JP2009030973A - One-can type complex heat source machine - Google Patents

One-can type complex heat source machine Download PDF

Info

Publication number
JP2009030973A
JP2009030973A JP2008261088A JP2008261088A JP2009030973A JP 2009030973 A JP2009030973 A JP 2009030973A JP 2008261088 A JP2008261088 A JP 2008261088A JP 2008261088 A JP2008261088 A JP 2008261088A JP 2009030973 A JP2009030973 A JP 2009030973A
Authority
JP
Japan
Prior art keywords
burner
partition wall
air
burners
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261088A
Other languages
Japanese (ja)
Other versions
JP4718593B2 (en
Inventor
Hideo Okamoto
英男 岡本
Masaichi Shimizu
政一 清水
Hiroaki Sasaki
宏明 佐々木
Hirotoshi Oota
弘逸 太田
Masaki Miyajima
征樹 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008261088A priority Critical patent/JP4718593B2/en
Publication of JP2009030973A publication Critical patent/JP2009030973A/en
Application granted granted Critical
Publication of JP4718593B2 publication Critical patent/JP4718593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a one-can type complex heat source machine, comprising a pair of burners arranged in parallel inside a single can body 1, a pair of heat exchangers arranged in parallel in an upper part of a can body, and a partition wall partitioning a space in the can body into two combustion chambers and supplying air for combustion from a combustion fan to the both combustion chambers via a charging chamber defined in a lower part of the can body, by securing heat resistance of a partition plate without widening a lateral space between the partition wall and each burner. <P>SOLUTION: On a distribution plate 4, a hollow air guiding member 10 with its lateral width wider than that of the partition wall 8 is arranged along an arranging position of the partition wall 8. An inner clearance of the air guiding member 10 is communicated with the charging chamber 5. By air blowing out from an upper end of the air guiding member 10 via the inner clearance of the air guiding member 10, cooling air flow, flowing upward along outer wall surfaces on both sides in the lateral direction of the partition wall 8, is produced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器とを備える1缶式複合熱源機に関する。   The present invention includes a single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair provided side by side on the top of the can body. The present invention relates to a single can type combined heat source apparatus including a heat exchanger.

従来、この種の1缶式複合熱源機として、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁を備え、一方のバーナ、例えば、第2バーナのみを燃焼させて第2熱交換器を加熱する単独運転時に、第2バーナの燃焼排気が第1熱交換器側に流れて第1熱交換器が加熱されるといった不具合を防止できるようにしたものが知られている(例えば、特許文献1参照)。また、このものでは、缶体の下部に、分布板で仕切られた給気室を画成し、燃焼ファンからの燃焼用空気を分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにしている。   Conventionally, as a single can type combined heat source machine of this type, the space between the first and second burners and the first and second heat exchangers in the can is transferred from the first burner to the first heat exchange. A partition wall that divides into a first combustion chamber leading to the furnace and a second combustion chamber leading from the second burner to the second heat exchanger, and burns only one of the burners, for example, the second burner to perform the second heat exchange It is known that the problem that combustion exhaust of the second burner flows to the first heat exchanger side and the first heat exchanger is heated at the time of single operation for heating the heat exchanger can be prevented (for example, Patent Document 1). In this case, an air supply chamber partitioned by a distribution plate is defined at the lower part of the can body, and the first and second air supply holes are formed through distribution holes formed in the distribution plate by the combustion air from the combustion fan. The fuel is supplied to both combustion chambers.

ところで、缶体内に仕切り壁を設ける場合、第1と第2の各バーナの燃焼熱により仕切り壁が加熱されて非常に高温になり、仕切り壁の耐熱性の確保が問題になる。上記従来例では、給気室から分布板の分布孔を介して各燃焼室に流入する空気の一部が仕切り壁の外壁面に沿って流れるようにしているが、仕切り壁の外壁面に沿って流れるのは、仕切り壁寄りの分布孔から流入する僅かな量の空気であり、仕切り壁を十分に冷却できない。そのため、仕切り壁と各バーナとの間の横方向間隔を広くして、仕切り壁に対する各バーナからの熱影響を低減することが必要になり、熱源機が大型化する不具合がある。
特公平2−17784号公報(第3図、第6図)
By the way, when providing a partition wall in a can, the partition wall is heated by the combustion heat of each of the first and second burners and becomes extremely high, and securing the heat resistance of the partition wall becomes a problem. In the above conventional example, a part of the air flowing into each combustion chamber from the air supply chamber through the distribution hole of the distribution plate flows along the outer wall surface of the partition wall. A small amount of air flowing in from the distribution holes near the partition wall flows, and the partition wall cannot be cooled sufficiently. For this reason, it is necessary to widen the lateral interval between the partition wall and each burner to reduce the thermal influence from each burner on the partition wall, and there is a problem that the heat source machine becomes large.
Japanese Patent Publication No. 2-17784 (FIGS. 3 and 6)

本発明は、以上の点に鑑み、仕切り壁と各バーナとの間の横方向間隔を広くせずに仕切り壁の耐熱性を確保できるようにして、小型化を可能とした1缶式複合熱源機を提供することをその課題としている。   In view of the above points, the present invention provides a single can type combined heat source that can ensure the heat resistance of the partition wall without widening the lateral spacing between the partition wall and each burner, and can be downsized. The challenge is to provide a machine.

上記課題を解決するために、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備えると共に、缶体の下部に、分布板で仕切られた給気室を画成し、燃焼ファンからの燃焼用空気を分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機において、本発明は、分布板上に、仕切り壁の配置位置に合わせて、仕切り壁より横方向幅が広い中空の空気案内部材を配置し、空気案内部材の内部空隙を給気室に連通させ、空気案内部材の内部空隙を介して空気案内部材の上端から吹出す空気により仕切り壁の横方向両側の外壁面に沿って上方に流れる冷却空気流が生成されるようにしている。   In order to solve the above-mentioned problems, a single can body, a first and second pair of burners provided side by side in the can body, and a first and second side by side provided on the top of the can body, A space between the second pair of heat exchangers, the first and second burners in the can, and the first and second heat exchangers reaches from the first burner to the first heat exchanger. A partition wall that divides the first combustion chamber and the second combustion chamber from the second burner to the second heat exchanger, and defines an air supply chamber partitioned by a distribution plate at a lower portion of the can body. In the one-can type combined heat source machine in which the combustion air from the combustion fan is supplied to both the first and second combustion chambers through the distribution holes formed in the distribution plate, the present invention is provided on the distribution plate. A hollow air guide member that is wider in the lateral direction than the partition wall is arranged according to the arrangement position of the partition wall, and the internal space of the air guide member is connected to the air supply chamber. It is allowed, so that the cooling air flow flowing upward along the lateral sides of the outer wall surface of the partition walls by the air blown from the upper end of the air guide member through the internal voids of the air guide members is produced.

本発明によれば、給気室から空気案内部材を介して導かれる空気により仕切り壁の外壁面に沿う冷却空気流が積極的に生成され、仕切り壁が効率良く冷却される。従って、この場合にも、仕切り壁と各バーナとの間の横方向間隔を左程広くせずに仕切り壁の耐熱性を確保でき、熱源機の小型化を図れる。   According to the present invention, the cooling air flow along the outer wall surface of the partition wall is positively generated by the air guided from the air supply chamber through the air guide member, and the partition wall is efficiently cooled. Therefore, in this case as well, the heat resistance of the partition wall can be ensured without widening the horizontal interval between the partition wall and each burner to the left, and the heat source machine can be downsized.

また、本発明において、前記仕切り壁を空隙を存して横方向に対向する2枚の板で構成し、両板間の空隙に給気室からの空気を給気室から直接的または空気案内部材を介して流すようにすれば、仕切り壁の冷却性能が可及的に向上する。   Further, in the present invention, the partition wall is constituted by two plates facing each other in the lateral direction with a gap, and air from the supply chamber is directly or air-guided to the gap between both plates from the supply chamber. If it is made to flow through a member, the cooling performance of a partition wall will improve as much as possible.

尚、空気案内部材が各バーナの上端よりも上方にのびていると、空気案内部材に各バーナの燃焼熱が及び、空気案内部材の耐熱性を確保し難くなる。また、空気案内部材の上端の高さが各バーナの上端に比し低いと、空気案内部材の上端から吹出す空気の一部が各バーナ側に流れて燃焼用二次空気として利用され、仕切り壁の外壁面に沿って流れる冷却空気量が減少してしまう。これに対し、空気案内部材の上端の高さが各バーナの上端と同等高さであれば、空気案内部材の耐熱性を確保して、且つ、冷却空気量の減少も防止でき、有利である。尚、本明細書で上記「同等高さ」とは、空気案内部材の上端の高さが各バーナの上端の高さと正確に同一である場合だけでなく、ほぼ等しい場合を含む用語である。   If the air guide member extends above the upper end of each burner, the heat of combustion of each burner reaches the air guide member, making it difficult to ensure the heat resistance of the air guide member. Further, if the height of the upper end of the air guide member is lower than the upper end of each burner, a part of the air blown out from the upper end of the air guide member flows to each burner side and is used as the secondary air for combustion. The amount of cooling air flowing along the outer wall surface of the wall is reduced. On the other hand, if the height of the upper end of the air guide member is the same height as the upper end of each burner, it is advantageous to ensure the heat resistance of the air guide member and to prevent the amount of cooling air from decreasing. . In the present specification, the “equivalent height” is a term including not only the case where the height of the upper end of the air guide member is exactly the same as the height of the upper end of each burner, but also the case where it is substantially equal.

また、仕切り壁とは別に空気案内部材を設けると、部品点数が増し、コスト的に不利になる。この場合、仕切り壁の下部に、横方向両外側に張り出す一対の肩部と、両肩部から前記分布板に向けて下方にのびる一対の側板部とを形成して、両肩部と両側板部とにより空気案内部材を構成すれば、仕切り壁と空気案内部材とを一体化して、部品点数を削減でき、コストダウンを図ることができる。尚、このものでは、空気案内部材の上端となる両肩部に上向きに開口する空気吹出し孔を開設し、空気吹出し孔から吹出す空気により仕切り壁の外壁面に沿う冷却空気流が生成されるようにする。また、このように仕切り壁と空気案内部材とを一体化する場合、仕切り壁を空隙を存して横方向に対向する2枚の板で構成し、これら各板の下部に各肩部と各側板部とを形成すれば、仕切り壁の内部空隙(2枚の板間の空隙)にも冷却空気が流れ、仕切り壁の冷却性能が可及的に向上すると共に、各板の単純な曲げ加工で肩部と側板部とを形成でき、コストダウンを図る上で有利である。   If an air guide member is provided separately from the partition wall, the number of parts increases, which is disadvantageous in cost. In this case, at the lower part of the partition wall, a pair of shoulder portions projecting outward in the lateral direction and a pair of side plate portions extending downward from both shoulder portions toward the distribution plate are formed. If an air guide member is comprised with a board part, a partition wall and an air guide member can be integrated, a number of parts can be reduced and cost reduction can be aimed at. In this case, air blowing holes that open upward are opened on both shoulders that are the upper ends of the air guide members, and the cooling air flow along the outer wall surface of the partition wall is generated by the air blown from the air blowing holes. Like that. Further, when integrating the partition wall and the air guide member in this way, the partition wall is configured by two plates facing each other in the lateral direction with a gap, and each shoulder portion and each If the side plate part is formed, the cooling air also flows into the internal space of the partition wall (the space between the two plates), improving the cooling performance of the partition wall as much as possible, and simple bending of each plate Thus, it is possible to form the shoulder portion and the side plate portion, which is advantageous in reducing the cost.

ところで、缶体と第1と第2の両熱交換器を変更せずに、第1と第2の少なくとも一方のバーナを小型化した場合、空気案内部材を構成する両側板部のうち小型化した一方のバーナ側に配置される一方の側板部の位置を横方向外側にずらして、一方のバーナと一方の側板部との間の間隔が広がらないようにすることがある。このようにすると、仕切り壁を構成する2枚の板のうち上記一方の側板部を形成する一方の板の両熱交換器の境界部に挿入される上端部と一方の側板部との間の横方向距離が大きくなってしまう。この場合、一方の板にバーナの上端と同等高さで形成する肩部の横方向幅を上記横方向距離に等しく設定すると、肩部の直上部に圧力の低い還流域が発生し、バーナの火炎が還流域側に傾いて燃焼が不安定になる。これを防止するため、肩部に形成する空気吹出し孔の開口面積を大きくすることも考えられるが、これでは空気過多になり、熱交換器が空気で冷却されて熱効率が悪くなってしまう。   By the way, when the first and second burners are downsized without changing the can body and the first and second heat exchangers, downsizing of the side plate portions constituting the air guide member is reduced. The position of the one side plate portion arranged on the one burner side may be shifted laterally outward so that the space between the one burner and the one side plate portion does not increase. If it does in this way, between the upper end part inserted in the boundary part of the both heat exchangers of one board which forms the above-mentioned one side board part among the two boards which constitute a partition wall, and one side board part The lateral distance increases. In this case, when the lateral width of the shoulder formed on one plate at the same height as the upper end of the burner is set equal to the lateral distance, a low pressure reflux region is generated immediately above the shoulder, The flame is tilted toward the reflux area and combustion becomes unstable. In order to prevent this, it is conceivable to increase the opening area of the air blowing hole formed in the shoulder portion. However, this results in excessive air, and the heat exchanger is cooled with air, resulting in poor thermal efficiency.

従って、肩部の高さが各バーナの上端と同等高さに設定されると共に、仕切り壁を構成する2枚の板の少なくとも一方の板の両熱交換器間の間隙に挿入される上端部と該一方の板に形成される側板部との間の横方向距離が所定値以上になるものにおいては、該一方の板に形成する肩部の横方向幅を前記横方向距離より狭く設定し、該一方の板に、該一方の板が面する燃焼室に配置されるバーナの最大燃焼時における火炎の上端と同等高さになる部分に位置させて、前記横方向距離と肩部の横方向幅との差分の横方向幅を持つ段部を形成することが望ましい。   Accordingly, the height of the shoulder portion is set to the same height as the upper end of each burner, and the upper end portion inserted into the gap between the heat exchangers of at least one of the two plates constituting the partition wall. If the lateral distance between the side plate and the side plate formed on the one plate is a predetermined value or more, the lateral width of the shoulder formed on the one plate is set to be narrower than the lateral distance. The horizontal distance between the one side plate and the side of the shoulder portion is positioned at a portion that is the same height as the upper end of the flame at the time of maximum combustion of the burner disposed in the combustion chamber facing the one plate. It is desirable to form a step having a lateral width that is a difference from the direction width.

これによれば、一方の板の肩部と段部との間の部分がバーナ側に近付くため、肩部の直上部に還流域が発生せず、火炎の傾きが防止されて燃焼が安定する。尚、最大燃焼時においても燃焼の安定性を確保するには、段部の位置を最大燃焼時における火炎の上端と同等高さに設定することが必要になる。一方、段部の位置が高くなると、段部と熱交換器との間の上下方向距離が短くなって、段部の直上部に位置する熱交換器の部分に燃焼排気が流れにくくなり、熱効率が低下する。本発明の如くバーナの最大燃焼時における火炎の上端と同等高さの位置に段部を形成しておけば、燃焼の安定性と熱効率とをうまく両立できる。   According to this, since the portion between the shoulder portion and the step portion of one plate approaches the burner side, a reflux region does not occur immediately above the shoulder portion, the inclination of the flame is prevented, and combustion is stabilized. . In order to ensure the stability of combustion even during maximum combustion, it is necessary to set the position of the stepped portion to the same height as the upper end of the flame during maximum combustion. On the other hand, when the position of the stepped portion becomes higher, the vertical distance between the stepped portion and the heat exchanger becomes shorter, and it becomes difficult for the combustion exhaust gas to flow to the portion of the heat exchanger located immediately above the stepped portion. Decreases. If the step portion is formed at the same height as the upper end of the flame at the time of maximum combustion of the burner as in the present invention, both combustion stability and thermal efficiency can be successfully achieved.

ところで、缶体内では気柱振動を生ずる。ここで、第1と第2の両燃焼室は第1と第2の両熱交換器を介して通気可能に連通し、このままでは、両燃焼室を連続した一つの振動空間として気柱振動が発生し、気柱振動の固有振動数が低くなる。そして、気柱振動の固有振動数が低くなると、火炎が共鳴振動し易くなって、燃焼騒音が大きくなる。この場合、両熱交換器の境界部に面する各熱交換器の側端部に、各熱交換器を構成する吸熱フィン間の隙間を封止する封止部を設ければ、両熱交換器間の通気が遮断され、両燃焼室の両熱交換器を介しての連通が断たれる。また、仕切り壁を上記の如く2枚の板で構成する場合、両板を、両熱交換器の境界部に挿入される両板の上端部において、両熱交換器の封止部に接触させれば、各板と各熱交換器との間の隙間を介しての両燃焼室の連通も断たれる。従って、気柱振動は各燃焼室で個別に発生することになり、気柱振動の固有振動数が高くなる。その結果、火炎の共鳴振動が有効に防止され、燃焼騒音が低減される。   By the way, air column vibration is generated in the can. Here, both the first and second combustion chambers communicate with each other through both the first and second heat exchangers so as to be able to ventilate. Occurs and the natural frequency of the air column vibration is lowered. When the natural frequency of the air column vibration is lowered, the flame is likely to resonate and the combustion noise is increased. In this case, if a sealing portion is provided at the side end of each heat exchanger facing the boundary between both heat exchangers to seal the gap between the heat sink fins constituting each heat exchanger, both heat exchange Ventilation between the chambers is blocked, and communication between both combustion chambers via both heat exchangers is cut off. Further, when the partition wall is constituted by two plates as described above, both plates are brought into contact with the sealing portions of both heat exchangers at the upper end portions of both plates inserted into the boundary portion of both heat exchangers. Then, the communication between both combustion chambers through the gap between each plate and each heat exchanger is also cut off. Accordingly, the air column vibration is generated individually in each combustion chamber, and the natural frequency of the air column vibration is increased. As a result, the resonance vibration of the flame is effectively prevented and the combustion noise is reduced.

尚、仕切り壁を構成する2枚の板に空気吹出し孔が開設されている場合(各板の下部に形成した肩部に空気吹出し孔を開設するものを含む)、両燃焼室が空気吹出し孔と2枚の板間の空隙とを介して連通し、両燃焼室に跨る気柱振動が発生する。この場合、仕切り壁を構成する2枚の板間に、両板間の空隙を分布板から仕切り壁の上端に亘り横方向に2分する中仕切り板を介設すれば、両燃焼室の連通が中仕切り板により断たれる。従って、両燃焼室に跨る気柱振動は発生せず、気柱振動の固有振動数の低下による燃焼騒音の増大を確実に防止できる。   In addition, when the air blowing holes are opened in the two plates constituting the partition wall (including those in which the air blowing holes are formed in the shoulders formed in the lower part of each plate), both the combustion chambers have the air blowing holes. And an air gap between the two plates, and air column vibrations straddling both combustion chambers are generated. In this case, if an intermediate partition plate that bisects the gap between the two plates in the lateral direction from the distribution plate to the upper end of the partition wall is interposed between the two plates constituting the partition wall, the communication between the two combustion chambers is achieved. Is cut off by the partition plate. Therefore, no air column vibration straddling both combustion chambers is generated, and an increase in combustion noise due to a decrease in the natural frequency of the air column vibration can be reliably prevented.

ところで、分布板上に、缶体の奥行方向に長手の単位バーナを横方向に多数列設して構成されるバーナユニットを配置し、バーナユニットのこれら単位バーナを2組に分けて、一方の組の単位バーナ群で第1バーナ、他方の組の単位バーナ群で第2バーナを構成すれば、各バーナに属する単位バーナの個数を変更することで、バーナユニットは変更せずに、第1バーナの定格燃焼量と第2バーナの定格燃焼量との比を変更することができ、両バーナの定格燃焼量比が異なる種々の機種の熱源機を製造する場合に有利である。この場合、第1と第2の両バーナの境界部に両バーナの何れにも属しない単位バーナが残るように単位バーナを組み分けし、両バーナの境界部に位置する単位バーナの直上部に仕切り壁を配置すると共に、当該単位バーナに分布室から空気のみを供給するように構成すれば、両バーナの境界部に存在する単位バーナを空気案内部材に兼用でき、コスト的に非常に有利になる。   By the way, on the distribution plate, a burner unit configured by arranging a plurality of longitudinal unit burners in the horizontal direction in the depth direction of the can body is arranged, and these unit burners of the burner unit are divided into two sets, If the first burner is composed of a set of unit burners and the second burner is composed of the other set of unit burners, the number of unit burners belonging to each burner can be changed without changing the burner units. It is possible to change the ratio of the rated combustion amount of the burner and the rated combustion amount of the second burner, which is advantageous when manufacturing various types of heat source machines having different rated combustion amount ratios of both burners. In this case, the unit burners are assembled so that the unit burners that do not belong to either of the two burners remain at the boundary between the first and second burners, and are directly above the unit burner located at the boundary between both burners. If the partition wall is arranged and only air is supplied to the unit burner from the distribution chamber, the unit burner existing at the boundary between both burners can be used as an air guide member, which is very advantageous in terms of cost. Become.

図1は、単一の缶体1内に、第1バーナ2−1と第2バーナ2−2とを横方向に並べて設けると共に、缶体1の上部に、第1バーナ2−1で加熱される給湯用の第1熱交換器3−1と第2バーナ2−2で加熱される暖房用の第2熱交換器3−2とを横方向に並べて設けて成る1缶式複合熱源機を示している。   FIG. 1 shows that a first burner 2-1 and a second burner 2-2 are arranged in a horizontal direction in a single can 1 and heated by the first burner 2-1 at the top of the can 1. 1 can type combined heat source apparatus in which a first heat exchanger 3-1 for hot water supply and a second heat exchanger 3-2 for heating heated by the second burner 2-2 are arranged side by side in the horizontal direction Is shown.

缶体1の下部には、缶体1内の空間に対し分布板4で仕切られた給気室5が画成されている。そして、給気室5に接続される燃焼ファン6を設け、燃焼ファン6からの燃焼用空気を給気室5から分布板4に形成した多数の分布孔4aを介して缶体1内に供給するようにしている。   In the lower part of the can body 1, an air supply chamber 5 partitioned by a distribution plate 4 with respect to the space in the can body 1 is defined. And the combustion fan 6 connected to the air supply chamber 5 is provided, and the combustion air from the combustion fan 6 is supplied into the can 1 through the distribution holes 4 a formed in the distribution plate 4 from the air supply chamber 5. Like to do.

各バーナ2−1,2−2は、夫々、缶体1の奥行方向(図1の紙面直交方向)に長手の単位バーナ2aを横方向に複数列設して構成されている。各単位バーナ2aは、図2に示す如く、缶体1の奥側(後側)にのびる混合管部2bを備えている。そして、分布板4の後部を上方にオフセットして、給気室5の後部に立上り部5aを形成し、この立上り部5aに各単位バーナ2aの混合管部2bの流入端を臨ませている。また、給気室5の立上り部5aに各バーナ2−1,2−2用のガスマニホールド2cを収納し、ガスマニホールド2cに設けた各ノズル2dから各単位バーナ2aの混合管部2bにガスが供給され、且つ、混合管部2bに給気室5から燃焼用一次空気が供給されるようにしている。尚、暖房よりも給湯の方が大きな加熱能力を要求されるため、各バーナ2−1,2−2を構成する単位バーナ2aの個数は第1バーナ2−1の方が多くなっている。   Each of the burners 2-1 and 2-2 is configured by arranging a plurality of longitudinal unit burners 2 a in the horizontal direction in the depth direction of the can 1 (in the direction orthogonal to the plane of FIG. 1). As shown in FIG. 2, each unit burner 2 a includes a mixing tube portion 2 b extending on the back side (rear side) of the can body 1. Then, the rear part of the distribution plate 4 is offset upward, a rising part 5a is formed at the rear part of the air supply chamber 5, and the inflow end of the mixing pipe part 2b of each unit burner 2a faces the rising part 5a. . Further, the gas manifold 2c for each burner 2-1 and 2-2 is accommodated in the rising portion 5a of the air supply chamber 5, and gas is supplied from the nozzle 2d provided in the gas manifold 2c to the mixing tube portion 2b of each unit burner 2a. Is supplied, and primary air for combustion is supplied from the air supply chamber 5 to the mixing tube portion 2b. Since hot water supply is required to have a larger heating capacity than heating, the number of unit burners 2a constituting each burner 2-1 and 2-2 is greater in the first burner 2-1.

各熱交換器3−1,3−2は、缶体1の奥行方向に隙間を存して多数積層した吸熱フィン3aと、これら吸熱フィン3aを貫通する蛇行形状の吸熱管3bとで構成される。第1熱交換器3−1の吸熱管3bには、図示しないが、上流側の給水管と下流側の出湯管とが接続されており、出湯管の下流端の出湯栓を開いて第1熱交換器3−1に通水したとき、第1バーナ2−1に点火されて、出湯栓から設定温度の湯が出湯される。第2熱交換器3−2の吸熱管3bは、図示しないが、往き管と戻り管とを介して床暖房等の暖房回路(図示せず)に接続されており、暖房回路に第2熱交換器3−2を介して湯水を循環させて、暖房を行う。   Each of the heat exchangers 3-1 and 3-2 includes a heat absorption fin 3a in which a large number of the heat absorption fins 3a are stacked in the depth direction of the can 1 and a meandering heat absorption tube 3b penetrating the heat absorption fins 3a. The Although not shown, an upstream water supply pipe and a downstream hot water discharge pipe are connected to the heat absorption pipe 3b of the first heat exchanger 3-1, and the first hot water tap at the downstream end of the hot water discharge pipe is opened. When water is passed through the heat exchanger 3-1, the first burner 2-1 is ignited, and hot water having a set temperature is discharged from the hot water tap. Although not shown, the heat absorption pipe 3b of the second heat exchanger 3-2 is connected to a heating circuit (not shown) such as floor heating via an outgoing pipe and a return pipe, and the second heat is supplied to the heating circuit. Heating is performed by circulating hot water through the exchanger 3-2.

また、缶体1内には、第1と第2の両バーナ2−1,2−2と第1と第2の両熱交換器3−1,3−2との間の空間を、第1バーナ2−1から第1熱交換器3−1に至る第1燃焼室7−1と第2バーナ2−2から第2熱交換器3−2に至る第2燃焼室7−2とに区画する仕切り壁8が設けられている。かくして、第1バーナ2−1の燃焼排気は第1燃焼室7―1を介して第1熱交換器3−1に導かれ、第2バーナ2−2の燃焼排気は第2燃焼室7−2を介して第2熱交換器3−2に導かれる。第1と第2の各熱交換器7−1,7−2で熱交換した燃焼排気は両熱交換器3−1,3−2の上側の排気フード9に流れ、排気フード9に形成した排気口9aから外部に排出される。   Further, in the can 1, a space between the first and second burners 2-1 and 2-2 and the first and second heat exchangers 3-1 and 3-2 is provided. The first combustion chamber 7-1 from the first burner 2-1 to the first heat exchanger 3-1 and the second combustion chamber 7-2 from the second burner 2-2 to the second heat exchanger 3-2. A partition wall 8 for partitioning is provided. Thus, the combustion exhaust from the first burner 2-1 is led to the first heat exchanger 3-1 via the first combustion chamber 7-1, and the combustion exhaust from the second burner 2-2 is sent to the second combustion chamber 7-. 2 to the second heat exchanger 3-2. The combustion exhaust heat-exchanged by the first and second heat exchangers 7-1 and 7-2 flows into the exhaust hood 9 above the heat exchangers 3-1 and 3-2 and is formed in the exhaust hood 9. It is discharged to the outside through the exhaust port 9a.

尚、本実施形態では、両バーナ2−1,2−2と両熱交換器3−1,3−2との間の空間だけでなく両バーナ2−1,2−2の配置部も2分するように、仕切り壁8を両熱交換器3−1,3−2の境界部の隙間から分布板4に亘って上下方向に延在させている。そして、分布板4上に、仕切り壁8の配置位置に合わせて、仕切り壁8より横方向幅が広い中空の空気案内部材10を配置している。これを詳述するに、分布板4に、仕切り壁8の横方向両外側に位置させて、一対の側板10a,10aを立設し、両側板10a,10aで空気案内部材10を構成している。そして、各側板10aと仕切り壁8との間の空隙、即ち、空気案内部材10の内部空隙を分布板4に形成した連通孔4bを介して給気室5に連通させている。この連通孔4bは、図3に示す如く前後方向に長手の長孔であり、単位面積当りの開口面積は分布孔4aより大きい。   In this embodiment, not only the space between both burners 2-1 and 2-2 and both heat exchangers 3-1 and 3-2, but also the arrangement part of both burners 2-1 and 2-2 is 2 As shown, the partition wall 8 extends in the vertical direction across the distribution plate 4 from the gap at the boundary between the heat exchangers 3-1 and 3-2. On the distribution plate 4, a hollow air guide member 10 having a lateral width wider than that of the partition wall 8 is disposed in accordance with the position of the partition wall 8. In detail, the pair of side plates 10a and 10a are erected on the distribution plate 4 on both lateral sides of the partition wall 8, and the air guide member 10 is configured by the side plates 10a and 10a. Yes. And the space | gap between each side plate 10a and the partition wall 8, ie, the internal space | gap of the air guide member 10, is connected to the air supply chamber 5 via the communication hole 4b formed in the distribution plate 4. FIG. The communication hole 4b is a long hole elongated in the front-rear direction as shown in FIG. 3, and the opening area per unit area is larger than the distribution hole 4a.

また、仕切り壁8は、空隙を存して横方向に対向する2枚の板8a,8aで構成されており、両板8a,8a間の空隙、即ち、仕切り壁8の内部空隙を分布板4に形成した連通孔4cを介して給気室5に連通させている。連通孔4bは、上記連通孔4bと同様に前後方向に長手の長孔であり、単位面積当りの開口面積は分布孔4aより大きい。   In addition, the partition wall 8 is composed of two plates 8a and 8a that are opposed to each other in the lateral direction with a space therebetween. The space between the plates 8a and 8a, that is, the internal space of the partition wall 8 is distributed to the distribution plate. The air supply chamber 5 is communicated with the air supply chamber 5 through a communication hole 4 c formed in 4. The communication hole 4b is a long hole elongated in the front-rear direction, similar to the communication hole 4b, and the opening area per unit area is larger than the distribution hole 4a.

かくして、給気室5から空気案内部材10の内部空隙に比較的多量の空気が供給され、空気案内部材10の上端から吹出す空気により仕切り壁8の横方向両側の外壁面に沿って上方に流れる冷却空気流aが生成され、更に、給気室5から仕切り壁8の内部空隙にも比較的多量の空気が供給される。そのため、仕切り壁8は、その内部空隙に流れる冷却空気流bと外壁面に沿って流れる冷却空気流aとで内外から効率良く空冷される。従って、第1と第2の各バーナ2−1,2−2の仕切り壁8寄りの単位バーナ2aと仕切り壁8との間の横方向間隔が狭く、仕切り壁8に各バーナ2−1,2−2の燃焼熱が及び易くなっても、仕切り壁8の温度は左程高くならず、耐熱性が確保される。このように各バーナ2−1,2−2と仕切り壁8との間の横方向間隔を狭めることができるため、熱源機の小型化を図れる。   Thus, a relatively large amount of air is supplied from the air supply chamber 5 to the internal space of the air guide member 10, and the air blown from the upper end of the air guide member 10 moves upward along the outer wall surfaces on both sides in the lateral direction of the partition wall 8. A flowing cooling air flow a is generated, and a relatively large amount of air is supplied from the air supply chamber 5 to the internal space of the partition wall 8. Therefore, the partition wall 8 is efficiently air-cooled from inside and outside by the cooling air flow b flowing through the internal gap and the cooling air flow a flowing along the outer wall surface. Therefore, the horizontal interval between the unit burner 2a near the partition wall 8 of each of the first and second burners 2-1 and 2-2 and the partition wall 8 is narrow, and each burner 2-1 is placed on the partition wall 8. Even if the combustion heat of 2-2 becomes easy to reach, the temperature of the partition wall 8 does not increase to the left, and heat resistance is ensured. Thus, since the horizontal direction space | interval between each burner 2-1 and 2-2 and the partition wall 8 can be narrowed, size reduction of a heat source machine can be achieved.

尚、空気案内部材10が各バーナ2−1,2−2の上端よりも上方にのびていると、空気案内部材10に各バーナ2−1,2−2の燃焼熱が及び、空気案内部材10の耐熱性を確保し難くなる。また、空気案内部材10の上端の高さが各バーナ2−1,2−2の上端に比し低いと、空気案内部材10の上端から吹出す空気の一部が各バーナ2−1,2−2側に流れて燃焼用二次空気として利用され、仕切り壁8の外壁面に沿って流れる冷却空気量が減少してしまう。そこで、本実施形態では、空気案内部材10の耐熱性を確保して、且つ、冷却空気量の減少も防止できるように、空気案内部材10の上端の高さを各バーナ2−1,2−2の上端と同等高さに設定している。   If the air guide member 10 extends above the upper ends of the burners 2-1 and 2-2, the combustion heat of the burners 2-1 and 2-2 reaches the air guide member 10. It becomes difficult to ensure the heat resistance of the. If the height of the upper end of the air guide member 10 is lower than the upper ends of the burners 2-1, 2-2, a part of the air blown from the upper end of the air guide member 10 is burned. The amount of cooling air that flows to the −2 side and is used as secondary air for combustion and flows along the outer wall surface of the partition wall 8 decreases. Therefore, in the present embodiment, the height of the upper end of the air guide member 10 is set to each of the burners 2-1 and 2- in order to ensure the heat resistance of the air guide member 10 and to prevent the amount of cooling air from decreasing. 2 is set to the same height as the upper end.

また、図4に示す第2実施形態の如く、仕切り壁8を1枚板構造としても良い。この場合、上記第1実施形態と同様に、分布板4に立設した一対の側板10a,10aで構成される空気案内部材10を設け、給気室5からの空気を連通孔4bと空気案内部材10の内部空隙とを介して空気案内部材10の上端から吹出させ、仕切り壁8の横方向両側の外壁面に沿って上方に流れる冷却空気流aを生成させる。尚、第2実施形態においても、空気案内部材10の耐熱性を確保して、且つ、冷却空気量の減少も防止できるように、空気案内部材10の上端の高さを各バーナ2−1,2−2の上端と同等高さに設定する。   Further, as in the second embodiment shown in FIG. 4, the partition wall 8 may have a single plate structure. In this case, as in the first embodiment, an air guide member 10 composed of a pair of side plates 10a, 10a standing on the distribution plate 4 is provided, and air from the air supply chamber 5 is communicated with the communication hole 4b and the air guide. The air guide member 10 is blown out from the upper end of the air gap 10 through the internal gap of the member 10, and the cooling air flow a flowing upward along the outer wall surfaces on both sides of the partition wall 8 is generated. In the second embodiment, the height of the upper end of the air guide member 10 is set to each of the burners 2-1, so as to ensure the heat resistance of the air guide member 10 and prevent the cooling air amount from decreasing. Set to the same height as the upper end of 2-2.

図5は第3実施形態を示している。このものでは、仕切り壁8を2枚の板8a,8aから成る中空構造に構成すると共に、仕切り壁8の下部に、各板8aの曲げにより、横方向両外側に張り出す一対の肩部10b,10bと、両肩部10b,10bから分布板4に向けて下方にのびる一対の側板部10c,10cとを形成している。かくして、両肩部10b,10bと両側板部10c,10cとにより、仕切り壁8と一体の中空の空気案内部材10が構成される。そして、空気案内部材10の内部空隙を、分布板4に形成した、単位面積当りの開口面積が分布孔4aより大きな連通孔4bを介して給気室5に連通させている。また、空気案内部材10の上端となる両肩部10b,10bに、図6に示す如く、上向きに開口する複数の空気吹出し孔10dを開設している。   FIG. 5 shows a third embodiment. In this structure, the partition wall 8 is formed in a hollow structure composed of two plates 8a and 8a, and a pair of shoulder portions 10b projecting outwardly in the lateral direction by bending each plate 8a at the lower part of the partition wall 8. , 10b and a pair of side plate portions 10c, 10c extending downward from the shoulder portions 10b, 10b toward the distribution plate 4. Thus, the hollow air guide member 10 integrated with the partition wall 8 is constituted by the shoulder portions 10b, 10b and the side plate portions 10c, 10c. The internal air gap of the air guide member 10 is communicated with the air supply chamber 5 through a communication hole 4b formed in the distribution plate 4 and having an opening area per unit area larger than the distribution hole 4a. Further, as shown in FIG. 6, a plurality of air blowing holes 10 d that open upward are formed in both shoulder portions 10 b and 10 b that are the upper ends of the air guide member 10.

これによれば、給気室5から空気案内部材10の内部空隙に比較的多量の空気が供給され、この空気の一部が仕切り壁8の2枚の板8a,8a間の空隙に流れて、仕切り壁8の内部に冷却空気流bが生成されると共に、肩部10bの空気吹出し孔10dから吹出す空気により仕切り壁8の外壁面に沿って上方に流れる冷却空気流aが生成される。従って、上記第1実施形態のものと同様に仕切り壁8が内外から効率良く空冷される。そして、第3実施形態では、空気案内部材10が仕切り壁8と一体化されるため、部品点数を削減して、コストダウンを図ることができる。   According to this, a relatively large amount of air is supplied from the air supply chamber 5 to the internal space of the air guide member 10, and a part of this air flows into the space between the two plates 8 a and 8 a of the partition wall 8. The cooling air flow b is generated inside the partition wall 8 and the cooling air flow a flowing upward along the outer wall surface of the partition wall 8 is generated by the air blown from the air blowing hole 10d of the shoulder 10b. . Therefore, the partition wall 8 is efficiently air-cooled from the inside and outside as in the first embodiment. And in 3rd Embodiment, since the air guide member 10 is integrated with the partition wall 8, a number of parts can be reduced and cost reduction can be aimed at.

尚、肩部10bの高さは、空気案内部材10の耐熱性を確保して、且つ、冷却空気量の減少も防止できるように、各バーナ2−1,2−2の上端と同等高さに設定する。また、第3実施形態では、仕切り壁8を2枚の板8a,8aから成る中空構造に構成しているが、仕切り壁8を1枚板構造とし、仕切り壁8の下部のみを二股状に分岐して、上記両肩部10b,10bと両側板部10c,10cとから成る空気案内部材10を形成することも可能である。但し、この場合には、仕切り壁8を押し出し成形等の特殊な製法で形成することが必要になる。これに対し、第3実施形態のように構成すれば、仕切り壁8を構成する2枚の板8a,8aの単純な曲げ加工で肩部10bと側板部10cを形成できるため、加工コストが安くなり、しかも仕切り壁8をその内外から空冷して冷却性能を向上させることができ、有利である。   The height of the shoulder 10b is the same height as the upper ends of the burners 2-1 and 2-2 so as to ensure the heat resistance of the air guide member 10 and to prevent a decrease in the amount of cooling air. Set to. In the third embodiment, the partition wall 8 has a hollow structure composed of two plates 8a and 8a. However, the partition wall 8 has a single-plate structure, and only the lower portion of the partition wall 8 is bifurcated. It is also possible to branch to form the air guide member 10 composed of the shoulder portions 10b and 10b and the side plate portions 10c and 10c. However, in this case, it is necessary to form the partition wall 8 by a special manufacturing method such as extrusion molding. On the other hand, if comprised like 3rd Embodiment, since the shoulder part 10b and the side-plate part 10c can be formed by the simple bending process of the two board | plates 8a and 8a which comprise the partition wall 8, processing cost is cheap. In addition, the partition wall 8 can be air-cooled from the inside and outside to improve the cooling performance, which is advantageous.

また、第3実施形態では、燃焼騒音を低減させるための対策も施している。ここで、第1と第2の両燃焼室7−1,7−2が第1と第2の両熱交換器3−1,3−2や仕切り壁8を介して通気可能に連通していると、両燃焼室7−1,7−2を連続した一つの振動空間として気柱振動が発生する。気柱振動の固有振動数Fは、音速をC、振動空間の長さをLとして、F=C/2Lになる。両燃焼室7−1,7−2が連続した一つの振動空間になった場合、缶体1の横幅が例えば31cmであると、Lは仕切り壁8による抵抗の影響で37cm程度になる。また、燃焼時の缶体1内の平均温度は170℃程度になり、このときCは435m/秒になる。そして、両燃焼室7−1,7−2を連続した一つの振動空間として発生する気柱振動の固有振動数Fは590Hzになる。このような低い振動数では火炎が共鳴振動し易く、大きな燃焼騒音を生ずる。   In the third embodiment, measures are also taken to reduce combustion noise. Here, the first and second combustion chambers 7-1 and 7-2 communicate with each other through the first and second heat exchangers 3-1 and 3-2 and the partition wall 8 so as to allow ventilation. If so, air column vibrations are generated using the combustion chambers 7-1 and 7-2 as one continuous vibration space. The natural frequency F of the air column vibration is F = C / 2L where C is the speed of sound and L is the length of the vibration space. When both combustion chambers 7-1 and 7-2 become one continuous vibration space, if the lateral width of the can 1 is, for example, 31 cm, L becomes about 37 cm due to the influence of the partition wall 8. Moreover, the average temperature in the can 1 at the time of combustion will be about 170 degreeC, and C will be 435 m / sec at this time. The natural frequency F of the air column vibration generated as one continuous vibration space between the combustion chambers 7-1 and 7-2 is 590 Hz. At such a low frequency, the flame easily resonates and generates a large combustion noise.

そのため、第3実施形態では、第1と第2の両熱交換器3−1,3−2の境界部に面する各熱交換器3−1,3−2の側端部に、図7に示す如く、各熱交換器3−1,3−2の吸熱フィン3a間の隙間を封止する封止部3cを設けている。そして、仕切り壁8を構成する2枚の板8a,8aを、両熱交換器3−1,3−2の境界部に挿入される両板8a,8aの上端部において、両熱交換器3−1,3−2の封止部3c、3cに接触させている。これによれば、封止部3cにより両熱交換器3−1,3−2間の通気が遮断され、両燃焼室7−1,7−2の両熱交換器3−1,3−2を介しての連通が断たれると共に、仕切り壁8と各熱交換器3−1,3−2との間の隙間を介しての両燃焼室3−1,3−2の連通も断たれる。尚、封止部3cは、吸熱フィン3aの側端部に形成した折曲げ部で形成されているが、吸熱フィン3aとは別体の板材で封止部3cを構成することも可能である。   For this reason, in the third embodiment, the side ends of the heat exchangers 3-1 and 3-2 facing the boundary between the first and second heat exchangers 3-1 and 3-2 are shown in FIG. As shown in FIG. 2, a sealing portion 3c is provided for sealing the gap between the heat absorbing fins 3a of the heat exchangers 3-1, 3-2. And the two plates 8a and 8a which comprise the partition wall 8 are both heat exchanger 3 in the upper end part of both plates 8a and 8a inserted in the boundary part of both heat exchangers 3-1 and 3-2. -1 and 3-2 are in contact with the sealing portions 3c and 3c. According to this, ventilation between both heat exchangers 3-1 and 3-2 is blocked by the sealing part 3c, and both heat exchangers 3-1 and 3-2 of both combustion chambers 7-1 and 7-2 are blocked. The communication between the combustion chambers 3-1 and 3-2 via the gap between the partition wall 8 and the heat exchangers 3-1 and 3-2 is also cut off. It is. In addition, although the sealing part 3c is formed by the bending part formed in the side edge part of the heat absorption fin 3a, it is also possible to comprise the sealing part 3c with the board | plate material separate from the heat absorption fin 3a. .

また、仕切り壁8を構成する2枚の板8a,8aの夫々の肩部10bに空気吹出し孔10dが開設されているため、このままでは、空気吹出し孔10dと両板8a,8a間の空隙とを介して両燃焼室7−1,7−2が連通する。そこで、両板8a,8a間に、両板8a,8a間の空隙を分布板4から仕切り壁8の上端に亘り横方向に2分する中仕切り板8bを介設している。これにより、空気吹出し孔10dと両板8a,8a間の空隙とを介しての両燃焼室7−1,7−2の連通も断たれる。尚、両板8a,8aの最上端には横方向内側への折曲げ部8c,8cを存して起立する接合フランジ部8d,8dが形成されており、両接合フランジ部8d,8dを中間に中仕切り板8bの上端を挟むようにして結合させている。そして、両板8a,8aの上端の折曲げ部8c,8cに、図7に示す如く、通気孔8eを開設し、両板8a,8a間の空隙に流れた空気が通気孔8eから両熱交換器3−1,3−2の境界部に流れ出るようにしている。   Moreover, since the air blowing hole 10d is opened in each shoulder part 10b of the two plates 8a, 8a constituting the partition wall 8, the air gap between the air blowing hole 10d and both the plates 8a, 8a Both combustion chambers 7-1 and 7-2 communicate with each other. Therefore, an intermediate partition plate 8b that bisects the gap between the plates 8a and 8a in the lateral direction from the distribution plate 4 to the upper end of the partition wall 8 is interposed between the plates 8a and 8a. As a result, the communication between the combustion chambers 7-1 and 7-2 through the air blowing hole 10d and the gap between the plates 8a and 8a is also cut off. In addition, joining flanges 8d and 8d are formed at the uppermost ends of both plates 8a and 8a with standing bent portions 8c and 8c extending inward in the lateral direction. Are joined so as to sandwich the upper end of the partition plate 8b. Then, as shown in FIG. 7, vent holes 8e are formed in the bent portions 8c, 8c at the upper ends of both plates 8a, 8a, and the air flowing into the gap between both plates 8a, 8a is heated from the vent holes 8e. It flows out to the boundary part of the exchangers 3-1 and 3-2.

以上の如く両燃焼室7−1,7−2の連通が断たれると、両燃焼室7−1,7−2を連続した一つの振動空間とする気柱振動の発生が防止され、気柱振動は各燃焼室7−1,7−2で個別に発生することになり、気柱振動の固有振動数が高くなる。例えば、第1燃焼室7−1の横幅が23cm、第2燃焼室7−2の横幅が7cmである場合、各燃焼室7−1,7−2で発生する気柱振動の固有振動数は、第1燃焼室7−1で950Hz、第2燃焼室7−2で3100Hzになる。固有振動数がこのような高い値になると、火炎が共鳴振動し難くなり、燃焼騒音が低減される。   When the communication between the combustion chambers 7-1 and 7-2 is interrupted as described above, the generation of air column vibrations that make both the combustion chambers 7-1 and 7-2 one continuous vibration space is prevented. Column vibration is generated individually in each of the combustion chambers 7-1 and 7-2, and the natural frequency of the air column vibration is increased. For example, when the width of the first combustion chamber 7-1 is 23 cm and the width of the second combustion chamber 7-2 is 7 cm, the natural frequency of the air column vibration generated in each of the combustion chambers 7-1 and 7-2 is The first combustion chamber 7-1 has a frequency of 950 Hz, and the second combustion chamber 7-2 has a frequency of 3100 Hz. When the natural frequency reaches such a high value, the flame hardly resonates and combustion noise is reduced.

図8は第3実施形態の変形例である第4実施形態を示している。第4実施形態の缶体1及び両熱交換器3−1,3−2は上記第3実施形態と同一であるが、第2バーナ2−2の定格燃焼量を低くするために、第3実施形態における第2バーナ2−2の横方向最内側の単位バーナ2aが取外されている。そして、第2バーナ2−2側(図8の左側)の側板部10cを、取外した単位バーナ2aの分だけ左側に変位させている。一方、両熱交換器3−1,3−2は第3実施形態のものと同一であるため、両熱交換器3−1,3−2の境界部に挿入される仕切り壁8の上端部の位置は変化しない。その結果、仕切り壁8の左側の板8aの上端部と左側の側板部10cとの間の横方向距離が大きくなる。この場合、左側の板8aに第2バーナ2−2の上端と同等高さで形成する左側の肩部10bの横方向幅を上記横方向距離に等しく設定すると、左側の肩部10bの直上部に圧力の低い還流域が発生し、第2バーナ2−2の火炎が還流域側に傾いて燃焼が不安定になる。これを防止するため、左側の肩部10bに形成する空気吹出し孔10dの開口面積を大きくすることも考えられるが、これでは空気過多になり、第2熱交換器3−2が空気で冷却されて熱効率が悪くなってしまう。   FIG. 8 shows a fourth embodiment which is a modification of the third embodiment. The can 1 and the heat exchangers 3-1 and 3-2 of the fourth embodiment are the same as those of the third embodiment. However, in order to reduce the rated combustion amount of the second burner 2-2, the third The innermost unit burner 2a of the second burner 2-2 in the embodiment is removed. Then, the side plate portion 10c on the second burner 2-2 side (left side in FIG. 8) is displaced to the left side by the amount of the removed unit burner 2a. On the other hand, since both the heat exchangers 3-1 and 3-2 are the same as those of the third embodiment, the upper end portion of the partition wall 8 inserted in the boundary portion between the both heat exchangers 3-1 and 3-2. The position of does not change. As a result, the lateral distance between the upper end portion of the left plate 8a of the partition wall 8 and the left side plate portion 10c increases. In this case, if the lateral width of the left shoulder portion 10b formed on the left plate 8a at the same height as the upper end of the second burner 2-2 is set equal to the lateral distance, the upper portion of the left shoulder portion 10b. Thus, a low pressure recirculation zone is generated, and the flame of the second burner 2-2 is tilted toward the recirculation zone to make combustion unstable. In order to prevent this, it is conceivable to increase the opening area of the air blowing hole 10d formed in the left shoulder 10b. However, this causes excessive air, and the second heat exchanger 3-2 is cooled with air. Thermal efficiency will deteriorate.

そこで、第4実施形態では、左側の肩部10bの横方向幅を上記横方向距離より狭く設定し、左側の板8aに、第2バーナ2−2の最大燃焼時における火炎の上端と同等高さになる部分に位置させて、上記横方向距離と左側の肩部10bの横方向幅との差分の横方向幅を持つ段部8fを形成している。これによれば、左側の板8aの肩部10bと段部8fとの間の部分が第2バーナ2−2側に近付く。そのため、左側の肩部10bに開設する空気吹出し孔10dの開口面積を大きくしなくても、該肩部10bの直上部に還流域は発生せず、火炎の傾きが防止されて燃焼が安定する。   Therefore, in the fourth embodiment, the lateral width of the left shoulder 10b is set to be narrower than the lateral distance, and the left plate 8a has a height equivalent to the upper end of the flame at the time of maximum combustion of the second burner 2-2. A step portion 8f having a lateral width that is a difference between the lateral distance and the lateral width of the left shoulder 10b is formed at the portion that becomes the thickness. According to this, the portion between the shoulder portion 10b and the step portion 8f of the left plate 8a approaches the second burner 2-2 side. Therefore, even if the opening area of the air blowing hole 10d opened in the left shoulder portion 10b is not increased, a reflux region does not occur immediately above the shoulder portion 10b, and the inclination of the flame is prevented and the combustion is stabilized. .

ここで、最大燃焼時においても燃焼の安定性を確保するには、段部8fの位置を最大燃焼時における火炎の上端と同等高さに設定することが必要になる。一方、段部8fの位置が高くなると、段部8fと第2熱交換器3−2との間の上下方向距離が短くなって、段部8fの直上部に位置する第2熱交換器3−2の部分に燃焼排気が流れにくくなり、熱効率が低下する。第4実施形態の如く第2バーナ2−2の最大燃焼時における火炎の上端と同等高さの位置に段部8fを形成しておけば、燃焼の安定性と熱効率とをうまく両立できる。   Here, in order to ensure the stability of combustion even at the time of maximum combustion, it is necessary to set the position of the step portion 8f to the same height as the upper end of the flame at the time of maximum combustion. On the other hand, when the position of the step portion 8f is increased, the vertical distance between the step portion 8f and the second heat exchanger 3-2 is shortened, and the second heat exchanger 3 located immediately above the step portion 8f. It becomes difficult for combustion exhaust gas to flow in the portion -2, and thermal efficiency is lowered. If the step portion 8f is formed at a position equivalent to the upper end of the flame at the time of maximum combustion of the second burner 2-2 as in the fourth embodiment, both combustion stability and thermal efficiency can be successfully achieved.

尚、第4実施形態では、段部8fを水平に形成しているが、段部8fの直上部に位置する第2熱交換器3−2の部分に燃焼排気を導き易くするために、横方向内側に向かって上方に傾斜するように段部8fを形成しても良い。また、第1バーナ2−1の横方向最内側の単位バーナ2aを取外して、右側の側板部10cの位置を、取外した単位バーナ2aの分だけ右側に変位させる場合には、右側の板8aにも左側の板8aと同様に段部を形成する。   In the fourth embodiment, the step portion 8f is formed horizontally. However, in order to easily guide the combustion exhaust to the portion of the second heat exchanger 3-2 located immediately above the step portion 8f, the step portion 8f is formed horizontally. The step portion 8f may be formed so as to incline upward toward the inner side in the direction. When the innermost unit burner 2a in the lateral direction of the first burner 2-1 is removed and the position of the right side plate portion 10c is displaced to the right by the amount of the removed unit burner 2a, the right plate 8a Also, a step is formed in the same manner as the left plate 8a.

図9は第5実施形態を示している。このものでは、図示省略したフレームに単位バーナ2aを横方向に多数列設してバーナユニットを構成し、このバーナユニットを分布板4上に配置している。そして、バーナユニットのこれら単位バーナ2aを2組に分け、一方の組の単位バーナ群で第1バーナ2−1を構成し、他方の組の単位バーナ群で第2バーナ2−2を構成している。これによれば、第1バーナ2−1の定格燃焼量と第2バーナ2−2の定格燃焼量との比が異なる複数機種の熱源機を製造する場合、缶体1及びバーナユニットを機種に係りなく共通としても、第1バーナ2−1に属する単位バーナ2aの個数と第2バーナ2−2に属する単位バーナ2aの個数との比を変更することで複数機種に対応でき、コスト的に有利である。   FIG. 9 shows a fifth embodiment. In this apparatus, a plurality of unit burners 2 a are arranged in a horizontal direction on a frame (not shown) to constitute a burner unit, and the burner unit is arranged on the distribution plate 4. The unit burners 2a of the burner unit are divided into two sets, one set of unit burner groups constitutes the first burner 2-1, and the other set of unit burner groups constitutes the second burner 2-2. ing. According to this, when manufacturing a plurality of types of heat source machines having different ratios of the rated combustion amount of the first burner 2-1 and the rated combustion amount of the second burner 2-2, the can body 1 and the burner unit are used as models. Regardless of common, it is possible to deal with a plurality of models by changing the ratio of the number of unit burners 2a belonging to the first burner 2-1 and the number of unit burners 2a belonging to the second burner 2-2. It is advantageous.

ここで、単位バーナ2aを組み分けは、第1と第2の両バーナ2−1,2−2の境界部に両バーナ2−1,2−2の何れにも属さない単位バーナ2a(以下、#0の単位バーナと記す)が残るように行う。第1と第2の各バーナ2−1,2−2に属する単位バーナ2aには各バーナ2−1,2−2用のガスマニホールド2cのノズル2dからガスが供給されるが(図2参照)、#0の単位バーナ2aの混合管部2bの流入端に臨む位置には、図10に示す如く、ノズル2dが配置されておらず、#0の単位バーナ2aには給気室5から空気のみが供給される。   Here, the unit burner 2a is divided into unit burners 2a (hereinafter referred to as neither of the burners 2-1 and 2-2 at the boundary between the first and second burners 2-1 and 2-2). , Written as # 0 unit burner). Gas is supplied to the unit burners 2a belonging to the first and second burners 2-1 and 2-2 from the nozzle 2d of the gas manifold 2c for each burner 2-1 and 2-2 (see FIG. 2). ) No nozzle 2d is disposed at the position facing the inflow end of the mixing pipe portion 2b of the # 0 unit burner 2a, as shown in FIG. Only air is supplied.

そして、#0の単位バーナ2aの直上部に、仕切り壁8をその下端が#0の単位バーナ2aの上端に接するように配置する。仕切り壁8は、2枚の板8a,8aから成る中空構造であるが、その横方向幅は単位バーナ2aの上端の横方向幅より狭くなっている。かくして、給気室5から#0の単位バーナ2aに供給される空気は#0の単位バーナ2aの内部空隙を介してその上端から噴出し、この空気により仕切り壁8の横方向両側の外壁面に沿って上方に流れる冷却空気流aと、仕切り壁8の内部空隙に流れる冷却空気流bとが生成される。従って、#0の単位バーナ2aが空気案内部材10に兼用されることになり、部品点数を削減して、コストダウンを図ることができる。   Then, the partition wall 8 is arranged directly above the # 0 unit burner 2a so that the lower end thereof is in contact with the upper end of the # 0 unit burner 2a. The partition wall 8 has a hollow structure composed of two plates 8a and 8a, but its lateral width is narrower than the lateral width of the upper end of the unit burner 2a. Thus, the air supplied from the air supply chamber 5 to the # 0 unit burner 2a is ejected from the upper end through the internal space of the # 0 unit burner 2a. A cooling air flow a flowing upward along the line A and a cooling air flow b flowing in the internal space of the partition wall 8 are generated. Therefore, the unit burner 2a of # 0 is also used as the air guide member 10, and the number of parts can be reduced and the cost can be reduced.

尚、単位バーナ2aの上端には炎孔プレートが装着されるが、#0の単位バーナ2aは、炎孔プレートが未装着であっても良い。また、第5実施形態では、仕切り壁8を中空構造に構成しているが、仕切り壁8を1枚板構造としても良い。   The flame hole plate is attached to the upper end of the unit burner 2a, but the flame hole plate may not be attached to the # 0 unit burner 2a. In the fifth embodiment, the partition wall 8 has a hollow structure, but the partition wall 8 may have a single-plate structure.

以上、給湯用の第1熱交換器3−1と暖房用の第2熱交換器3−2とを有する1缶式複合熱源機に本発明を適用した実施形態について説明したが、第2熱交換器3−2がその吸熱フィンに風呂の湯水を循環させる風呂吸熱管を貫通させた風呂追い焚き用の熱交換器である場合や、吸熱フィンに暖房吸熱管と風呂吸熱管とを貫通させた暖房兼風呂追い焚き用の熱交換器である場合にも、また、第1熱交換器3−1がその吸熱フィンに給湯吸熱管と風呂吸熱管とを貫通させた給湯兼風呂追焚き用の熱交換器である場合や、給湯用以外の熱交換器である場合にも同様に本発明を適用できる。また、第1と第2の両熱交換器3−1,3−2は、上記何れの実施形態においても、完全に分離しているが、第1と第2の両熱交換器3−1,3−2の吸熱フィン3a,3aを連続した共通フィンで構成することも可能である。   As mentioned above, although embodiment which applied this invention to the 1 can type | mold composite heat source machine which has the 1st heat exchanger 3-1 for hot-water supply and the 2nd heat exchanger 3-2 for heating was described, 2nd heat When the exchanger 3-2 is a heat exchanger for retreating a bath in which a bath endothermic pipe that circulates the hot water of the bath is passed through the endothermic fin, or the endothermic pipe and the endothermic pipe are passed through the endothermic fin In the case of a heat exchanger for heating and bathing, the first heat exchanger 3-1 is also used for hot water and bathing in which the heat-absorbing fin penetrates the hot-water heat-absorbing tube and the bath heat-absorbing tube. The present invention can be similarly applied to a case where the heat exchanger is a heat exchanger or a heat exchanger other than for hot water supply. In addition, the first and second heat exchangers 3-1 and 3-2 are completely separated in any of the above embodiments, but the first and second heat exchangers 3-1 are both separated. , 3-2 can be constituted by a continuous common fin.

本発明熱源機の第1実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing composition of a 1st embodiment of the present invention heat source machine. 図1のII−II線で切断した切断側面図。FIG. 2 is a cut side view taken along line II-II in FIG. 1. 図1のIII−III線で切断した切断側面図。The cut side view cut | disconnected by the III-III line of FIG. 本発明熱源機の第2実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing composition of a 2nd embodiment of the present heat source machine. 本発明熱源機の第3実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing composition of a 3rd embodiment of the heat source machine of the present invention. 第3実施形態の仕切り壁を示す斜視図。The perspective view which shows the partition wall of 3rd Embodiment. 図5のVII−VII線で切断した拡大切断平面図。The expanded cutting top view cut | disconnected by the VII-VII line of FIG. 本発明熱源機の第4実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing the composition of the 4th embodiment of the present invention heat source machine. 本発明熱源機の第5実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing composition of a 5th embodiment of the present invention heat source machine. 図9のX−X線で切断した切断側面図。The cut | disconnected side view cut | disconnected by the XX line of FIG.

符号の説明Explanation of symbols

1…缶体、2−1…第1バーナ、2−2…第2バーナ、2a…単位バーナ、3−1…第1熱交換器、3−2…第2熱交換器、4…分布板、4a…分布孔、5…給気室、6…燃焼ファン、7−1…第1燃焼室、7−2…第2燃焼室、8…仕切り壁、8a…板、8b…中仕切り板、8f…段部、10…空気案内部材、10b…肩部、10c…側板部、10d…空気吹出し孔。   DESCRIPTION OF SYMBOLS 1 ... Can body, 2-1 ... 1st burner, 2-2 ... 2nd burner, 2a ... Unit burner, 3-1 ... 1st heat exchanger, 3-2 ... 2nd heat exchanger, 4 ... Distribution board 4a ... distribution hole, 5 ... supply chamber, 6 ... combustion fan, 7-1 ... first combustion chamber, 7-2 ... second combustion chamber, 8 ... partition wall, 8a ... plate, 8b ... partition plate, 8f ... Step part, 10 ... Air guide member, 10b ... Shoulder part, 10c ... Side plate part, 10d ... Air blowing hole.

Claims (9)

単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備えると共に、缶体の下部に、分布板で仕切られた給気室を画成し、燃焼ファンからの燃焼用空気を分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機において、
分布板上に、仕切り壁の配置位置に合わせて、仕切り壁より横方向幅が広い中空の空気案内部材を配置し、空気案内部材の内部空隙を給気室に連通させ、空気案内部材の内部空隙を介して空気案内部材の上端から吹出す空気により仕切り壁の横方向両側の外壁面に沿って上方に流れる冷却空気流が生成されるようにしたことを特徴とする1缶式複合熱源機。
A single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair of heat exchangers provided side by side on the top of the can body And a first combustion chamber and a second burner extending from the first burner to the first heat exchanger in a space between the first and second burners and the first and second heat exchangers in the can. And a second combustion chamber extending from the first heat exchanger to the second heat exchanger, and defining a supply chamber partitioned by a distribution plate at a lower portion of the can body, and combustion air from the combustion fan In a single can type combined heat source machine that supplies the first and second combustion chambers through distribution holes formed in the distribution plate,
A hollow air guide member having a lateral width wider than the partition wall is arranged on the distribution plate in accordance with the arrangement position of the partition wall, and the internal space of the air guide member is communicated with the air supply chamber. A single-can type combined heat source apparatus, characterized in that a cooling air flow flowing upward along the outer wall surfaces on both sides in the lateral direction of the partition wall is generated by the air blown from the upper end of the air guide member through the gap .
前記仕切り壁は、空隙を存して横方向に対向する2枚の板で構成され、両板間の空隙に前記給気室からの空気を給気室から直接的または前記空気案内部材を介して流すことを特徴とする請求項1記載の1缶式複合熱源機。   The partition wall is composed of two plates facing each other in a lateral direction with a gap, and air from the air supply chamber is directly passed from the air supply chamber to the gap between both plates or via the air guide member. The single can type combined heat source machine according to claim 1, wherein 前記空気案内部材の上端の高さは、前記第1と第2の各バーナの上端と同等高さであることを特徴とする請求項1または2記載の1缶式複合熱源機。   3. The single can type combined heat source machine according to claim 1, wherein a height of an upper end of the air guide member is equal to a height of an upper end of each of the first and second burners. 前記仕切り壁の下部に、横方向両外側に張り出す一対の肩部と、両肩部から前記分布板に向けて下方にのびる一対の側板部とを形成して、両肩部と両側板部とにより前記空気案内部材を構成し、空気案内部材の上端となる両肩部に上向きに開口する空気吹出し孔を開設したことを特徴とする請求項1または3記載の1缶式複合熱源機。   At the lower part of the partition wall, a pair of shoulder portions projecting laterally outward and a pair of side plate portions extending downward from the shoulder portions toward the distribution plate are formed. 4. The single-can type combined heat source apparatus according to claim 1, wherein the air guide member is configured as described above, and air blowing holes opening upward are formed in both shoulder portions which are upper ends of the air guide member. 前記仕切り壁が空隙を存して横方向に対向する2枚の板で構成され、該各板の下部に前記各肩部と前記各側板部とが形成されることを特徴とする請求項4記載の1缶式複合熱源機。   5. The partition wall is composed of two plates facing each other in a lateral direction with a gap, and the shoulder portions and the side plate portions are formed at the lower portion of the plates. 1 can type combined heat source machine of description. 請求項5記載の1缶式複合熱源機であって、前記肩部の高さが前記各バーナの上端と同等高さに設定されると共に、前記仕切り壁を構成する前記2枚の板の少なくとも一方の板の前記両熱交換器の境界部に挿入される上端部と該一方の板に形成される前記側板部との間の横方向距離が所定値以上になるものにおいて、
該一方の板に形成する肩部の横方向幅は前記横方向距離より狭く設定され、該一方の板に、該一方の板が面する燃焼室に配置されるバーナの最大燃焼時における火炎の上端と同等高さになる部分に位置させて、前記横方向距離と肩部の横方向幅との差分の横方向幅を持つ段部が形成されていることを特徴とする1缶式複合熱源機。
The one-can type combined heat source machine according to claim 5, wherein the height of the shoulder portion is set to be equal to the upper end of each burner, and at least of the two plates constituting the partition wall In the one where the lateral distance between the upper end portion inserted into the boundary portion of the two heat exchangers of one plate and the side plate portion formed on the one plate is a predetermined value or more,
The lateral width of the shoulder formed on the one plate is set to be narrower than the lateral distance, and the flame of the burner at the maximum combustion of the burner disposed in the combustion chamber facing the one plate is placed on the one plate. One can type combined heat source, characterized in that a step portion having a lateral width which is a difference between the lateral distance and the lateral width of the shoulder is formed at a portion having the same height as the upper end. Machine.
前記両熱交換器の境界部に面する各熱交換器の側端部に、各熱交換器を構成する吸熱フィン間の隙間を封止する封止部を設けると共に、前記仕切り壁を構成する前記2枚の板を、両熱交換器の境界部に挿入される両板の上端部において、両熱交換器の封止部に接触させることを特徴とする請求項5または6記載の1缶式複合熱源機。   The side wall of each heat exchanger facing the boundary between the two heat exchangers is provided with a sealing portion for sealing a gap between the heat absorption fins constituting each heat exchanger, and constitutes the partition wall. The can according to claim 5 or 6, wherein the two plates are brought into contact with a sealing portion of both heat exchangers at an upper end portion of both plates inserted into a boundary portion between both heat exchangers. Combined heat source machine. 前記仕切り壁を構成する前記2枚の板間に、両板間の空隙を前記分布板から仕切り壁の上端に亘り横方向に2分する中仕切り板を介設することを特徴とする請求項7記載の1缶式複合熱源機。   An intermediate partition plate is provided between the two plates constituting the partition wall to divide the gap between the two plates in the lateral direction from the distribution plate to the upper end of the partition wall. 7. A single can type combined heat source machine according to 7. 請求項1〜3の何れか1項に記載の1缶式複合熱源機であって、分布板上に、缶体の奥行方向に長手の単位バーナを横方向に多数列設して構成されるバーナユニットを配置し、バーナユニットのこれら単位バーナを2組に分けて、一方の組の単位バーナ群で第1バーナ、他方の組の単位バーナ群で第2バーナを構成するものにおいて、
第1と第2の両バーナの境界部に両バーナの何れにも属しない単位バーナが残るようにこれら単位バーナを組み分けし、両バーナの境界部に位置する単位バーナの直上部に前記仕切り壁を配置すると共に、当該単位バーナに給気室から空気のみを供給し、当該単位バーナで前記空気案内部材を構成することを特徴とする1缶式複合熱源機。
It is a 1 can type compound heat source machine given in any 1 paragraph of Claims 1-3, and is constituted by arranging a number of unit burners which are long in the depth direction of a can body on a distribution board in the horizontal direction. In the burner unit, these unit burners of the burner unit are divided into two sets, and one set of unit burner groups constitutes a first burner, and the other set of unit burner groups constitutes a second burner.
These unit burners are assembled so that unit burners belonging to neither of the two burners remain at the boundary between the first and second burners, and the partition is placed directly above the unit burner located at the boundary of both burners. A single can type combined heat source machine, wherein a wall is arranged, only air is supplied to the unit burner from an air supply chamber, and the air guide member is constituted by the unit burner.
JP2008261088A 2004-08-09 2008-10-07 1 can type combined heat source machine Expired - Fee Related JP4718593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261088A JP4718593B2 (en) 2004-08-09 2008-10-07 1 can type combined heat source machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004232494 2004-08-09
JP2004232494 2004-08-09
JP2008261088A JP4718593B2 (en) 2004-08-09 2008-10-07 1 can type combined heat source machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005113786A Division JP4252971B2 (en) 2004-08-09 2005-04-11 1 can type combined heat source machine

Publications (2)

Publication Number Publication Date
JP2009030973A true JP2009030973A (en) 2009-02-12
JP4718593B2 JP4718593B2 (en) 2011-07-06

Family

ID=40401659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261088A Expired - Fee Related JP4718593B2 (en) 2004-08-09 2008-10-07 1 can type combined heat source machine

Country Status (1)

Country Link
JP (1) JP4718593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105814A (en) * 2013-12-02 2015-06-08 株式会社パロマ Combustion device
JP2018100797A (en) * 2016-12-20 2018-06-28 株式会社ノーリツ Combustion apparatus and water heater equipped therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173851A (en) * 1984-02-20 1985-09-07 Toshiba Seiki Kk Method and device for holding wafer ring in pellet bonding device
JPS6226411A (en) * 1985-07-26 1987-02-04 Tokyo Gas Co Ltd Burner device for high load combustion
JPH0468205A (en) * 1990-07-06 1992-03-04 Matsushita Electric Ind Co Ltd Combustion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173851A (en) * 1984-02-20 1985-09-07 Toshiba Seiki Kk Method and device for holding wafer ring in pellet bonding device
JPS6226411A (en) * 1985-07-26 1987-02-04 Tokyo Gas Co Ltd Burner device for high load combustion
JPH0468205A (en) * 1990-07-06 1992-03-04 Matsushita Electric Ind Co Ltd Combustion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105814A (en) * 2013-12-02 2015-06-08 株式会社パロマ Combustion device
JP2018100797A (en) * 2016-12-20 2018-06-28 株式会社ノーリツ Combustion apparatus and water heater equipped therewith

Also Published As

Publication number Publication date
JP4718593B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4252971B2 (en) 1 can type combined heat source machine
CN106016692B (en) Combustion apparatus
KR20060047192A (en) Heat source machine with one tube and two water channels
JP4850205B2 (en) 1 can type combined heat source machine
JP6831206B2 (en) Fin tube type heat exchanger and combustion device equipped with this heat exchanger
KR101775799B1 (en) Exhaust gas heat exchanger with multiple heat exchanger channels
JP4718593B2 (en) 1 can type combined heat source machine
KR100731772B1 (en) Complex heat source machine with one can
CN109695957B (en) Combustion apparatus
JP2019190700A (en) Heat exchanger
JP2009114924A (en) Egr cooler
JP2008106969A (en) Plate type heat exchanger
WO2022152277A1 (en) Gas device and gas water heater
JP5178656B2 (en) 1 can type combined heat source machine
KR101372303B1 (en) Heat Exchanger
JP4041102B2 (en) 1 can type combined heat source machine
KR20120060251A (en) Integrated heat exchanger having sub-radiator and watercool charge air cooler
JP2005083725A (en) Integral heat exchanger
JP2020204428A (en) Combustion device
JP2015001342A (en) One can-type composite heat source machine
JP7080440B2 (en) Hot water device
JP2006200828A (en) Compound heat exchanger
KR20080019968A (en) Heat exchanger and it&#39;s manufacturing method
US20230132467A1 (en) Heat exchanger and water heater
JP2008144974A (en) Open showcase

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Ref document number: 4718593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees