JP2009028570A - Aeration apparatus - Google Patents

Aeration apparatus Download PDF

Info

Publication number
JP2009028570A
JP2009028570A JP2007191840A JP2007191840A JP2009028570A JP 2009028570 A JP2009028570 A JP 2009028570A JP 2007191840 A JP2007191840 A JP 2007191840A JP 2007191840 A JP2007191840 A JP 2007191840A JP 2009028570 A JP2009028570 A JP 2009028570A
Authority
JP
Japan
Prior art keywords
aeration
water channel
header
fine bubbles
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191840A
Other languages
Japanese (ja)
Other versions
JP5330658B2 (en
Inventor
Keisuke Sonoda
圭介 園田
Shozo Nagao
章造 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007191840A priority Critical patent/JP5330658B2/en
Priority to TW097123546A priority patent/TW200916176A/en
Priority to MYPI20094299A priority patent/MY155294A/en
Priority to PCT/JP2008/062359 priority patent/WO2009014003A1/en
Priority to SA08290456A priority patent/SA08290456B1/en
Publication of JP2009028570A publication Critical patent/JP2009028570A/en
Priority to EG2009111615A priority patent/EG25582A/en
Application granted granted Critical
Publication of JP5330658B2 publication Critical patent/JP5330658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aeration apparatus allowing setting of increased number of aeration nozzles per unit area of a water channel bottom face, for increasing decarboxylation performance of the aeration apparatus decarboxylating (aerating) used sea water after desulfurization by aeration. <P>SOLUTION: In the aeration apparatus 10A set in the water channel 1 running and draining the used sea water discharged from a desulfurization tower of a flue-gas desulfurization apparatus using sea water as an absorbent, and generating fine bubbles in the used sea water for decarboxylating, a header 12 communicated with an air supply pipe 11 is set on the bottom face 1a of the water channel 1, and the fine bubbles are generated from the aeration nozzles 13A of a vertical pipe mounted on the header 12 and extended vertically upward. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石炭焚き、原油焚き及び重油焚き等の発電プラントに適用される排煙脱硫装置の排水処理に係り、特に、海水法を用いて脱硫する排煙脱硫装置の排水(使用済海水)をエアレーションにより脱炭酸(暴気)するエアレーション装置に関する。   The present invention relates to wastewater treatment of flue gas desulfurization equipment applied to power plants such as coal-fired, crude oil-fired, and heavy oil-fired, and in particular, wastewater of exhaust gas desulfurization equipment that uses the seawater method (used seawater). It is related with the aeration apparatus which decarboxylates (aeration) by aeration.

従来、石炭や原油等を燃料とする発電プラントにおいて、ボイラから排出される燃焼排気ガス(以下、「ボイラ排ガス」と呼ぶ)は、ボイラ排ガス中に含まれている二酸化硫黄(SO)等の硫黄酸化物(SOx)を除去してから大気に放出される。このような脱硫処理を施す排煙脱硫装置の脱硫方式としては、石灰石石膏法、スプレードライヤー法及び海水法が知られている。 Conventionally, in a power plant using coal, crude oil or the like as fuel, combustion exhaust gas (hereinafter referred to as “boiler exhaust gas”) discharged from the boiler is sulfur dioxide (SO 2 ) or the like contained in the boiler exhaust gas. Sulfur oxide (SOx) is removed before being released to the atmosphere. As a desulfurization method of the flue gas desulfurization apparatus that performs such a desulfurization treatment, a limestone gypsum method, a spray dryer method, and a seawater method are known.

