JP2009033799A - Cooling structure of three-level power conversion equipment - Google Patents

Cooling structure of three-level power conversion equipment Download PDF

Info

Publication number
JP2009033799A
JP2009033799A JP2007192413A JP2007192413A JP2009033799A JP 2009033799 A JP2009033799 A JP 2009033799A JP 2007192413 A JP2007192413 A JP 2007192413A JP 2007192413 A JP2007192413 A JP 2007192413A JP 2009033799 A JP2009033799 A JP 2009033799A
Authority
JP
Japan
Prior art keywords
cooling
plate
cooling structure
mediating member
level power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192413A
Other languages
Japanese (ja)
Inventor
Toshiharu Mochida
敏治 持田
Yasushi Abe
康 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007192413A priority Critical patent/JP2009033799A/en
Publication of JP2009033799A publication Critical patent/JP2009033799A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the cooling capacity without being affected by the limit width in manufacture or the limit cooling capacity of a coolant. <P>SOLUTION: A plate-shaped mediating member 4 is interposed between semiconductor elements 1-3, such as switching elements or diode elements of an IGBT or the like, and coolants 5-6, and each semiconductor element 1-3, on its one side, and many coolants 5-6, on the other side, are fastened by screwing, so as to make one coolant. Since the plurality of coolants 5, 6, and 7 are coupled thermally by the plate-shaped mediating member 4, it becomes possible to substantially increase its thermal capacity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電力変換装置を構成する半導体素子の冷却構造に関する。   The present invention relates to a cooling structure for a semiconductor element constituting a power conversion device.

近年、電力変換装置に対する大容量化の需要が高まっている。
その手段の1つとして、多レベル電力変換装置による装置の高圧化があり(装置容量=電圧×電流)、その代表が3レベル電力変換装置である。3レベル電力変換装置の例は、例えば特許文献1に開示されている。図4は、その特許文献1に開示された3レベルインバータ回路の1相分を示す回路図である。
In recent years, there is an increasing demand for increasing the capacity of power conversion devices.
One of the means is to increase the voltage of the apparatus using a multi-level power converter (apparatus capacity = voltage × current), and the representative is a three-level power converter. An example of a three-level power converter is disclosed in Patent Document 1, for example. FIG. 4 is a circuit diagram showing one phase of the three-level inverter circuit disclosed in Patent Document 1. In FIG.

図4において、Q1〜Q4はスイッチング素子としての例えばIGBT(絶縁ゲートバイポーラトランジスタ)、CD1,CD2はダイオードである。この電力変換装置では、IGBTQ1〜Q4をon−offさせることにより、直流電源PNから交流電力を作ったり、その逆の変換をしたりする。3レベル回路では、Q1とQ2およびQ3とQ4がそれぞれ直列に接続されていることから、装置として素子耐圧の2倍の電圧を取り出すことが可能である。   In FIG. 4, Q1 to Q4 are, for example, IGBTs (insulated gate bipolar transistors) as switching elements, and CD1 and CD2 are diodes. In this power converter, the IGBTs Q1 to Q4 are turned on and off to generate AC power from the DC power supply PN and vice versa. In the three-level circuit, Q1 and Q2 and Q3 and Q4 are connected in series, so that a voltage twice as high as the device withstand voltage can be taken out as a device.

図5は、図4の構造例を示す概要図である。Q1〜Q4はIGBT、CD1,CD2はダイオード、Hはこれらを冷却するための冷却体である。この冷却体Hは、通流時IGBTやダイオードから発生する熱を取り除き、許容温度以下に保つために設けられる。なお、IGBTおよびダイオードは、ネジ止めにより冷却体に取り付けられている。図5では、1相分の半導体素子Q1〜Q4,CD1,2を1つの冷却体Hで冷却しているが、その理由は以下の通りである。   FIG. 5 is a schematic diagram showing an example of the structure of FIG. Q1 to Q4 are IGBTs, CD1 and CD2 are diodes, and H is a cooling body for cooling them. The cooling body H is provided in order to remove heat generated from the IGBT and the diode during flow and keep the temperature below an allowable temperature. The IGBT and the diode are attached to the cooling body by screwing. In FIG. 5, the semiconductor elements Q1 to Q4, CD1 and CD2 for one phase are cooled by one cooling body H for the following reason.

図6に、3レベル回路の運転モード毎の発熱分担例を示す。
同図から、3レベル回路では力率に応じて発熱分担が変わることが分かる。例えば、図6(a)のように力率=1の場合はQ1:100[W],Q2:50[W],CD1:50[W]であっても、力率=0になると図6(b)のようにQ1:50[W],Q2:100[W],CD1:50[W]のように変化する。
FIG. 6 shows an example of heat generation sharing for each operation mode of the three-level circuit.
From the figure, it can be seen that in the three-level circuit, the heat generation share changes according to the power factor. For example, as shown in FIG. 6A, when the power factor is 1, even when Q1: 100 [W], Q2: 50 [W], and CD1: 50 [W], when the power factor = 0, FIG. As shown in (b), it changes like Q1: 50 [W], Q2: 100 [W], CD1: 50 [W].

このため、例えば図7のように、半導体素子毎に冷却体を用意すると、合計250[W]分の冷却体が必要になる。しかし、図8のように同一冷却体で冷却すると、合計200[W]分の冷却体で済む。このような理由から、3レベル回路では複数の半導体を同一冷却体で冷却する方が効率的と言う訳である。   For this reason, for example, as shown in FIG. 7, if a cooling body is prepared for each semiconductor element, a total of 250 [W] cooling bodies are required. However, when cooling with the same cooling body as shown in FIG. 8, a cooling body for a total of 200 [W] is sufficient. For this reason, in a three-level circuit, it is more efficient to cool a plurality of semiconductors with the same cooling body.

特開2005−160248号公報JP 2005-160248 A

しかし、電力変換装置を更に大容量化しようとすると、上記特許文1のような冷却方法では問題が残る。すなわち、大容量化のために、高電圧化に加えて大電流化も行なおうとすると、素子の発熱はさらに増大し、これに対応するためには冷却体が大きくなるという問題である。
したがって、この発明の課題は、冷却体の製作限界幅や限界冷却容量の影響を受けることなく、冷却容量を増大させることにある。
However, when the capacity of the power conversion device is further increased, there remains a problem with the cooling method as described in Patent Document 1 above. In other words, if the current is increased in addition to the increase in voltage to increase the capacity, the heat generation of the element further increases, and the cooling body becomes large in order to cope with this.
Accordingly, an object of the present invention is to increase the cooling capacity without being affected by the manufacturing limit width or the limiting cooling capacity of the cooling body.

このような課題を解決するため、請求項1の発明では、3レベル電力変換装置を構成する半導体素子の冷却構造であって、
前記半導体素子と冷却体との間に板状の仲介部材を介在させ、その一方の面には複数の半導体素子を、もう一方の面には複数の冷却体を、ネジ止めによりそれぞれ締結し、1つの冷却体とすることを特徴とする。
In order to solve such a problem, the invention of claim 1 is a cooling structure of a semiconductor element constituting a three-level power converter,
A plate-like mediating member is interposed between the semiconductor element and the cooling body, and a plurality of semiconductor elements are fastened to one surface thereof, a plurality of cooling bodies are fastened to the other surface by screwing, One cooling body is used.

上記請求項1の発明においては、前記前記仲介部材の少なくとも一部にヒートパイプ,ヒートレーン,ベーパーチャンバーのいずれかによる冷媒の沸騰・凝縮を活用した熱移動促進機構を用いることができる(請求項2の発明)。この請求項2の発明においては、前記仲介部材を複数に分割することができる(請求項3の発明)。   In the first aspect of the invention, a heat transfer promoting mechanism utilizing boiling / condensation of refrigerant by any one of a heat pipe, a heat lane, and a vapor chamber can be used for at least a part of the mediating member. Invention). In the invention of claim 2, the mediating member can be divided into a plurality of parts (invention of claim 3).

この発明によれば、電力変換装置の半導体素子の冷却構造において、冷却体の製作限界幅や限界冷却容量等の影響を受けずに、冷却容量を増大できるという利点が得られる。   According to the present invention, in the cooling structure of the semiconductor element of the power converter, there is an advantage that the cooling capacity can be increased without being affected by the manufacturing limit width of the cooling body, the limit cooling capacity, and the like.

図1はこの発明の実施の形態を説明するための構成図である。
図4,5で示した3レベル回路のうちの、例えばQ1,Q2,CD1に関する冷却構造を示している。すなわち、図1(a)の冷却構造はIGBT1,2(Q1,Q2)、ダイオード3(CD1)、板状仲介部材4、冷却体5,6,7から構成されており、各冷却体5,6,7は図1(b)に示す従来例と同じ構成になっている。IGBT1,2およびダイオード3は板状仲介部材4の上面にネジ止めされ、冷却体5,6,7は板状仲介部材4の下面にネジ止めされる。
FIG. 1 is a block diagram for explaining an embodiment of the present invention.
FIG. 6 shows a cooling structure related to, for example, Q1, Q2, and CD1 in the three-level circuit shown in FIGS. That is, the cooling structure of FIG. 1A is composed of IGBTs 1 and 2 (Q1 and Q2), a diode 3 (CD1), a plate-like mediating member 4, and cooling bodies 5, 6 and 7. 6 and 7 have the same configuration as the conventional example shown in FIG. The IGBTs 1 and 2 and the diode 3 are screwed to the upper surface of the plate-like mediating member 4, and the cooling bodies 5, 6 and 7 are screwed to the lower surface of the plate-like mediating member 4.

また、板状仲介部材4としては、銅,アルミなど熱伝導性の良い板状のものを用いるとともに、各素子と板状仲介部材4との接触面には、それぞれ熱伝導性の高いコンパウンドなどが塗布される。各冷却体5,6,7はベース板71と羽72から形成され、その材質にはそれぞれ銅,アルミなど熱伝導性の良いものが用いられる。ベース板71と羽72との結合は、ロー付け,カシメ等によりなされている。なお、各冷却体5,6,7は図1(b)に示す従来例と同じく、その幅寸法は各々250[mm]で、冷却容量は1個あたり200[W]とされている。   Further, as the plate-like mediating member 4, a plate-like material having good thermal conductivity such as copper or aluminum is used, and a compound having high thermal conductivity is provided on the contact surface between each element and the plate-like mediating member 4. Is applied. Each cooling body 5, 6, 7 is formed of a base plate 71 and a wing 72, and a material having good thermal conductivity such as copper or aluminum is used as the material thereof. The base plate 71 and the wing 72 are joined by brazing, caulking, or the like. Each of the cooling bodies 5, 6, and 7 has a width dimension of 250 [mm] and a cooling capacity of 200 [W] as in the conventional example shown in FIG.

このような構成により、IGBT1,2およびダイオード3から発生する熱は、板状仲介部材4を介して冷却体5,6,7に伝わり、最終的に外気に放出される。仮に、IGBT1が他の素子に比べて突出した熱量を発生した場合でも、その熱は板状仲介部材4を介して冷却体6,7に伝わり、放熱されることになるため、突出したままの温度となることはない。   With such a configuration, the heat generated from the IGBTs 1 and 2 and the diode 3 is transmitted to the cooling bodies 5, 6 and 7 via the plate-like mediating member 4 and finally released to the outside air. Even if the IGBT 1 generates a protruding amount of heat compared to other elements, the heat is transferred to the cooling bodies 6 and 7 via the plate-like mediating member 4 and is radiated, so that the protruding state remains. There is no temperature.

また、図1(a)では板状仲介部材4により、複数の冷却体5,6,7を熱的に結合させている。そのため、図1(b)のような従来例とは異なり、冷却体の製作制限寸法に関係無く大きな冷却容量が得られる。例えば、図1(a)の例の場合、冷却容量が300+150+150=600[W]まで高められている。つまり、装置の大容量化が行なわれることになる。   Further, in FIG. 1A, the plurality of cooling bodies 5, 6, and 7 are thermally coupled by the plate-like mediating member 4. Therefore, unlike the conventional example as shown in FIG. 1B, a large cooling capacity can be obtained regardless of the manufacturing limit size of the cooling body. For example, in the example of FIG. 1A, the cooling capacity is increased to 300 + 150 + 150 = 600 [W]. That is, the capacity of the apparatus is increased.

図2に、この発明の別の実施の形態を示す。図2(a)は斜視図、図2(b)はそのA−A断面図である。
図2(a),(b)からも明らかなように、図1とは板状仲介部材4の内部にヒートパイプ41を埋め込んだ点で相違する。ヒートパイプ41を設けたことで、冷却体5,6,7間の熱的結合が強まり、素子の温度をより平準化することができる。
FIG. 2 shows another embodiment of the present invention. 2A is a perspective view, and FIG. 2B is an AA cross-sectional view thereof.
As is clear from FIGS. 2A and 2B, it differs from FIG. 1 in that a heat pipe 41 is embedded inside the plate-like mediating member 4. By providing the heat pipe 41, the thermal coupling between the cooling bodies 5, 6 and 7 is strengthened, and the temperature of the element can be further leveled.

図3に、この発明のさらに別の実施の形態を示す。
これは、図2を変形したもので、板状仲介部材4を4A,4B,4C分割した点が特徴である。つまり、板材にヒートパイプを埋め込む場合、板材に貫通穴を開け、そこにヒートパイプを挿入する方法が一般的であるが、板材が長くなると加工も難しくなる。そこで、板状仲介部材4を分割することで、穴あけ加工をし易くするものである。
FIG. 3 shows still another embodiment of the present invention.
This is a modification of FIG. 2 and is characterized in that the plate-like mediating member 4 is divided into 4A, 4B, and 4C. That is, when a heat pipe is embedded in a plate material, a method of making a through hole in the plate material and inserting the heat pipe there is generally used, but if the plate material becomes long, processing becomes difficult. Therefore, the plate-like mediating member 4 is divided to facilitate drilling.

以上では、多レベル回路として3レベル回路を用いたが、この発明はこれに限るものではなく、また、冷却体の例として櫛型フィンを用いたが、これに限るものでもない。さらに、冷媒の沸騰・凝縮を活用した熱伝導促進機構としてヒートパイプを用いたが、ヒートレーンやベーパーチャンバーなどを用いることができるのは言うまでも無い。   In the above description, a three-level circuit is used as the multi-level circuit. However, the present invention is not limited to this, and the comb fin is used as an example of the cooling body. However, the present invention is not limited to this. Furthermore, although the heat pipe is used as a heat conduction promoting mechanism utilizing the boiling / condensation of the refrigerant, it goes without saying that a heat lane, a vapor chamber, or the like can be used.

この発明の実施の形態を説明するための構成図Configuration diagram for explaining an embodiment of the present invention この発明の別の実施の形態を示す構成図The block diagram which shows another embodiment of this invention この発明のさらに別の実施の形態を示す構成図The block diagram which shows another embodiment of this invention 3レベル回路の従来例を示す回路構成図Circuit configuration diagram showing a conventional example of a three-level circuit 図4の構造を示す構成図The block diagram which shows the structure of FIG. 従来の3レベル回路における発熱分担例の説明図Explanatory drawing of heat generation sharing example in conventional 3-level circuit 従来の分割冷却体を示す構成図Configuration diagram showing a conventional split cooling body 従来の一体型冷却体を示す構成図Configuration diagram showing a conventional integrated cooling body

符号の説明Explanation of symbols

1,2…IGBT(絶縁ゲートバイポーラトランジスタ)、3…ダイオード、4,4A,4B,4C…板状仲介部材、5,6,7…冷却体、71…ベース板、72…羽。   DESCRIPTION OF SYMBOLS 1, 2 ... IGBT (Insulated gate bipolar transistor), 3 ... Diode, 4, 4A, 4B, 4C ... Plate-shaped mediating member, 5, 6, 7 ... Cooling body, 71 ... Base plate, 72 ... Wings.

Claims (3)

3レベル電力変換装置を構成する半導体素子の冷却構造であって、
前記半導体素子と冷却体との間に板状の仲介部材を介在させ、その一方の面には複数の半導体素子を、もう一方の面には複数の冷却体を、ネジ止めによりそれぞれ締結し、1つの冷却体とすることを特徴とする3レベル電力変換装置の冷却構造。
A cooling structure of a semiconductor element constituting a three-level power converter,
A plate-like mediating member is interposed between the semiconductor element and the cooling body, and a plurality of semiconductor elements are fastened to one surface thereof, a plurality of cooling bodies are fastened to the other surface by screwing, A cooling structure for a three-level power conversion device, wherein the cooling structure is a single cooling body.
前記仲介部材の少なくとも一部にヒートパイプ,ヒートレーン,ベーパーチャンバーのいずれかによる冷媒の沸騰・凝縮を活用した熱移動促進機構を用いたことを特徴とする請求項1に記載の3レベル電力変換装置の冷却構造。   2. The three-level power converter according to claim 1, wherein a heat transfer promotion mechanism using boiling / condensation of a refrigerant by any one of a heat pipe, a heat lane, and a vapor chamber is used for at least a part of the mediating member. Cooling structure. 前記仲介部材を複数に分割したことを特徴とする請求項2に記載の3レベル電力変換装置の冷却構造。   The cooling structure for a three-level power converter according to claim 2, wherein the mediating member is divided into a plurality of parts.
JP2007192413A 2007-07-24 2007-07-24 Cooling structure of three-level power conversion equipment Pending JP2009033799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192413A JP2009033799A (en) 2007-07-24 2007-07-24 Cooling structure of three-level power conversion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192413A JP2009033799A (en) 2007-07-24 2007-07-24 Cooling structure of three-level power conversion equipment

Publications (1)

Publication Number Publication Date
JP2009033799A true JP2009033799A (en) 2009-02-12

Family

ID=40403710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192413A Pending JP2009033799A (en) 2007-07-24 2007-07-24 Cooling structure of three-level power conversion equipment

Country Status (1)

Country Link
JP (1) JP2009033799A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217538A (en) * 2010-03-31 2011-10-27 Toshiba Corp Power conversion apparatus
WO2012090667A1 (en) * 2010-12-27 2012-07-05 日立オートモティブシステムズ株式会社 Power conversion apparatus for vehicle
WO2013140704A1 (en) * 2012-03-21 2013-09-26 富士電機株式会社 Power conversion apparatus
JP2016106518A (en) * 2016-03-01 2016-06-16 富士電機株式会社 Power conversion device
JP2018019599A (en) * 2017-10-31 2018-02-01 富士電機株式会社 Power conversion device
DE112018005941T5 (en) 2017-11-21 2020-08-06 Rohm Co., Ltd. SEMICONDUCTOR DEVICE, POWER MODULE AND POWER SUPPLY

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217538A (en) * 2010-03-31 2011-10-27 Toshiba Corp Power conversion apparatus
WO2012090667A1 (en) * 2010-12-27 2012-07-05 日立オートモティブシステムズ株式会社 Power conversion apparatus for vehicle
JP2012139014A (en) * 2010-12-27 2012-07-19 Hitachi Automotive Systems Ltd Power conversion apparatus for vehicle
WO2013140704A1 (en) * 2012-03-21 2013-09-26 富士電機株式会社 Power conversion apparatus
JP2016106518A (en) * 2016-03-01 2016-06-16 富士電機株式会社 Power conversion device
JP2018019599A (en) * 2017-10-31 2018-02-01 富士電機株式会社 Power conversion device
DE112018005941T5 (en) 2017-11-21 2020-08-06 Rohm Co., Ltd. SEMICONDUCTOR DEVICE, POWER MODULE AND POWER SUPPLY
US11387160B2 (en) 2017-11-21 2022-07-12 Rohm Co., Ltd. Semiconductor apparatus, power module and power supply

Similar Documents

Publication Publication Date Title
JP5046378B2 (en) Power semiconductor module and power semiconductor device equipped with the module
US20170156240A1 (en) Cooled power electronic assembly
US20210153394A1 (en) Cooling arrangement for electrical components, converter with a cooling arrangement, and aircraft having a converter
KR101914927B1 (en) cooling module for Insulated Gate Bipolar Transistors
JP5596748B2 (en) Double-sided cooling power semiconductor package
JP2009033799A (en) Cooling structure of three-level power conversion equipment
JP5028822B2 (en) Power module cooling device
EP3589102B1 (en) Heat transfer structure, power electronics module, cooling element, method of manufacturing a heat transfer structure and method of manufacturing a power electronics component
JP2013230010A (en) Power conversion device
JP2011259536A (en) Cooling device, power conversion device, and railway vehicle
US20190373761A1 (en) Heatsink and method of manufacturing a heatsink
US20100218512A1 (en) Heat exchanger for thermoelectric applications
JP2011176974A (en) Inverter device, compressor, and refrigerant cycle device
JP2008206252A (en) Semiconductor power converter
JP4391351B2 (en) Cooling system
JP5631100B2 (en) Electronic component mounting board cooling structure
WO2019102665A1 (en) Semiconductor device, power module, and power supply device
JP2008042020A (en) Semiconductor module
JP6555177B2 (en) Semiconductor module
JP6748082B2 (en) Semiconductor module
JP5494637B2 (en) Power module cooling device
US20120002452A1 (en) Compact inverter
JP2015053775A (en) Semiconductor power conversion device
US11647612B2 (en) High-density integrated power electronic assembly including double-sided cooling structure
KR20180002663U (en) Thermal radiating structure