltage before the short circuit accident as a reference. The overcurrent relay device with voltage suppression according to claim 1, wherein: 前記第1および第2の電圧抑制付過電流継電器が、
前記線間電圧が前記第2の電圧値以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ遅れている場合に、前記三相交流回路の第1の相と第2の相との間の短絡事故であると判定し、
前記線間電圧が前記第2の電圧値以下であり、かつ、短絡事故前の前記線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ進んでいる場合に、前記三相交流回路の前記第2の相と第3の相との間の短絡事故であると判定し、
前記線間電圧が前記第1の電圧値以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ遅れていたり進んでいたりしておらず、かつ、短絡事故前の前記相電圧の位相を基準として該相電圧の位相が所定の他の角度範囲(β)内だけ進んでいる場合に、前記三相交流回路の前記第1の相と前記第3の相との間の短絡事故であると判定し、
前記線間電圧が前記第1の電圧値以下であり、かつ、短絡事故前の該線間電圧の位相を基準として該線間電圧の位相が前記角度範囲内だけ遅れていたり進んでいたりしておらず、かつ、短絡事故前の前記相電圧の位相を基準として該相電圧の位相が前記他の角度範囲内だけ遅れていたり進んでいたりしていない場合に、前記三相交流回路の前記第1の相と前記第2の相と前記第3の相との間の短絡事故であると判定する、
ことを特徴とする、請求項2記載の電圧抑制付過電流継電装置。
The first and second overcurrent relays with voltage suppression are:
When the line voltage is equal to or less than the second voltage value and the phase of the line voltage is delayed by the angle range with reference to the phase of the line voltage before the short circuit accident, the three Determining that there is a short circuit accident between the first phase and the second phase of the phase AC circuit;
When the line voltage is equal to or less than the second voltage value and the phase of the line voltage is advanced by the angle range with reference to the phase of the line voltage before the short circuit accident, the three Determining a short circuit accident between the second phase and the third phase of the phase AC circuit;
The line voltage is less than or equal to the first voltage value, and the phase of the line voltage is delayed or advanced by the angle range with reference to the phase of the line voltage before the short circuit accident. The first phase of the three-phase AC circuit when the phase voltage phase is advanced by a predetermined angle range (β) with reference to the phase voltage phase before the short circuit accident. Determining that there is a short circuit accident between the phase and the third phase;
The line voltage is less than or equal to the first voltage value, and the phase of the line voltage is delayed or advanced by the angle range with reference to the phase of the line voltage before the short circuit accident. And when the phase of the phase voltage is not delayed or advanced only within the other angle range with reference to the phase of the phase voltage before the short circuit accident, the first phase of the three-phase AC circuit Determining a short circuit accident between one phase, the second phase and the third phase;
The overcurrent relay device with voltage suppression according to claim 2, wherein:
前記第1および第2の電圧抑制付過電流継電器が、
短絡事故が発生したと判定すると、前記線間電圧を用いて抑制電圧(VRy)を算出し、
該算出した抑制電圧に応じて電流整定値を規定する電圧抑制特性によって決定される電流整定値を前記第1および第2の短絡電流の振幅が超えた場合に、前記第1乃至第3の遮断器を一括遮断する、
ことを特徴とする、請求項2または3記載の電圧抑制付過電流継電装置。
The first and second overcurrent relays with voltage suppression are:
When it is determined that a short-circuit accident has occurred, a suppression voltage (V Ry ) is calculated using the line voltage,
When the amplitudes of the first and second short-circuit currents exceed a current set value determined by a voltage suppression characteristic that defines a current set value according to the calculated suppress voltage, the first to third cutoffs Shut off all the devices at once,
The overcurrent relay device with voltage suppression according to claim 2 or 3, characterized in that.
前記三相交流回路の前記第1の相と前記第2の相との間の短絡事故である場合には、前記第2の電圧抑制付過電流継電器のみが動作して前記第1乃至第3の遮断器を一括遮断し、
前記三相交流回路の前記第2の相と前記第3の相との間の短絡事故である場合には、前記第1の電圧抑制付過電流継電器のみが動作して前記第1乃至第3の遮断器を一括遮断する、
ことを特徴とする、請求項1乃至4いずれかに記載の電圧抑制付過電流継電装置。
In the case of a short circuit accident between the first phase and the second phase of the three-phase AC circuit, only the second overcurrent relay with voltage suppression operates and the first to third All the circuit breakers
In the case of a short circuit accident between the second phase and the third phase of the three-phase AC circuit, only the first overcurrent relay with voltage suppression operates and the first to third All circuit breakers
The overcurrent relay device with voltage suppression according to claim 1, wherein the overcurrent relay device has voltage suppression.
JP2007192967A 2007-07-25 2007-07-25 Overcurrent relay device with voltage suppression Withdrawn JP2009033819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192967A JP2009033819A (en) 2007-07-25 2007-07-25 Overcurrent relay device with voltage suppression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192967A JP2009033819A (en) 2007-07-25 2007-07-25 Overcurrent relay device with voltage suppression

Publications (1)

Publication Number Publication Date
JP2009033819A true JP2009033819A (en) 2009-02-12

Family

ID=40403726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192967A Withdrawn JP2009033819A (en) 2007-07-25 2007-07-25 Overcurrent relay device with voltage suppression

Country Status (1)

Country Link
JP (1) JP2009033819A (en)

Similar Documents

Publication Publication Date Title
JP5466302B2 (en) System and method for a multiphase ground fault circuit breaker
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
KR20140121593A (en) Power quality recovery relay
JP2010127860A (en) Device and method for measuring leak current
JP2010074952A (en) Reclosing system of transmission line
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
Wilson et al. Detecting open phase conductors
JP2009033819A (en) Overcurrent relay device with voltage suppression
JP2008259327A (en) Reclosing method
JP2009033817A (en) Overcurrent relay device with voltage suppression
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP6604882B2 (en) Transformer high voltage side phase loss detection system
JP2010051121A (en) Direction protective relay device
JP2010166774A (en) Directional power relay device
JP2010051122A (en) Direction protective relay device
JP2009033818A (en) Overcurrent relay device with voltage suppression
JP2009044954A (en) Cross-through current transformer and protective relay system
JP2009077563A (en) Three-phase bushing current transformer and protective relay device
JP2010166783A (en) Directional protective relay device and directional power relay device
JP5371414B2 (en) Overcurrent relay with directional characteristics
JP2010166784A (en) Different-line different-phase cross through current transformer and line selecting relay device
Lee et al. Relay loadability challenges experienced in long lines
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device
JP2010166776A (en) Directional power relay device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005