JP2009033117A - Heating device and substrate-treating device using the same, method of manufacturing semiconductor device, and penetrating member - Google Patents

Heating device and substrate-treating device using the same, method of manufacturing semiconductor device, and penetrating member Download PDF

Info

Publication number
JP2009033117A
JP2009033117A JP2008154377A JP2008154377A JP2009033117A JP 2009033117 A JP2009033117 A JP 2009033117A JP 2008154377 A JP2008154377 A JP 2008154377A JP 2008154377 A JP2008154377 A JP 2008154377A JP 2009033117 A JP2009033117 A JP 2009033117A
Authority
JP
Japan
Prior art keywords
heating element
heating
penetrating
side wall
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008154377A
Other languages
Japanese (ja)
Other versions
JP4472007B2 (en
Inventor
Akira Hayashida
晃 林田
Masaaki Ueno
正昭 上野
Shinichi Shimada
真一 島田
Kimio Kitamura
公男 北村
Kenji Tanaka
健司 田中
Junichi Nishihara
淳一 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Teitokusha Co Ltd
Original Assignee
Hitachi Kokusai Electric Inc
Teitokusha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, Teitokusha Co Ltd filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008154377A priority Critical patent/JP4472007B2/en
Priority to KR1020080059571A priority patent/KR100969696B1/en
Priority to US12/213,825 priority patent/US8158911B2/en
Publication of JP2009033117A publication Critical patent/JP2009033117A/en
Application granted granted Critical
Publication of JP4472007B2 publication Critical patent/JP4472007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating device having a new holding structure of an electrical heating element, and to provide a substrate-treating device using the heating device, a method of manufacturing a semiconductor device, and a penetrating member. <P>SOLUTION: The heating device comprises: the planar electrical heating element 20 having a cutout or a through hole; a sidewall member 50 that surrounds a heating space 18 and is made of a conductive material; a holding section 30 that is arranged at the side of the heating space 18 in the sidewall member 50 and holds the electrical heating element 20 only by one end; a penetration 40d that projects at the side of the heating space 18 in the sidewall member 50 for arrangement and penetrates the cutout of the electrical heating element 20 or the through hole 40a between one end 20a of the electrical heating element 20 and the other end; and a penetrating member 40 having projections 40b, 40c that project toward a cross direction crossing a direction penetrating from the penetration 40d on the front and rear of the electrical heating element 20 as compared with the penetration 40d and regulates the movement of the electrical heating element 20 to the penetration direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体製造技術、特に、被処理基板を処理室に収容して発熱体により加熱した状態で処理を施す熱処理技術に関し、加熱装置、これを用いた基板処理装置及び半導体装置の製造方法並びに貫通部材に関する。   The present invention relates to a semiconductor manufacturing technique, and more particularly to a heat treatment technique for performing processing in a state in which a substrate to be processed is accommodated in a processing chamber and heated by a heating element, a heating apparatus, a substrate processing apparatus using the same, and a semiconductor device manufacturing method In addition, the present invention relates to a penetrating member.

図1に従来の加熱装置を用いた処理炉500の概略断面図を示す。加熱装置は、略円筒形状で上端が蓋された金属製のケーシング501と、このケーシング501の内側に設けられた略円筒形状の断熱材502と、この断熱材502の内壁に設けられた発熱線503とを有する。この加熱装置の内側に、均熱管504及び処理室を形成する反応管505が設けられ、この反応管505中でウエハ506に所望の熱処理が施される。   FIG. 1 shows a schematic cross-sectional view of a processing furnace 500 using a conventional heating apparatus. The heating device includes a metal casing 501 having a substantially cylindrical shape with an upper end covered, a substantially cylindrical heat insulating material 502 provided inside the casing 501, and a heating wire provided on the inner wall of the heat insulating material 502. 503. A soaking tube 504 and a reaction tube 505 forming a processing chamber are provided inside the heating device, and a desired heat treatment is performed on the wafer 506 in the reaction tube 505.

近年、メタル配線プロセス(Cuアニールなど)で、プロセス温度の低温化(300℃以下)と、さらなるスループット向上が求められている。よって、ウエハの昇降温時間の短縮が重要とされている。しかし、かかる要請に図1に記載の如き加熱装置で応じると、現状のヒータは中高温領域で使用できるように大容量の断熱材を持っているため、昇降温特性が悪く、スループットの向上が困難であった。したがって、熱容量が少なく、高応答性の加熱装置が必要とされている。   In recent years, in the metal wiring process (Cu annealing or the like), a reduction in process temperature (300 ° C. or less) and further improvement in throughput are required. Therefore, it is important to shorten the temperature raising / lowering time of the wafer. However, if the heating device as shown in FIG. 1 responds to such a request, the current heater has a large-capacity heat insulating material so that it can be used in the middle and high temperature range, so the temperature rise / fall characteristics are poor and the throughput is improved. It was difficult. Therefore, there is a need for a highly responsive heating device with a small heat capacity.

また、特許文献1に係る基板処理装置では、発熱体に複数のピンを貫通させ、このピンから加熱空間に冷却ガスを送り込むことで、急激な冷却を可能としている。そして、冷却特性に着目することで、加熱装置の応答性を向上させている。   Further, in the substrate processing apparatus according to Patent Document 1, rapid cooling is enabled by passing a plurality of pins through a heating element and feeding a cooling gas from the pins into the heating space. And the responsiveness of a heating apparatus is improved by paying attention to a cooling characteristic.

特許文献2に係る基板処理装置では、ヒーターユニットが、処理室の周りを取り囲むように敷設された発熱体と、この発熱体を取り囲むように敷設された第一反射体とこの第一反射体の外側に空間を取って取り囲むように敷設された第二反射体とを設け、処理室の昇降温効率を向上させてある。   In the substrate processing apparatus according to Patent Document 2, the heater unit includes a heating element laid so as to surround the processing chamber, a first reflector laid so as to surround the heating element, and the first reflector. A second reflector laid so as to surround and surround the outside is provided to improve the heating and cooling efficiency of the processing chamber.

しかし、いずれの従来技術においても、スループットの向上は不十分であり、発熱体のさらに適切な保持構造が必要とされていた。
WO2007/023855 特開2004−311648
However, in any of the conventional techniques, improvement in throughput is insufficient, and a more appropriate holding structure for the heating element is required.
WO2007 / 023855 JP 2004-311648 A

かかる従来の実情に鑑みて、本発明は、新たな発熱体の保持構造を提供することを目的とする。   In view of the conventional situation, an object of the present invention is to provide a new heating element holding structure.

上記目的を達成するため、本発明に係る加熱装置の特徴は、板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する貫通部材とを有することにある。   In order to achieve the above object, the heating device according to the present invention is characterized by a plate-like heating element having a notch or a through hole, a side wall material made of a conductive material surrounding the heating space, and the side wall material. A holding part that is arranged on the heating space side and holds the heating element only at one end, and is arranged to protrude to the heating space side of the side wall material, and is formed between the one end and the other end of the heating element. Alternatively, with respect to a through portion that penetrates the through hole and a crossing direction that intersects with the direction penetrating from the through portion, the protrusion protrudes on the front and back of the heating element from the penetration portion, and the movement of the heating element with respect to the penetration direction is restricted And having a penetrating member having a protruding portion.

上記本発明に係る基板処理装置の特徴によれば、側壁材は導電性材料で構成されるため、熱容量が少なくてスループットを向上させることができる。しかも、前記貫通する方向に対する発熱体の移動、特に中間部の移動を前記突出部により規制することで、この発熱体、特に中間部が側壁材に接触することもない。   According to the characteristics of the substrate processing apparatus according to the present invention, since the sidewall material is made of a conductive material, the heat capacity is small and the throughput can be improved. In addition, by restricting the movement of the heating element, particularly the movement of the intermediate part, with respect to the penetrating direction, the heating element, particularly the intermediate part, does not contact the side wall material.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
以下、図面を参照しつつ本発明を実施する為の最良の形態としての第一の実施形態を説明する。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
Hereinafter, a first embodiment as the best mode for carrying out the present invention will be described with reference to the drawings.

図2〜7に示すように、基板処理装置1は、大略、処理室308を形成する反応容器309と、この反応容器の外周に配置された加熱装置3と、主制御装置4とを備えている。   As shown in FIGS. 2 to 7, the substrate processing apparatus 1 generally includes a reaction vessel 309 that forms a processing chamber 308, a heating device 3 disposed on the outer periphery of the reaction vessel, and a main controller 4. Yes.

加熱装置3は、大略、天井部10、円筒状の中間部11、下部12及び端子ケース13を有し、中間部11には発熱体20が支持されている。天井部10には下面と側面に開口するエルボ状の排気導路81が形成され、さらにその下部に反射装置90を有している。中間部11は、発熱体20を支持するインナシェル50を絶縁状態でアウタシェル60により包囲し、さらに外周を化粧パネル70で包囲している。インナシェル50とアウタシェル60とは導電性の材料から構成されており、例えば、ステンレス材等の金属材から構成されている。   The heating device 3 generally includes a ceiling portion 10, a cylindrical intermediate portion 11, a lower portion 12, and a terminal case 13, and a heating element 20 is supported on the intermediate portion 11. The ceiling portion 10 is formed with an elbow-shaped exhaust conduit 81 that opens to the lower surface and the side surface, and further includes a reflection device 90 at the lower portion thereof. The intermediate portion 11 surrounds the inner shell 50 that supports the heating element 20 with the outer shell 60 in an insulated state, and further surrounds the outer periphery with a decorative panel 70. The inner shell 50 and the outer shell 60 are made of a conductive material, for example, a metal material such as a stainless steel material.

中間部11の上部と吸気アタッチメント7xとの間には冷却ガス導入ダクト7yが取り付けられる。吸気アタッチメント7xの開口には開閉バルブ7aとして例えばバタフライバルブが装着され、流路が開閉できるようになっている。吸気アタッチメント7xは冷却ガス供給ライン7に接続される。インナシェル50及びアウタシェル60の間に円筒状の冷却媒体流通通路としての気道14が形成される。冷却ガス導入ダクト7yは環状に略均等に配置された複数のパイプ61により気道14と連通している。一方、排気導路81には強制排気を行う排気ブロア8aを備えた強制排気ライン8が接続され、加熱装置3の内部空間である加熱空間の強制排気が行われる。そして、冷却ガス供給ライン7から導入された空気若しくは不活性ガス等のガスは気道14及び後述の複数の碍子孔から加熱空間18に冷却ガスとして供給され、強制排気ライン8から排気される。   A cooling gas introduction duct 7y is attached between the upper part of the intermediate part 11 and the intake attachment 7x. For example, a butterfly valve is attached as an opening / closing valve 7a to the opening of the intake attachment 7x so that the flow path can be opened and closed. The intake attachment 7 x is connected to the cooling gas supply line 7. An air passage 14 is formed between the inner shell 50 and the outer shell 60 as a cylindrical cooling medium circulation passage. The cooling gas introduction duct 7y communicates with the airway 14 by a plurality of pipes 61 that are arranged substantially equally in an annular shape. On the other hand, a forced exhaust line 8 having an exhaust blower 8 a that performs forced exhaust is connected to the exhaust conduit 81, and forced exhaust of a heating space that is an internal space of the heating device 3 is performed. A gas such as air or an inert gas introduced from the cooling gas supply line 7 is supplied as a cooling gas to the heating space 18 from the airway 14 and a plurality of insulator holes described later, and is exhausted from the forced exhaust line 8.

反応容器309は、加熱空間18に順次同心に配置される均熱管315及び反応管310を備え、この反応管310内に処理室308が形成される。この処理室308にはウェーハ305を水平多段に保持するボート300が収納される。このボート300は図示しないボートエレベータにより、処理室内308へ装入、引出し可能である。   The reaction vessel 309 includes a soaking tube 315 and a reaction tube 310 that are sequentially arranged concentrically in the heating space 18, and a processing chamber 308 is formed in the reaction tube 310. The processing chamber 308 stores a boat 300 that holds wafers 305 in multiple horizontal stages. The boat 300 can be loaded into and pulled out from the processing chamber 308 by a boat elevator (not shown).

反応管310内には反応ガス導入管5x及び排気管6xが連通される。反応ガス導入管5xには流量制御器5aが設けられ、排気管6xには圧力制御器6aが設けられる。反応ガスが所定流量で導入されると共に前記反応管310内が所定圧力に維持される様に、排出口6yから内部ガスが排気され、排気管6xを通じて処理室外に排出される。   In the reaction tube 310, a reaction gas introduction tube 5x and an exhaust tube 6x are communicated. The reaction gas introduction pipe 5x is provided with a flow rate controller 5a, and the exhaust pipe 6x is provided with a pressure controller 6a. The reaction gas is introduced at a predetermined flow rate, and the internal gas is exhausted from the exhaust port 6y so that the inside of the reaction tube 310 is maintained at a predetermined pressure, and is discharged out of the processing chamber through the exhaust pipe 6x.

他の冷却ガス供給ライン5yは、均熱管315と反応管310との間に形成される均熱管内空間317に連通される。前記冷却ガス供給ライン5yには流量制御器5bが設けられる。また、吸気アタッチメント7xには開閉バルブ7aが設けられる。強制排気ライン8には排気装置としての排気ブロア8aが設けられる。すなわち、均熱管内空間317と加熱空間18の双方に対して冷却ガスを適宜導入・調整することが可能である。   The other cooling gas supply line 5 y is communicated with a soaking tube inner space 317 formed between the soaking tube 315 and the reaction tube 310. The cooling gas supply line 5y is provided with a flow rate controller 5b. The intake attachment 7x is provided with an open / close valve 7a. The forced exhaust line 8 is provided with an exhaust blower 8a as an exhaust device. That is, it is possible to introduce and adjust the cooling gas as appropriate to both the soaking tube inner space 317 and the heating space 18.

発熱体20は中間部11の円筒の軸心方向に対し、所要のゾーンZ1〜Z5に複数段に区分けされ、ゾーン制御が可能となっている。各ゾーンには各ゾーンの加熱温度を検出する温度検出器が設けられている。なお、発熱体20は各ゾーンそれぞれの成形パターンを同じにすることにより、発熱量を各ゾーンとも均一にする様にしてもよい。   The heating element 20 is divided into a plurality of zones Z1 to Z5 as required with respect to the axial direction of the cylinder of the intermediate portion 11, and zone control is possible. Each zone is provided with a temperature detector that detects the heating temperature of each zone. Note that the heating element 20 may have the same calorific value in each zone by making the molding pattern of each zone the same.

基板処理装置1の各部は主制御装置4によって制御され、例えば、反応管310内で処理されるウェーハ305の処理状態は、主制御装置4によって制御される。この主制御装置4は、温度モニタ部4a、加熱制御部(加熱制御装置)4b、反射制御部4c、第一流量制御部4d、反応管310内の圧力を制御する圧力制御部4e、第二流量制御部4f、排気制御部4g及び前記ボートエレベータ等の機構部を制御する駆動制御部4hを備えている。   Each part of the substrate processing apparatus 1 is controlled by the main controller 4. For example, the processing state of the wafer 305 processed in the reaction tube 310 is controlled by the main controller 4. The main controller 4 includes a temperature monitor 4a, a heating controller (heating controller) 4b, a reflection controller 4c, a first flow controller 4d, a pressure controller 4e that controls the pressure in the reaction tube 310, and a second A flow control unit 4f, an exhaust control unit 4g, and a drive control unit 4h for controlling mechanical units such as the boat elevator are provided.

温度モニタ部4aは第一〜第三温度検出器TC1〜TC3の温度を検出する。ここで、第一温度検出器TC1は発熱体20近傍で各ゾーンZ1〜Z5毎に設けられる。第二温度検出器TC2は反応管310内の周部における前記各ゾーンZ1〜Z5毎に設けられる。さらに、第3温度検出器TC3は反応管310より上方若しくは反応管310の上部中央を含む範囲に設けられている。   The temperature monitor unit 4a detects the temperatures of the first to third temperature detectors TC1 to TC3. Here, the first temperature detector TC1 is provided for each of the zones Z1 to Z5 in the vicinity of the heating element 20. The second temperature detector TC2 is provided for each of the zones Z1 to Z5 in the peripheral portion in the reaction tube 310. Further, the third temperature detector TC3 is provided above the reaction tube 310 or in a range including the upper center of the reaction tube 310.

加熱制御部4bは、温度モニタ部4aの検出結果に基づき各ゾーンZ1〜Z5の発熱体20の発熱量を制御する。また、反射制御部4cは、温度モニタ部4aの検出結果に基づき反射装置90の駆動装置としてのアクチュエータ99を制御する。そして、下面が鏡面仕上げされた反射体(リフレクタ)91を適宜傾斜させて発熱体20から反応管310の上部中央に対する集光度を変更し、同部分の温度制御を行う。   The heating control unit 4b controls the amount of heat generated by the heating elements 20 in the zones Z1 to Z5 based on the detection result of the temperature monitoring unit 4a. Further, the reflection control unit 4c controls the actuator 99 as a driving device of the reflection device 90 based on the detection result of the temperature monitor unit 4a. Then, the reflector (reflector) 91 having a mirror-finished lower surface is appropriately tilted to change the light collection degree from the heating element 20 to the upper center of the reaction tube 310, and the temperature of the same part is controlled.

第一流量制御部4dは流量制御器5aを制御し、圧力制御部4eは圧力制御器6aを制御し、反応ガスの導入と圧力を制御する。また、第二流量制御部4fは流量制御器5bを制御し、排気制御部4gは開閉バルブ7a及び排気ブロア8aを制御し、冷却ガスの導入と排出とを制御する。   The first flow rate control unit 4d controls the flow rate controller 5a, and the pressure control unit 4e controls the pressure controller 6a to control the introduction of the reaction gas and the pressure. The second flow rate control unit 4f controls the flow rate controller 5b, and the exhaust control unit 4g controls the opening / closing valve 7a and the exhaust blower 8a to control introduction and discharge of the cooling gas.

図4に図2中のA部の拡大図を示す。発熱体(ヒータ素線)20は、アルミナ等の絶縁素材としての吊り碍子30によりインナシェル50に固定されている。前記発熱体20には急速加熱が可能である発熱材料、例えばFe−Al−Cr合金が用いられ、発熱表面積が大きくなる様に、断面は平板形状等の形状が採用され、面状発熱体として構成されている。発熱体20は上下に蛇行状の折返部21,22を有しており、中間部は上折返部21と下折返部22とをそれぞれ半ピッチずらして接続する素線部23と、各素線部23間に位置する隙間24から構成されている。また、発熱体20の上部は吊り碍子30に保持される折曲部20aとして折り曲げ加工がなされている。インナシェル50内面は鏡面仕上げされており、発熱体の素線部23裏面から輻射される熱線を前記内面で反射させ、隙間24から加熱空間18に向かって放射する。   FIG. 4 shows an enlarged view of portion A in FIG. The heating element (heater wire) 20 is fixed to the inner shell 50 by a hanging insulator 30 as an insulating material such as alumina. The heating element 20 is made of a heat-generating material that can be rapidly heated, such as an Fe-Al-Cr alloy, and has a cross-sectional shape such as a flat plate so as to increase the heat-generating surface area. It is configured. The heating element 20 has meandering folded portions 21 and 22 above and below, and an intermediate portion includes a strand portion 23 that connects the upper folded portion 21 and the lower folded portion 22 with a half-pitch shift, and each strand. It is comprised from the clearance gap 24 located between the parts 23. FIG. Further, the upper portion of the heating element 20 is bent as a bent portion 20 a held by the hanging insulator 30. The inner surface of the inner shell 50 is mirror-finished, and heat rays radiated from the rear surface of the wire portion 23 of the heating element are reflected by the inner surface and radiated from the gap 24 toward the heating space 18.

絶縁材料としての吊り碍子30はアルミナ等の耐熱絶縁材料よりなる上碍子31及び下碍子32からなり、上金具33と下金具34で発熱体20の上部における折曲部20aを挟んで、ピン35で溶着固定されている。下金具34は二カ所の折曲部においてボルト36によりインナシェル50に取り付けられる。   The hanging insulator 30 as an insulating material includes an upper insulator 31 and a lower insulator 32 made of a heat-resistant insulating material such as alumina, and the pin 35 is sandwiched between the upper metal member 33 and the lower metal member 34 with the bent portion 20a at the upper part of the heating element 20 interposed therebetween. It is fixed by welding. The lower metal fitting 34 is attached to the inner shell 50 by bolts 36 at two bent portions.

インナシェル50には中央に貫通孔40aを有し気道14内の冷却ガスをインナシェル50内部に供給する複数の急冷パイプ40がインナシェル50の内壁から加熱空間18側に向かって突出するように設けられている。急冷パイプ40はアルミナ等の絶縁耐熱材料により形成されている。この急冷パイプ40は、隙間24において発熱体20を貫通する貫通部40dと、この貫通部40dが発熱体20を貫通する貫通方向Vに交差する方向にこの貫通部40dよりも突出する突出部としての略円形の鍔40b、40cにより発熱体20の中腹の動きを制限する。すなわち、一対の鍔40b、40c間の貫通部40dに溝を形成する。さらに発熱体20の下端を下段の吊り碍子30の上端位置に重なる位置に設け、発熱体20の下端の急冷パイプ40の貫通方向に対する動きを制限する。   The inner shell 50 has a through hole 40a in the center, and a plurality of quench pipes 40 for supplying the cooling gas in the air passage 14 into the inner shell 50 protrude from the inner wall of the inner shell 50 toward the heating space 18 side. Is provided. The quench pipe 40 is made of an insulating heat resistant material such as alumina. The quenching pipe 40 includes a through portion 40d that penetrates the heating element 20 in the gap 24, and a protruding portion that protrudes from the through portion 40d in a direction that intersects the penetration direction V in which the penetration portion 40d penetrates the heating element 20. The movement of the middle of the heating element 20 is limited by the substantially circular ridges 40b and 40c. That is, a groove is formed in the through portion 40d between the pair of flanges 40b and 40c. Furthermore, the lower end of the heating element 20 is provided at a position overlapping the upper end position of the lower hanging insulator 30 to limit the movement of the lower end of the heating element 20 in the penetration direction of the quench pipe 40.

インナシェル50の裏面には冷却媒体流通通路としての水冷管59が設けられている。この水冷管59は、インナシェル50の外面に軸心方向に螺旋状に巻き付けられて溶着される。例えば給・排水経路59a,59bを介して冷却水等の冷却媒体を流すことによりインナシェル50の温度上昇を防ぎ、ほぼ一定に保つ。   On the back surface of the inner shell 50, a water cooling pipe 59 as a cooling medium circulation passage is provided. The water-cooled tube 59 is wound around the outer surface of the inner shell 50 in a spiral manner in the axial direction and welded. For example, by flowing a cooling medium such as cooling water through the supply / drainage paths 59a and 59b, the temperature of the inner shell 50 is prevented from rising and kept almost constant.

インナシェル50の外側には複数の接続碍子51を介して絶縁状態でアウタシェル60が取り付けられる。接続碍子51は絶縁性と耐熱性を有するアルミナ材で製作されているため、不測に発熱体20とインナシェル50とが接触し、インナシェル50に電流が伝わる等により例えば短絡しても、接続碍子51により電流がアウタシェル60に伝わることはない。   The outer shell 60 is attached to the outside of the inner shell 50 in an insulated state via a plurality of connecting insulators 51. Since the connecting insulator 51 is made of an alumina material having insulation and heat resistance, even if the heating element 20 and the inner shell 50 are unexpectedly brought into contact with each other and a current is transmitted to the inner shell 50, for example, the connection insulator 51 is connected. The insulator 51 does not transmit current to the outer shell 60.

接続碍子51の内側はインナシェル50に対し第一のボルト52で固定される。一方、接続碍子51の外側はアウタシェル60に対し絶縁耐熱材料としての環状中空状のカラー53を介して第二のボルト54で固定される。カラー53はアウタシェルの取付孔を貫通して設けられ、アウタシェル60の肉厚よりも厚く形成され、第二のボルト54の頭部下面と接続碍子51外面との間にクリアランス(隙間)を設けている。インナシェル50が熱膨張によって膨らんでも、その変形分をこのクリアランスにより吸収し、アウタシェル60に熱応力が作用することを防ぎ、アウタシェル60の変形を防止している。   The inner side of the connecting insulator 51 is fixed to the inner shell 50 with a first bolt 52. On the other hand, the outer side of the connecting insulator 51 is fixed to the outer shell 60 with a second bolt 54 via an annular hollow collar 53 as an insulating heat resistant material. The collar 53 is provided through the outer shell mounting hole, is formed thicker than the thickness of the outer shell 60, and provides a clearance (gap) between the lower surface of the head of the second bolt 54 and the outer surface of the connecting insulator 51. Yes. Even if the inner shell 50 swells due to thermal expansion, the amount of deformation is absorbed by this clearance to prevent thermal stress from acting on the outer shell 60 and to prevent deformation of the outer shell 60.

アウタシェル60のさらに外側には柱62を介して最外殻である側壁外層としての化粧パネル70が設けられている。この化粧パネル70はフランジを有する柱62を介してアウタシェル60と例えば金属製のリべット62aにより固定アウタシェル60の上部には円筒状の前記気道14に連通する開口61aが設けられ、この開口61aにパイプ61の一端が溶接される。パイプ61は化粧パネル70を貫通し、その他端が冷却ガス導入ダクト7yに連通している。なお、柱62、化粧パネル70は導電性を有する材料から構成されており、例えば、ステンレス材料等の金属材料から構成されている。このため、化粧パネル70とアウタシェル60とは柱62を介して導電する状態で接続されている。なお、アウタシェル60や化粧パネル70に対する導電を上述の如く防ぐことで基板処理装置全体への導電を防止し、作業時の感電等や基板処理装置内の電装品が破損することを防いでいる。   On the outer side of the outer shell 60, a decorative panel 70 is provided as a side wall outer layer which is an outermost shell through a column 62. The decorative panel 70 is provided with an opening 61a communicating with the cylindrical airway 14 at the upper part of the outer shell 60 through a pillar 62 having a flange, for example, by a metal rivet 62a. One end of the pipe 61 is welded to 61a. The pipe 61 penetrates the decorative panel 70, and the other end communicates with the cooling gas introduction duct 7y. In addition, the pillar 62 and the decorative panel 70 are comprised from the material which has electroconductivity, for example, is comprised from metal materials, such as stainless steel material. For this reason, the decorative panel 70 and the outer shell 60 are connected in a conductive state via the pillar 62. In addition, by preventing the conduction to the outer shell 60 and the decorative panel 70 as described above, the conduction to the entire substrate processing apparatus is prevented, and an electric shock at the time of work and the electrical components in the substrate processing apparatus are prevented from being damaged.

図4に示すように、インナシェル50は上下に複数分割されている。分割された上側のシェルとこれに隣接する下側のシェルとの間には隙間50sが設けられている。そして、インナシェル50のうち上側のシェルである上側シェルに設けられた第一フランジ50tと下側シェルの水冷管59との間にセラミックファイバー等の断熱部材よりなる断熱ブランケット50aを介在させ、隙間50sからの熱逃げを防ぎ、熱的に上下のシェルを分断している。   As shown in FIG. 4, the inner shell 50 is divided into a plurality of parts in the vertical direction. A gap 50 s is provided between the divided upper shell and the lower shell adjacent thereto. And between the 1st flange 50t provided in the upper shell which is an upper shell among the inner shells 50, and the water cooling pipe 59 of a lower shell, the heat insulation blanket 50a which consists of heat insulation members, such as a ceramic fiber, is interposed, and gap The heat escape from 50s is prevented, and the upper and lower shells are thermally divided.

図7に示すように、中間部11の下部では、インナシェル50の外側に張り出した第二フランジ50xとアウタシェル60の内側に張り出した第三フランジ60xとの間に断熱及び絶縁部材としての断熱ブランケット50yを介在させてある。これにより、インナシェル50とアウタシェル60との間は絶縁されると共に断熱ブランケット50yにより気密状態が保たれる。また、第三フランジ60xと底蓋72aとの間に断熱部材としての断熱ブランケット60yを設け、インナシェル50内部空間の気密を保っている。中間部11と天井部10との間にも同趣旨の構造が採用され、絶縁状態と気密状態が保たれる。最下段の発熱体20の下部は発熱体20の中腹の動きを制限する急冷パイプ40とは別に設けられた急冷パイプ42により支持されている。   As shown in FIG. 7, at the lower part of the intermediate part 11, a heat insulation and a heat insulation blanket as an insulation member are provided between the second flange 50 x projecting outside the inner shell 50 and the third flange 60 x projecting inside the outer shell 60. 50y is interposed. Thereby, the inner shell 50 and the outer shell 60 are insulated from each other and kept airtight by the heat insulating blanket 50y. Further, a heat insulating blanket 60y as a heat insulating member is provided between the third flange 60x and the bottom lid 72a to keep the inner shell 50 internal space airtight. A structure having the same concept is also adopted between the intermediate portion 11 and the ceiling portion 10 to maintain an insulating state and an airtight state. The lower part of the lowermost heating element 20 is supported by a quenching pipe 42 provided separately from the quenching pipe 40 that restricts the movement of the middle of the heating element 20.

次に、図4〜6,8〜12を参照しながら、発熱体20とその保持構造ないし支持構造について説明する。   Next, the heating element 20 and its holding structure or support structure will be described with reference to FIGS. 4 to 6 and 8 to 12.

図8は、打ち抜き加工後曲げ加工前の発熱体20’の状態を、図9は折曲加工後の発熱体20を示す。発熱体20における蛇行状の上側折返部21は方形を呈し、折り曲げ加工により保持用の折曲部20aとされる。後述の突起32dによる移動制限を行い、発熱体の断線・短絡を防止し、寿命を延長させることが可能である。   FIG. 8 shows a state of the heating element 20 ′ after punching and before bending, and FIG. 9 shows the heating element 20 after bending. The meandering upper folded portion 21 of the heating element 20 has a rectangular shape and is turned into a holding folded portion 20a by bending. It is possible to limit movement by a protrusion 32d described later, prevent disconnection / short circuit of the heating element, and extend the life.

一方、発熱体の下側折返部22は、素線中腹部分と同じ帯幅 、若しくはそれ以上の帯幅で円弧状とし、素線部23の質量を節約する。これにより、発熱体20全体の熱容量を減少させ、発熱体20全体の応答性を向上させている。   On the other hand, the lower folded portion 22 of the heating element is arcuate with a band width equal to or greater than that of the middle part of the wire to save the mass of the wire portion 23. Thereby, the heat capacity of the whole heat generating body 20 is reduced, and the responsiveness of the whole heat generating body 20 is improved.

図4〜6,10〜12に示すように、吊り碍子30を構成する上碍子31及び下碍子32にはそれぞれピン貫通用の孔31a,32aが形成され、上碍子31の外側下面の凸部31bと下碍子32の外側上面の凹部32bとが嵌め合わされる。これにより、上碍子31の内側下面31cと下碍子32の内側上面32cとの間に先の折曲部20aを挟み込む隙間を形成する。上碍子31は内側縁部31dが下方に突出し、挟み込まれた折曲部20aの脱落を阻止するように保持する。   As shown in FIGS. 4 to 6 and 10 to 12, the upper insulator 31 and the lower insulator 32 constituting the suspension insulator 30 are provided with pin penetration holes 31 a and 32 a, respectively, and convex portions on the outer lower surface of the upper insulator 31. 31b and the recessed part 32b of the outer upper surface of the lower insulator 32 are fitted. Thereby, a gap is formed between the inner lower surface 31c of the upper insulator 31 and the inner upper surface 32c of the lower insulator 32 so as to sandwich the previous bent portion 20a. The upper insulator 31 is held so that the inner edge portion 31d protrudes downward and prevents the bent portion 20a from being dropped.

下碍子32には、略四角柱形状の突起32dが設けられ、この突起の両側に先の内側上面32cが位置する。下碍子32は複数個が間隔を隔ててピン35に貫通され、隣り合う内側上面32c間に折曲部20aが配置される。発熱体20は円筒状のインナシェル50の内面の円弧方向Rに沿って配置されるが、折曲部20aの両端が先の突起32dにそれぞれ接当することにより、円弧方向Rに対する移動が制限される。また、吊り碍子30は、この円弧方向Rに対して間欠的に配置されるので、熱容量の大きな碍子の総量を減少させることにより全体の熱容量を減少させ、発熱体20全体の応答性を向上させている。   The lower insulator 32 is provided with a substantially quadrangular prism-shaped protrusion 32d, and the inner upper surface 32c is positioned on both sides of the protrusion. A plurality of lower insulators 32 are penetrated by the pins 35 at intervals, and a bent portion 20a is disposed between adjacent inner upper surfaces 32c. The heating element 20 is disposed along the arc direction R of the inner surface of the cylindrical inner shell 50. However, the movement of the arcuate direction R is restricted by the ends of the bent portion 20a coming into contact with the projection 32d. Is done. Moreover, since the hanging insulator 30 is intermittently arranged with respect to the arc direction R, the overall heat capacity is reduced by reducing the total amount of the insulator having a large heat capacity, and the responsiveness of the entire heating element 20 is improved. ing.

前記急冷パイプ40は、インナシェル50の内面に対する直交方向であり前記発熱体20を貫通する方向である貫通方向Vに突出する。そして、先の鍔40b,40cにより上述の発熱体20の中腹の動きを制限する。さらに発熱体20の下端22を下段の吊り碍子30の上端位置に重なる箇所に配置することで、発熱体20の下端22の前記貫通方向Vに対する動きを制限する。すなわち、急冷パイプ40で上下方向中腹の発熱体20の加熱装置径方向ヘの凸変形と凹変形を制限し、吊り碍子30で素線下端の凹変形を制限している。側壁材としてのインナシェル50は熱容量の小さなステンレス鋼等の金属製材料で構成され、大気雰囲気で使用できる発熱体20を絶縁した状態で固定することができる。なお、導電性のある物質の殆どは、金属等の低熱容量の物質であり、導電性のない物質の殆どは、アルミナ、石英などの高熱容量の物質であり、このような構造により、加熱装置3の応答性をさらに向上させている。   The quench pipe 40 protrudes in a penetration direction V that is orthogonal to the inner surface of the inner shell 50 and that penetrates the heating element 20. And the movement of the middle part of the above-mentioned heat generating body 20 is restrict | limited by the collars 40b and 40c. Furthermore, the movement of the lower end 22 of the heating element 20 in the penetrating direction V is restricted by arranging the lower end 22 of the heating element 20 at a position overlapping the upper end position of the lower hanging insulator 30. That is, the rapid cooling pipe 40 restricts convex deformation and concave deformation in the heating device radial direction of the heating element 20 in the middle of the vertical direction, and the hanging insulator 30 restricts concave deformation at the lower end of the strand. The inner shell 50 as the side wall material is made of a metal material such as stainless steel having a small heat capacity, and can fix the heating element 20 that can be used in an air atmosphere in an insulated state. Note that most of the conductive materials are low heat capacity materials such as metals, and most of the non-conductive materials are high heat capacity materials such as alumina and quartz. 3 is further improved.

吊り碍子30の上金具33及び下金具34は剛性の点では上記円弧方向Rに連続していることが望ましい。しかし、発熱体20の加熱時の熱膨張による熱変形を防ぐため、分断の必要もある。そこで、適宜個数の吊り碍子30毎に上金具33及び下金具34を分断することで、捻り剛性を保ちつつ熱膨張による下金具34間の隙間34aを最小限に留めている。また、各下金具34間に各上金具33を跨らせることで、さらに捻り剛性を向上させている。   It is desirable that the upper metal member 33 and the lower metal member 34 of the hanging insulator 30 are continuous in the arc direction R in terms of rigidity. However, in order to prevent thermal deformation due to thermal expansion during heating of the heating element 20, it is also necessary to divide. Therefore, the upper metal member 33 and the lower metal member 34 are divided for each appropriate number of hanging insulators 30 to keep the gap 34a between the lower metal members 34 due to thermal expansion to a minimum while maintaining the torsional rigidity. Further, the torsional rigidity is further improved by straddling the upper metal fittings 33 between the lower metal fittings 34.

次に、図7を参照しながら、下部12の構造について説明する。発熱体20は一つ下層の吊り碍子30によってインナシェル50への下折返部22の近接を阻止される。一方、最下段の発熱体20に対してはこの吊り碍子が存在しない。そこで、この最下段では、発熱体20の中腹に上述と同位置に急冷パイプ40を設けて中腹部分の変形を抑制し、発熱体20の下折返部22にも他の急冷パイプ42を設けて下折返部22の上記貫通方向Vに対するインナシェル50への近接、離隔変形を防いでいる。なお、両急冷パイプ40,42は同種の部材を用いているが、異なるものを用いてもよい。   Next, the structure of the lower part 12 will be described with reference to FIG. The heating element 20 is prevented from approaching the lower folded portion 22 to the inner shell 50 by a lower hanging insulator 30. On the other hand, this hanging insulator does not exist for the lowermost heating element 20. Therefore, in this lowermost stage, a quenching pipe 40 is provided in the middle of the heating element 20 at the same position as described above to suppress deformation of the middle part, and another quenching pipe 42 is also provided in the lower folded portion 22 of the heating element 20. Proximity to the inner shell 50 with respect to the penetrating direction V of the lower folded portion 22 and separation deformation are prevented. In addition, although both the quenching pipes 40 and 42 use the same kind of member, you may use a different thing.

ところで、図7の構成において、下側の急冷パイプ42のみを用いた場合は、発熱体20の下端の変形は制限できるが、発熱体20の中腹の凸変形・凹変形を抑制することができない。発熱体20の中腹が加熱空間18側へ凸変形すると反応容器と接触の虞がある。また、発熱体20の中腹が凹変形すれば、インナシェル50との接触によるショート(インナシェルに電流が伝わる等、例えば短絡)の虞がある。一方、中腹の急冷パイプ40のみを用いた場合は、発熱体20の下端が凹変形すれば、インナシェル50との接触によるショートの虞がある。さらに、これらの挙動で発熱体20が頻繁に凸変形・凹変形すると、熱応力により断線の虞が増大し、発熱体寿命の低下に繋がる。図7の構成はこれらの問題を解消するものである。なお、上述の2つの急冷パイプを用いた図7の構造は、最下段のみに限らず、如何なる位置の発熱体に適用してもよい。但し、発熱体20の支持方向(上下方向)に対する発熱体20の集積度を向上させるには、一つ下層の吊り碍子30によってインナシェル50への下折返部22の近接を阻止することが望ましい。また、熱容量の点からも、一つ下段の吊り碍子30によってインナシェル50への下折返部22の近接を阻止するようにし、急冷パイプ(碍子)の使用量を減少させる方が良い。   By the way, in the configuration of FIG. 7, when only the lower quenching pipe 42 is used, deformation of the lower end of the heating element 20 can be restricted, but convex deformation and concave deformation of the middle of the heating element 20 cannot be suppressed. . If the middle of the heating element 20 is convexly deformed toward the heating space 18, there is a risk of contact with the reaction vessel. Further, if the middle of the heating element 20 is concavely deformed, there is a risk of a short circuit due to contact with the inner shell 50 (for example, a short circuit such as a current being transmitted to the inner shell). On the other hand, when only the middle quenching pipe 40 is used, if the lower end of the heating element 20 is concavely deformed, there is a risk of short circuit due to contact with the inner shell 50. Furthermore, if the heating element 20 is frequently convex or concavely deformed by these behaviors, the risk of disconnection increases due to thermal stress, leading to a reduction in the lifetime of the heating element. The configuration shown in FIG. 7 solves these problems. Note that the structure of FIG. 7 using the above-described two quench pipes is not limited to the lowermost stage, and may be applied to a heating element at any position. However, in order to improve the degree of integration of the heating elements 20 with respect to the support direction (vertical direction) of the heating elements 20, it is desirable to prevent the lower folded portion 22 from approaching the inner shell 50 by the lower hanging insulator 30. . Also, from the viewpoint of heat capacity, it is better to reduce the usage of the quench pipe (insulator) by preventing the lower folded portion 22 from approaching the inner shell 50 by the one lower hanging insulator 30.

図2,4に示すように、本実施形態では、上下方向に9段の発熱体20が設けられ、インナシェル50は上下方向に3分割され、各分割体が発熱体20を3段保持する。そして、インナシェル50間には熱膨張による伸びを吸収するために、隙間50sが設けられる。また、冷却ガスが隙間50sから加熱空間18内部に供給されないように断熱材としての断熱ブランケット50uで冷却ガスが隙間50sを塞いでいる。本実施形態では、インナシェル50の下端にフランジ50tを設け、下段のインナシェル50の最上段に位置する水冷管59と同フランジ50tとの間に断熱ブランケット50uを挟み、この隙間50sを塞いでいる。同構成によれば、断熱ブランケット50uにはその伸縮性によりインナシェル50の膨張・収縮を吸収し、インナシェル50と加熱空間18との気密性を維持することができる。   As shown in FIGS. 2 and 4, in this embodiment, nine stages of heating elements 20 are provided in the vertical direction, the inner shell 50 is divided into three parts in the vertical direction, and each divided body holds the heating elements 20 in three stages. . A gap 50 s is provided between the inner shells 50 to absorb elongation due to thermal expansion. In addition, the cooling gas closes the gap 50s with a heat insulating blanket 50u as a heat insulating material so that the cooling gas is not supplied into the heating space 18 from the gap 50s. In the present embodiment, a flange 50t is provided at the lower end of the inner shell 50, and a heat insulating blanket 50u is sandwiched between the water-cooled pipe 59 located at the uppermost stage of the lower inner shell 50 and the flange 50t, thereby closing the gap 50s. Yes. According to this configuration, the heat insulation blanket 50 u can absorb expansion / contraction of the inner shell 50 due to its elasticity, and the airtightness between the inner shell 50 and the heating space 18 can be maintained.

ここで、急冷パイプ40の貫通孔40aは、反応容器309、延いては、その中のウエハを急速に冷却する。しかし、隙間50sは、急冷パイプ40に比べるとコンダクタンスも少ないため、冷却ガスの大部分は隙間50sから加熱空間に漏洩する。しかも、隙間50sはインナシェル50の分割体同士の間に位置し、急冷パイプ40の出口よりも反応容器309と隔たっている。特に反応容器309の手前には発熱体が存在するため、反応容器309への冷却が非効率となってしまう。これを防ぐために上記隙間50sを塞ぐ構造が必要である。この構造は、隙間50sの上下端ともフランジ50tを設けたり水冷管59を設けてもよいが、一方がフランジ、他方が水冷管の方が構造上無駄を生じずに優れている。   Here, the through hole 40a of the quench pipe 40 rapidly cools the reaction vessel 309 and, in turn, the wafer therein. However, since the gap 50s has less conductance than the quench pipe 40, most of the cooling gas leaks from the gap 50s to the heating space. In addition, the gap 50 s is located between the divided parts of the inner shell 50 and is separated from the reaction vessel 309 than the outlet of the quench pipe 40. In particular, since a heating element exists in front of the reaction vessel 309, cooling to the reaction vessel 309 becomes inefficient. In order to prevent this, a structure for closing the gap 50s is necessary. In this structure, the upper and lower ends of the gap 50s may be provided with the flange 50t or the water-cooled pipe 59, but one of the flanges and the other of the water-cooled pipes is superior in terms of structure without waste.

隙間50sの近傍では水冷管59を均一な冷却のために必ずしも適切な位置に配置できるとは限らない。したがって、上下9段に積層された発熱体20の各段毎にインナシェルを分断して設けるのではなく、複数段の発熱体20をインナシェル50の一分割体に支持させ、ウエハ間の温度偏差の発生を抑制している。かかる点及び熱膨張による伸長量が比較的小さくて隙間の問題を解消できることから、本実施形態では各分割体に三段の発熱体20を支持させてある。また、水冷管は各分割体毎に一系統設けるので全体で三系統であるが、温度制御が可能である限り、三分割体全体で一系統としたり、さらに異なる数の系統としてもよい。   In the vicinity of the gap 50s, the water-cooled tube 59 cannot always be disposed at an appropriate position for uniform cooling. Therefore, the inner shell is not divided and provided for each stage of the heating elements 20 stacked in the upper and lower nine stages, but a plurality of stages of the heating elements 20 are supported by one divided body of the inner shell 50, and the temperature between the wafers is increased. The occurrence of deviation is suppressed. Since this point and the amount of expansion due to thermal expansion are relatively small and the problem of gaps can be solved, in this embodiment, the three-stage heating elements 20 are supported by each divided body. In addition, since one system is provided for each divided body, there are three water-cooled pipes as a whole. However, as long as temperature control is possible, the entire three-divided body may be one system or a different number of systems.

次に、上記基板処理装置1の動作について説明する。
ウェーハ305の処理は、このウェーハ305が装填された前記ボート300がボートエレベータにより前記反応管310に装入され、前記加熱装置3の加熱により所定温度迄急速加熱される。この加熱装置3により前記ウェーハ305を所定温度に加熱した状態で前記反応ガス導入管5xより反応ガスが導入され、前記排気管6xを介して排気ガスが排出され、前記ウェーハ305に所要の熱処理がなされる。
Next, the operation of the substrate processing apparatus 1 will be described.
In the processing of the wafer 305, the boat 300 loaded with the wafer 305 is loaded into the reaction tube 310 by a boat elevator and rapidly heated to a predetermined temperature by the heating device 3. While the wafer 305 is heated to a predetermined temperature by the heating device 3, a reaction gas is introduced from the reaction gas introduction pipe 5 x, exhaust gas is discharged through the exhaust pipe 6 x, and a necessary heat treatment is performed on the wafer 305. Made.

通常、前記ボート300の装入前は所要の温度、例えば550℃に保温しておき、このボート300が装入された後はウェーハ処理温度、例えば850℃迄昇温保持される。尚、装入前の温度、処理温度は基板処理装置での処理内容に応じて適切な温度が選択される。   Usually, the temperature of the boat 300 is kept at a required temperature, for example, 550 ° C. before the boat 300 is charged. After the boat 300 is charged, the temperature is raised to a wafer processing temperature, for example, 850 ° C. In addition, the temperature before loading and the processing temperature are appropriately selected according to the processing content in the substrate processing apparatus.

前記発熱体20の各段の発熱体20は温度モニタ部4aによって独立したゾーン毎に測定され、発熱体20及び反射装置90により温度制御される。各ゾーンの発熱体20は連続した1つの発熱体であるので、この発熱体20に異常があった場合、例えば断線があった場合も直ちに発見でき、各段の発熱体の劣化状態も容易に把握することができる。   The heating element 20 at each stage of the heating element 20 is measured for each independent zone by the temperature monitor unit 4a, and the temperature is controlled by the heating element 20 and the reflection device 90. Since the heating element 20 in each zone is one continuous heating element, if there is an abnormality in the heating element 20, for example, if there is a disconnection, it can be detected immediately, and the deterioration state of the heating element in each stage can be easily found. I can grasp it.

処理が完了すると、ウェーハ出炉温度、例えば550℃迄急速冷却される。このウェーハ305処理後の冷却は、前記流量制御器5a及びエアバルブ7aが開かれ、空気或は窒素ガス等不活性ガスが冷却ガスとして前記冷却ガス供給ライン5y、7より供給される。前記冷却ガス供給ラインから供給された冷却ガスは急冷パイプ40の貫通孔40aを通じて加熱空間18に流入し、発熱体20を外面、内面の両側から急速に冷却する。   When the process is complete, it is rapidly cooled to the wafer exit temperature, eg, 550 ° C. For the cooling after the processing of the wafer 305, the flow rate controller 5a and the air valve 7a are opened, and an inert gas such as air or nitrogen gas is supplied from the cooling gas supply lines 5y and 7 as a cooling gas. The cooling gas supplied from the cooling gas supply line flows into the heating space 18 through the through hole 40a of the quenching pipe 40, and cools the heating element 20 from both the outer surface and the inner surface.

このような冷却パイプ40を用いた構成では、ヒータの冷却速度、延いてはウェーハの冷却速度を向上させることができ、ウェーハ処理のスループットを向上させることができる。また、冷却パイプ40は発熱体押さえと冷却ガス供給管とを兼ねているため、別途ヒータ冷却用のガス管を設ける必要がなく、それ故、ヒータ内壁における発熱体面積を向上させることができる。さらに、冷却パイプ40の貫通孔40aの開口部は発熱体20よりも内側にて開口しているので、冷却ガスにより発熱体20が局所的に冷却されることを防止する。その結果、発熱体20の局所的な変形、捩れ、亀裂を抑制し、延いては、発熱体20の断線、反応管310との接触を防止できる。   In such a configuration using the cooling pipe 40, the cooling rate of the heater, and thus the cooling rate of the wafer can be improved, and the throughput of the wafer processing can be improved. Further, since the cooling pipe 40 serves as both a heating element presser and a cooling gas supply pipe, it is not necessary to provide a separate gas pipe for cooling the heater, so that the area of the heating element on the inner wall of the heater can be improved. Furthermore, since the opening part of the through-hole 40a of the cooling pipe 40 is opened inside the heat generating body 20, the heat generating body 20 is prevented from being locally cooled by the cooling gas. As a result, local deformation, twisting, and cracking of the heating element 20 can be suppressed, and further, disconnection of the heating element 20 and contact with the reaction tube 310 can be prevented.

円筒状の気道14に導入される冷却ガスは、容積の大きな冷却ガス導入ダクト7yを経て分散されることで、気道14に均一に冷却ガスが流入し、冷却むらの発生が防止される。その後、冷却ガスは、複数のパイプ61、気道14、複数の急冷パイプ40を介して加熱空間18に吹き込まれ、加熱空間18を上昇して排気導路81より排気される。インナシェル50内面は加熱空間18を上昇する冷却ガスにより冷却され、均熱管315及び反応管310は加熱空間18及び均熱管内空間317を上昇する冷却ガスにより急速に冷却される。これらにより反応管310内のウェーハ305は急速冷却される。発熱体20にFe−Cr−Alやカーボン、SiC等の発熱体を採用することで、急速加熱、高温加熱が可能となり、更に冷却ガスによる加熱装置3の冷却により急速冷却が可能となっている。   The cooling gas introduced into the cylindrical air passage 14 is dispersed through the cooling gas introduction duct 7y having a large volume, so that the cooling gas uniformly flows into the air passage 14 and the occurrence of uneven cooling is prevented. Thereafter, the cooling gas is blown into the heating space 18 through the plurality of pipes 61, the airway 14, and the plurality of quenching pipes 40, and rises in the heating space 18 and is exhausted from the exhaust conduit 81. The inner surface of the inner shell 50 is cooled by the cooling gas rising in the heating space 18, and the soaking tube 315 and the reaction tube 310 are rapidly cooled by the cooling gas rising in the heating space 18 and the soaking tube inner space 317. As a result, the wafer 305 in the reaction tube 310 is rapidly cooled. By adopting a heating element such as Fe—Cr—Al, carbon, or SiC as the heating element 20, rapid heating and high temperature heating are possible, and further rapid cooling is possible by cooling the heating device 3 with a cooling gas. .

冷却が完了すると、ボートエレベータによりボート300が降下され、このボート300から処理済のウェーハ305が払出される。尚、減圧処理の場合は、反応室を大気圧迄復帰させた後、ボート300が降下される。   When the cooling is completed, the boat 300 is lowered by the boat elevator, and the processed wafer 305 is discharged from the boat 300. In the case of the decompression process, the boat 300 is lowered after returning the reaction chamber to atmospheric pressure.

本明細書は以下の発明をも含むものとする。
1)基板を処理する基板処理装置に用いられる加熱装置であって、板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料よりなる側壁材と、この側壁材の加熱空間側に配置された前記発熱体の保持部(保持体)と、前記側壁材の加熱空間側に突出して配置され、前記切欠又は貫通孔を貫通する貫通部材とを備え、前記保持部は前記発熱体を一端のみで保持し、前記貫通部材は、前記発熱体の一端と他端との間の中間部(中間部位)においてこの発熱体の前記切欠又は貫通孔を貫通する貫通部(貫通部位)と、前記貫通する方向に交差する交差方向に対し前記貫通部よりも前記発熱体の表裏において突出し前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する加熱装置。
This specification includes the following inventions.
1) A heating device used in a substrate processing apparatus for processing a substrate, which is a plate-like heating element having a notch or a through hole, a side wall material made of a conductive material surrounding a heating space, and heating of the side wall material A holding portion (holding body) for the heating element arranged on the space side, and a penetrating member that protrudes to the heating space side of the side wall member and penetrates the notch or the through hole, The heating element is held only at one end, and the penetrating member has a penetrating part (penetrating part) penetrating the notch or the through hole of the heating element at an intermediate part (intermediate part) between one end and the other end of the heating element. And a protrusion that protrudes on the front and back of the heating element relative to the crossing direction intersecting the penetrating direction and restricts the movement of the heating element in the penetrating direction.

2)蛇行状の折り返し構造を持つ発熱体と、導電性のある内壁と、この内壁に対し垂直方向に設けられる第一の絶縁碍子と、この内壁に対し垂直方向に設けられる第二の絶縁碍子とを有し、この発熱体の上端の折り返し部(折り返し部位)はこの第一の絶縁碍子に取付けされ、この発熱体の下端の折り返し部にはこの第二の絶縁碍子が挿入され、この第二の碍子に対し垂直に設けられた2つの鍔でこの発熱体の動きを制限するようにした基板処理装置、加熱装置及び発熱体の保持構造。   2) A heating element having a meandering folded structure, a conductive inner wall, a first insulator provided perpendicular to the inner wall, and a second insulator provided perpendicular to the inner wall The folded portion (folded portion) at the upper end of the heating element is attached to the first insulator, and the second insulator is inserted into the folded portion at the lower end of the heating element. A substrate processing apparatus, a heating apparatus, and a heating element holding structure configured to limit the movement of the heating element with two ridges provided perpendicular to the second insulator.

3)基板を収納し処理する処理室と、この処理室内の基板を加熱する発熱体とを有し、この発熱体は、発熱体とこの発熱体の外側に位置する筒状の第一のインナシェルと第二のインナシェルとを有し、この第一、第二のインナシェルを、所定の隙間を開けた状態で重ねて配置し、この第一のインナシェルの下端に第一の鍔を設け、この第一のインナシェルの下段に位置する第二のインナシェルの上端に第二の鍔を設け、この第一、この第二の鍔の間に伸縮性を有する部材を配置した基板処理装置、加熱装置及び発熱体の保持構造。なお、第二の鍔は、インナシェルを冷却するための水冷管とするとよい。   3) A processing chamber for storing and processing the substrate, and a heating element for heating the substrate in the processing chamber. The heating element is a first inner cylindrical member located outside the heating element and the heating element. A first inner shell and a second inner shell, and the first and second inner shells are stacked in a state where a predetermined gap is provided, and the first hook is disposed at the lower end of the first inner shell. The substrate processing which provided and provided the 2nd ridge at the upper end of the 2nd inner shell located in the lower stage of this 1st inner shell, and has arranged the member which has elasticity between this 1st and this 2nd ridge Device, heating device and heating element holding structure. The second rod is preferably a water-cooled tube for cooling the inner shell.

4)基板を収納し処理する処理室と、この処理室内の基板を加熱する発熱体とを有し、この発熱体の上端を挟んで支持する吊り碍子と、この素線の下端に挿入され、この発熱体の凸凹変形を抑制する2つの鍔を有する2つの碍子とで保持される基板処理装置、加熱装置及び発熱体の保持構造。   4) A processing chamber for storing and processing the substrate, and a heating element for heating the substrate in the processing chamber, and a suspension insulator supported by sandwiching the upper end of the heating element, and inserted into the lower end of the strand, A substrate processing apparatus, a heating apparatus, and a heating element holding structure that are held by two insulators having two ridges that suppress uneven deformation of the heating element.

5)基板を収納し処理する処理室と、この処理室内の基板を加熱する発熱体とを有し、この発熱体は、蛇行状に折り返されておりその上端を碍子により保持され、この発熱体の上端の折り曲げ部を角形状として、この碍子の内側に設けた突起により周方向の移動が制限されていることを特徴とする発熱体を有する基板処理装置、加熱装置及び発熱体の保持構造。   5) It has a processing chamber for storing and processing the substrate, and a heating element for heating the substrate in the processing chamber. The heating element is folded in a meandering shape, and its upper end is held by an insulator. A substrate processing apparatus having a heating element, a heating apparatus, and a holding structure for the heating element, wherein the bent portion at the upper end of the substrate is formed in a square shape and movement in the circumferential direction is restricted by a protrusion provided inside the insulator.

6)筒状に形成された側壁と、複数の隙間を有する板状の発熱体とを備え、側壁の内面は熱線を反射可能に仕上げられ、前記側壁の筒状の内面に沿って発熱体を設け、発熱体の素線部表面は加熱空間に向かって熱線を輻射し、前記素線部裏面から輻射される熱線は前記内面により反射され前記隙間を通過して前記加熱空間に輻射される加熱装置、基板処理装置及び発熱体の保持構造。この構造では、素線部23の幅に比較して隙間24の幅を十分にとり、内面からの反射による熱線を有効活用できる幅としてある。この筒状の中心軸に沿って隙間を形成し、中心軸上側を前記保持部材により支持すると、輻射熱を尤も有効に活用すると共に発熱体の面密度を向上させることができるし、発熱体の線量を減少させて熱応答性を向上させることができる。また、筒状の内面を凹曲面とすることで、反射された熱線が隙間を通過して加熱空間内に輻射される効率を向上させることができ、この凹曲面は円弧面であることが望ましい。   6) A side wall formed in a cylindrical shape and a plate-shaped heating element having a plurality of gaps, the inner surface of the side wall being finished so as to be able to reflect heat rays, and the heating element is arranged along the cylindrical inner surface of the side wall The heating element surface of the heating element radiates heat rays toward the heating space, and the heating ray radiated from the back surface of the heating element portion is reflected by the inner surface and passes through the gap to be radiated to the heating space. Apparatus, substrate processing apparatus, and heating element holding structure. In this structure, the width of the gap 24 is sufficiently larger than the width of the strand portion 23, so that the heat rays reflected from the inner surface can be effectively used. If a gap is formed along the cylindrical central axis and the upper side of the central axis is supported by the holding member, the radiant heat can be effectively used and the surface density of the heating element can be improved. It is possible to improve the thermal responsiveness. Further, by making the cylindrical inner surface a concave curved surface, it is possible to improve the efficiency with which the reflected heat rays are radiated into the heating space through the gap, and it is desirable that the concave curved surface is an arc surface. .

本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の改変が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.

図13〜17に貫通部材としての急冷パイプ40、42の改変例43〜47を例示する。これら急冷パイプ43〜47等はアルミナ等の耐熱絶縁材料により構成される。   13 to 17 illustrate modified examples 43 to 47 of the quench pipes 40 and 42 as penetrating members. These quench pipes 43 to 47 are made of a heat-resistant insulating material such as alumina.

図13に示す第二改変例としての急冷パイプ43は、鍔43bとほぼ同径の太径部43cがインナーシェル50まで設けられ、貫通部43dは発熱体20の隙間24を貫通する。この太径部43cの肉厚taは上記実施形態よりも厚く、貫通孔43aを通過する冷却ガスが太径部43c外部の雰囲気により加熱されることを防ぐ。よって、より温度の低い冷却ガスを貫通孔43aから噴出させることができる。   A quench pipe 43 as a second modified example shown in FIG. 13 is provided with a large-diameter portion 43c having substantially the same diameter as the flange 43b up to the inner shell 50, and the through portion 43d penetrates the gap 24 of the heating element 20. The wall thickness ta of the large-diameter portion 43c is thicker than that in the above embodiment, and prevents the cooling gas passing through the through-hole 43a from being heated by the atmosphere outside the large-diameter portion 43c. Therefore, a cooling gas having a lower temperature can be ejected from the through hole 43a.

図14に示す第三改変例としての急冷パイプ44では、貫通部44dと同径の小径部44xに鍔44bと同径の外管44cが外挿される。小径部44x及び外管44c合計の肉厚taは上記実施形態より厚く形成され、第二改変例と同様の効果を奏する。   In the quench pipe 44 as a third modified example shown in FIG. 14, an outer tube 44c having the same diameter as the flange 44b is extrapolated to a small diameter portion 44x having the same diameter as the through portion 44d. The total thickness ta of the small-diameter portion 44x and the outer tube 44c is formed to be thicker than that in the above embodiment, and has the same effect as the second modified example.

図15に示す第四改変例としての急冷パイプ45では、鍔45bと肉厚taの太径部45cとは同径であり、左右の切り込みにより貫通部45dが形成される。この貫通部45dは上折返部21側の隙間24から挿入される。貫通部45dの肉厚tbの薄肉部分は少なく、上記冷却ガスの加温をより確実に防止することができる。   In the quench pipe 45 as the fourth modified example shown in FIG. 15, the flange 45b and the large-diameter portion 45c of the wall thickness ta have the same diameter, and a through portion 45d is formed by left and right cuts. The through portion 45d is inserted from the gap 24 on the upper folded portion 21 side. The thin portion of the through-hole 45d having a thickness tb is small, and heating of the cooling gas can be more reliably prevented.

図16に示す第五改変例としての急冷パイプ46では、鍔46bと太径部46cとは貫通孔46aの軸心方向視で同一の楕円形状を呈する。楕円の短軸は隙間24よりも狭くて鍔46bは長軸を隙間24長手方向に配向する状態で隙間を通過できる。貫通部46dは短軸とほぼ同一径を有している。また、長軸は隙間24通過後に約90度回転させることで鍔46b及び太径部46cにより発熱体20を上記直交方向に対して位置規制することができる。すなわち、インナシェル50への急冷パイプ46の取付と、発熱体20の吊り碍子30への取付と、発熱体20の急冷パイプ46への取付をそれぞれ別工程で行うことができる。   In the quench pipe 46 as the fifth modified example shown in FIG. 16, the flange 46b and the large diameter portion 46c have the same elliptical shape as viewed in the axial direction of the through hole 46a. The minor axis of the ellipse is narrower than the gap 24, and the flange 46b can pass through the gap with the major axis oriented in the longitudinal direction of the gap 24. The through portion 46d has substantially the same diameter as the short axis. Further, by rotating the long axis about 90 degrees after passing through the gap 24, the position of the heating element 20 can be regulated with respect to the orthogonal direction by the flange 46b and the large diameter portion 46c. That is, the attachment of the quench pipe 46 to the inner shell 50, the attachment of the heating element 20 to the suspension insulator 30, and the attachment of the heating element 20 to the quench pipe 46 can be performed in separate steps.

図17に示す第六改変例としての支持棒47は、先のインナシェル50の直交方向に固定される太径部47aから突出する小径部47bを発熱体20の孔23aに貫通させる。そして、小径部47bに形成された小孔47cに楔47dを差し込むことで、発熱体20の移動を規制する。   A support rod 47 as a sixth modification shown in FIG. 17 allows a small diameter portion 47 b protruding from a large diameter portion 47 a fixed in the orthogonal direction of the inner shell 50 to pass through the hole 23 a of the heating element 20. And the movement of the heat generating body 20 is controlled by inserting the wedge 47d into the small hole 47c formed in the small diameter portion 47b.

図18,19に貫通部材としての急冷パイプ40,42のさらに他の改変例(第七改変例)を例示する。第七改変例としての急冷パイプ48は、貫通部48dよりも突出する突出部としての略円形の鍔48cを発熱体20より側壁材としてのインナシェル50側(発熱体20裏面側)にのみ設けてある。発熱体20のインナシェル50側に鍔48cを設けることにより、発熱体20のインナシェル50側への熱変形を防止でき、インナシェル50との接触による短絡を防止することができる。   18 and 19 illustrate still another modified example (seventh modified example) of the quench pipes 40 and 42 as penetrating members. The quench pipe 48 as a seventh modified example is provided with a substantially circular flange 48c as a protruding portion protruding from the penetrating portion 48d only on the inner shell 50 side (heating element 20 back side) as a side wall material from the heating element 20. It is. By providing the flange 48c on the inner shell 50 side of the heating element 20, thermal deformation of the heating element 20 toward the inner shell 50 side can be prevented, and a short circuit due to contact with the inner shell 50 can be prevented.

従来、発熱体の熱変形による側壁材との接触を考慮し、側壁材は絶縁材料や断熱材料で構成していた。しかし、これらの材料は熱容量が大きいため、加熱装置の応答性が低下していた。突出部を発熱体より側壁材側に設けたことで、発熱体の側壁材側への熱変形を防止でき、側壁材を熱容量の小さい金属製材料で構成することが可能となった。これにより、側壁の熱容量を小さくすることができるようになり、加熱装置の応答性をさらに向上させることが可能となった。   Conventionally, in consideration of contact with the side wall material due to thermal deformation of the heating element, the side wall material has been formed of an insulating material or a heat insulating material. However, since these materials have a large heat capacity, the responsiveness of the heating device has been reduced. By providing the protruding portion on the side wall material side of the heating element, it is possible to prevent thermal deformation of the heating element toward the side wall material side, and it is possible to configure the side wall material with a metal material having a small heat capacity. As a result, the heat capacity of the side wall can be reduced, and the responsiveness of the heating device can be further improved.

また、発熱体20表面側(加熱空間18側)で突出する突出部としての鍔を設けていないので、急冷パイプの製作が容易となる。さらに、発熱体20表面側に鍔が位置しないので、加熱効率も向上する。しかも、一対の鍔で発熱体20を表裏から挟み込まなくてよいので、組み付け作業が容易となる。   Moreover, since no ridges are provided as protruding portions that protrude on the surface of the heating element 20 (on the heating space 18 side), it is easy to manufacture a quench pipe. Furthermore, since no soot is located on the surface side of the heating element 20, the heating efficiency is also improved. In addition, since the heating element 20 does not have to be sandwiched from the front and back by a pair of scissors, the assembly work is facilitated.

ところで、発熱体20は、上端のみが保持部30によって保持され、発熱体20の下端22が上端21よりインナシェル50に対し離隔し垂直姿勢よりも傾斜するように吊り下げてある。この構成により、発熱体20に熱変形が生じても、重力の作用により側壁面側へ押し付けられることとなり、加熱空間側へ発熱体20は反り返りにくい。   By the way, only the upper end of the heating element 20 is held by the holding unit 30, and the lower end 22 of the heating element 20 is suspended from the upper end 21 so as to be separated from the inner shell 50 and inclined more than the vertical posture. With this configuration, even if thermal deformation occurs in the heating element 20, the heating element 20 is pressed against the side wall surface by the action of gravity, and the heating element 20 is unlikely to warp toward the heating space.

なお、上述の他の改変例においてもインナシェル50側にのみ突出部を設けても構わない。また、発熱体の表裏において突出部を設けた貫通部材と、発熱体より側壁材側において突出部を設けた貫通部材とを適宜組み合わせて用いることも可能である。   In the other modified examples described above, the protruding portion may be provided only on the inner shell 50 side. Moreover, it is also possible to use suitably combining the penetration member which provided the protrusion part in the front and back of a heat generating body, and the penetration member which provided the protrusion part in the side wall material side from a heat generating body.

反応容器は、均熱管及び反応管の双方を備えるように説明したが、均熱管を備えずに反応管のみであってもよい。その他、2重管のみならず、1管や3重管以上の管数に構成されていてもよい。   Although the reaction vessel has been described as including both the soaking tube and the reaction tube, the reaction vessel may include only the reaction tube without including the soaking tube. In addition, you may be comprised not only in a double pipe but in the number of pipes of 1 pipe or a triple pipe or more.

上記熱処理は酸化処理や拡散処理及び拡散だけでなくイオン打ち込み後のキャリア活性化や平坦化のためのリフローおよびアニール処理等に限らず、成膜処理等の熱処理であってもよい。基板はウエハに限らず、ホトマスクやプリント配線基板、液晶パネル、光ディスクおよび磁気ディスク等であってもよい。バッチ式熱処理装置および枚葉式熱処理装置に限らず、ヒータユニットを備えた半導体製造装置全般に適用することができる。上記インナシェル50及び反射体91の鏡面仕上げ部は、ステンレス鋼の研磨により鏡面とする他、金、白金等の貴金属によるメッキを施しても構わない。   The heat treatment is not limited to oxidation treatment, diffusion treatment, and diffusion, but is not limited to carrier activation after ion implantation and reflow and annealing treatment for planarization, and may be heat treatment such as film formation treatment. The substrate is not limited to a wafer, but may be a photomask, a printed wiring board, a liquid crystal panel, an optical disk, a magnetic disk, or the like. The present invention is not limited to batch-type heat treatment apparatuses and single-wafer-type heat treatment apparatuses, and can be applied to all semiconductor manufacturing apparatuses provided with a heater unit. The inner shell 50 and the mirror finish portion of the reflector 91 may be mirror-finished by polishing stainless steel, or may be plated with a noble metal such as gold or platinum.

本発明の実施形態は上記の如く構成されるが、さらに包括的には次に列挙するような構成を備えてもよい。
本発明に係る加熱装置の第一の態様は、板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する貫通部材とを有する。
また、本発明に係る加熱装置の第二の態様は、板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の前記側壁材側において突出し、前記側壁材側に前記発熱体の移動を規制する突出部とを有する貫通部材とを有する。
上記第一、第二の態様において、前記突出部は鍔形状で形成するとよい。また、前記貫通部材は、少なくとも発熱体の1つの切欠又は1つの貫通孔に対し複数設けられ、少なくとも前記貫通部材の1つを前記発熱体の1つの切欠又は1つの貫通孔の最下段部に設けるとよい。
上記第一の態様において、前記突出部は前記発熱体の裏面側から前記側壁材に至るまで設けても構わない。また、上記第二の態様において、前記突出部は前記発熱体の側壁材側から前記側壁材に至るまで設けても構わない。これらの態様において、前記突出部は前記貫通部と別体として設けてもよい。そして、前記貫通部に溝が形成され、該溝に前記突出部が設けることが望ましい。また、前記突出部は、楕円形状で形成され、該楕円形状の短軸側が前記発熱体の切欠又は貫通孔の幅より狭く、前記楕円形状の長軸側が前記発熱体の切欠又は貫通孔の幅より広く形成してもよい。さらに、前記貫通部に孔が形成され、該孔に、前記突出部が楔形状で形成されて差し込まれていても構わない。上記第二の態様において、前記発熱体は前記他端が前記一端より前記加熱空間側に位置するように垂直方向に対し傾斜して保持するとよい。これにより、発熱体に熱変形が生じても発熱体を重力により突出部へ移動させるように誘導し、加熱空間側への移動を抑制することができる。
また、本発明に係る加熱装置の第三の態様は、蛇行状に折り返され、上端の折曲部を方形状とし、下端の折曲部を円弧状として形成される発熱体と、該発熱体の上端を保持する碍子を有し、前記碍子は前記発熱体の隣接する上端の折曲部の両端がそれぞれ当接する突起を有する。本発明に係る加熱装置の第四の態様は、発熱体と、この発熱体の外側に位置し、下端に第一の鍔を設けた筒状の第一のインナシェルと、前記発熱体の外側に位置し、上端に第二の鍔を設けた筒状の第二のインナシェルと、前記第一の鍔と前記第二の鍔との間に設けられる伸縮性を有する部材とを有する。
本発明に係る基板処理装置は、上記第一〜第四の加熱装置の各態様において、前記加熱装置の内部の前記加熱空間に基板を処理する反応容器を設けてある。
本発明に係る半導体装置の製造方法の第一の態様は、反応容器内に基板を搬入する工程と、加熱する板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する貫通部材とを有する加熱装置内の前記反応容器内を加熱し前記基板を処理する工程とを有する。
本発明に係る半導体装置の製造方法の第二の態様は、反応容器内に基板を搬入する工程と、加熱する板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の前記側壁材側において突出し、前記側壁材側に前記発熱体の移動を規制する突出部とを有する貫通部材とを有する加熱装置内の前記反応容器内を加熱し前記基板を処理する工程とを有する。
本発明に係る貫通部材の第一の態様は、板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部とを少なくとも備える加熱装置に用いられる態様であって、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する。
本発明に係る貫通部材の第二の態様は、板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部とを少なくとも備える加熱装置に用いられる態様であって、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の前記側壁材側において突出し、前記側壁材側に前記発熱体の移動を規制する突出部とを有する。
The embodiment of the present invention is configured as described above, but may be more comprehensively configured as described below.
The first aspect of the heating device according to the present invention is a plate-like heating element having a notch or a through-hole, a side wall material made of a conductive material surrounding the heating space, and a heating space side of the side wall material. A holding portion that holds the heating element only at one end, and protrudes toward the heating space of the side wall member, and has a notch or a through-hole in the heating element between one end and the other end of the heating element. A penetrating portion that penetrates, and a projecting portion that projects on the front and back of the heating element from the penetrating portion with respect to a crossing direction that intersects the direction penetrating from the penetrating portion, and restricts the movement of the heating element in the penetrating direction; And a penetrating member.
In addition, a second aspect of the heating device according to the present invention is a plate-like heating element having a notch or a through hole, a side wall material made of a conductive material surrounding the heating space, and a heating space for the side wall material. A holding part that holds the heating element at one end only, and protrudes toward the heating space side of the side wall member, and is notched or penetrated between the one end and the other end of the heating element. The penetrating part that penetrates the hole and the crossing direction that intersects the direction penetrating from the penetrating part protrude from the penetrating part on the side wall material side of the heating element, and move the heating element to the side wall material side. And a penetrating member having a protruding portion to be regulated.
In the first and second aspects, the protrusion may be formed in a bowl shape. Further, a plurality of the through members are provided for at least one notch or one through hole of the heating element, and at least one of the penetrating members is provided at the lowermost step portion of the notch or one through hole of the heating element. It is good to provide.
Said 1st aspect WHEREIN: You may provide the said protrusion part from the back surface side of the said heat generating body to the said side wall material. In the second aspect, the protruding portion may be provided from the side wall material side of the heating element to the side wall material. In these embodiments, the protruding portion may be provided separately from the penetrating portion. And it is desirable that a groove is formed in the penetrating portion and the protruding portion is provided in the groove. In addition, the protruding portion is formed in an elliptical shape, the short axis side of the elliptical shape is narrower than the width of the notch or the through hole of the heating element, and the long axis side of the elliptical shape is the width of the notch or the through hole of the heating element. You may form more widely. Further, a hole may be formed in the through portion, and the protruding portion may be formed in a wedge shape and inserted into the hole. In the second aspect, the heating element may be held inclined with respect to the vertical direction so that the other end is located on the heating space side from the one end. Thereby, even if thermal deformation occurs in the heating element, the heating element can be guided to move to the protruding portion by gravity, and the movement toward the heating space can be suppressed.
Further, a third aspect of the heating device according to the present invention is a heating element that is folded in a meandering shape, the upper bent portion is formed in a square shape, and the lower bent portion is formed in an arc shape, and the heating element The insulator has a protrusion that holds both ends of the bent portion of the adjacent upper end of the heating element. A fourth aspect of the heating device according to the present invention includes a heating element, a cylindrical inner shell that is located outside the heating element and has a first flange at the lower end, and the outside of the heating element. And a cylindrical inner shell provided with a second ridge at the upper end, and a stretchable member provided between the first ridge and the second ridge.
In the substrate processing apparatus according to the present invention, in each of the first to fourth heating apparatuses, a reaction vessel for processing a substrate is provided in the heating space inside the heating apparatus.
A first aspect of a method for manufacturing a semiconductor device according to the present invention includes a step of carrying a substrate into a reaction vessel, a heating plate-like heating element having a notch or a through-hole, and a conductive material surrounding a heating space. A side wall member configured to be disposed on the heating space side of the side wall material, and holding the heating element only at one end; and protruding from the heating space side of the side wall member, and one end of the heating element Projecting on the front and back of the heating element rather than the penetrating part with respect to the crossing direction intersecting the direction penetrating from the notch or the through hole of the heating element between the other end and the through hole, And heating the inside of the reaction vessel in a heating apparatus having a penetrating member having a projecting portion for restricting movement of the heating element with respect to the penetrating direction, and processing the substrate.
A second aspect of the method for manufacturing a semiconductor device according to the present invention includes a step of carrying a substrate into a reaction vessel, a heating plate-like heating element having a notch or a through hole, and a conductive material surrounding the heating space. A side wall member configured to be disposed on the heating space side of the side wall material, and holding the heating element only at one end; and protruding from the heating space side of the side wall member, and one end of the heating element The side wall material side of the heating element with respect to the penetrating part that passes through the notch or the through hole of the heating element and the crossing direction that intersects the direction penetrating from the penetrating part between the heating part and the other end And heating the inside of the reaction vessel in a heating apparatus having a penetrating member that has a protruding portion that protrudes on the side wall material side and restricts the movement of the heating element, and processes the substrate.
A first aspect of the penetrating member according to the present invention is a plate-like heating element having a notch or a through hole, a side wall member made of a conductive material surrounding the heating space, and a heating space side of the side wall member. It is an aspect used for a heating device provided with at least a holding part which holds the heating element only at one end, and is arranged to protrude to the heating space side of the side wall material, and one end and the other end of the heating element Between the through portion penetrating the notch or the through hole of the heating element and the crossing direction intersecting the direction penetrating from the through portion, and projecting on the front and back of the heating element from the penetration portion, and the penetrating direction And a protrusion for restricting the movement of the heating element relative to.
The second aspect of the penetrating member according to the present invention is a plate-like heating element having a notch or a through hole, a side wall material made of a conductive material surrounding the heating space, and a heating space side of the side wall material. It is an aspect used for a heating device provided with at least a holding part which holds the heating element only at one end, and is arranged to protrude to the heating space side of the side wall material, and one end and the other end of the heating element Projecting closer to the side wall material of the heating element than the penetration part, with respect to the crossing direction that intersects the notch or through hole of the heating element and the direction penetrating from the penetration part, And a protruding portion for restricting movement of the heating element on the side wall member side.

本発明は、例えば、半導体集積回路装置(半導体デバイス)が作り込まれる半導体ウエハに酸化処理や拡散処理、イオン打ち込み後のキャリア活性化や平坦化のためのリフローやアニール及び熱CVD反応による成膜処理などに使用される基板処理装置に利用することができる。本発明は、このような基板処理装置のうち、特に低温領域でプロセスに対して有効なものである。   The present invention is, for example, film formation by oxidation treatment, diffusion treatment, carrier activation after ion implantation or planarization, annealing, and thermal CVD reaction on a semiconductor wafer on which a semiconductor integrated circuit device (semiconductor device) is formed. It can utilize for the substrate processing apparatus used for a process etc. The present invention is effective for a process in such a substrate processing apparatus particularly in a low temperature region.

従来の加熱装置を用いた処理炉の概略断面図である。It is a schematic sectional drawing of the processing furnace using the conventional heating apparatus. 本発明における基板処理装置の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the substrate processing apparatus in this invention. 図2の天井部近傍における横断面図である。FIG. 3 is a cross-sectional view in the vicinity of the ceiling portion of FIG. 2. 図2におけるA部拡大図である。It is the A section enlarged view in FIG. 図3におけるB部拡大図である。It is the B section enlarged view in FIG. 図2におけるC部拡大図である。It is the C section enlarged view in FIG. 図2におけるD部拡大図である。It is the D section enlarged view in FIG. 打ち抜き加工後曲げ加工前の発熱体の状態を示す正面図である。It is a front view which shows the state of the heat generating body after a punching process and before a bending process. 曲げ加工後の発熱体の状態を示し、(a)は正面図、(b)は平面図、(c)は側面図である。The state of the heating element after bending is shown, (a) is a front view, (b) is a plan view, and (c) is a side view. 吊り碍子の上碍子を示し、(a)は側面図、(b)は平面図、(c)は正面図である。The upper insulator of a hanging insulator is shown, (a) is a side view, (b) is a plan view, and (c) is a front view. 吊り碍子の下碍子を示し、(a)は側面図、(b)は平面図、(c)は正面図である。The lower insulator of a hanging insulator is shown, (a) is a side view, (b) is a plan view, and (c) is a front view. 上金具を外した状態における図5相当図である。FIG. 6 is a view corresponding to FIG. 5 in a state where an upper metal fitting is removed. 第二改変例にかかる急冷パイプの一部を破砕した側面図である。It is the side view which fractured a part of quenching pipe concerning the 2nd modification. 第三改変例にかかる急冷パイプの一部を破砕した側面図である。It is the side view which fractured | ruptured a part of quenching pipe concerning a 3rd modification. 第四改変例にかかる急冷パイプを示し、(a)は一部を破砕した側面図、(b)は鍔部分を切断した正面図である。The quenching pipe concerning a 4th modification is shown, (a) is the side view which crushed a part, (b) is the front view which cut | disconnected the collar part. 第五改変例にかかる急冷パイプを示し、(a)は一部を破砕した側面図、(b)は正面図である。The quenching pipe concerning a 5th modification is shown, (a) is the side view which crushed a part, (b) is a front view. 第六改変例にかかる支持棒を示し、(a)は一部を破砕した側面図、(b)は正面図である。The support bar concerning a 6th modification is shown, (a) is a side view which crushed a part, and (b) is a front view. 第七改変例にかかる急冷パイプの図4相当図である。FIG. 10 is a view corresponding to FIG. 4 showing a quench pipe according to a seventh modified example. 第七改変例にかかる急冷パイプの図7相当図である。FIG. 10 is a view corresponding to FIG. 7 showing a quench pipe according to a seventh modified example.

符号の説明Explanation of symbols

1:基板処理装置,3:加熱装置,4:主制御装置,4a:温度モニタ部,4b:加熱制御部,4c:反射制御部,4d:第一流量制御部,4e:圧力制御部,4f:第二流量制御部,4g:排気制御部,4h:駆動制御部,5a:流量制御器,5b:流量制御器,5x:反応ガス導入管,5y:冷却ガス供給ライン,6a:圧力制御器,6x:反応ガス排気管,7:冷却ガス供給ライン,7a:開閉バルブ,7b:急冷パイプ,7x:吸気アタッチメント,7y:冷却ガス導入ダクト,8:強制排気ライン,8a:排気ブロア,10:天井部,11:中間部,12:下部,13:端子ケース,14:気道(冷却媒体流通通路),18:加熱空間,20:発熱体,20a:折曲部,21:上折返部,22:下折返部,23:素線部,24:隙間,30:吊り碍子,31:上碍子,32:下碍子,33:上金具,34:下金具,34a:隙間,35:ピン,36:ボルト,40:急冷パイプ,40a:貫通孔,40b:鍔,40c:鍔,40d:貫通部,42:急冷パイプ,50:インナシェル(側壁内層),50s:隙間,50t:第一フランジ,50u:断熱ブランケット,50x:第二フランジ,50y:断熱ブランケット,51:接続碍子,52:第一のボルト,53:カラー,54:第二のボルト,55a:開口(第一の開口),55b:箱(隔壁体),55c:鍔,55x:ねじ,59:水冷管,60:アウタシェル(側壁中層),60x:第三フランジ,60y:断熱ブランケット,61:パイプ,61a:開口,62:柱,62a:リベット,65:開口(第二の開口),65a:隙間,70:化粧パネル(側壁外層),71:ネジ,72a:底蓋,72b:コイルウケ,81:排気導路,81a:排気口,82:第一の開口,83:第二の開口,90:反射装置,91:反射体,91a:隙間,92:移動機構,93:シャフト,94:中央板,95:ボルト,99:アクチュエーター,100:取付構造,101:温度センサ(温度検出器),102:熱電対接点(温度検出体),103:保護管,103x:隙間,103y:隙間,104:碍子管,105:内鍔,106:外鍔,107:碍子,108:端子,109a:金属管,109b:止めねじ,111:第一パッキン,111a:孔,112:第二パッキン,112a:孔,120a〜c:ねじ,121:温度センサ(温度検出器),125:内鍔,126:外鍔,127:内箱,128:外箱,129:パッキン,131:温度センサ(温度検出器),132:温度センサ(温度検出器),133:保護管,135a〜c:鍔,300:ボート,305:ウエハ,308:処理室,309:反応容器,310:反応管,315:均熱管,317:均熱管内空間,320:L型温度センサ(温度検出器),321:接点(温度検出体),322:接点(温度検出体),330:温度センサ(温度検出器),Z1〜Z5:ゾーン,H1〜H3:貫通孔,R:円弧方向,V:貫通方向    1: substrate processing device, 3: heating device, 4: main control device, 4a: temperature monitoring unit, 4b: heating control unit, 4c: reflection control unit, 4d: first flow rate control unit, 4e: pressure control unit, 4f : Second flow controller, 4g: Exhaust controller, 4h: Drive controller, 5a: Flow controller, 5b: Flow controller, 5x: Reaction gas introduction pipe, 5y: Cooling gas supply line, 6a: Pressure controller , 6x: reaction gas exhaust pipe, 7: cooling gas supply line, 7a: open / close valve, 7b: quenching pipe, 7x: intake attachment, 7y: cooling gas introduction duct, 8: forced exhaust line, 8a: exhaust blower, 10: Ceiling part, 11: Intermediate part, 12: Lower part, 13: Terminal case, 14: Airway (cooling medium flow passage), 18: Heating space, 20: Heating element, 20a: Bending part, 21: Upper turning part, 22 : Lower folding part, 23: Wire part, 24: Clearance, 30: Hanging insulator, 31: Upper insulator, 32: Lower insulator, 33: Upper bracket, 34: Lower bracket, 34a: Clearance, 35: Pin, 36: Bo 40: quenching pipe, 40a: through hole, 40b: trough, 40d: penetration, 42: quenching pipe, 50: inner shell (side wall inner layer), 50s: gap, 50t: first flange, 50u : Insulation blanket, 50x: Second flange, 50y: Insulation blanket, 51: Connection insulator, 52: First bolt, 53: Collar, 54: Second bolt, 55a: Opening (first opening), 55b: Box (partition body), 55c: 鍔, 55x: Screw, 59: Water-cooled pipe, 60: Outer shell (side wall middle layer), 60x: Third flange, 60y: Thermal insulation blanket, 61: Pipe, 61a: Opening, 62: Column, 62a: rivet, 65: opening (second opening), 65a: gap, 70: decorative panel (side wall outer layer), 71: screw, 72a: bottom lid, 72b: coil wall, 81: exhaust conduit, 81a: exhaust port , 82: first aperture, 83: second aperture, 90: reflector, 91: reflector, 91a: gap, 92: moving mechanism, 93: shaft, 94: center plate, 95: Bolt, 99: Actuator, 100: Mounting structure, 101: Temperature sensor (temperature detector), 102: Thermocouple contact (temperature detector), 103: Protection tube, 103x: Clearance, 103y: Clearance, 104: Insulator tube, 105: inner cage, 106: outer cage, 107: insulator, 108: terminal, 109a: metal tube, 109b: set screw, 111: first packing, 111a: hole, 112: second packing, 112a: hole, 120a ~ c: Screw, 121: Temperature sensor (temperature detector), 125: Inner cage, 126: Outer cage, 127: Inner box, 128: Outer box, 129: Packing, 131: Temperature sensor (temperature detector), 132: Temperature sensor (temperature detector), 133: protection tube, 135a to c: dredging, 300: boat, 305: wafer, 308: processing chamber, 309: reaction vessel, 310: reaction tube, 315: heat equalizing tube, 317: soaking Heat pipe space, 320: L-type temperature sensor (temperature detector), 321: Contact (temperature detector), 322: Contact (temperature detector), 330: Temperature sensor (temperature detector), Z1 to Z5: Zone , H1 to H3: through hole, R: arc direction, V: penetration direction

Claims (5)

板状で切欠又は貫通孔を有する発熱体と、
加熱空間を包囲する導電性材料で構成される側壁材と、
この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、
前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する貫通部材と
を有する加熱装置。
A heating element having a plate-like shape with a notch or a through hole;
A sidewall material made of a conductive material surrounding the heating space;
A holding portion that is disposed on the heating space side of the side wall material and holds the heating element only at one end;
The side wall member is disposed so as to protrude toward the heating space, and intersects a through-hole passing through the notch or the through-hole of the heating element between one end and the other end of the heating element and a direction penetrating from the penetration part. A heating device having a penetrating member that protrudes in the crossing direction on the front and back sides of the heating element rather than the penetrating part and has a protruding part that restricts movement of the heating element in the penetrating direction.
板状で切欠又は貫通孔を有する発熱体と、
加熱空間を包囲する導電性材料で構成される側壁材と、
この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、
前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の前記側壁材側において突出し、前記側壁材側に前記発熱体の移動を規制する突出部とを有する貫通部材と
を有する加熱装置。
A heating element having a plate-like shape with a notch or a through hole;
A sidewall material made of a conductive material surrounding the heating space;
A holding portion that is disposed on the heating space side of the side wall material and holds the heating element only at one end;
The side wall member is disposed so as to protrude toward the heating space, and intersects a through-hole passing through the notch or the through-hole of the heating element between one end and the other end of the heating element and a direction penetrating from the penetration part. A heating apparatus having a penetrating member that protrudes on the side of the side wall material of the heat generating element from the penetrating part with respect to the crossing direction and has a protruding part that restricts movement of the heat generating element on the side of the side wall material.
請求項1又は2記載の前記加熱装置の内部の前記加熱空間に基板を処理する反応容器を設けた基板処理装置。 The substrate processing apparatus which provided the reaction container which processes a board | substrate in the said heating space inside the said heating apparatus of Claim 1 or 2. 反応容器内に基板を搬入する工程と、
加熱する板状で切欠又は貫通孔を有する発熱体と、加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部と、前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部とを有する貫通部材とを有する加熱装置内の前記反応容器内を加熱し前記基板を処理する工程と
を有する半導体装置の製造方法。
Carrying the substrate into the reaction vessel;
A heating plate having a notch or a through-hole in a plate shape to be heated, a side wall material made of a conductive material surrounding the heating space, and disposed on the heating space side of the side wall material, the heating element is held at one end only. A holding portion that protrudes toward the heating space of the side wall member, a through portion that passes through a notch or a through hole of the heating element between one end and the other end of the heating element, and penetrates from the through portion In a heating device having a penetrating member that protrudes from the front and back of the heating element rather than the penetrating part with respect to the intersecting direction that intersects the direction to be, and has a protruding part that restricts movement of the heating element in the penetrating direction. And a step of processing the substrate by heating the inside of the reaction vessel.
板状で切欠又は貫通孔を有する発熱体と、
加熱空間を包囲する導電性材料で構成される側壁材と、この側壁材の加熱空間側に配置され、前記発熱体を一端のみで保持する保持部とを少なくとも備える加熱装置に用いられる貫通部材であって、
前記側壁材の加熱空間側に突出して配置され、前記発熱体の一端と他端との間において前記発熱体の切欠又は貫通孔を貫通する貫通部と、前記貫通部から貫通する方向に交差する交差方向に対し、前記貫通部よりも前記発熱体の表裏において突出し、前記貫通する方向に対する前記発熱体の移動を規制する突出部と
を有する貫通部材。
A heating element having a plate-like shape with a notch or a through hole;
A penetrating member used in a heating device comprising at least a side wall member made of a conductive material surrounding the heating space, and a holding part that is disposed on the heating space side of the side wall member and holds the heating element only at one end. There,
The side wall member is disposed so as to protrude toward the heating space, and intersects a through-hole passing through the notch or the through-hole of the heating element between one end and the other end of the heating element and a direction penetrating from the penetration part. A penetrating member having a projecting portion that projects in front and back of the heating element relative to the penetrating portion with respect to the crossing direction and restricts movement of the heating element in the penetrating direction.
JP2008154377A 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and penetrating member Active JP4472007B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008154377A JP4472007B2 (en) 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and penetrating member
KR1020080059571A KR100969696B1 (en) 2007-06-25 2008-06-24 Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and extending member
US12/213,825 US8158911B2 (en) 2007-06-25 2008-06-25 Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and extending member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007167003 2007-06-25
JP2008154377A JP4472007B2 (en) 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and penetrating member

Publications (2)

Publication Number Publication Date
JP2009033117A true JP2009033117A (en) 2009-02-12
JP4472007B2 JP4472007B2 (en) 2010-06-02

Family

ID=40403251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154377A Active JP4472007B2 (en) 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and penetrating member

Country Status (1)

Country Link
JP (1) JP4472007B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134597A (en) * 2009-12-24 2011-07-07 Hitachi Kokusai Electric Inc Heating device
JP2011138936A (en) * 2009-12-28 2011-07-14 Hitachi Kokusai Electric Inc Heating device
JP2015028925A (en) * 2013-06-27 2015-02-12 貞徳舎株式会社 Electric heater and heating apparatus including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134597A (en) * 2009-12-24 2011-07-07 Hitachi Kokusai Electric Inc Heating device
JP2011138936A (en) * 2009-12-28 2011-07-14 Hitachi Kokusai Electric Inc Heating device
JP2015028925A (en) * 2013-06-27 2015-02-12 貞徳舎株式会社 Electric heater and heating apparatus including the same

Also Published As

Publication number Publication date
JP4472007B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4331768B2 (en) Heat treatment furnace and vertical heat treatment equipment
JP5394360B2 (en) Vertical heat treatment apparatus and cooling method thereof
JP5248874B2 (en) Heat treatment furnace and vertical heat treatment equipment
JP5235407B2 (en) Substrate mounting mechanism and substrate processing apparatus
KR101012082B1 (en) Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and insulator
CN101499410A (en) Thermal processing furnace
JPWO2007023855A1 (en) SUBSTRATE PROCESSING APPARATUS, HEATING DEVICE USED FOR THE SAME, AND SEMICONDUCTOR MANUFACTURING METHOD USING THE SAME
US9466515B2 (en) Heat treatment furnace and heat treatment apparatus
US20110220089A1 (en) Vertical heat treatment apparatus and assembly of pressure detection system and temperature sensor
KR100969696B1 (en) Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and extending member
JP4472007B2 (en) Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and penetrating member
JP5139734B2 (en) Substrate processing apparatus and heating apparatus used therefor
JP2013007549A (en) Heat treatment furnace, and heat treatment apparatus
JP4490492B2 (en) Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and insulator
KR101001331B1 (en) Heating apparatus, substrate processing apparatus and method of manufacturing semiconductor devices
JP5568387B2 (en) Heating apparatus, substrate processing method, and substrate processing apparatus
JP4564081B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
JP2011023514A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2006100755A (en) Substrate processing equipment and electric heater for substrate processing equipment, and substrate processing equipment equipped with this
JP2011187561A (en) Heating device, and method of manufacturing heating device
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5584461B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
JP2010093108A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JP2011187781A (en) Heating device and fixture of cooling pipe used for the same
JP5543196B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250