このうち、海水法を採用した排煙脱硫装置(以下、「海水脱硫装置」と呼ぶ)は、吸収剤として海水を使用する脱硫方式である。この方式では、たとえば略円筒のような筒形状を縦置きにした脱硫塔(吸収塔)の内部に海水及びボイラ排ガスを供給することにより、海水を吸収液として湿式ベースの気液接触を生じさせて硫黄酸化物を除去している。
上述した脱硫塔内で吸収剤として使用した脱硫後の海水(使用済海水)は、たとえば図3に示すように、水路(Seawater Oxidation Treatment System;SOTS)1内を流れて排水される際、水路1の底面1aに設置したエアレーション装置10から微細気泡2を流出させるエアレーションによって脱炭酸(爆気)される。
Among these, the flue gas desulfurization apparatus (hereinafter referred to as “seawater desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent. In this system, for example, by supplying seawater and boiler exhaust gas into a desulfurization tower (absorption tower) having a cylindrical shape such as a substantially cylindrical shape, a wet-based gas-liquid contact is generated using seawater as an absorption liquid. To remove sulfur oxides.
The desulfurized seawater (spent seawater) used as the absorbent in the desulfurization tower described above is, for example, as shown in FIG. 3, when the water flows through the waterway (Seawater Oxidation Treatment System; SOTS) 1 and is drained. 1 is decarboxylated (explosion) by aeration that causes the fine bubbles 2 to flow out of the aeration apparatus 10 installed on the bottom surface 1a of the first.

図4及び図5は従来のエアレーション装置10を示す図で、空気供給管11に連結されたヘッダ12が水路1の底面1aに設置され、各ヘッダ12には底面1aと略平行に水平配置されたエアレーションノズル13が多数取り付けられている。このエアレーションノズル13は、基材の周囲を覆うゴム製のホースに小さな切れ込み14が多数設けられたものであり、一般的には「ディフューザノズル」と呼ばれている。このようなエアレーションノズル13は、空気供給管11から供給される空気の圧力によりホースが膨張すると、切れ込み14が開いて略均等な大きさの微細気泡を多数流出させることができる。
なお、海水法を用いて脱硫する排煙脱硫装置の排水(使用済海水)をエアレーションにより脱炭酸(暴気)するエアレーション装置において、エアレーションノズルの設置に関して開示された技術文献は見当たらない。
4 and 5 show a conventional aeration apparatus 10 in which a header 12 connected to an air supply pipe 11 is installed on the bottom surface 1a of the water channel 1, and each header 12 is horizontally arranged substantially parallel to the bottom surface 1a. Many aeration nozzles 13 are attached. The aeration nozzle 13 is a rubber hose that covers the periphery of a base material and is provided with many small cuts 14 and is generally called a “diffuser nozzle”. When the hose expands due to the pressure of the air supplied from the air supply pipe 11, the aeration nozzle 13 can open a large number of fine bubbles having substantially the same size by opening the notches 14.
In addition, in the aeration apparatus which decarboxylates (exhaust) the exhaust water (used seawater) of the flue gas desulfurization apparatus that desulfurizes using the seawater method, there is no technical document disclosed regarding the installation of the aeration nozzle.

ところで、上述したエアレーションによる脱炭酸は、供給する空気量を増して微細気泡を多くすれば脱炭酸性能が向上する。しかし、ディフューザノズルと呼ばれているエアレーションノズル13は、良好な微細気泡を発生させるために最適な空気供給量が決められているので、微細気泡(空気量)を多くするためにはノズル本数を増す必要がある。すなわち、同じ仕様のエアレーションノズル13を使用する場合には、水路1の底面1aに設置される単位面積当たりのノズル本数を増すことが必要となる。   By the way, the decarboxylation by aeration described above improves the decarboxylation performance if the amount of air to be supplied is increased to increase the number of fine bubbles. However, the aeration nozzle 13 called a diffuser nozzle has an optimum air supply amount to generate good fine bubbles. Therefore, in order to increase the fine bubbles (air amount), the number of nozzles must be reduced. Need to increase. That is, when the aeration nozzle 13 having the same specification is used, it is necessary to increase the number of nozzles per unit area installed on the bottom surface 1 a of the water channel 1.

しかしながら、エアレーションノズル13を水平配置する従来構造では、水路1の底面1aに設置可能な単位面積当たりのノズル本数に限界があるので、この限界が微細気泡を発生させる空気供給量の制約となっている。すなわち、水路1の平面視において、水平配置された1本のエアレーションノズル13が底面1aを覆う面積は大きくなるので、上下方向に重ならないようにして設置可能な単位面積当たりのノズル本数には限界がある。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、脱硫後の使用済海水をエアレーションにより脱炭酸(暴気)するエアレーション装置の脱炭酸性能を向上させるため、水路底面の単位面積当たりに設置可能なエアレーションノズル設置本数を増すことができるエアレーション装置を提供することにある。
However, in the conventional structure in which the aeration nozzles 13 are arranged horizontally, there is a limit to the number of nozzles per unit area that can be installed on the bottom surface 1a of the water channel 1, and this limit becomes a restriction on the air supply amount that generates fine bubbles. Yes. That is, in the plan view of the water channel 1, the area in which the horizontally arranged one aeration nozzle 13 covers the bottom surface 1 a becomes large, and therefore the number of nozzles per unit area that can be installed without overlapping in the vertical direction is limited. There is.
The present invention has been made in view of the above circumstances, and the purpose thereof is to improve the decarboxylation performance of an aeration apparatus that decarbonates (exhausts) spent seawater after desulfurization by aeration. An object of the present invention is to provide an aeration apparatus capable of increasing the number of aeration nozzles that can be installed per unit area of the bottom surface of a water channel.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係るエアレーション装置は、海水を吸収剤として使用する排煙脱硫装置の脱硫塔から排出された使用済海水を流して排水する水路に設置され、前記使用済海水中に微細気泡を発生させて脱炭酸を行うエアレーション装置であって、空気供給配管に連通するヘッダを前記水路の底面に設置し、前記ヘッダに取り付けられて鉛直方向上向きに延びる鉛直配置のエアレーションノズルから前記微細気泡を発生させることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
An aeration apparatus according to the present invention is installed in a water channel for flowing and draining used seawater discharged from a desulfurization tower of a flue gas desulfurization apparatus that uses seawater as an absorbent, and generates fine bubbles in the used seawater. An aeration apparatus that performs decarboxylation by installing a header communicating with an air supply pipe on the bottom surface of the water channel, and generating the fine bubbles from a vertically arranged aeration nozzle attached to the header and extending vertically upward It is characterized by this.

このようなエアレーション装置によれば、空気供給配管に連通するヘッダを水路の底面に設置し、ヘッダに取り付けられて鉛直方向上向きに延びる鉛直配置のエアレーションノズルから微細気泡を発生させるようにしたので、従来の水平配置と比較して、水路底面の単位面積当たりに設置可能なエアレーションノズル設置本数を増すことができる。すなわち、水路の平面視において、鉛直配置された1本のエアレーションノズルが底面を覆う面積は、水平配置された場合と比較して大幅に小さくなるので、単位面積当たりに設置可能なノズル本数を増加させることができる。   According to such an aeration apparatus, since the header communicating with the air supply pipe is installed on the bottom surface of the water channel, the fine bubbles are generated from the vertically arranged aeration nozzle attached to the header and extending vertically upward. Compared with the conventional horizontal arrangement, the number of aeration nozzles that can be installed per unit area of the bottom surface of the water channel can be increased. That is, in the plan view of the water channel, the area where one vertically disposed aeration nozzle covers the bottom surface is significantly smaller than when horizontally disposed, so the number of nozzles that can be installed per unit area is increased. Can be made.

上述した本発明によれば、水路底面の単位面積当たりに設置可能なエアレーションノズル設置本数を増すことができるので、ノズル本数の増加分だけ微細気泡を発生させる空気供給量が増加し、脱硫後の使用済海水をエアレーションにより脱炭酸(暴気)するエアレーション装置の脱炭酸性能が向上するという顕著な効果を奏する。
また、エアレーション装置の脱炭酸性能が向上すると、所定の脱炭酸を実施するのに必要となる水路長さを短縮できるので、水路の設置費用や設置スペースを低減できるという効果も得られる。
According to the present invention described above, since the number of aeration nozzles that can be installed per unit area of the bottom of the water channel can be increased, the amount of air supply that generates fine bubbles is increased by the increase in the number of nozzles, and after desulfurization There is a remarkable effect that the decarboxylation performance of an aeration apparatus that decarboxylates used seawater by aeration is improved.
Further, when the decarboxylation performance of the aeration apparatus is improved, the length of the water channel required for carrying out the predetermined decarbonation can be shortened, so that the effect of reducing the installation cost and installation space of the water channel can also be obtained.

以下、本発明に係るエアレーション装置の一実施形態を図面に基づいて説明する。
図1及び図2に示すエアレーション装置10Aは、たとえば海水を吸収剤として使用する排煙脱硫装置の脱硫塔(不図示)から排出された脱硫後の海水(以下、「使用済海水」と呼ぶ)を流して周辺海域へ排水する水路(SOTS)1の内部に設置される。このエアレーション装置10Aは、水路1内を流れる使用済み海水中に多数の微細気泡を発生させて脱炭酸(暴気)を行うものである。
Hereinafter, an embodiment of an aeration apparatus according to the present invention will be described with reference to the drawings.
The aeration apparatus 10A shown in FIGS. 1 and 2 is, for example, desulfurized seawater (hereinafter referred to as “used seawater”) discharged from a desulfurization tower (not shown) of a flue gas desulfurization apparatus that uses seawater as an absorbent. It is installed inside a water channel (SOTS) 1 that drains water to the surrounding sea area. This aeration apparatus 10 </ b> A generates a large number of fine bubbles in used seawater flowing through the water channel 1 to perform decarboxylation (exhaustion).

エアレーション装置10Aは、空気供給管11を介して水路1の外部に設置された空気供給源(不図示)に接続されている。空気供給管11の他端には、水路1の底面1aに沿って分配されたヘッダ12が連結されている。
ヘッダ12は、底面1aの流れ方向及び幅方向に分岐されている。ヘッダ12の上面には、「ディフューザノズル」と呼ばれているエアレーションノズル13Aが鉛直方向上向きに多数取り付けられている。すなわち、本実施形態のエアレーション装置10Aは、空気供給管11に連通するヘッダ12が水路1の底面1aに設置され、さらに、切れ込み14から多量の微細気泡を発生させるエアレーションノズル13Aがヘッダ12の上面から鉛直方向上向きに延びる鉛直配置となるように多数取り付けられている。
The aeration apparatus 10 </ b> A is connected to an air supply source (not shown) installed outside the water channel 1 through an air supply pipe 11. A header 12 distributed along the bottom surface 1 a of the water channel 1 is connected to the other end of the air supply pipe 11.
The header 12 is branched in the flow direction and the width direction of the bottom surface 1a. On the upper surface of the header 12, a large number of aeration nozzles 13 </ b> A called “diffuser nozzles” are attached vertically upward. That is, in the aeration apparatus 10 </ b> A of the present embodiment, the header 12 communicating with the air supply pipe 11 is installed on the bottom surface 1 a of the water channel 1, and the aeration nozzle 13 </ b> A that generates a large amount of fine bubbles from the cut 14 is provided on the top surface of the header 12. Many are attached so that it may become the vertical arrangement | positioning extended from the vertical direction upwards.

ここで、エアレーションノズル13Aの構造を簡単に説明する。
エアレーションノズル13Aは、たとえば図2に示すように、ヘッダ12の上面にフランジ15を介して取り付けられている。なお、使用済海水中に設置される空気供給管11及びヘッダ12には、耐食性を考慮して樹脂製パイプ等が使用されている。
エアレーションノズル13Aは、たとえば図2(c)に示すように、使用済海水に対する耐食性を考慮して樹脂製とした略円筒形状の基材16を用い、この基材16の外周を覆うようにして多数の切り込み14が形成されたゴム製のホース17を被せた後、上下両端部をワイヤやバンド等の締結部材18により固定した構成とされる。なお、上述した切り込み14は、圧力を受けない通常の状態においては閉じている。
Here, the structure of the aeration nozzle 13A will be briefly described.
For example, as shown in FIG. 2, the aeration nozzle 13 </ b> A is attached to the upper surface of the header 12 via a flange 15. A resin pipe or the like is used for the air supply pipe 11 and the header 12 installed in the used seawater in consideration of corrosion resistance.
For example, as shown in FIG. 2C, the aeration nozzle 13 </ b> A uses a substantially cylindrical base material 16 made of a resin in consideration of corrosion resistance against used seawater, and covers the outer periphery of the base material 16. After covering a rubber hose 17 in which a large number of cuts 14 are formed, the upper and lower ends are fixed by fastening members 18 such as wires and bands. The above-mentioned cut 14 is closed in a normal state where no pressure is applied.

基材16の一端は、ヘッダ12に取り付けた状態で空気の導入を可能とするため、ヘッダ12及びフランジ15を貫通する空気導入口19を介してヘッダ内部と連通している。そして、基材16の内部は、軸方向の途中に設けた仕切板16aにより上下方向が分割され、この仕切板16aにより空気の流通が阻止されている。さらに、この仕切板16aよりヘッダ12側となる基材16の側面には、ホース17の内周面と基材外周面との間に、すなわち、ホース17を加圧して膨張させる加圧空間20へ空気を流出させるための空気出口16bが開口している。従って、ヘッダ12からエアレーションノズル13Aに流入する空気は、図中に矢印Aで示すように、空気導入口19から基材16の内部へ流入した後、側面の空気出口16bから加圧空間20へ流出することとなる。
なお、締結部材18は、ホース17を基材16に固定するとともに、空気出口16bから流入する空気が両端部から漏出することを防止するものである。
One end of the base material 16 communicates with the inside of the header through an air inlet 19 penetrating the header 12 and the flange 15 so that air can be introduced in a state of being attached to the header 12. And the inside of the base material 16 is divided | segmented into the up-down direction by the partition plate 16a provided in the middle of the axial direction, and the distribution | circulation of air is blocked | prevented by this partition plate 16a. Further, on the side surface of the base material 16 that is closer to the header 12 than the partition plate 16a, a pressurizing space 20 between the inner peripheral surface of the hose 17 and the outer peripheral surface of the base material, that is, pressurizing the hose 17 to expand. An air outlet 16b for allowing air to flow out is opened. Therefore, the air flowing from the header 12 into the aeration nozzle 13A flows into the inside of the base material 16 from the air inlet 19 and then into the pressurized space 20 from the side air outlet 16b as indicated by an arrow A in the figure. It will be leaked.
The fastening member 18 fixes the hose 17 to the base material 16 and prevents air flowing in from the air outlet 16b from leaking out from both ends.

このように構成されたエアレーションノズル13Aにおいて、ヘッダ12から空気導入口19を通って流入する空気は、空気出口16bを通って加圧空間20へ流出することにより、切り込み14が閉じているため加圧空間20内に溜まって内圧を上昇させる。この結果、ホース17は加圧空間20内の圧力上昇を受けて膨張し、ホース17に形成されている切り込み14が開くことによって空気の微細気泡を使用済海水中に流出させる。このような微細気泡の発生は、空気供給管11及びヘッダ12を介して空気供給を受ける全てのエアレーションノズル13Aで実施される。   In the aeration nozzle 13A configured as described above, the air flowing from the header 12 through the air inlet 19 flows out to the pressurized space 20 through the air outlet 16b, so that the cut 14 is closed. It accumulates in the pressure space 20 and raises the internal pressure. As a result, the hose 17 expands in response to the pressure increase in the pressurized space 20, and the cuts 14 formed in the hose 17 are opened to allow fine air bubbles to flow into the used seawater. Such fine bubbles are generated in all aeration nozzles 13 </ b> A that receive air supply via the air supply pipe 11 and the header 12.

さて、上述したエアレーションノズル13Aは、ヘッダ12の上面から鉛直方向上向きに延びる鉛直配置が採用されている。このような鉛直配置は、水路1の底面1aを上方から見た平面視において、1本のエアレーションノズル13Aが存在する面積を小さくすることができる。すなわち、鉛直配置されたエアレーションノズル13Aは、底面1aを覆う1本当たりの面積が水平配置された場合と比較して大幅に小さくなっているので、単位面積当たりに設置可能なノズル本数を大幅に増加させることができる。
従って、水平配置のためエアレーションノズル13が存在してヘッダ12を配置できなかった領域の底面1aについても、ヘッダ12を設置して鉛直配置のエアレーションノズル13Aを設置することが可能となる。
Now, the above-described aeration nozzle 13 </ b> A employs a vertical arrangement that extends upward in the vertical direction from the upper surface of the header 12. Such a vertical arrangement can reduce the area where one aeration nozzle 13A exists in a plan view of the bottom surface 1a of the water channel 1 as viewed from above. That is, the vertically arranged aeration nozzle 13A has a significantly smaller area per nozzle covering the bottom surface 1a than the horizontal arrangement, so the number of nozzles that can be installed per unit area is greatly increased. Can be increased.
Accordingly, it is possible to install the header 12 and install the vertically arranged aeration nozzle 13A also on the bottom surface 1a of the region where the aeration nozzle 13 exists and the header 12 cannot be arranged due to the horizontal arrangement.

このように、空気供給配管11に連通するヘッダ12を水路1の底面1aに設置し、ヘッダ12に取り付けられて鉛直方向上向きに延びる鉛直配置のエアレーションノズル13Aから微細気泡を発生させるように構成したエアレーション装置10Aは、従来の水平配置と比較して、水路底面の単位面積当たりに設置可能なエアレーションノズル13Aの設置本数を増すことができる。このため、ノズル本数の増加分だけ微細気泡を発生させる空気供給量が増加し、脱硫後の使用済海水をエアレーションにより脱炭酸(暴気)するエアレーション装置10Aの脱炭酸性能は向上する。   As described above, the header 12 communicating with the air supply pipe 11 is installed on the bottom surface 1a of the water channel 1, and the fine bubbles are generated from the vertically arranged aeration nozzle 13A attached to the header 12 and extending vertically upward. The aeration apparatus 10 </ b> A can increase the number of aeration nozzles 13 </ b> A that can be installed per unit area of the bottom surface of the water channel as compared with the conventional horizontal arrangement. For this reason, the air supply amount that generates fine bubbles is increased by the increase in the number of nozzles, and the decarboxylation performance of the aeration apparatus 10A that decarboxylates (exhausts) the used seawater after desulfurization by aeration is improved.

また、エアレーション装置10Aの脱炭酸性能が向上すると、所定の脱炭酸を実施するのに必要となる水路1の長さを短縮できるので、水路1の設置費用や設置スペースを低減することも可能になる。
また、上述したエアレーションノズル13Aは、水路1内の流れ方向及び水路幅方向において、均等な間隔で配設されることが好ましい。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
Further, when the decarboxylation performance of the aeration apparatus 10A is improved, the length of the water channel 1 necessary for carrying out the predetermined decarbonation can be shortened, so that the installation cost and the installation space of the water channel 1 can be reduced. Become.
Moreover, it is preferable that the aeration nozzle 13A mentioned above is arrange | positioned at equal intervals in the flow direction in the water channel 1, and a water channel width direction.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明に係るエアレーション装置の一実施形態として、エアレーションノズルの鉛直配置を示す斜視図である。It is a perspective view which shows the vertical arrangement | positioning of an aeration nozzle as one Embodiment of the aeration apparatus which concerns on this invention. 図1に示したエアレーションノズルの鉛直配置について、(a)はノズル取付構造を示す平面図、(b)はノズル取付構造を示す側面図、(c)はエアレーションノズルの内部構造を示す要部の部分断面図である。1, (a) is a plan view showing the nozzle mounting structure, (b) is a side view showing the nozzle mounting structure, and (c) is a main part showing the internal structure of the aeration nozzle. It is a fragmentary sectional view. 水路に設置されたエアレーション装置の概要を示す図である。It is a figure which shows the outline | summary of the aeration apparatus installed in the water channel. 従来のエアレーション装置におけるエアレーションノズルの水平配置を示す斜視図である。It is a perspective view which shows horizontal arrangement | positioning of the aeration nozzle in the conventional aeration apparatus. 図4に示したエアレーションノズルの水平配置について、(a)はノズル取付構造を示す平面図、(b)はノズル取付構造を示す側面図である。FIG. 5A is a plan view showing a nozzle mounting structure, and FIG. 5B is a side view showing the nozzle mounting structure in the horizontal arrangement of the aeration nozzle shown in FIG. 4.

符号の説明Explanation of symbols

1 水路(SOTS)
1a 底面
2 微細気泡
10A エアレーション装置
11 空気供給管
12 ヘッダ
13A エアレーションノズル(ディフューザノズル)
14 切り込み
1 Waterway (SOTS)
DESCRIPTION OF SYMBOLS 1a Bottom face 2 Fine bubble 10A Aeration apparatus 11 Air supply pipe 12 Header 13A Aeration nozzle (diffuser nozzle)
14 notches

Claims (1)

海水を吸収剤として使用する排煙脱硫装置の脱硫塔から排出された使用済海水を流して排水する水路に設置され、前記使用済海水中に微細気泡を発生させて脱炭酸を行うエアレーション装置であって、
空気供給配管に連通するヘッダを前記水路の底面に設置し、前記ヘッダに取り付けられて鉛直方向上向きに延びる鉛直配置のエアレーションノズルから前記微細気泡を発生させることを特徴とするエアレーション装置。
An aeration apparatus that is installed in a water channel that drains the used seawater discharged from the desulfurization tower of the flue gas desulfurization apparatus that uses seawater as an absorbent, and generates fine bubbles in the used seawater to perform decarboxylation. There,
An aeration apparatus, wherein a header communicating with an air supply pipe is installed on a bottom surface of the water channel, and the fine bubbles are generated from a vertically arranged aeration nozzle attached to the header and extending vertically upward.
JP2007191840A 2007-07-24 2007-07-24 Aeration equipment Expired - Fee Related JP5330658B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007191840A JP5330658B2 (en) 2007-07-24 2007-07-24 Aeration equipment
TW097123546A TW200916176A (en) 2007-07-24 2008-06-24 Aeration apparatus
MYPI20094299A MY155294A (en) 2007-07-24 2008-07-08 Aeration apparatus
PCT/JP2008/062359 WO2009014003A1 (en) 2007-07-24 2008-07-08 Aeration apparatus
SA08290456A SA08290456B1 (en) 2007-07-24 2008-07-21 Aeration Apparatus with Aeration Nozzles Attached to the Header so as to Extend Upward in the Vertical Direction
EG2009111615A EG25582A (en) 2007-07-24 2009-11-02 Aeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191840A JP5330658B2 (en) 2007-07-24 2007-07-24 Aeration equipment

Publications (2)

Publication Number Publication Date
JP2009028570A true JP2009028570A (en) 2009-02-12
JP5330658B2 JP5330658B2 (en) 2013-10-30

Family

ID=40281261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191840A Expired - Fee Related JP5330658B2 (en) 2007-07-24 2007-07-24 Aeration equipment

Country Status (6)

Country Link
JP (1) JP5330658B2 (en)
EG (1) EG25582A (en)
MY (1) MY155294A (en)
SA (1) SA08290456B1 (en)
TW (1) TW200916176A (en)
WO (1) WO2009014003A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234334A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater
JP2012086161A (en) * 2010-10-20 2012-05-10 Nalco Japan Kk Bubbling device and method of treating blast furnace or converter dust collecting water using the same
CN102985372A (en) * 2010-08-18 2013-03-20 三菱重工业株式会社 Aerator, seawater flue-gas desulfurization system equipped with same, and method for operating the aerator
WO2016186038A1 (en) * 2015-05-15 2016-11-24 三菱日立パワーシステムズ株式会社 Water quality-improving apparatus for seawater desulfurization waste water and seawater flue gas desulfurization system
JP2017502835A (en) * 2013-11-01 2017-01-26 バターズ,ブライアン,イー Fluid processing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203379815U (en) * 2010-06-01 2014-01-08 三菱丽阳株式会社 Solid-liquid separating device
CN104003510A (en) * 2014-04-14 2014-08-27 居国文 Microporous aeration system
CN103979675A (en) * 2014-04-14 2014-08-13 居国文 Aeration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144425A (en) * 2003-11-14 2005-06-09 Anemosu:Kk Diffuser
JP2006055779A (en) * 2004-08-20 2006-03-02 Mitsubishi Heavy Ind Ltd Seawater treatment method and seawater treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388017B2 (en) * 1994-04-28 2003-03-17 株式会社東芝 Water quality improvement device
JP2003211180A (en) * 2002-01-18 2003-07-29 Takashi Kinoshita Underwater fine air bubble generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144425A (en) * 2003-11-14 2005-06-09 Anemosu:Kk Diffuser
JP2006055779A (en) * 2004-08-20 2006-03-02 Mitsubishi Heavy Ind Ltd Seawater treatment method and seawater treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234334A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater
CN102985372A (en) * 2010-08-18 2013-03-20 三菱重工业株式会社 Aerator, seawater flue-gas desulfurization system equipped with same, and method for operating the aerator
JP2012086161A (en) * 2010-10-20 2012-05-10 Nalco Japan Kk Bubbling device and method of treating blast furnace or converter dust collecting water using the same
JP2017502835A (en) * 2013-11-01 2017-01-26 バターズ,ブライアン,イー Fluid processing system
WO2016186038A1 (en) * 2015-05-15 2016-11-24 三菱日立パワーシステムズ株式会社 Water quality-improving apparatus for seawater desulfurization waste water and seawater flue gas desulfurization system

Also Published As

Publication number Publication date
JP5330658B2 (en) 2013-10-30
TW200916176A (en) 2009-04-16
TWI379703B (en) 2012-12-21
EG25582A (en) 2012-03-11
MY155294A (en) 2015-09-30
WO2009014003A1 (en) 2009-01-29
SA08290456B1 (en) 2014-01-13

Similar Documents

Publication Publication Date Title
JP5072470B2 (en) Aeration equipment
JP5330658B2 (en) Aeration equipment
JP5199585B2 (en) Flue gas desulfurization equipment
JP5725725B2 (en) Wet flue gas desulfurization equipment
JP2007125474A (en) Exhaust gas desulfurization method and exhaust gas desulfurization apparatus using seawater
JP2009028571A (en) Flue gas desulfurizer
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
JP5721303B2 (en) Flue gas desulfurization equipment
TWI436952B (en) Aeration apparatus and seawater flue gas desulphurization apparatus including the same and a method for removing and preventing precipitates in a slit of the aeration apparatus
JP5535861B2 (en) Aeration apparatus and seawater flue gas desulfurization apparatus equipped with the aeration apparatus
JP2014233702A (en) Seawater desulfurization device and seawater desulfurization system
JP5535823B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
JP5254597B2 (en) Flue gas desulfurization equipment
JP5535817B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and humidification method of aeration apparatus
JP7043276B2 (en) Scrub pipe and desulfurization equipment
JP5535824B2 (en) Aeration apparatus and seawater flue gas desulfurization apparatus equipped with the aeration apparatus
JP5582917B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
JP2012236164A (en) Aeration apparatus, seawater flue gas desulfurization apparatus including the same, and operation method of aeration apparatus
JP2013022512A (en) Aeration device and seawater flue gas desulfurization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R151 Written notification of patent or utility model registration

Ref document number: 5330658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees