JP2009024269A - Fiber cushioning material - Google Patents

Fiber cushioning material Download PDF

Info

Publication number
JP2009024269A
JP2009024269A JP2007186682A JP2007186682A JP2009024269A JP 2009024269 A JP2009024269 A JP 2009024269A JP 2007186682 A JP2007186682 A JP 2007186682A JP 2007186682 A JP2007186682 A JP 2007186682A JP 2009024269 A JP2009024269 A JP 2009024269A
Authority
JP
Japan
Prior art keywords
fiber
biodegradable
thermoplastic resin
sheath
melting temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007186682A
Other languages
Japanese (ja)
Inventor
Kosuke Sekiguchi
広介 関口
Teruhiko Kasahara
輝彦 笠原
Shigenobu Nishimura
成伸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007186682A priority Critical patent/JP2009024269A/en
Publication of JP2009024269A publication Critical patent/JP2009024269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cushioning material having excellent biodegradability, light weight and excellent rigidity. <P>SOLUTION: The fiber cushioning material includes: a fiber structure including a biodegradable fiber A of a core-sheath type conjugate fiber, and having the sheath part and the core part both of which are composed of biodegradable thermoplastic resins regulated so that the melting temperature of the biodegradable thermoplastic resin constituting the core part may be higher than that of the biodegradable thermoplastic resin constituting the sheath part, and a biodegradable fiber B constituted of a biodegradable thermoplastic resin having a melting temperature at least 20°C higher than that of the biodegradable thermoplastic resin constituting the sheath part of the biodegradable fiber A, as main constituent fibers. The fiber cushioning material satisfies the following requirements: (1) at least a part of intersection points of the biodegradable fiber A and a constituent fiber contacting therewith is fused; and (2) the constituent fiber is oriented in the thickness direction of the fiber structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、優れた生分解性を有し、且つ軽量で剛性に優れた繊維クッション材に関するものである。   The present invention relates to a fiber cushion material having excellent biodegradability, light weight and excellent rigidity.

ポリエステル繊維は、その優れた寸法安定性、耐候性、機械的特性および耐久性等の点から、衣料や産業資材などの用途において不可欠なものとなっており、不織布の分野においても広く使用されている。ルーフィング基材、自動車天井材および緩衝材等に用いられる繊維クッション材として使用される不織布などの繊維構造体においては、繊維構造体を構成する繊維、いわゆる構成繊維のうち、実質的に熱接着性を有していない繊維、すなわち非熱接着性繊維(以下、母材繊維という)相互間を接着する目的で、熱接着性繊維が広く使用されている。   Polyester fibers have become indispensable in applications such as clothing and industrial materials because of their excellent dimensional stability, weather resistance, mechanical properties, and durability, and are widely used in the field of nonwoven fabrics. Yes. In fiber structures such as nonwoven fabrics used as fiber cushion materials used for roofing base materials, automobile ceiling materials, cushioning materials, etc., among the fibers constituting the fiber structure, so-called constituent fibers, substantially thermal adhesiveness Thermal bonding fibers are widely used for the purpose of bonding non-thermal fibers, that is, non-thermal bonding fibers (hereinafter referred to as matrix fibers).

繊維クッション材の母材繊維としては、比較的安価で優れたポリエステル繊維が多く使用されており、母材繊維を接着する熱接着性繊維もポリエステル系素材を用いたものが多く使用されている。例えば、芯成分がポリエチレンテレフタレート(以下、PETという)であり、鞘成分がイソフタル酸(以下、IPAという)成分を共重合した低融解温度の共重合PETとする芯鞘型のポリエステル系の熱接着性繊維では、熱接着性繊維を接着する温度に合わせて、低融解温度の共重合PETにおけるIPA成分の共重合率を設計する。   As a base material fiber of the fiber cushion material, a relatively inexpensive and excellent polyester fiber is often used, and a heat-adhesive fiber that bonds the base material fiber is also often used that uses a polyester material. For example, a core-sheath type polyester-based thermal bonding in which the core component is polyethylene terephthalate (hereinafter referred to as PET) and the sheath component is a low melting temperature copolymerized PET copolymerized with an isophthalic acid (hereinafter referred to as IPA) component. For the adhesive fiber, the copolymerization rate of the IPA component in the low melting PET copolymerized PET is designed in accordance with the temperature at which the thermally adhesive fiber is bonded.

一般にPETに対してIPAの共重合率が高くなると、共重合PETの示差走査熱量計(以下、DSCという)で測定される融解温度は低下する。融解温度とはこの場合、DSCで測定される吸熱ピークに該当する温度をいい、例えば、共重合成分を含有しないPET(以下、ホモPETという)の融解温度をDSCで測定すると250〜260℃の範囲に吸熱ピークが確認されるが、IPAを20モル%共重合したPETでは吸熱ピークは210℃まで低下するとともに、吸熱ピークが観測される範囲が広くなる傾向にある。更に、IPAを40モル%共重合したPETでは、融解温度は110℃程度まで低下するが、融解する温度領域が広くなりすぎるとともに、融解温度の際の吸熱量が低下し、融解ピークが観測できなくなる。この場合、DSCでは融解温度の測定が不可能となるので、融解温度は融点顕微鏡などで測定される。   Generally, when the copolymerization ratio of IPA is higher than that of PET, the melting temperature measured by a differential scanning calorimeter (hereinafter referred to as DSC) of the copolymerized PET decreases. In this case, the melting temperature refers to a temperature corresponding to an endothermic peak measured by DSC. For example, when the melting temperature of PET not containing a copolymerization component (hereinafter referred to as homo-PET) is measured by DSC, it is 250 to 260 ° C. An endothermic peak is confirmed in the range, but in PET in which 20 mol% of IPA is copolymerized, the endothermic peak decreases to 210 ° C. and the range in which the endothermic peak is observed tends to be widened. Furthermore, in PET in which 40 mol% of IPA is copolymerized, the melting temperature decreases to about 110 ° C., but the melting temperature range becomes too wide, the endothermic amount at the melting temperature decreases, and a melting peak can be observed. Disappear. In this case, since the melting temperature cannot be measured by DSC, the melting temperature is measured with a melting point microscope or the like.

一方、例えばポリエステル繊維を母材繊維としたクッション材を熱接着性繊維とともに熱処理する場合、母材繊維の耐熱性を考慮して、通常は220℃以下の温度で熱処理される。このような熱接着温度に対応すべく、IPAを40モル%共重合したPETを熱接着成分とすることで融解温度を110℃程度にまで低下させて使用する方法がとられている(特許文献1,特許文献2)。   On the other hand, for example, when heat-treating a cushion material using polyester fiber as a base material fiber together with the heat-adhesive fiber, the heat treatment is usually performed at a temperature of 220 ° C. or less in consideration of the heat resistance of the base material fiber. In order to cope with such a thermal bonding temperature, a method has been adopted in which the melting temperature is reduced to about 110 ° C. by using PET obtained by copolymerization of 40 mol% of IPA as a thermal bonding component (Patent Document). 1, Patent Document 2).

近年環境保護の立場から各種の繊維製品の再利用が求められており、その一つとしてリサイクル可能な樹脂を回収し、分別後再利用する方法が注目を浴びている。しかし、現実的には回収が困難の上、樹脂を分離するには高度な技術と高価な設備を必要とする。さらに、現在の技術では再利用回数にも限度があり、高々2〜3回のリサイクルの後にはやはり焼却あるいは埋め立てにより処分せざるを得ず、上記共重合ポリエステルでは使用後の廃棄方法に課題が残る。   In recent years, various fiber products are required to be reused from the standpoint of environmental protection, and as one of them, a method of collecting a recyclable resin and reusing it after sorting is attracting attention. However, in reality, it is difficult to recover, and advanced technology and expensive equipment are required to separate the resin. Furthermore, the current technology has a limit on the number of times it can be reused, and after 2 to 3 recycles, it must be disposed of by incineration or landfill. Remains.

一方、最近では土中、水中に存在する微生物の作用により自然環境下で樹脂を分離させる種々の生分解性ポリマーが開発されている。そのなかでも、融解温度が高いことやハンドリングのしやすさからポリ乳酸が注目を集めており、それを用いた種々の検討がなされている。   On the other hand, recently, various biodegradable polymers have been developed that separate resins in a natural environment by the action of microorganisms existing in soil and water. Among them, polylactic acid is attracting attention because of its high melting temperature and ease of handling, and various studies using it have been made.

例えば、特許文献3にはポリ乳酸繊維からなる熱接着繊維を用いた不織布が提案されている。しかし、特許文献3に開示された技術を用いた繊維クッション材では、平板状のクッション材を天井などに組み付ける際に、人手で持ち上げた場合に折れ曲がり易いなどのハンドリング性に劣り、必要なハンドリング性を得るためには不織布を構成する繊維の量を増やし構造体の密度をあげること、すなわち目付を高くせざるを得ず、軽量化を十分に図れないという問題があった。
特開平2−139466号公報 特開平6−280147号公報 特開平11−279920号公報
For example, Patent Document 3 proposes a non-woven fabric using heat-bonded fibers made of polylactic acid fibers. However, in the fiber cushion material using the technique disclosed in Patent Document 3, when assembling the flat cushion material on the ceiling or the like, it is inferior in handling properties such as being easily bent when manually lifted, and necessary handling properties In order to obtain the above, there is a problem that the amount of fibers constituting the nonwoven fabric is increased to increase the density of the structure, that is, the basis weight must be increased, and the weight cannot be sufficiently reduced.
Japanese Patent Laid-Open No. 2-139466 JP-A-6-280147 JP-A-11-279920

本発明の目的は、上述した問題点を解決し、従来技術では達成できなかった、優れた生分解性を有し、軽量且つ剛性に優れたクッション材を提供することにある。   An object of the present invention is to solve the above-described problems, and to provide a cushioning material having excellent biodegradability, light weight and rigidity, which cannot be achieved by the prior art.

本発明者らは、上記の課題を解決するために鋭意検討した結果、本発明に達した。前記目的を達成するため、本発明は次の構成を有する。すなわち、芯鞘型の複合繊維であり、鞘部と芯部がともに生分解性熱可塑性樹脂で構成され、芯部を構成する生分解性熱可塑性樹脂が鞘部を構成する生分解性熱可塑性樹脂よりも融解温度が高い生分解性繊維Aと、生分解性繊維Aの鞘部を構成する生分解性熱可塑性樹脂よりも少なくとも20℃高い融解温度を有する生分解性熱可塑性樹脂で構成される生分解性繊維Bとを主たる構成繊維とする繊維構造体を含み、かつ下記要件を満足することを特徴とする繊維クッション材である。
(1)生分解性繊維Aとそれに接触する構成繊維との交点の少なくとも一部が融着されている
(2)構成繊維が繊維構造体の厚さ方向へ配向されている
The inventors of the present invention have reached the present invention as a result of intensive studies to solve the above problems. In order to achieve the above object, the present invention has the following configuration. That is, it is a core-sheath type composite fiber, the sheath part and the core part are both composed of a biodegradable thermoplastic resin, and the biodegradable thermoplastic resin constituting the core part constitutes the sheath part. A biodegradable fiber A having a melting temperature higher than that of the resin, and a biodegradable thermoplastic resin having a melting temperature at least 20 ° C. higher than that of the biodegradable thermoplastic resin constituting the sheath of the biodegradable fiber A The fiber cushion material is characterized in that it includes a fiber structure mainly composed of biodegradable fiber B and satisfies the following requirements.
(1) At least a part of the intersection between the biodegradable fiber A and the constituent fiber in contact with the biodegradable fiber A is fused. (2) The constituent fiber is oriented in the thickness direction of the fiber structure.

本発明によれば、極めて優れた生分解性を発現するとともに、軽量且つ剛性に優れた繊維クッション材を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while exhibiting the outstanding biodegradability, the fiber cushion material excellent in lightweight and rigidity can be provided.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明では、生分解性熱可塑性樹脂を用いる。生分解性熱可塑性樹脂としては、ポリ乳酸、ポリブチレンサクシネートなどが例示できるが、製糸性の点で、ポリ乳酸が最適である。   In the present invention, a biodegradable thermoplastic resin is used. Examples of the biodegradable thermoplastic resin include polylactic acid, polybutylene succinate and the like, but polylactic acid is most suitable in terms of yarn-making property.

本発明でいうポリ乳酸とは、乳酸やラクチド等の乳酸のオリゴマーを重合したものをいい、L体あるいはD体の光学純度が90%以上であると好ましい。また、ポリ乳酸の性質を損なわない範囲で、乳酸以外の成分を共重合してよい。共重合する成分としては、ポリエチレングリコールなどのポリエーテル、ポリブチレンサクシネートやポリグリコール酸などの脂肪族ポリエステル、ポリエチレンイソフタレートなどの芳香族ポリエステル、およびヒドロキシカルボン酸、ラクトン、ジカルボン酸、ジオールなどのエステル結合形成性の単量体が挙げられる。   The polylactic acid referred to in the present invention refers to a polymer obtained by polymerizing lactic acid oligomers such as lactic acid and lactide, and the optical purity of L-form or D-form is preferably 90% or more. Moreover, you may copolymerize components other than lactic acid in the range which does not impair the property of polylactic acid. The components to be copolymerized include polyethers such as polyethylene glycol, aliphatic polyesters such as polybutylene succinate and polyglycolic acid, aromatic polyesters such as polyethylene isophthalate, and hydroxycarboxylic acids, lactones, dicarboxylic acids and diols. Examples thereof include an ester bond-forming monomer.

ポリ乳酸は、たとえば特開平6−65360号公報、特開平7−173266号公報、米国特許第2,703,316号明細書などに開示されている方法で製造することができる。特開平6−65360号公報では、乳酸を有機溶剤および触媒の存在下、そのまま脱水重合する直接脱水縮合法で製造される。また、特開平7−173266号公報では、少なくとも2種類のホモポリマーを重合触媒存在下、共重合ならびエステル交換反応させる方法で製造される。さらには、米国特許第2,703,316号明細書では、乳酸をいったん脱水し、環状二量体とした後に、開環重合する間接重合法で製造される。   Polylactic acid can be produced, for example, by the methods disclosed in JP-A-6-65360, JP-A-7-173266, US Pat. No. 2,703,316 and the like. In JP-A-6-65360, it is produced by a direct dehydration condensation method in which lactic acid is subjected to dehydration polymerization in the presence of an organic solvent and a catalyst. Further, in JP-A-7-173266, it is produced by a method in which at least two homopolymers are copolymerized and transesterified in the presence of a polymerization catalyst. Furthermore, in US Pat. No. 2,703,316, lactic acid is once dehydrated to form a cyclic dimer and then produced by an indirect polymerization method in which ring-opening polymerization is performed.

本発明に用いられる生分解性繊維Aは、芯鞘型の複合繊維であり、鞘部と芯部がともに生分解性熱可塑性樹脂で構成され、芯部を構成する生分解性熱可塑性樹脂が鞘部を構成する生分解性熱可塑性樹脂よりも融解温度が高い。鞘部には融解温度が130℃〜180℃である生分解性熱可塑性樹脂を用いることが好ましく、芯部を構成する生分解性熱可塑性樹脂は、鞘部を構成する生分解性熱可塑性樹脂よりも、20〜50℃融解温度が高いことが好ましい。鞘部を構成する生分解性熱可塑性樹脂の融解温度が130℃より低い場合には、製糸時、特に紡糸時に単繊維間の融着が著しく、更に延伸不良など発生するなど製品の品位が損なわれるおそれがあり、180℃より高い場合には、不織布の熱加工の際により高い温度が必要となり経済的に好ましくない。また更に芯部及び鞘部を構成する生分解性熱可塑性樹脂の温度差が20℃より低い場合は、不織布の熱加工の際に芯部が溶融してしまい不織布の厚みを十分に確保できなくなり、50℃より高い場合は製糸性困難となる場合がある。   The biodegradable fiber A used in the present invention is a core-sheath type composite fiber, the sheath part and the core part are both composed of a biodegradable thermoplastic resin, and the biodegradable thermoplastic resin constituting the core part is The melting temperature is higher than that of the biodegradable thermoplastic resin constituting the sheath. A biodegradable thermoplastic resin having a melting temperature of 130 ° C. to 180 ° C. is preferably used for the sheath, and the biodegradable thermoplastic resin constituting the core is a biodegradable thermoplastic resin constituting the sheath More preferably, the melting temperature is 20 to 50 ° C. higher. When the melting temperature of the biodegradable thermoplastic resin constituting the sheath is lower than 130 ° C., the quality of the product is impaired such as remarkable fusion between single fibers during spinning, particularly spinning, and further drawing failure. If the temperature is higher than 180 ° C., a higher temperature is required during thermal processing of the nonwoven fabric, which is not economically preferable. Furthermore, when the temperature difference between the biodegradable thermoplastic resin constituting the core and the sheath is lower than 20 ° C., the core melts during the thermal processing of the nonwoven and it is impossible to ensure a sufficient thickness of the nonwoven. When the temperature is higher than 50 ° C., it may be difficult to produce the yarn.

芯鞘型複合繊維の複合比率は、製糸性の面から、20/80〜80/20が好ましく、接着性および高次加工性の面から、40/60〜60/40がより好ましい。   The composite ratio of the core-sheath-type conjugate fiber is preferably 20/80 to 80/20 from the viewpoint of yarn production, and more preferably 40/60 to 60/40 from the viewpoint of adhesiveness and high-order processability.

本発明に用いられる生分解性繊維Bは、通常、単一構造形態であり、生分解性熱可塑性樹脂で構成されている。生分解性繊維Bを構成する生分解性熱可塑性樹脂は、生分解性繊維Aの鞘部を構成する生分解性熱可塑性樹脂よりも、少なくとも20℃高い融解温度を有することが必要である。かかる融解温度差が20℃未満であると、熱接着加工時に母材繊維である生分解性繊維Bが軟化して所望の形態に成型することが困難となる。また、本発明では、廃棄時の分別の観点から、生分解性繊維Aの鞘部と芯部を構成する生分解性熱可塑性樹脂及び生分解性繊維Bを構成する生分解性熱可塑性樹脂がいずれもポリ乳酸であることが好ましい。   The biodegradable fiber B used in the present invention is usually in a single structure form and is composed of a biodegradable thermoplastic resin. The biodegradable thermoplastic resin constituting the biodegradable fiber B needs to have a melting temperature that is at least 20 ° C. higher than that of the biodegradable thermoplastic resin constituting the sheath of the biodegradable fiber A. If the melting temperature difference is less than 20 ° C., the biodegradable fiber B, which is the base material fiber, is softened during the heat bonding process, and it becomes difficult to form the desired shape. In the present invention, from the viewpoint of separation at the time of disposal, the biodegradable thermoplastic resin constituting the sheath part and the core part of the biodegradable fiber A and the biodegradable thermoplastic resin constituting the biodegradable fiber B are provided. Any of them is preferably polylactic acid.

本発明で用いる生分解性繊維はいずれも、繊維長を3mm以上100mm以下の範囲とすることが好ましい。繊維長が3mm未満では、母材繊維との間を架橋する割合が少なくなり、構造体としての剛性に劣るものとなる。また、繊維長が100mmを越えると、カード通過性等が悪化し、製品加工での不具合が生じたりする。製品加工時のカード通過性と不織布の地合を良くするという点から、繊維長は、20〜70mmの範囲であることがより好ましい。   The biodegradable fiber used in the present invention preferably has a fiber length in the range of 3 mm to 100 mm. If the fiber length is less than 3 mm, the ratio of cross-linking with the base fiber decreases, and the rigidity of the structure is inferior. On the other hand, if the fiber length exceeds 100 mm, the card passing property and the like deteriorate, and defects in product processing may occur. It is more preferable that the fiber length is in the range of 20 to 70 mm from the viewpoint of improving the card passing property at the time of product processing and the formation of the nonwoven fabric.

本発明では、生分解性繊維を用いて繊維クッション材となしたときの、接点数による強度特性へ与える影響を鑑み、生分解性繊維Aの単繊維繊度は50dtex以下が好ましく、ベースとなる繊維Bとの混綿性や高次加工性を考慮すると、より好ましくは10dtex以下である。また、生分解性繊維Aの単繊維繊度が0.5dtex未満になると、溶融後の接点自体が小さくなるため、目標とする剛性が劣るものとなり好ましくなく、接点の十分な剛性を得るという面から、2dtex以上であることが好ましい。   In the present invention, the single fiber fineness of the biodegradable fiber A is preferably 50 dtex or less in view of the influence of the number of contacts on the strength characteristics when the fiber cushion material is made using the biodegradable fiber, and the base fiber In consideration of blendability with B and high-order workability, it is more preferably 10 dtex or less. Further, if the single fiber fineness of the biodegradable fiber A is less than 0.5 dtex, the contact itself after melting becomes small, so that the target rigidity is inferior, which is not preferable, and from the aspect of obtaining sufficient rigidity of the contact It is preferably 2 dtex or more.

また、繊維クッション材の剛性へ与える影響を鑑み、生分解性繊維Bの単繊維繊度は10dtex〜50dtexが好ましく、生分解性繊維Aとの混綿性や高次加工性を考慮すると10dtex〜20dtexがより好ましい。   In view of the influence on the rigidity of the fiber cushion material, the single fiber fineness of the biodegradable fiber B is preferably 10 dtex to 50 dtex, and 10 dtex to 20 dtex is preferable in consideration of the blendability with the biodegradable fiber A and high-order processability. More preferred.

本発明の繊維クッション材を構成する繊維構造体は、生分解性繊維Aとそれに接触する構成繊維との交点の少なくとも一部が融着されており、構成繊維が繊維構造体の厚さ方向へ配向されている。生分解性繊維Aとそれに接触する構成繊維との交点の少なくとも一部が融着することにより、クッション性の有る繊維クッション材となる。なお、通常、生分解性繊維Aは、他の生分解性繊維Aとも融着しているし、生分解性繊維Bとも融着している。   In the fiber structure constituting the fiber cushion material of the present invention, at least a part of the intersection of the biodegradable fiber A and the component fiber contacting with the biodegradable fiber A is fused, and the component fiber is in the thickness direction of the fiber structure. Oriented. A fiber cushion material having cushioning properties can be obtained by fusing at least a part of the intersection between the biodegradable fiber A and the constituent fiber in contact therewith. Normally, the biodegradable fiber A is fused with the other biodegradable fiber A, and is also fused with the biodegradable fiber B.

繊維クッション材が曲がる(撓む)ということは、それを構成する繊維構造体の一方の面が伸び、他方の面が縮むことになる。本発明の繊維クッション材は、それを構成する繊維構造体の構成繊維が厚さ方向に配向していることにより、縮む面側からの圧力に対抗することができるので剛性に優れる。剛性が優れるために、目付を低くすることができ、繊維クッション材としての軽量化を図ることができる。   When the fiber cushion material bends (bends), one surface of the fiber structure constituting the fiber cushion material extends and the other surface contracts. The fiber cushion material of the present invention is excellent in rigidity because the constituent fibers of the fiber structure constituting the fiber cushion material can be opposed to the pressure from the shrinking surface side by being oriented in the thickness direction. Since the rigidity is excellent, the basis weight can be lowered, and the weight of the fiber cushion material can be reduced.

本発明の繊維クッション材を構成する繊維構造体の構成繊維である生分解性繊維Aと生分解繊維Bとの重量比率は、用途によって選択すればよいが、通常、繊維構造体総量に対して、生分解性繊維Aが30〜70重量%、生分解繊維Bが70〜30重量%である。   The weight ratio between the biodegradable fiber A and the biodegradable fiber B, which are constituent fibers of the fiber structure constituting the fiber cushion material of the present invention, may be selected depending on the application, but is usually based on the total amount of the fiber structure. The biodegradable fiber A is 30 to 70% by weight, and the biodegradable fiber B is 70 to 30% by weight.

このような繊維構造体は、生分解性繊維Aと生分解繊維Bとを混綿し、カード機にかけ、不織ウェッブとした後、プリーツ加工機、ストルート機、或いはエアレイ機によりジグザク状にした後に、上記繊維Aの鞘成分の融解温度以上の温度にて熱処理を施し、溶融し圧着させることにより得ることができる。このような繊維構造体を繊維クッション材として用いることにより、かかる繊維クッション材は、極めて優れた生分解性を発現するとともに、目付を小さくしても、折れ曲がりにくい、すなわち剛性を高く保つことができる。   Such a fiber structure is obtained by blending the biodegradable fiber A and the biodegradable fiber B, applying to a card machine, forming a non-woven web, and then zigzag using a pleating machine, a strut machine, or an air lay machine. It can be obtained by applying a heat treatment at a temperature equal to or higher than the melting temperature of the sheath component of the fiber A, and melting and pressure bonding. By using such a fiber structure as a fiber cushion material, such a fiber cushion material exhibits extremely excellent biodegradability, and even if the basis weight is small, it is difficult to bend, that is, it can maintain high rigidity. .

以下、実施例によって本発明をより具体的に説明する。なお、本発明で用いる各種特性は次のようにして測定することができる。   Hereinafter, the present invention will be described more specifically with reference to examples. Various characteristics used in the present invention can be measured as follows.

(1)熱可塑性樹脂の融解温度
熱可塑性樹脂の融解温度は、示差走査型熱量計(DSC)で窒素気流下、10℃/分の昇温速度で測定する。なお、本実施例では、DSCとしてDiamond社製pyrisを用いた。
(1) Melting temperature of thermoplastic resin The melting temperature of a thermoplastic resin is measured with a differential scanning calorimeter (DSC) under a nitrogen stream at a heating rate of 10 ° C./min. In the present example, a pyris manufactured by Diamond was used as the DSC.

(2)単繊維繊度
単繊維繊度は、JIS L−1015(1999)−8−5−1に示される方法により測定する。
(2) Single fiber fineness The single fiber fineness is measured by the method shown in JIS L-1015 (1999) -8-5-1.

(3)繊維クッション材の剛性
測定しようとする繊維クッション材から150mm×50mmの形状に切り出して得られたサンプルを、100mmの間隔をおいて配置した2つの支持台に配置し、次いで、支持台間の中央部(支持台から50mmの部分)を加圧くさびにより、加圧速度20mm/分で下方向へ加圧した。この加圧状況を、引張試験機により感知し、荷重が最大となる点の荷重(以下、最大点荷重)を計測する。この最大点荷重が10N/50mm以上であれば、剛性に優れていると評価できる。
(3) Rigidity of fiber cushion material A sample obtained by cutting a fiber cushion material to be measured into a shape of 150 mm x 50 mm was placed on two support bases arranged at an interval of 100 mm, and then the support base A central portion (a portion 50 mm from the support base) was pressed downward at a pressing speed of 20 mm / min with a pressing wedge. This pressurization state is sensed by a tensile testing machine, and the load at the point where the load becomes maximum (hereinafter, maximum point load) is measured. If this maximum point load is 10 N / 50 mm or more, it can be evaluated that it is excellent in rigidity.

(実施例1)
融解温度が130℃であるポリ乳酸(ネイチャーワークス社;グレード6300D)を鞘成分とし、融解温度が170℃のポリ乳酸(ネイチャーワークス社;グレード6201D)を芯成分として、紡糸温度240℃で紡糸口金から吐出させ、引取速度1200m/分にて、複合溶融紡糸し、芯鞘の複合比率が50:50の芯鞘型複合未延伸糸を得た。次いで、得られた芯鞘複合未延伸糸を、80℃の温度の温水中で3倍に延伸して4.4dtexの延伸糸とし、けん縮付与後、油剤をスプレー方式により付与し、次いで、繊維長51mmに切断し短繊維形状の生分解性繊維Aを得た。
Example 1
Polylactic acid having a melting temperature of 130 ° C. (Nature Works; grade 6300D) as a sheath component and polylactic acid having a melting temperature of 170 ° C. (Nature Works; grade 6201D) as a core component at a spinning temperature of 240 ° C. And then melt melt spun at a take-up speed of 1200 m / min to obtain a core-sheath type composite undrawn yarn having a core-sheath composite ratio of 50:50. Next, the obtained core-sheath composite unstretched yarn was stretched 3 times in warm water at a temperature of 80 ° C. to give a 4.4 dtex stretched yarn. After crimping, an oil was applied by a spray method, The fiber length was cut to 51 mm to obtain a short fiber-shaped biodegradable fiber A.

また、融解温度が170℃のポリ乳酸(ネイチャーワークス社;グレード6201D)を、紡糸温度240℃で紡糸口金から吐出させ、引取速度1000m/分にて、溶融紡糸し、単一構造形態の未延伸糸を得た。次いで、得られた未延伸糸を、80℃の温度の温水中で3倍に延伸して14.4dtexの延伸糸とし、けん縮付与後、油剤をスプレー方式により付与し、次いで、繊維長51mmに切断し短繊維形状の生分解性繊維Bを得た。   Also, polylactic acid (Nature Works, Grade 6201D) having a melting temperature of 170 ° C. is discharged from the spinneret at a spinning temperature of 240 ° C., melt-spun at a take-up speed of 1000 m / min, and unstretched in a single structure form. I got a thread. Next, the obtained undrawn yarn was drawn 3 times in warm water at a temperature of 80 ° C. to obtain a 14.4 dtex drawn yarn. After crimping, an oil was applied by a spray method, and then a fiber length of 51 mm. The biodegradable fiber B having a short fiber shape was obtained.

得られた生分解性繊維A70重量%と、別に開繊機で開繊して得られた生分解性繊維B30重量%を混綿し、カード機で厚みが5mmで目付が30g/mの不織ウェッブを得た。この不織ウェッブをプリーツ加工機により、山高さ20mmでジグザグ状にして、表面温度が180℃となった鉄板間に挟み、厚み10mmまで圧縮して熱風乾燥機内で150℃の温度で20分間熱処理し繊維クッション材(目付:600g/m)を得た。生分解性繊維Aとそれに接触する構成繊維との交点の少なくとも一部が融着されており、構成繊維は繊維構造体の厚さ方向へ配向していた。得られた繊維クッション材について目付、厚さ、剛性を評価した結果を表1に示す。 The obtained biodegradable fiber A 70% by weight and the biodegradable fiber B 30% by weight obtained by opening with a separate spreader are mixed, and the card machine has a thickness of 5 mm and a basis weight of 30 g / m 2 . Got a web. This non-woven web is zigzag with a pleating machine at a height of 20 mm, sandwiched between steel plates with a surface temperature of 180 ° C., compressed to a thickness of 10 mm, and heat-treated at a temperature of 150 ° C. for 20 minutes in a hot air dryer. A fiber cushion material (weight per unit area: 600 g / m 2 ) was obtained. At least a part of the intersection between the biodegradable fiber A and the constituent fiber in contact with the biodegradable fiber A was fused, and the constituent fiber was oriented in the thickness direction of the fiber structure. Table 1 shows the results of evaluating the basis weight, thickness, and rigidity of the obtained fiber cushion material.

(比較例1)
実施例1で得られた生分解性繊維A70重量%と、実施例1で得られた生分解性繊維B30重量%を混綿し、カード機で厚みが30mmで目付が600g/mのウェッブとなし、このウェッブを表面温度が150℃となった鉄板間に挟み、厚み10mmまで圧縮して熱風乾燥機内で150℃の温度で20分間熱処理し繊維クッション材を得た。生分解性繊維Aとそれに接触する構成繊維との交点の少なくとも一部が融着されていたが、構成繊維は繊維構造体の面方向に配向していた。得られた繊維クッション材について目付、厚さ、剛性を評価した結果を表1に示す。
(Comparative Example 1)
70% by weight of the biodegradable fiber A obtained in Example 1 and 30% by weight of the biodegradable fiber B obtained in Example 1 were mixed, and a web having a thickness of 30 mm and a basis weight of 600 g / m 2 was obtained using a card machine. None, this web was sandwiched between iron plates having a surface temperature of 150 ° C., compressed to a thickness of 10 mm, and heat treated at a temperature of 150 ° C. for 20 minutes in a hot air dryer to obtain a fiber cushion material. At least a part of the intersection between the biodegradable fiber A and the constituent fiber in contact with the biodegradable fiber A was fused, but the constituent fiber was oriented in the surface direction of the fiber structure. Table 1 shows the results of evaluating the basis weight, thickness, and rigidity of the obtained fiber cushion material.

Figure 2009024269
Figure 2009024269

Claims (2)

芯鞘型の複合繊維であり、鞘部と芯部がともに生分解性熱可塑性樹脂で構成され、芯部を構成する生分解性熱可塑性樹脂が鞘部を構成する生分解性熱可塑性樹脂よりも融解温度が高い生分解性繊維Aと、生分解性繊維Aの鞘部を構成する生分解性熱可塑性樹脂よりも少なくとも20℃高い融解温度を有する生分解性熱可塑性樹脂で構成される生分解性繊維Bとを主たる構成繊維とする繊維構造体を含み、かつ下記要件を満足することを特徴とする繊維クッション材。
(1)生分解性繊維Aとそれに接触する構成繊維との交点の少なくとも一部が融着されている
(2)構成繊維が繊維構造体の厚さ方向へ配向されている
It is a core-sheath type composite fiber, and both the sheath part and the core part are composed of a biodegradable thermoplastic resin, and the biodegradable thermoplastic resin constituting the core part is more than the biodegradable thermoplastic resin constituting the sheath part. A biodegradable fiber A having a high melting temperature and a biodegradable thermoplastic resin having a melting temperature at least 20 ° C. higher than the biodegradable thermoplastic resin constituting the sheath of the biodegradable fiber A A fiber cushion material comprising a fiber structure having a degradable fiber B as a main constituent fiber and satisfying the following requirements.
(1) At least a part of the intersection between the biodegradable fiber A and the constituent fiber in contact with the biodegradable fiber A is fused. (2) The constituent fiber is oriented in the thickness direction of the fiber structure.
生分解性繊維Aの鞘部と芯部を構成する生分解性熱可塑性樹脂及び生分解性繊維Bを構成する生分解性熱可塑性樹脂がいずれもポリ乳酸である、請求項1に記載の繊維クッション材。   The fiber according to claim 1, wherein both the biodegradable thermoplastic resin constituting the sheath part and the core part of the biodegradable fiber A and the biodegradable thermoplastic resin constituting the biodegradable fiber B are polylactic acid. Cushion material.
JP2007186682A 2007-07-18 2007-07-18 Fiber cushioning material Pending JP2009024269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186682A JP2009024269A (en) 2007-07-18 2007-07-18 Fiber cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186682A JP2009024269A (en) 2007-07-18 2007-07-18 Fiber cushioning material

Publications (1)

Publication Number Publication Date
JP2009024269A true JP2009024269A (en) 2009-02-05

Family

ID=40396351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186682A Pending JP2009024269A (en) 2007-07-18 2007-07-18 Fiber cushioning material

Country Status (1)

Country Link
JP (1) JP2009024269A (en)

Similar Documents

Publication Publication Date Title
KR20130141541A (en) Biomass-derived polyester short fibers and wet nonwoven fabric formed from same
JP2006200085A (en) Polylactic acid short fiber, method for producing the same and nonwoven fabric
JP5486331B2 (en) Biodegradable non-woven fabric
JP2007169852A (en) Sheet material and method for producing the same
JP4312066B2 (en) Heat-resistant polylactic acid-based long fiber nonwoven fabric
JP2010209500A (en) Short-cut polyester conjugate fiber
JP2017150098A (en) Continuous fiber nonwoven fabric and method for producing the same
JP2009024269A (en) Fiber cushioning material
JP2007143945A (en) Primary ground fabric for tufted carpet
JP2008069466A (en) Adhesive sheet
JP2011162904A (en) Molding
JPH01229870A (en) High-strength and heat-resistant cloth and production thereof
KR101524690B1 (en) Heat Melted Non-woven Fabric Produced with Low-oriented High-shrinkage Polyester Fibers and Method of Manufacturing Same
JP4488835B2 (en) Polylactic acid nonwoven fabric
JP5394667B2 (en) Primary fabric for tufted carpet
JP2008045241A (en) Heat-adhesive conjugate fiber and fiber assembly
JP2008214771A (en) Method for producing low-shrinkage heat-bonding conjugated fiber
JP2008081904A (en) Primary base cloth for heat resistant polylactic acid-based tufted carpet
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JPH0551853A (en) Copolyester fiber laminate having shape memorizing ability
JP6537431B2 (en) Core-sheath composite binder fiber
JP2000282357A (en) Biodegradable filament nonwoven cloth and its production
KR20120054767A (en) Thermally adhesive biodegradable co-polyester and binder fiber thereof
JP2010216044A (en) Nonwoven fabric for phenol resin foam
JP3605231B2 (en) Heat resistant nonwoven