JP2009032628A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2009032628A
JP2009032628A JP2007198255A JP2007198255A JP2009032628A JP 2009032628 A JP2009032628 A JP 2009032628A JP 2007198255 A JP2007198255 A JP 2007198255A JP 2007198255 A JP2007198255 A JP 2007198255A JP 2009032628 A JP2009032628 A JP 2009032628A
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen peroxide
electrode
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007198255A
Other languages
Japanese (ja)
Other versions
JP5071933B2 (en
Inventor
Shinichi Yamazaki
眞一 山▲崎▼
Kazuaki Yasuda
和明 安田
Jun Shiroma
純 城間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007198255A priority Critical patent/JP5071933B2/en
Publication of JP2009032628A publication Critical patent/JP2009032628A/en
Application granted granted Critical
Publication of JP5071933B2 publication Critical patent/JP5071933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of generating power at low cost and under a simple condition or in simple structure. <P>SOLUTION: The fuel cell is a one-container fuel cell in which a positive electrode and a negative electrode are arranged in a cell container, wherein (1) an alkaline electrolyte is filled in the cell container, (2) hydrogen peroxide is added to the alkaline electrolyte, and (3) the alkaline electrolyte to which hydrogen peroxide is added has a pH of ≥12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規な燃料電池に関する。 The present invention relates to a novel fuel cell.

小型移動体用・モバイル用の燃料電池においては、低コスト化するためには電池構造をシンプルにすることが重要である。ところが、現在の燃料電池においては、触媒に選択性がないため、アノード側とカソード側を隔膜等で分離しないと、燃料と電子受容体(例えば酸素)とが対極で反応することになり、電力のロス及び発火等の危険が生じる。また、安全性のため、燃料及び酸化剤は別々の流路から供給する必要がある。このような制約のため、構造が複雑になり、この複雑さが燃料電池のコストを上昇させる要因の一つとなっている。   In a fuel cell for a small mobile body / mobile, it is important to simplify the battery structure in order to reduce the cost. However, in current fuel cells, since the catalyst has no selectivity, if the anode side and the cathode side are not separated by a diaphragm or the like, the fuel and the electron acceptor (for example, oxygen) will react at the opposite electrode, and the power There is a risk of loss and fire. For safety, the fuel and the oxidant must be supplied from separate flow paths. Due to such restrictions, the structure becomes complicated, and this complexity is one of the factors that increase the cost of the fuel cell.

そこで、アノードとカソードを一室化させれば、電池システムが非常に簡略化され、ひいては低コスト化が期待できる。このような一室型電池としては、例えば、非特許文献1に提案されている。   Therefore, if the anode and the cathode are made into one chamber, the battery system can be greatly simplified, and as a result, cost reduction can be expected. For example, Non-Patent Document 1 proposes such a single-chamber battery.

しかしながら、この一室型電池では、触媒として特定の酵素を使用するため、低コスト化の問題は十分に解決されていない。また、使用する酵素の活性を維持させるために、温度、pHなどの反応条件を、非常に厳密に制御しなくてはならない問題も生じている。
Phys. Chem. Chem. Phys.9 (2007)1793-1801
However, in this one-chamber battery, since a specific enzyme is used as a catalyst, the problem of cost reduction has not been sufficiently solved. In addition, in order to maintain the activity of the enzyme used, there is a problem that the reaction conditions such as temperature and pH must be controlled very strictly.
Phys. Chem. Chem. Phys. 9 (2007) 1793-1801

従って、低コストで、かつ簡易な条件下または簡易な構造で発電が可能な電池の提供が望まれている。   Therefore, it is desired to provide a battery that can generate power at low cost under simple conditions or with a simple structure.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた結果、特定の構造を採用することにより、上記問題点を解決するに至った。すなわち、下記の燃料電池に関する。   As a result of intensive studies to achieve the above object, the present inventor has solved the above problems by adopting a specific structure. That is, the present invention relates to the following fuel cell.

項1.正極及び負極が、電解槽内に配置された一室型燃料電池であって、
(1)当該電解槽内に、アルカリ性電解液が充填されてなり、
(2)当該アルカリ性電解液に過酸化水素がさらに配合されており、
(3)過酸化水素が配合されたアルカリ性電解液のpHが12以上である、
燃料電池。
Item 1. A positive electrode and a negative electrode are one-chamber fuel cells arranged in an electrolytic cell,
(1) The electrolytic cell is filled with an alkaline electrolyte,
(2) Hydrogen peroxide is further blended in the alkaline electrolyte,
(3) The pH of the alkaline electrolyte containing hydrogen peroxide is 12 or more.
Fuel cell.

項2.電池反応で消費された過酸化水素を電解液中に連続的又は間けつ的に補充する、項1に記載の燃料電池。   Item 2. Item 2. The fuel cell according to Item 1, wherein hydrogen peroxide consumed in the cell reaction is replenished continuously or intermittently into the electrolyte.

項3.前記正極及び負極が、8〜11族の異なる遷移金属である、項1又は2に記載の燃料電池。   Item 3. Item 3. The fuel cell according to Item 1 or 2, wherein the positive electrode and the negative electrode are transition metals different in Group 8-11.

項4.前記正極が銀である、項1〜3のいずれかに記載の燃料電池。   Item 4. Item 4. The fuel cell according to any one of Items 1 to 3, wherein the positive electrode is silver.

項5.前記負極が金、白金、パラジウム及びニッケルからなる群から選択される少なくとも1種である、項1〜4のいずれかに記載の燃料電池。   Item 5. Item 5. The fuel cell according to any one of Items 1 to 4, wherein the negative electrode is at least one selected from the group consisting of gold, platinum, palladium, and nickel.

本発明の燃料電池は、正極及び負極が、電解槽内に配置された一室型燃料電池であって、(1)当該電解槽内に、アルカリ性電解液が充填されてなり、(2)当該アルカリ性電解液に過酸化水素がさらに配合されており、(3)過酸化水素が配合されたアルカリ性電解液のpHが12以上である、ことを特徴とする。   The fuel cell of the present invention is a one-chamber fuel cell in which a positive electrode and a negative electrode are disposed in an electrolytic cell, and (1) the electrolytic cell is filled with an alkaline electrolyte, Hydrogen peroxide is further blended in the alkaline electrolyte, and (3) the pH of the alkaline electrolyte in which hydrogen peroxide is blended is 12 or more.

本発明は、正極の過酸化水素に対する触媒活性と負極の過酸化水素に対する触媒活性の差を利用する電池反応であり、正極及び負極を過酸化水素含有アルカリ性電解液に接触させることにより、発電がなされる。具体的には、本発明の電池反応は、下記反応式に示すように、アノード極で過酸化水素が酸化し、カソード極で過酸化水素が還元する反応であり、特にアノード電位がカソード電位よりも負である場合に発電が可能となるものである。   The present invention is a battery reaction that utilizes the difference between the catalytic activity for hydrogen peroxide of the positive electrode and the catalytic activity for hydrogen peroxide of the negative electrode. By contacting the positive electrode and the negative electrode with a hydrogen peroxide-containing alkaline electrolyte, power generation is achieved. Made. Specifically, the battery reaction of the present invention is a reaction in which hydrogen peroxide is oxidized at the anode electrode and hydrogen peroxide is reduced at the cathode electrode as shown in the following reaction formula. If it is also negative, power generation is possible.

負極(アノード):H + 2OH- → O + 2HO + 2e-
正極(カソード):H +2e- → 2OH-
全電池反応:2H → O + 2H
Negative electrode (anode): H 2 O 2 + 2OH → O 2 + 2H 2 O + 2e
Positive electrode (cathode): H 2 O 2 + 2e → 2OH
Total battery reaction: 2H 2 O 2 → O 2 + 2H 2 O

なお、上記反応において、負極反応の酸化還元電位は0.68V程度(標準水素電極電位基準)、正極反応の酸化還元電位は1.77V程度(標準水素電極電位基準)である。以下、本発明の燃料電池を詳細に説明する。   In the above reaction, the redox potential of the negative electrode reaction is about 0.68 V (standard hydrogen electrode potential reference), and the redox potential of the positive electrode reaction is about 1.77 V (standard hydrogen electrode potential reference). Hereinafter, the fuel cell of the present invention will be described in detail.

本発明の燃料電池は、一室型燃料電池であること、すなわち、正極及び負極が一つの電解槽内に配置されていることを特徴とする。一室型燃料電池は、一般的には、正極側反応に寄与する電解液に含有する組成と負極側反応に寄与する電解液に含有する組成とが同一とした燃料電池をいう。通常、正極側と負極側とがセパレータ、ガラスフィルタ等の多孔質な隔壁で区切られていないものをいうが、負極側と電極側とが同一組成の電解液であればよく、例えばガラスフィルタ等の隔壁で電解槽が形式的に区切られていても差し支えはない。本発明の燃料電池は、このように正極側と負極側との電解液とを区別する必要がなく、さらには隔壁も設ける必要がないため、比較的簡便な構造を採用することができる。よって、電池構造を簡略化でき、低コスト化を図ることができる。   The fuel cell of the present invention is a single-chamber fuel cell, that is, the positive electrode and the negative electrode are arranged in one electrolytic cell. The single-chamber fuel cell generally refers to a fuel cell in which the composition contained in the electrolyte solution contributing to the positive electrode side reaction and the composition contained in the electrolyte solution contributing to the negative electrode side reaction are the same. Usually, the positive electrode side and the negative electrode side are not separated by a porous partition wall such as a separator or a glass filter, but the negative electrode side and the electrode side may be an electrolyte solution having the same composition. For example, a glass filter or the like There is no problem even if the electrolytic cell is formally separated by the partition walls. In the fuel cell of the present invention, it is not necessary to distinguish between the electrolyte solution on the positive electrode side and the negative electrode side as described above, and further, it is not necessary to provide a partition wall. Therefore, a relatively simple structure can be adopted. Therefore, the battery structure can be simplified and the cost can be reduced.

また、本発明の燃料電池は、電解槽内に、過酸化水素を含有するアルカリ性電解液が充填されていることを特徴とする。これにより、前述の電池反応により電気を取り出すことができ、上記一室型の燃料電池として作動させることができる。   In addition, the fuel cell of the present invention is characterized in that an electrolytic cell is filled with an alkaline electrolyte containing hydrogen peroxide. Thereby, electricity can be taken out by the above-described cell reaction, and it can be operated as the one-chamber fuel cell.

アルカリ性電解液としては、アルカリ性水溶液が好適に使用することができる。より具体的には、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム等が挙げられる。この中でも、特に水酸化ナトリウムが好ましい。アルカリ水溶液の濃度は、過酸化水素を配合した後の電解液のpHを本発明の所望の範囲にできる限り限定的でなく、例えば0.1mol/L〜6mol/L程度、特に0.5mol/L〜1mol/L程度とすればよい。   As the alkaline electrolyte, an alkaline aqueous solution can be suitably used. More specifically, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide, etc. are mentioned. Among these, sodium hydroxide is particularly preferable. The concentration of the alkaline aqueous solution is not limited as much as possible within the desired range of the present invention, and the pH of the electrolytic solution after blending hydrogen peroxide is, for example, about 0.1 mol / L to 6 mol / L, particularly 0.5 mol / L. What is necessary is just to be about L-1 mol / L.

本発明の電解液はさらに過酸化水素が配合されており、さらに、過酸化水素が配合された状態におけるアルカリ性電解液は、pHが12以上であることを必須とする。このように過酸化水素が上記特定のpHを示す電解液中に存在するため、当該過酸化水素が燃料及び電子受容体としての役割を行い、電池反応を生じさせることができる。pHは好ましくは13以上、最も好ましくは13.5〜14である。   The electrolytic solution of the present invention further contains hydrogen peroxide, and the alkaline electrolyte in a state where hydrogen peroxide is further added must have a pH of 12 or more. As described above, since hydrogen peroxide is present in the electrolytic solution exhibiting the specific pH, the hydrogen peroxide can serve as a fuel and an electron acceptor to cause a cell reaction. The pH is preferably 13 or more, most preferably 13.5-14.

過酸化水素の配合量(添加量)は限定的でないが、電解液(過酸化水素を含有していない状態の電解液)1リットルに対して、例えば3mmol〜1500mmol程度、好ましくは、200mmol〜400mmol程度とすればよい。これにより、電池反応に関
与しない過酸化水素の分解反応を抑制しながら、電池の出力が大きくすることができる。
The blending amount (addition amount) of hydrogen peroxide is not limited, but for example, about 3 mmol to 1500 mmol, preferably 200 mmol to 400 mmol per 1 liter of the electrolyte (electrolyte without hydrogen peroxide). It should be about. Thereby, the output of the battery can be increased while suppressing the decomposition reaction of hydrogen peroxide that is not involved in the battery reaction.

本発明の燃料電池は、電池反応と共に過酸化水素は消耗するため、必要に応じて、電池反応で消費された過酸化水素を電解液中に連続的又は間けつ的に補充してもよい。すなわち、過酸化水素を燃料として、電解槽外部から導入してもよい。例えば、上記好適な含有量(特に200mmol/L〜400mmol/L)を維持するように、過酸化水素を適宜添加すればよい。これにより、燃料電池として繰り返し使用することが可能となる。   Since the fuel cell of the present invention consumes hydrogen peroxide along with the cell reaction, the hydrogen peroxide consumed in the cell reaction may be replenished continuously or intermittently into the electrolyte as necessary. That is, hydrogen peroxide may be introduced from the outside of the electrolytic cell as a fuel. For example, hydrogen peroxide may be appropriately added so as to maintain the above-mentioned preferable content (particularly 200 mmol / L to 400 mmol / L). Thereby, it can be used repeatedly as a fuel cell.

また、電解液には、上記過酸化水素のほか、従来の燃料電池に用いられる公知の添加剤を含有してもよい。   In addition to the hydrogen peroxide, the electrolyte solution may contain a known additive used in conventional fuel cells.

本発明の正極及び負極は、例えば、8族〜11族の遷移金属が好適に使用できる。これら正極と負極とは、それぞれ異なる金属から構成されることが好ましい。このように8族〜11族の異なる遷移金属を選択することにより、正極側と負極側との過酸化水素に対する触媒活性の差を有効に利用でき、上記電池反応によって発電することができる。特に、過酸化水素に対する酸化活性が強く還元活性が弱い電極触媒(負極)と、過酸化水素の還元活性が強く酸化活性が弱い電極触媒(正極)とを組み合わせると、発電をより効率的に行わせることができる。   For the positive electrode and the negative electrode of the present invention, for example, a transition metal of group 8 to group 11 can be preferably used. The positive electrode and the negative electrode are preferably composed of different metals. Thus, by selecting different transition metals from Group 8 to Group 11, the difference in catalytic activity with respect to hydrogen peroxide between the positive electrode side and the negative electrode side can be used effectively, and power can be generated by the battery reaction. In particular, combining an electrode catalyst (negative electrode) that has a strong oxidation activity against hydrogen peroxide and a weak reduction activity with an electrode catalyst (positive electrode) that has a strong reduction activity against hydrogen peroxide and a low oxidation activity makes power generation more efficient. Can be made.

具体的には、正極(カソード)は、8族〜11族の遷移金属の中でも、銀、銅等が挙げられ、特に銀が好ましい。これにより、過酸化水素をより高い電圧で還元でき、負極反応との電位差がより大きくなるため、より一層高出力な電池とすることができる。   Specifically, the positive electrode (cathode) includes silver, copper, etc. among the transition metals of Group 8 to Group 11, and silver is particularly preferable. Thereby, hydrogen peroxide can be reduced at a higher voltage, and the potential difference from the negative electrode reaction becomes larger, so that a battery with higher output can be obtained.

負極(アノード)は、8族〜11族の遷移金属の中でも、特に金、白金、パラジウム、ニッケル等が好ましい。これにより、過酸化水素をより低い電圧で酸化でき、正極反応との電位差がより大きくなるため、より一層高出力な電池とすることができる。   The negative electrode (anode) is preferably gold, platinum, palladium, nickel or the like among the transition metals of Group 8 to Group 11. Thereby, hydrogen peroxide can be oxidized at a lower voltage, and the potential difference from the positive electrode reaction becomes larger, so that a battery with higher output can be obtained.

本発明の正極及び負極の電極の形状は特に限定されず、例えば、金属線であってもよく、平板電極であってもよい。また、上記電極を構成する金属(電極金属)の造粒物を、支持体に固定させたものであってもよい。造粒物としては、例えば、(1)貴金属ブラック、(2)電極金属のナノ粒子、(3)電極金属を導電性担体に担持させた担持体などが挙げられる。支持体は限定的でなく、一次電池、燃料電池等に一般的に用いられている集電体を使用すればよく、例えば、アルミニウム板、カーボンペーパー等が好適に挙げられる。導電性担体も限定的でなく、例えば、固体高分子形燃料電池等で用いられる触媒担体を使用すればよく、具体的には、カーボンブラック等が好適に挙げられる。導電性担体に担持する電極金属の割合は特に限定はないが、担持体全重量に対して、5〜40重量%程度が好ましい。なお、本発明の燃料電池は反応物質が気体ではなく、液体である過酸化水素(又は過酸化水素水溶液)を使用するため、燃料及び電子受容体の拡散の制約が通常の燃料電池に比べて少なく、電極の形状を上述の中から自由に設定できる。   The shape of the positive electrode and the negative electrode of the present invention is not particularly limited, and may be, for example, a metal wire or a flat plate electrode. Moreover, what fixed the granule of the metal (electrode metal) which comprises the said electrode to the support body may be used. Examples of the granulated material include (1) noble metal black, (2) nano particles of electrode metal, and (3) a support in which an electrode metal is supported on a conductive carrier. The support is not limited, and a current collector generally used for a primary battery, a fuel cell or the like may be used. For example, an aluminum plate, carbon paper or the like is preferably used. The conductive carrier is not limited, and for example, a catalyst carrier used in a polymer electrolyte fuel cell or the like may be used, and specifically, carbon black and the like are preferable. The ratio of the electrode metal supported on the conductive carrier is not particularly limited, but is preferably about 5 to 40% by weight with respect to the total weight of the support. The fuel cell of the present invention uses hydrogen peroxide (or hydrogen peroxide aqueous solution) that is a liquid rather than a gas as a reactant, so that the restrictions on the diffusion of the fuel and the electron acceptor are limited compared to a normal fuel cell. The electrode shape can be freely set from the above.

本発明の電解槽の材料は、従来の燃料電池に使用されている公知又は市販のものを使用することができる。例えば、ステンレス等の金属製、ポリプロピレン等の樹脂製等を使用できる。   As the material for the electrolytic cell of the present invention, known or commercially available materials used in conventional fuel cells can be used. For example, a metal such as stainless steel or a resin such as polypropylene can be used.

電解槽の形状も限定されず、例えば、丸型、箱形等の任意の形を採用すればよい。   The shape of the electrolytic cell is not limited, and any shape such as a round shape or a box shape may be adopted.

本発明の燃料電池の構造は、正極、負極及びアルカリ性電解液が、一つの電解槽内に設置されていればよく、その他の部位は従来の燃料電池に使用される構造を採用すればよい。例えば、図1に示すように、アルカリ性電解液が充填された開放系の容器(電解槽)に、当該アルカリ性電解液に二本の金属線(正極及び負極)の一部を浸漬し、さらに、燃料
である過酸化水素を導入するための配管(導入管)、及び電池反応により発生する酸素を排出するための配管(排出管)を設置すればよい。
The structure of the fuel cell of the present invention is not limited as long as the positive electrode, the negative electrode, and the alkaline electrolyte are installed in one electrolytic cell, and the other parts may adopt the structure used in a conventional fuel cell. For example, as shown in FIG. 1, a part of two metal wires (a positive electrode and a negative electrode) are immersed in the alkaline electrolyte in an open container (electrolysis tank) filled with the alkaline electrolyte, A pipe (introduction pipe) for introducing hydrogen peroxide as a fuel and a pipe (exhaust pipe) for discharging oxygen generated by the battery reaction may be installed.

本発明の一室型燃料電池では、正極側と負極側との電解液組成が同一の電解液を使用できる構造であるため、ガラスフィルタ等の隔壁で正極側と負極側とで区別する必要がないが、使用条件等に応じてはガラスフィルタ等を使用してもよい。本発明においては、ガラスフィルタ等を使用しない構造が好ましい。   The single-chamber fuel cell of the present invention has a structure in which the electrolyte composition of the positive electrode side and the negative electrode side can be the same, so it is necessary to distinguish between the positive electrode side and the negative electrode side by partition walls such as a glass filter. However, a glass filter or the like may be used depending on usage conditions. In the present invention, a structure that does not use a glass filter or the like is preferable.

なお、本発明では、燃料及び電子受容体が同一物質(過酸化水素)であるため、従来必要であった燃料用配管及び酸化剤用配管の2つの配管を一つにすることができ、より簡略した構造を採用することができる。   In the present invention, since the fuel and the electron acceptor are the same substance (hydrogen peroxide), the two pipes, the fuel pipe and the oxidant pipe, which have been conventionally required, can be combined into one. A simple structure can be adopted.

また、電解槽に電解液を充填又は注入する際、当該電解液には予め過酸化水素は含まれていなくてもよく、電解槽に充填した後に導入管を通じて過酸化水素を導入することにより 当該電解液に過酸化水素を含有させてもよい。   In addition, when the electrolytic solution is filled or injected into the electrolytic cell, the electrolytic solution may not contain hydrogen peroxide in advance, and by filling the electrolytic cell and introducing hydrogen peroxide through the introduction tube, Hydrogen peroxide may be included in the electrolytic solution.

過酸化水素は、過酸化水素単体としてでも、水溶液に含有させた状態で導入、すなわち過酸化水素水溶液として導入してもよい。過酸化水素水溶液として導入する際の濃度は限定的でなく、市販の過酸化水素水溶液のもの、例えば通常8〜12mol/L程度(好ましくは10〜12mol/L程度)のものを使用すればよい。   Hydrogen peroxide may be introduced as hydrogen peroxide alone or in the form of an aqueous solution, that is, introduced as an aqueous hydrogen peroxide solution. The concentration at the time of introduction as a hydrogen peroxide aqueous solution is not limited, and a commercially available aqueous hydrogen peroxide solution, for example, about 8 to 12 mol / L (preferably about 10 to 12 mol / L) may be used. .

また、本燃料電池は、電解液中に溶存した酸素をパージ(除去)すればよい。これにより、より一層発電性能を向上させることができる。パージの方法は限定的でなく、例えば、パージガスをポリエチレン製のチューブ等を介して電解液内に吹き込む方法、パージガスを電解液上部の気相に送り込む方法等により行えばよい。パージは、発電開始前にのみ行ってもよいし、発電中に連続的に行ってもよい。パージガスとしては、例えば、窒素、アルゴン、ヘリウム等の不活性ガスが例示される。   In addition, the present fuel cell may be purged (removed) of oxygen dissolved in the electrolytic solution. Thereby, the power generation performance can be further improved. The method of purging is not limited. For example, the purge gas may be blown into the electrolytic solution through a polyethylene tube or the like, or the purge gas may be sent into the gas phase above the electrolytic solution. The purge may be performed only before the start of power generation or may be performed continuously during power generation. Examples of the purge gas include inert gases such as nitrogen, argon, and helium.

本発明の燃料電池は公知又は市販の燃料電池と同様の条件下で使用できる。例えば、作動温度は、通常は0〜100℃程度、好ましくは10〜80℃程度とすればよい。   The fuel cell of the present invention can be used under the same conditions as known or commercially available fuel cells. For example, the operating temperature is usually about 0 to 100 ° C., preferably about 10 to 80 ° C.

本発明の燃料電池は、正極及び負極を、過酸化水素を含有するpH12以上のアルカリ性電解液に接触させることにより、発電する電池である。すなわち、液体で低コストである過酸化水素を正極及び負極の両電極の電池反応における反応物質とするため、ガスを供給源とするための構造、両電極の反応系を別個に分けるための構造等といった複雑な構造を必要とせずに、一室型の燃料電池とすることができ、低コスト化を図ることができる。また、厳密な制御を必要とせず、比較的緩和な反応条件下で燃料電池としての機能を発揮させることもできる。   The fuel cell of the present invention is a battery that generates electricity by bringing the positive electrode and the negative electrode into contact with an alkaline electrolyte containing hydrogen peroxide and having a pH of 12 or higher. That is, in order to use hydrogen, which is liquid and low cost, as a reactant in the battery reaction of both the positive electrode and the negative electrode, a structure for using gas as a supply source, and a structure for separately separating the reaction system of both electrodes Thus, a single-chamber fuel cell can be obtained without requiring a complicated structure such as the above, and costs can be reduced. Further, the function as a fuel cell can be exhibited under relatively mild reaction conditions without requiring strict control.

以下に実施例及び比較例を挙げて本発明を更に詳細に説明する。なお、本発明は、下記の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

実施例1
(電解液の調製)
NaOH40gを1Lの純水に溶解し、1mol/LのNaOH水溶液を調製した。この水溶液10mLに11.6mol/Lの過酸化水素水溶液を0.2586mL加えることにより、300mmol/Lの過酸化水素を含む1mol/LのNaOH水溶液(実施例1の電解液)を調製した。pHは13.6であった。
Example 1
(Preparation of electrolyte)
NaOH 40g was melt | dissolved in 1 L pure water, and 1 mol / L NaOH aqueous solution was prepared. By adding 0.2586 mL of 11.6 mol / L hydrogen peroxide aqueous solution to 10 mL of this aqueous solution, 1 mol / L NaOH aqueous solution (electrolytic solution of Example 1) containing 300 mmol / L hydrogen peroxide was prepared. The pH was 13.6.

(燃料電池の作製)
得られた電解液をH型セルに充填し、窒素を吹き込むことにより電解液中の溶存酸素をパージした(なお、H型セル内はガラスフィルタでカソード側とアノード側とが仕切られていたが、カソード側及びアノード側ともに同一の上記電解液を充填した)。次いで、アノードとしてAu電極(電極直径が0.5mm、電極の長さが1.6cmの金属線)、カソードとしてAg電極(電極直径が0.5mm、電極の長さが1.6cmの金属線)を浸し、過酸化水素燃料導入用の導入管及び酸素ガス排出用の排出管を設けることにより、実施例1の一室型燃料電池を作製した。
(Fabrication of fuel cell)
The obtained electrolyte solution was filled into an H-type cell, and nitrogen was blown to purge dissolved oxygen in the electrolyte solution (the inside of the H-type cell was separated from the cathode side and the anode side by a glass filter). The same electrolyte solution was filled on both the cathode side and the anode side). Then, an Au electrode (electrode diameter: 0.5 mm, electrode length: 1.6 cm) as an anode, and an Ag electrode (electrode diameter: 0.5 mm, electrode length: 1.6 cm as a cathode) as an anode ) And an introduction pipe for introducing hydrogen peroxide fuel and an exhaust pipe for exhausting oxygen gas were provided to produce a one-chamber fuel cell of Example 1.

実施例2
アノードとしてPd電極(電極直径が0.5mm、電極の長さが1.6cmの金属線)を使用した以外は、実施例1と同様にして、実施例2の一室型燃料電池を作製した。
Example 2
A one-chamber fuel cell of Example 2 was fabricated in the same manner as Example 1 except that a Pd electrode (a metal wire having an electrode diameter of 0.5 mm and an electrode length of 1.6 cm) was used as the anode. .

実施例3
アノードとしてPt電極(電極直径が1.0mm、電極の長さが1.6cmの金属線)を使用した以外は、実施例1と同様にして、実施例3の一室型燃料電池を作製した。
Example 3
A one-chamber fuel cell of Example 3 was fabricated in the same manner as Example 1 except that a Pt electrode (a metal wire having an electrode diameter of 1.0 mm and an electrode length of 1.6 cm) was used as the anode. .

実施例4
アノードとしてNi電極(電極表面積が0.018cmの平板電極)、カソードとしてAg電極(電極表面積が0.018cmの平板電極)を使用した以外は、実施例1と同様にして、実施例4の一室型燃料電池を作製した。
Example 4
Ni electrode as an anode (plate electrode of the electrode surface area 0.018 cm 2), except that the Ag electrode as a cathode (electrode surface area plate electrode of 0.018 cm 2) was used, the same procedure as in Example 1, Example 4 A one-chamber fuel cell was prepared.

比較例1
NaOH水溶液の代わりにリン酸緩衝液を配合してpHを6.0に調節した以外は実施例1と同様にして電解液を調製し、これを比較例1の電解液とした。この電解液を使用した以外は、実施例1と同様にして、比較例1の一室型燃料電池を作製した。
Comparative Example 1
An electrolyte solution was prepared in the same manner as in Example 1 except that a phosphate buffer solution was added instead of the NaOH aqueous solution to adjust the pH to 6.0, and this was used as the electrolyte solution of Comparative Example 1. A one-chamber fuel cell of Comparative Example 1 was produced in the same manner as Example 1 except that this electrolytic solution was used.

(発電評価)
実施例1〜4及び比較例1の一室型燃料電池の発電試験を、定電流モード(ガルバノスタットモード)で行った。なお、過酸化水素は、導入管より間けつ的に電解反応初期の濃度程度となるように補充した。この結果を図2に示す(比較例1は図示せず)。実施例1の最大電流密度は1975μA/cm、実施例2の最大電流密度は2370μA/cm、実施例3の最大電流密度は978μA/cm、実施例4の最大電流密度は1722μA/cmであった。なお、比較例1の一室型燃料電池は、最大電流密度が4μA/cm未満であり、発電性能をほとんど発揮しなかったため、実用レベルには至らなかった。
(Power generation evaluation)
The power generation tests of the single-chamber fuel cells of Examples 1 to 4 and Comparative Example 1 were performed in a constant current mode (galvanostat mode). Hydrogen peroxide was replenished intermittently from the introduction tube so as to have a concentration at the initial stage of the electrolytic reaction. The results are shown in FIG. 2 (Comparative Example 1 is not shown). The maximum current density of Example 1 is 1975 μA / cm 2 , the maximum current density of Example 2 is 2370 μA / cm 2 , the maximum current density of Example 3 is 978 μA / cm 2 , and the maximum current density of Example 4 is 1722 μA / cm 2. 2 . The single-chamber fuel cell of Comparative Example 1 did not reach a practical level because the maximum current density was less than 4 μA / cm 2 and the power generation performance was hardly exhibited.

実施例5
実施例1において、電解液中の溶存酸素をパージしない以外は実施例1と同様にして、実施例5の燃料電池を作製し、実施例1と同様の発電評価を行った。この場合の実施例5の発電結果を実施例1の発電結果とともに図3に示す。
Example 5
In Example 1, a fuel cell of Example 5 was produced in the same manner as in Example 1 except that the dissolved oxygen in the electrolytic solution was not purged, and power generation evaluation was performed in the same manner as in Example 1. The power generation result of Example 5 in this case is shown in FIG. 3 together with the power generation result of Example 1.

図3から明らかなように、パージを行った実施例1の燃料電池の方が、発電性能が向上していることが分かった。   As is apparent from FIG. 3, it was found that the power generation performance was improved in the fuel cell of Example 1 in which purging was performed.

実施例6
実施例1において、アノードとしてAu電極(1.5cm×0.8cmの平板電極)、カソードとしてAg電極(1.5cm×0.8cmの平板電極)を使用し、さらにガラスフィルタを取り除いた(図1を参照)以外は、実施例1と同様にして実施例6の一室型燃
料電池を作製した後、実施例1と同様の発電試験を行った。この結果を図4に示す。
Example 6
In Example 1, an Au electrode (1.5 cm × 0.8 cm flat plate electrode) was used as the anode, an Ag electrode (1.5 cm × 0.8 cm flat plate electrode) was used as the cathode, and the glass filter was removed (FIG. 1). Except for 1), a single-chamber fuel cell of Example 6 was fabricated in the same manner as in Example 1, and then a power generation test similar to that of Example 1 was performed. The result is shown in FIG.

実施例7
電解液中の過酸化水素の含有量を300mmol/Lの代わりに900mmol/Lにした以外は、実施例6と同様にして、実施例7の一室型燃料電池を作製し、実施例6と同様にして、発電試験を行った。この結果を図4に併記する。
Example 7
A single-chamber fuel cell of Example 7 was fabricated in the same manner as in Example 6 except that the content of hydrogen peroxide in the electrolyte was 900 mmol / L instead of 300 mmol / L. Similarly, a power generation test was conducted. The results are also shown in FIG.

図1は、本発明の燃料電池の概念図の一例を示す。FIG. 1 shows an example of a conceptual diagram of a fuel cell of the present invention. 図2は、実施例1〜4の燃料電池の電圧と電流密度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the voltage and current density of the fuel cells of Examples 1 to 4. 図3は、実施例1及び5の燃料電池の電圧と電流密度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the voltage and current density of the fuel cells of Examples 1 and 5. 図4は、実施例6及び7の燃料電池の電圧と電流密度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the voltage and current density of the fuel cells of Examples 6 and 7.

Claims (5)

正極及び負極が、電解槽内に配置された一室型燃料電池であって、
(1)当該電解槽内に、アルカリ性電解液が充填されてなり、
(2)当該アルカリ性電解液に過酸化水素がさらに配合されており、
(3)過酸化水素が配合されたアルカリ性電解液のpHが12以上である、
燃料電池。
A positive electrode and a negative electrode are one-chamber fuel cells arranged in an electrolytic cell,
(1) The electrolytic cell is filled with an alkaline electrolyte,
(2) Hydrogen peroxide is further blended in the alkaline electrolyte,
(3) The pH of the alkaline electrolyte containing hydrogen peroxide is 12 or more.
Fuel cell.
電池反応で消費された過酸化水素を電解液中に連続的又は間けつ的に補充する、請求項1に記載の燃料電池。   The fuel cell according to claim 1, wherein hydrogen peroxide consumed in the cell reaction is replenished continuously or intermittently in the electrolyte. 前記正極及び負極が、8〜11族の異なる遷移金属である、請求項1又は2に記載の燃料電池。   The fuel cell according to claim 1, wherein the positive electrode and the negative electrode are transition metals having different groups from 8 to 11. 前記正極が銀である、請求項1〜3のいずれかに記載の燃料電池。   The fuel cell according to claim 1, wherein the positive electrode is silver. 前記負極が金、白金、パラジウム及びニッケルからなる群から選択される少なくとも1
種である、請求項1〜4のいずれかに記載の燃料電池。
The negative electrode is at least one selected from the group consisting of gold, platinum, palladium and nickel
The fuel cell according to claim 1, which is a seed.
JP2007198255A 2007-07-31 2007-07-31 Fuel cell Expired - Fee Related JP5071933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198255A JP5071933B2 (en) 2007-07-31 2007-07-31 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198255A JP5071933B2 (en) 2007-07-31 2007-07-31 Fuel cell

Publications (2)

Publication Number Publication Date
JP2009032628A true JP2009032628A (en) 2009-02-12
JP5071933B2 JP5071933B2 (en) 2012-11-14

Family

ID=40402919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198255A Expired - Fee Related JP5071933B2 (en) 2007-07-31 2007-07-31 Fuel cell

Country Status (1)

Country Link
JP (1) JP5071933B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511615A (en) * 2013-01-09 2014-09-10 Afc Energy Plc Fuel cell system
WO2022225067A1 (en) * 2021-04-23 2022-10-27 光廣 佐想 Separator comprising dipole electric double layer, and ion conductive battery using same as separator
WO2023033068A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Air battery in which metallic copper or alloy thereof serves as oxygen reducing air electrode
WO2023033071A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Combustion method for hydrogen peroxide fuel cell using cathode electrode that is formed of copper or copper alloy
WO2023033070A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Cathode electrode formed of copper or copper alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101537A (en) * 1972-04-10 1973-12-20
JPS6380480A (en) * 1986-07-09 1988-04-11 アンテロツクス (ソシエテ アノニム) Fuel battery and generation therewith
JPS6431352A (en) * 1987-07-27 1989-02-01 Japan Metals & Chem Co Ltd Fuel cell
JP2004241224A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction, and battery
JP2005158398A (en) * 2003-11-25 2005-06-16 Fuji Xerox Co Ltd Battery and the power generating method
JP2005332590A (en) * 2004-05-18 2005-12-02 Fuji Xerox Co Ltd Secondary battery and power generation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101537A (en) * 1972-04-10 1973-12-20
JPS6380480A (en) * 1986-07-09 1988-04-11 アンテロツクス (ソシエテ アノニム) Fuel battery and generation therewith
JPS6431352A (en) * 1987-07-27 1989-02-01 Japan Metals & Chem Co Ltd Fuel cell
JP2004241224A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction, and battery
JP2005158398A (en) * 2003-11-25 2005-06-16 Fuji Xerox Co Ltd Battery and the power generating method
JP2005332590A (en) * 2004-05-18 2005-12-02 Fuji Xerox Co Ltd Secondary battery and power generation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511615A (en) * 2013-01-09 2014-09-10 Afc Energy Plc Fuel cell system
GB2511615B (en) * 2013-01-09 2017-11-01 Afc Energy Plc Fuel cell system
WO2022225067A1 (en) * 2021-04-23 2022-10-27 光廣 佐想 Separator comprising dipole electric double layer, and ion conductive battery using same as separator
WO2022225066A1 (en) * 2021-04-23 2022-10-27 光廣 佐想 Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
WO2023033068A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Air battery in which metallic copper or alloy thereof serves as oxygen reducing air electrode
WO2023033071A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Combustion method for hydrogen peroxide fuel cell using cathode electrode that is formed of copper or copper alloy
WO2023033070A1 (en) * 2021-09-01 2023-03-09 クロステクノロジーラボ株式会社 Cathode electrode formed of copper or copper alloy

Also Published As

Publication number Publication date
JP5071933B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US8475968B2 (en) Direct liquid fuel cell having hydrazine or derivatives thereof as fuel
Zhang et al. A new fuel cell using aqueous ammonia-borane as the fuel
JP2005534742A (en) Suspensions used as fuel for electrochemical fuel cells
JPS6380480A (en) Fuel battery and generation therewith
JP5071933B2 (en) Fuel cell
US3607420A (en) Process of operating fuel-cell half cell with cupric-cuprous redox couple
US20020037446A1 (en) Fuel cell with low cathodic polarization and high power density
KR100877702B1 (en) Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus comprising the same
JP2005327721A (en) Catalyst for fuel cell and fuel cell including this
KR100864024B1 (en) Hydrogen generating apparatus and fuel cell system using the same
CA2551607C (en) Method for producing hydrogen and hydrogen producing apparatus used therefor
JP2002246039A (en) Liquid fuel cell
JP4028732B2 (en) Power generation method
JP5140496B2 (en) Electrolyte solution for hydrogen generator and hydrogen generator
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
US3811949A (en) Hydrazine fuel cell and method of operating same
JP6200475B2 (en) System and method for electrochemical reduction of carbon dioxide
JP4210664B2 (en) Gas generating cell
US7910252B2 (en) Hydrogen supply system
US20090075137A1 (en) Filter, hydrogen generator and fuel cell power generation system having the same
JPH04314881A (en) Electrolytic device
JP2021176138A (en) Carbon fuel battery
JP2002252002A (en) Fuel cell
JP2002050375A (en) Liquid fuel cell
EP1846979B1 (en) Hydrogen-air secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees