JP2009024241A - Nickel material and refining method thereof - Google Patents

Nickel material and refining method thereof Download PDF

Info

Publication number
JP2009024241A
JP2009024241A JP2007190791A JP2007190791A JP2009024241A JP 2009024241 A JP2009024241 A JP 2009024241A JP 2007190791 A JP2007190791 A JP 2007190791A JP 2007190791 A JP2007190791 A JP 2007190791A JP 2009024241 A JP2009024241 A JP 2009024241A
Authority
JP
Japan
Prior art keywords
less
content
slag
mass
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007190791A
Other languages
Japanese (ja)
Other versions
JP4840277B2 (en
Inventor
Takeo Hosoi
威男 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007190791A priority Critical patent/JP4840277B2/en
Publication of JP2009024241A publication Critical patent/JP2009024241A/en
Application granted granted Critical
Publication of JP4840277B2 publication Critical patent/JP4840277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel material excellent in hot workability, and a method for stably producing the nickel material. <P>SOLUTION: The nickel material has a chemical composition including, by mass, 0.0050-0.0150% Mg, 0.0001-0.0010% S, 0.020-0.100% Al, at least one element chosen from the group consisting of ≤0.05% Ti, ≤0.30% Mn, ≤0.40% Fe, ≤0.0030% B and ≤0.02% C and the balance being Ni and impurities, wherein the ΔS parameter (S-0.3×Mg) is within the range of -0.0011% to -0.0030%. The chemical composition can be stably obtained by carrying out ladle refining using a slag, in which the slag basicity (T. CaO/Al<SB>2</SB>O<SB>3</SB>) is ≤2.6 and the MgO concentration is equal to or larger than 4.0 mass% but smaller than 12.0 mass%, provided that the components are adjusted so as to achieve an oxygen activity ao, which is represented by formula (1)(not indicated in a figure), of 0.70-1.30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はニッケル材およびその製造方法に関し、具体的には、ニッケルに含有される成分、特に熱間加工性に関するS濃度およびMg濃度ならびにこれらの関係より導出されるパラメータにより規定された、熱間加工性に優れたニッケル材、ならびにこれらの元素濃度およびパラメータを高精度で制御可能なニッケルの精錬方法に関する。   The present invention relates to a nickel material and a method for producing the same, and more specifically, a hot material defined by components derived from nickel, in particular, an S concentration and an Mg concentration related to hot workability, and parameters derived from these relationships. The present invention relates to a nickel material excellent in workability, and a nickel refining method capable of controlling the concentration and parameters of these elements with high accuracy.

ニッケルは極めて優れた耐アルカリ性から、苛性ソーダプラント用配管や電極材として使用されてきた。これらに加えて、携帯電話やノートPCのバッテリーとして用いられるリチウムイオン電池部材としての需要が近年著しく増大している。   Nickel has been used for piping and electrode materials for caustic soda plants because of its extremely excellent alkali resistance. In addition to these, the demand for lithium ion battery members used as batteries for mobile phones and notebook PCs has increased remarkably in recent years.

リチウムイオン電池部材は、はんだ性向上を目的とした表面皮膜厚みの低減および電力効率向上のための電気抵抗率低下が要求される。このような要求を満足させるためにはニッケル中のSi濃度の低減が必要である。しかしながら、脱酸材としても用いられるSiの濃度を低減することは、精錬時の脱S分配の低下によるS濃度の増加をもたらし、熱間加工性を低下させる。このため、熱間加工後のヘゲ疵等の表面欠陥量の増大、またそれによる手入歩留および能率の低下という問題を有していた。   Lithium ion battery members are required to have a reduced surface coating thickness for the purpose of improving solderability and a decrease in electrical resistivity to improve power efficiency. In order to satisfy such a requirement, it is necessary to reduce the Si concentration in nickel. However, reducing the concentration of Si, which is also used as a deoxidizing material, results in an increase in S concentration due to a decrease in de-S distribution during refining, thereby reducing hot workability. For this reason, there has been a problem of an increase in the amount of surface defects such as baldness after hot working, and a resulting decrease in yield and efficiency.

Sは粒間に析出し、金属の熱間加工性を著しく損なうことはよく知られている。特に割れ感受性の高い完全オーステナイト組織であるニッケルではその影響が大きい。このニッケルの熱間加工性を向上する方法としてMgを添加し、延性介在物であるMgSとして固定し無害化する方法が広く知られている。このため、当該合金の精錬においては、金属Mgおよび/またはNiMg合金等の金属Mg源が添加されていた。   It is well known that S precipitates between grains and remarkably impairs the hot workability of the metal. In particular, nickel, which has a complete austenite structure with high cracking sensitivity, has a great influence. As a method for improving the hot workability of nickel, a method of adding Mg and fixing it as MgS which is a ductile inclusion and making it harmless is widely known. For this reason, in refining the alloy, a metal Mg source such as metal Mg and / or NiMg alloy has been added.

しかしながら、上記の金属Mg源は強力な脱酸材であるため、添加時にMgOあるいはAl・MgOスピネルといった介在物性欠陥の起因となる硬質介在物を大量に生成する。板厚が薄くかつ表面品質に厳格なリチウムイオン電池部材では、この介在物によって欠陥発生率が増大するという問題があった。 However, since the metal Mg source is a strong deoxidizing material, a large amount of hard inclusions that cause inclusion physical defects such as MgO or Al 2 O 3 .MgO spinel are generated when added. In the lithium ion battery member having a thin plate thickness and strict surface quality, there is a problem that the defect occurrence rate is increased by the inclusion.

これに加えて、金属Mg源は蒸気圧が高く精錬過程において容易に蒸発するため、金属Mg源を同一量添加しても、ニッケル材中のMg含有量は大きく変動してしまう場合があった。ニッケル材中のMgの含有量が低くなりすぎると無害化効果が不十分となって熱間加工性が低下し、逆に、Mgが過剰となると低融点のNi−NiMg共晶合金が生成するため、バーニングを誘発する。したがって、この金属Mg源を添加する製造方法では、好適な熱間加工性を有するニッケル材を高い歩留で得ることは困難であった。また、この方法を用いる限り、ニッケル材中のMg含有量のばらつきを低下させることは困難であり、熱間加工性を向上させることの妨げとなっていた。 In addition, since the metal Mg source has a high vapor pressure and easily evaporates during the refining process, the Mg content in the nickel material may fluctuate greatly even if the same amount of the metal Mg source is added. . If the content of Mg in the nickel material is too low, the detoxification effect is insufficient and hot workability is reduced. Conversely, if Mg is excessive, a low melting point Ni—Ni 2 Mg eutectic alloy is formed. Induces burning to generate. Therefore, it is difficult to obtain a nickel material having suitable hot workability with a high yield by the manufacturing method in which the metal Mg source is added. Moreover, as long as this method is used, it is difficult to reduce the variation in the Mg content in the nickel material, which hinders the improvement of hot workability.

熱間加工性を向上させるための技術として、特許文献1には、スラグ中のCaOとAlの質量比(T.CaO/Al、以下「スラブ塩基度」ともいう。)を0.2〜2.0に、スラグ中のマグネシア(MgO)濃度を1〜18%に調整することにより、Mg濃度を0.005%〜0.04%に制御し、熱間加工性の優れたAl含有Ni基合金を得る方法が記載されている。しかしながら、当該技術は、Al含有量の高いNi基合金を対象としており、Al含有量が少ない場合に適用できるかは不明である。また、Ni−NiMg共晶合金の発生を最小限に抑えようとしても、上記方法ではニッケル材中のMg含有量の上限を0.04%より低下させることは困難であり、したがって優れた熱間加工性を有するニッケル材を安定的に得ることはできない。 As a technique for improving hot workability, Patent Document 1 discloses a mass ratio of CaO to Al 2 O 3 in slag (T. CaO / Al 2 O 3 , hereinafter also referred to as “slab basicity”). Is adjusted to 0.2 to 2.0, and the magnesia (MgO) concentration in the slag is adjusted to 1 to 18%, so that the Mg concentration is controlled to 0.005% to 0.04%. A method for obtaining an excellent Al-containing Ni-based alloy is described. However, this technique is intended for Ni-based alloys having a high Al content, and it is unclear whether it can be applied when the Al content is low. Further, even if it is attempted to minimize the generation of Ni—Ni 2 Mg eutectic alloy, it is difficult to lower the upper limit of the Mg content in the nickel material from 0.04% by the above method. A nickel material having hot workability cannot be obtained stably.

また、特許文献2には、鋳片欠陥および熱間加工性の優れた電気機器用ニッケル製造技術が開示されている。この技術ではMgを積極的に添加しているため、やはりニッケル材中のMg含有量の制御性は高いとはいえない。   Patent Document 2 discloses a nickel manufacturing technique for electrical equipment that is excellent in slab defects and hot workability. Since Mg is actively added in this technique, it cannot be said that the controllability of the Mg content in the nickel material is high.

これに類似する技術として、特許文献3には、SとMgとOの関係を規定し、熱間加工性を向上する技術が公開されている。当該技術も特許文献2と同様にMgを積極的に添加する技術であるため、同様のMg含有率の制御性の低下および非金属介在物起因の欠陥等の問題を有している。また、Mg添加量を適切に求めるためには溶湯中の溶存酸素濃度を正確に分析しなければならないが、酸素濃度は溶湯中の非金属介在物あるいは溶湯温度の影響を受けるため、酸素濃度の測定値を得ることは困難であり、結果としてMg濃度が過剰あるいは過小になるリスクがあると考えられる。
特開2005−23346号公報 特開平8−143996号公報 特開2002−146459号公報
As a technique similar to this, Patent Document 3 discloses a technique for improving the hot workability by defining the relationship between S, Mg, and O. Since this technique is also a technique in which Mg is positively added as in Patent Document 2, it has similar problems such as a decrease in controllability of Mg content and defects due to non-metallic inclusions. In addition, in order to appropriately determine the amount of Mg added, it is necessary to accurately analyze the dissolved oxygen concentration in the molten metal, but the oxygen concentration is affected by non-metallic inclusions in the molten metal or the molten metal temperature. It is difficult to obtain a measured value, and as a result, there is a risk that the Mg concentration becomes excessive or excessive.
JP 2005-23346 A JP-A-8-143996 JP 2002-146458 A

本発明は、熱間加工性に優れたニッケル材を提供すること、およびそのようなニッケル材を安定的に製造する方法を提供することにある。   The present invention is to provide a nickel material excellent in hot workability and to provide a method for stably producing such a nickel material.

本発明者らは、上記の課題を達成すべく鋭意研究した結果、次のような新たな知見を得た。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have obtained the following new knowledge.

(a)Mg含有量およびS含有量、ならびにこれらの複合パラメータであるΔSに特に留意してニッケル材の化学組成を設定することで、熱間加工性に優れたニッケル材を得ることが可能である。ここで、「ΔS」とは、S−0.3×Mg(S:Sの質量%、Mg:Mgの質量%)である。   (A) It is possible to obtain a nickel material with excellent hot workability by setting the chemical composition of the nickel material with particular attention to Mg content and S content and ΔS which is a composite parameter thereof. is there. Here, “ΔS” is S−0.3 × Mg (S: mass% of S, Mg: mass% of Mg).

(b)スラグを用いて還元精錬を行う際、下記(1)式の酸素活量パラメータaoおよびスラグ中のMgO濃度を制御することにより、金属Mgまたは金属Mg源を添加することなく、ニッケル材中のMg含有量およびS含有量、ならびにこれらの複合パラメータであるΔSが好適なニッケル材を得ることが可能である:
ao = 104 ×10(-4.325-0.2355*(T.CaO/Al2O3)-0.667log(%Al)-0.05%Al)……(1)。
(B) When performing reductive refining using slag, by controlling the oxygen activity parameter ao of the following formula (1) and the MgO concentration in the slag, a nickel material without adding metal Mg or a metal Mg source It is possible to obtain a nickel material having a suitable Mg content and S content and ΔS which is a composite parameter of these:
ao = 10 4 × 10 (-4.325-0.2355 * (T.CaO / Al2O3) -0.667log (% Al) -0.05% Al) (1).

ここで、「T.CaO/Al」とはスラグにおける総Ca含有量をCaO含有量(質量%)に換算した値(以下「T.CaO」という。)を、スラグにおけるAl含有量をAl含有量(質量%)に換算した値(以下「Al」という。)で除した値であり、「スラグ塩基度」という。 Here, “T.CaO / Al 2 O 3 ” is a value obtained by converting the total Ca content in slag into CaO content (mass%) (hereinafter referred to as “T.CaO”), and the Al content in slag. the a value obtained by dividing the content of Al 2 O 3-converted value to the (mass%) (hereinafter referred to as "Al 2 O 3".), referred to as "slag basicity".

上記の知見に基づき次の発明を完成するに至った。   Based on the above findings, the inventors have completed the following invention.

(1)質量%で、Mg:0.0050%以上0.0150%以下、S:0.0001%以上0.0010%以下、Al:0.020%以上0.100%以下を含有し、さらに、Fe:0.40%以下、Mn:0.30%以下、Ti:0.05%以下、B:0.0030%以下およびC:0.02%以下からなる群から選ばれる一種または二種以上を含有し、残部Niおよび不純物からなり、(S−0.3×Mg)(S:Sの質量%、Mg:Mgの質量%)で規定されるΔSパラメータが−0.0030%以上かつ−0.0011%以下である化学組成を有することを特徴とするニッケル材。   (1) By mass%, Mg: 0.0050% or more and 0.0150% or less, S: 0.0001% or more and 0.0010% or less, Al: 0.020% or more and 0.100% or less, Fe: 0.40% or less, Mn: 0.30% or less, Ti: 0.05% or less, B: 0.0030% or less, and C: 0.02% or less The ΔS parameter defined by (S-0.3 × Mg) (S: mass% of S, Mg: mass% of Mg) is −0.0030% or more -Nickel material having a chemical composition of 0.0011% or less.

(2)(T.CaO/Al)(T.CaO:スラグにおける総Ca含有量をCaO含有量(質量%)に換算した値、Al:スラグにおけるAl含有量をAl含有量(質量%)に換算した値)で規定されるスラグ塩基度が2.6以下であって、MgO濃度が、質量%で、4.0%以上、12.0%未満のスラグを用いて、下記(1)式で表される酸素活量パラメータaoを0.70以上1.30以下の範囲に成分を調整し取鍋精錬を行ったことを特徴とする、上記(1)に記載される化学組成を有するニッケル材の精錬方法。 (2) (T.CaO / Al 2 O 3 ) (T.CaO: Total Ca content in slag converted to CaO content (mass%), Al 2 O 3 : Al content in slag is Al 2 The slag basicity defined by the O 3 content (mass%) is 2.6 or less, and the MgO concentration is 4.0% or more and less than 12.0% by mass%. The above-mentioned (1) is characterized in that the oxygen activity parameter ao represented by the following formula (1) is adjusted to a range of 0.70 to 1.30 and ladle refining is performed. A method for refining a nickel material having the chemical composition described in 1.

ao = 104 ×10(-4.325-0.2355*(T.CaO/Al2O3)-0.667log(%Al)-0.05%Al)……(1)
ここで、上記(1)式において、(T.CaO/Al)は前記スラグ塩基度であり、Alは取鍋内のニッケル溶湯中のAl含有量(単位:質量%)である。
ao = 10 4 × 10 (-4.325-0.2355 * (T.CaO / Al2O3) -0.667log (% Al) -0.05% Al) ...... (1)
Here, in the above formula (1), (T.CaO / Al 2 O 3 ) is the slag basicity, and Al is the Al content (unit: mass%) in the molten nickel in the ladle.

本発明によるニッケル材は、ΔSが−0.0030〜−0.0011%の範囲にあるため、熱間圧延後の表面欠陥が発生しにくい。したがって、本発明によるニッケル材は熱間加工性に優れ、近年需要が著しいリチウムイオン電池部材として特に好適であり、産業上、極めて有益である。   Since the nickel material according to the present invention has ΔS in the range of −0.0030 to −0.0011%, surface defects after hot rolling hardly occur. Therefore, the nickel material according to the present invention is excellent in hot workability, is particularly suitable as a lithium ion battery member that has been in great demand in recent years, and is extremely useful industrially.

以下に、本発明の最良の形態や製造条件の範囲およびこれらの設定理由について説明する。なお、本明細書において、化学組成を表す「%」は、特にことわりが無い限り「質量%」である。   The best mode of the present invention, the range of manufacturing conditions, and the reasons for setting them will be described below. In the present specification, “%” representing the chemical composition is “% by mass” unless otherwise specified.

2.化学組成
次に、本実施形態に係るニッケル材の化学組成について説明する。
2. Next, the chemical composition of the nickel material according to the present embodiment will be described.

S:Sは原料・造滓剤等に不純物として含まれる元素である。Sが0.0010%を超えると熱間加工性が低下し、熱延時のヘゲ疵が増加して歩留が悪化する。したがって、S含有量の上限を0.0010%とする。一方、過度の低減はΔSの至適範囲を狭める上、精錬コストの著しい増大をもらたす。したがって、下限を0.0001%以上とする。望ましいS含有量は、0.0001%以上0.0008%以下である。   S: S is an element contained as an impurity in the raw material, the slagging agent and the like. When S exceeds 0.0010%, the hot workability is lowered, the amount of lashes at the time of hot rolling is increased, and the yield is deteriorated. Therefore, the upper limit of the S content is set to 0.0010%. On the other hand, excessive reduction narrows the optimum range of ΔS and causes a significant increase in refining costs. Therefore, the lower limit is made 0.0001% or more. A desirable S content is 0.0001% or more and 0.0008% or less.

Mg:MgSとしてSを、またMgOとしてOを固定し、熱間加工性を改善する元素である。Mgが0.0050%未満の場合には、ΔSを満たしていてもO固定が不十分となるため、熱間加工性が悪化する。一方、Mg含有量が過剰になると低融点のNiMg−Ni共晶が生成し、熱間加工性を著しく損なう。したがって、Mg含有量を0.0150%以下とする。 Mg: An element that improves hot workability by fixing S as MgS and O as MgO. When Mg is less than 0.0050%, even if ΔS is satisfied, O fixation becomes insufficient, and hot workability deteriorates. On the other hand, when the Mg content is excessive, a low melting point Ni 2 Mg—Ni eutectic is formed, and hot workability is significantly impaired. Therefore, the Mg content is 0.0150% or less.

Al:脱酸材として用いる元素である.Al含有量が0.020%未満であると脱酸不足となり熱間加工性が低下する。一方、Al含有量が0.100%を超えるとニッケル純度の低下および溶鋼清浄性を損なうため望ましくない。したがって、Al含有量を0.020%以上0.100%以下とする。0.020%以上0.080%以下とすることが望ましい。   Al: An element used as a deoxidizer. If the Al content is less than 0.020%, deoxidation is insufficient and hot workability is reduced. On the other hand, when the Al content exceeds 0.100%, the nickel purity is lowered and the molten steel cleanliness is impaired. Therefore, the Al content is set to 0.020% or more and 0.100% or less. It is desirable that the content be 0.020% or more and 0.080% or less.

上記の元素に加えて、本実施形態に係るニッケル材は、Ti:0.05%以下、Fe:0.40%以下、Mn:0.30%以下、B:0.0030%以下およびC:0.02%以下からなる群から選ばれる一種または二種以上を含有する。以下に各元素の含有量について説明する。   In addition to the above elements, the nickel material according to this embodiment includes Ti: 0.05% or less, Fe: 0.40% or less, Mn: 0.30% or less, B: 0.0030% or less, and C: Contains one or more selected from the group consisting of 0.02% or less. The content of each element will be described below.

Ti:Tiは、精錬中に不可避的不純物として混入する窒素をTiNとして固定する。しかし、Ti含有量が0.05%を超えるとその効果が飽和し、逆に硬質のTi系化合物生成量が増加するため、欠陥の原因となりうる。したがって、Ti含有量の上限を0.05%とする。好ましい含有量は0.02%以下である。   Ti: Ti fixes nitrogen mixed as an inevitable impurity during refining as TiN. However, when the Ti content exceeds 0.05%, the effect is saturated, and conversely, the amount of hard Ti-based compound generated increases, which may cause defects. Therefore, the upper limit of the Ti content is set to 0.05%. A preferable content is 0.02% or less.

Fe:Feを含有させることによってニッケル材の強度を高めることができる。しかし、過度の添加は電気抵抗率を増大させるため望ましくない。したがって、Fe含有量の上限を0.40%とする。好ましい含有量は0.20%以下である。   Fe: The strength of the nickel material can be increased by containing Fe. However, excessive addition is undesirable because it increases electrical resistivity. Therefore, the upper limit of the Fe content is set to 0.40%. A preferable content is 0.20% or less.

Mn:Feと同様に、強度を調整するため添加することができる。しかし、過度の添加は電気抵抗率を増大させるため望ましくない。したがって、Mn含有量の上限を0.30%とする。好ましい含有量は0.20%以下である。   Similar to Mn: Fe, it can be added to adjust the strength. However, excessive addition is undesirable because it increases electrical resistivity. Therefore, the upper limit of the Mn content is set to 0.30%. A preferable content is 0.20% or less.

B:脆性を低減させるために添加することができる。しかしながら過度の添加は高温強度を低下させるため、B含有量の上限は0.0030%以下とする。好ましい含有量は0.0020%以下である。   B: Can be added to reduce brittleness. However, excessive addition reduces the high temperature strength, so the upper limit of the B content is 0.0030% or less. A preferable content is 0.0020% or less.

C:Cは、原材料あるいは溶解中に電極から混入する不純物であり、精錬によって除去すべき元素であるが、強度を調整するために微量添加しても良い。ただし、過度の添加は硬度を著しく増すため、電池部材としての加工性が損われ、望ましくない。したがって、C含有量の上限は0.02%以下とする。   C: C is an impurity mixed from the raw material or the electrode during melting, and is an element to be removed by refining, but may be added in a small amount to adjust the strength. However, excessive addition increases the hardness remarkably, so that workability as a battery member is impaired, which is not desirable. Therefore, the upper limit of the C content is 0.02% or less.

残部は、Niおよび不純物であり、この不純物としてはSi、N等が挙げられるが、これらに限定されるものではない。   The balance is Ni and impurities. Examples of the impurities include Si and N, but are not limited thereto.

2.ΔSについて
「ΔS」は、S−0.3×Mg(S:Sの質量%、Mg:Mgの質量%)で規定され、本実施形態に係るニッケル材は、ΔSが−0.0030%以上かつ−0.0011%以下である。
2. About ΔS “ΔS” is defined by S−0.3 × Mg (S: mass% of S, Mg: mass% of Mg), and the nickel material according to this embodiment has ΔS of −0.0030% or more. And -0.0011% or less.

(1)ΔSと研削量指数との関係について
ΔSが上記の範囲にある場合には、研削量指数が低下し、生産性が向上する。ここで、「研削量指数」とは、熱間圧延によって製造されたニッケルのホットコイルに存在する熱間圧延過程で生成した表面欠陥を、冷間圧延に供する前に研削等の機械加工によって除去するにあたり、その除去量をニッケル板厚の1/2で除して無次元化したものである。
(1) Regarding the relationship between ΔS and the grinding amount index When ΔS is in the above range, the grinding amount index is lowered and the productivity is improved. Here, the “grinding index” means that surface defects generated in the hot rolling process of nickel hot coil produced by hot rolling are removed by machining such as grinding before being subjected to cold rolling. In that case, the removal amount is divided by 1/2 of the nickel plate thickness to make it dimensionless.

前述のように、この表面欠陥はSの粒間析出が多いほど多くなる傾向を有する。しかし、Mgが添加されるによってこのSが無害され、表面欠陥は少なくなる。ただし、Mgの過剰添加は低融点のNi−NiMg共晶合金が生成するため、バーニングを誘発し、逆に表面欠陥が多くなる。そこで、表面欠陥の発生量を、発生した表面欠陥を除去するための加工量に関する指数で評価し、この指数とS含有量およびMg含有量との関係を規定することで、ニッケル材の好適な組成範囲を客観的に把握することが実現される。 As described above, this surface defect tends to increase as the S intergranular precipitation increases. However, the addition of Mg renders this S harmless and reduces surface defects. However, excessive addition of Mg produces a Ni—Ni 2 Mg eutectic alloy having a low melting point, which induces burning and conversely increases surface defects. Therefore, the amount of surface defects generated is evaluated by an index related to the processing amount for removing the generated surface defects, and by defining the relationship between this index and the S content and the Mg content, a suitable nickel material can be obtained. It is possible to objectively grasp the composition range.

こうした考えに基づいて行った評価結果が図1である。図1はニッケル材におけるS含有量およびMg含有量とコイル研削量合否との関係を示した図であって、その横軸はS含有量であり、縦軸はMg含有量である。そして、研削量指数が0.3以下であったニッケル材を研削合格として「○」で示し、研削量指数が0.3を超えたニッケル材を研削不合格として「×」で示した。   FIG. 1 shows the evaluation result performed based on this idea. FIG. 1 is a diagram showing the relationship between the S content and the Mg content in a nickel material and the coil grinding amount pass / fail, wherein the horizontal axis is the S content and the vertical axis is the Mg content. A nickel material having a grinding amount index of 0.3 or less was indicated as “◯” as a grinding pass, and a nickel material having a grinding amount index exceeding 0.3 was indicated as “x” as a grinding failure.

図1中において二本の破線にて示される、S−0.3×Mg=−0.0030%とS−0.3×Mg=−0.0011%との間の領域に全ての研削合格のニッケル材が含まれ、ΔSが−0.0030〜−0.0011%の範囲にある場合にSの粒間析出が発生しにくく、かつ、低融点のNiMg−Niも発生しにくいことが確認された。 All grinding passes in the region between S-0.3 × Mg = −0.0030% and S-0.3 × Mg = −0.0011% indicated by two broken lines in FIG. When the nickel material is included and ΔS is in the range of −0.0030 to −0.0011%, S intergranular precipitation is less likely to occur, and low melting point Ni 2 Mg—Ni is also less likely to occur. Was confirmed.

さらに、この関係の有効性を確認するために、ΔSを横軸、研削量指数を縦軸としたプロットが図2である。図2に示されるように、ΔSが−0.0011%〜−0.0030%の範囲を外れると研削量が著しく増加する。ΔSが−0.0011%を超えると、Sが粒間に析出するため、熱間加工性が損われる。その一方で、−0.0030%未満になるとMgが逆に過剰となるため、低融点のNiMg−Ni共晶が析出し、やはり熱間加工性が著しく損なわれる。 Further, in order to confirm the effectiveness of this relationship, FIG. 2 is a plot with ΔS as the horizontal axis and the grinding amount index as the vertical axis. As shown in FIG. 2, when ΔS is out of the range of −0.0011% to −0.0030%, the grinding amount is remarkably increased. When ΔS exceeds −0.0011%, S is precipitated between grains, so that hot workability is impaired. On the other hand, if it is less than −0.0030%, Mg becomes excessive, so that a low melting point Ni 2 Mg—Ni eutectic is precipitated, and the hot workability is significantly impaired.

3.製造方法
本実施形態に係るニッケル材は、上記のような化学組成上の特徴を有していれば、製造方法には特に限定されない。ただし、次のような精錬方法を採用すれば、本実施形態に係るニッケル材を効率的に、かつ安定的に得ることが実現される。
3. Manufacturing Method The nickel material according to the present embodiment is not particularly limited to the manufacturing method as long as it has the above-described chemical composition characteristics. However, if the following refining method is employed, it is possible to efficiently and stably obtain the nickel material according to the present embodiment.

(1)製造方法の概要
本実施の形態に係るニッケル材の製造方法の一態様の概要は次のとおりである。
ニッケルほか所定の元素を含む原料を電気炉などで溶解し、MgOを含有する耐火物で内張りされた二次精錬用容器内に、得られた溶湯を注ぐ。溶解時に発生するスラグを除滓し、続いて吹酸・脱炭精錬を行った後、生石灰、蛍石、マグネシア、およびアルミニウムの一種ないし二種以上を、スラグとして、および必要に応じて単独で投入して、還元および脱硫精錬を実施する。その後、化学成分を適宜調整し、続いて連続鋳造機にて鋳造してスラブを得る。このようにして得られるスラブを、必要に応じて表面手入れを行った後、熱間圧延機によって熱間圧延し、ホットコイルを得る。得られるホットコイルを適宜研削して、熱間圧延で生成した表面欠陥を除去することで、ニッケル材を得ることができる。
(1) Outline of Manufacturing Method An outline of one aspect of the manufacturing method of the nickel material according to the present embodiment is as follows.
A raw material containing nickel and other predetermined elements is melted in an electric furnace or the like, and the obtained molten metal is poured into a secondary refining vessel lined with a refractory containing MgO. After removing the slag generated during melting, followed by blowing acid and decarburization refining, one or more of quicklime, fluorite, magnesia, and aluminum are used alone as slag and as needed. Input and implement reduction and desulfurization refining. Thereafter, the chemical components are appropriately adjusted, and then cast by a continuous casting machine to obtain a slab. The slab thus obtained is subjected to surface care as necessary and then hot-rolled by a hot rolling mill to obtain a hot coil. A nickel material can be obtained by appropriately grinding the resulting hot coil to remove surface defects generated by hot rolling.

(2)精錬方法の概要
上記の製造方法の精錬工程において、スラグを用いて還元精錬を行うにあたって、(2)式に基づいて、ニッケル溶湯中の酸素活量とスラグ中のMgO活量を調整することでMg濃度の制御が原理的には可能である。
(2) Outline of the refining method In the refining process of the above manufacturing method, when performing reductive refining using slag, the oxygen activity in the molten nickel and the MgO activity in the slag are adjusted based on the formula (2). By doing so, the Mg concentration can be controlled in principle.

Mg + O = MgO……(2)
しかしながら、ニッケル基における(2)式の平衡定数等の熱力学的データはその測定が困難であることから、信用できる値が得られていない。このため、(2)式に基づく現実的な制御技術はこれまで検討されていなかった。
Mg + O = MgO …… (2)
However, since it is difficult to measure thermodynamic data such as the equilibrium constant of the formula (2) in the nickel base, a reliable value is not obtained. For this reason, a realistic control technique based on equation (2) has not been studied so far.

本発明者は、(2)式の酸素活量に関して、(1)式に記載される酸素活量パラメータaoが有効であるとの知見を得た。
ao = 104 ×10(-4.325-0.2355*(T.CaO/Al2O3)-0.667log(%Al)-0.05%Al)……(1)
The present inventor has found that the oxygen activity parameter ao described in the equation (1) is effective with respect to the oxygen activity in the equation (2).
ao = 10 4 × 10 (-4.325-0.2355 * (T.CaO / Al2O3) -0.667log (% Al) -0.05% Al) ...... (1)

本実施の形態に係る精錬工程は、この知見に基づき、酸素活量パラメータaoおよびスラグ中のMgO濃度を制御することで、Mg濃度の制御を実現していることが特徴である
その結果、介在物量を増加させる金属MgあるいはMg含有合金(金属Mg源)を添加することなくニッケル中のMg濃度、S濃度およびこれらの複合パラメータであるΔS(≡S−0.3Mg)を制御することが実現され、ニッケルの熱間加工性が向上する。
Based on this knowledge, the refining process according to the present embodiment is characterized in that the Mg concentration is controlled by controlling the oxygen activity parameter ao and the MgO concentration in the slag. Realization of controlling Mg concentration and S concentration in nickel and ΔS (≡S-0.3Mg), which is a composite parameter, without adding metal Mg or Mg-containing alloy (metal Mg source) that increases the quantity As a result, the hot workability of nickel is improved.

(3)ニッケル溶湯中の酸素活量について
次に上記(1)式を導くに至った経緯について説明する。
ニッケル溶湯中の酸素活量は、本技術に示した成分領域では(3)式の平衡反応に従う。
(3) Oxygen activity in the molten nickel Next, the reason why the above formula (1) was derived will be described.
The oxygen activity in the molten nickel follows the equilibrium reaction of equation (3) in the component region shown in this technology.

Al= 2Al + 3O……(3)
ここで、ニッケル基における(3)式に関し、その平衡定数はF.Ishii, S.Ban-ya and M.Hino, ISIJ Int, 36(1996) 1, pp. 25に表1の値が、またニッケル溶湯中における相互作用助係数に関しては,F.Ishii, S.Ban-ya and M.Hino, ISIJ Int, 36(1996) 1, pp. 25およびF.Ishii, S.Ban-ya, ISIJ Int, 32(1992), pp.1091に表2に示した値が提案されている。
Al 2 O 3 = 2Al + 3O (3)
Here, regarding the formula (3) in the nickel base, the equilibrium constant is the value of Table 1 in F.Ishii, S.Ban-ya and M.Hino, ISIJ Int, 36 (1996) 1, pp. 25, Regarding the interaction coefficient in molten nickel, F.Ishii, S.Ban-ya and M.Hino, ISIJ Int, 36 (1996) 1, pp. 25 and F.Ishii, S.Ban-ya, ISIJ Int , 32 (1992), pp.1091, the values shown in Table 2 are proposed.

Figure 2009024241
Figure 2009024241

Figure 2009024241
Figure 2009024241

一方、スラグ中のAl活量に関しては,H.OHTA and H.SUITO, ISIJ Int, 36(1996) 8, pp. 983に等活量線図が示されている。本請求範囲におけるスラグ中のT.CaO/Alと当該等活量線図に基づくことでAl活量の関係は図3に示したとおりであり、(4)式に示した近似式でフィッティング可能である。
aAl2O3 = 5.21×10-0.708(T.CaO/Al2O3) ……(4)
On the other hand, with respect to the Al 2 O 3 activity in slag, an isoactivity diagram is shown in H.OHTA and H.SUITO, ISIJ Int, 36 (1996) 8, pp. 983. Relationship Al 2 O 3 activity by based on the Tokatsu amount diagrams and T.CaO / Al 2 O 3 in the slag in the claims is as shown in FIG. 3, shown in (4) It is possible to fit using the approximate expression.
a Al2O3 = 5.21 × 10 -0.708 (T.CaO / Al2O3) ...... (4)

表1および表2の値と(4)式から導出したAl活量とを用いて、酸素活量パラメータaoを求める式を導出すると、本発明の範囲では%Oは%Alに比べて無視できる程度に小さいことから、1600℃では(1)式が得られる。 Using the values in Tables 1 and 2 and the Al 2 O 3 activity derived from the equation (4), the equation for obtaining the oxygen activity parameter ao is derived. In the scope of the present invention,% O is compared with% Al. (1) is obtained at 1600 ° C.

(4)aoおよびスラグ中のMgO濃度とMg濃度の関係
aoおよびスラグ中のMgO濃度を変えて,aoとMg濃度との関係、およびaoとΔSとの関係を調査した。なお、この調査にあたっては、スラグ中のMgO活量は測定が困難であるため、スラグ中のMgO濃度で代用した。
(4) Relationship between MgO concentration and Mg concentration in ao and slag
By changing the MgO concentration in ao and slag, the relationship between ao and Mg concentration and the relationship between ao and ΔS were investigated. In this investigation, since the MgO activity in the slag is difficult to measure, the MgO concentration in the slag was substituted.

その結果得られたaoとMg濃度との関係を図4に、また、aoとΔSとの関係を図5に示した。aoとMg濃度とは、スラグ中のMgO濃度が4.0%以上の場合には負の相関が得られたが、4.0%未満の場合には、明確な相関関係は認められなくなった。また、aoとΔSとについても、スラグ中のMgO濃度が4.0%以上の場合には正の相関が得られた(図5では縦軸は負の値が大きくなるほど上方になるように設定されている。)が、4.0%未満の場合には、明確な相関関係は認められなくなった。   The relationship between ao and Mg concentration obtained as a result is shown in FIG. 4, and the relationship between ao and ΔS is shown in FIG. The negative correlation was obtained between ao and Mg concentration when the MgO concentration in the slag was 4.0% or more, but no clear correlation was observed when it was less than 4.0%. . As for ao and ΔS, a positive correlation was obtained when the MgO concentration in the slag was 4.0% or more (in FIG. 5, the vertical axis is set to be higher as the negative value increases). However, when the ratio is less than 4.0%, no clear correlation is observed.

ここで、MgO濃度が4.0%未満の場合に相関関係が認められなくなったのは次の理由であると推測される。本実施形態に係る精錬方法の基本プロセスは、前述のように(2)式であり、aoを低減させて酸素活量を低下させることで、(2)式で示される平衡式において左向きの反応を進行させることにある。このとき、Sを無害化しうるMg濃度が上昇して、優れた特性のニッケル材を得ることが実現されている。しかしながら、スラグ中のMgO活量(スラグ中のMg濃度で代用)が極端に低下すると、aoを低減したとしても、そもそも原料が少ないために(2)式における左向きの反応が進行せず、Mg濃度が増加しないためΔSも至適範囲を外れていくことになる。本実施の形態に係る精錬方法では、以上の観点より、MgO濃度が4.0%以上とすることとしている。   Here, it is presumed that the correlation is no longer recognized when the MgO concentration is less than 4.0% for the following reason. The basic process of the refining method according to the present embodiment is the formula (2) as described above, and by reducing the oxygen activity by reducing ao, the reaction leftward in the equilibrium formula shown by the formula (2) Is to make progress. At this time, it has been realized that the Mg concentration capable of detoxifying S is increased to obtain a nickel material having excellent characteristics. However, if the MgO activity in the slag (substituting with the Mg concentration in the slag) is extremely reduced, even if ao is reduced, the reaction in the left direction in the formula (2) does not proceed because the raw material is small in the first place. Since the concentration does not increase, ΔS also deviates from the optimum range. In the refining method according to the present embodiment, the MgO concentration is 4.0% or more from the above viewpoint.

また、aoについては、0.70〜1.30とする。aoが1.30を超えると、図4に示されるように、Mgが0.0050%未満となる場合があり、熱間加工性の悪化が懸念される。さらに、この場合にはSも増加するため、図5に示されるように、ΔSが−0.0011%を超える場合も生じうるようになる。したがって、aoは1.30以下とすることが好ましい。一方、aoが0.70未満となると、Mg濃度が上昇するとともに、ΔSが−0.0030%未満となる(図5参照)。この場合にはNiMg−Ni共晶の生成により、急激に研削量指数が悪化することが懸念されるため、aoは0.70以上とすることが好ましい。 Moreover, about ao, it shall be 0.70-1.30. When ao exceeds 1.30, Mg may be less than 0.0050% as shown in FIG. 4, and there is a concern about deterioration of hot workability. Further, in this case, since S also increases, as shown in FIG. 5, a case where ΔS exceeds −0.0011% may occur. Therefore, ao is preferably 1.30 or less. On the other hand, when ao is less than 0.70, the Mg concentration increases and ΔS is less than −0.0030% (see FIG. 5). In this case, since it is feared that the grinding amount index is abruptly deteriorated due to the formation of Ni 2 Mg—Ni eutectic, ao is preferably 0.70 or more.

ニッケル地金、ニッケル屑、金属マンガンやアルミニウムなどを含む原料を40T電気炉で溶解し、得られた溶湯を、MgOを含有する耐火物で内張りされた二次精錬用容器へ出鋼した。電気炉スラグを除滓し、VODで吹酸・脱炭精錬を行った後、生石灰、蛍石、マグネシア、アルミニウムからなる群から選ばれる一種または二種以上を投入し、表3に示されるようなスラグ組成として、還元および脱硫精錬を実施した。なお、このときのスラグ中の(T.CaO/Al)、および精錬中のAl濃度および酸素活量パラメータaoを表3に示した。 Raw materials including nickel metal, nickel scrap, manganese metal and aluminum were melted in a 40T electric furnace, and the obtained molten metal was put out into a secondary refining vessel lined with a refractory containing MgO. After removing electric furnace slag and performing blowing acid and decarburization refining with VOD, one or more selected from the group consisting of quicklime, fluorite, magnesia and aluminum are added, as shown in Table 3 Reduction and desulfurization refining were carried out as a slag composition. Table 3 shows (T.CaO / Al 2 O 3 ) in the slag and the Al concentration and oxygen activity parameter ao during refining.

Figure 2009024241
Figure 2009024241

その後、表3に示される化学組成になるように化学成分を適宜調整した。なお、この化学組成におけるΔSは表3に示した。続いて、全湾曲形連続鋳造機にて150mm厚スラブを鋳造し、得られたスラブを、砥石を用いて表裏側面の四面について表面手入れを行った後、タンデム式もしくはステッケル式の熱間圧延機によって厚さ4mm〜6mmのホットコイルとして熱間圧延を行った。得られたホットコイルの表裏面を砥石にて研削し、熱間圧延で生成した表面欠陥を除去した。このときの研削量指数は表3に示すとおりであった。   Thereafter, the chemical components were appropriately adjusted so as to have the chemical composition shown in Table 3. The ΔS in this chemical composition is shown in Table 3. Subsequently, a 150 mm thick slab was cast by a fully curved continuous casting machine, and the obtained slab was subjected to surface care on the four sides of the front and back sides using a grindstone, and then a tandem or stickel type hot rolling mill. Then, hot rolling was performed as a hot coil having a thickness of 4 mm to 6 mm. The front and back surfaces of the obtained hot coil were ground with a grindstone to remove surface defects generated by hot rolling. The grinding amount index at this time was as shown in Table 3.

実施例1から4に係るニッケル材は、スラグ組成、特にMgO濃度、溶融ニッケル内の酸素活量パラメータao、ならびに化学組成におけるMg含有量、S含有量、およびΔSが適切であったため、研削量指数はいずれも0.3以下であり、表面欠陥が発生しにくいニッケル材であった。   In the nickel materials according to Examples 1 to 4, the slag composition, particularly the MgO concentration, the oxygen activity parameter ao in the molten nickel, and the Mg content, S content, and ΔS in the chemical composition were appropriate. All of the indexes were 0.3 or less, and the nickel material was less likely to cause surface defects.

これに対し、比較例1に係るニッケル材は、aoパラメータが0.70未満であって酸素活量が著しく低い状態となったため、Mg濃度の上昇とS濃度の低下が同時に生じ、ΔSが−0.0030%未満となって研削量が著しく増加した。   On the other hand, since the nickel material according to Comparative Example 1 has an ao parameter of less than 0.70 and an extremely low oxygen activity, an increase in Mg concentration and a decrease in S concentration occur simultaneously, and ΔS is − The amount of grinding was remarkably increased by less than 0.0030%.

また、比較例2に係るニッケル材は、Alが0.020%未満となったため、aoが2.20となって酸素活量が著しく高い状態となった。このため、Sの上昇およびMg低下が同時に生じ、ΔSが−0.0011%を超えた。   In the nickel material according to Comparative Example 2, Al was less than 0.020%, so ao was 2.20, and the oxygen activity was significantly high. For this reason, an increase in S and a decrease in Mg occurred simultaneously, and ΔS exceeded −0.0011%.

比較例3に係るニッケル材では、aOパラメータ0.70以上1.30以下を満足したが,スラグ中のMgO濃度が4.0%未満となったため、Mg濃度が0.0050%未満となり、ΔSが−0.0011%を超え、研削量が増加した。   The nickel material according to Comparative Example 3 satisfied the aO parameter of 0.70 or more and 1.30 or less. However, since the MgO concentration in the slag was less than 4.0%, the Mg concentration was less than 0.0050%, and ΔS However, it exceeded -0.0011%, and the grinding amount increased.

比較例4に係るニッケル材では、(T.CaO/Al)およびAl濃度は適切であったものの、酸素活量パラメータaoとしては1.30を超えたため、ΔSを満たすことができずに研削量が増加した。 In the nickel material according to Comparative Example 4, although (T.CaO / Al 2 O 3 ) and Al concentration were appropriate, the oxygen activity parameter ao exceeded 1.30, so ΔS could not be satisfied. The amount of grinding increased.

ニッケル材におけるS含有量およびMg含有量とコイル研削量合否との関係を示した図である。It is the figure which showed the relationship between S content and Mg content in a nickel material, and coil grinding amount pass / fail. ΔSと熱間加工性に関連するコイル研削量指数との関係を示した図である.It is the figure which showed the relation between ΔS and the coil grinding quantity index related to hot workability. 等活量線図から導出した(T.CaO/Al)とAl活量との関係を示した図である。It is a diagram showing the relationship derived from Tokatsu amount diagrams and (T.CaO / Al 2 O 3) and Al 2 O 3 activity. 酸素活量パラメータaoとMg濃度との関係をスラグ中MgO濃度で分類して示した図である。It is the figure which classified and showed the relationship between oxygen activity parameter ao and Mg density | concentration by MgO density | concentration in slag. 酸素活量パラメータaoとΔSとの関係をスラグ中MgO濃度で分類して示した図である。It is the figure which classified and showed the relationship between oxygen activity parameter ao and (DELTA) S by MgO density | concentration in slag.

Claims (2)

質量%で、Mg:0.0050%以上0.0150%以下、S:0.0001%以上0.0010%以下、Al:0.020%以上0.100%以下を含有し、さらに、Fe:0.40%以下、Mn:0.30%以下、Ti:0.05%以下、B:0.0030%以下およびC:0.02%以下からなる群から選ばれる一種または二種以上を含有し、残部Niおよび不純物からなり、
(S−0.3×Mg)(S:Sの質量%、Mg:Mgの質量%)で規定されるΔSパラメータが−0.0030%以上かつ−0.0011%以下である化学組成を有することを特徴とするニッケル材。
Mg: 0.0050% or more and 0.0150% or less, S: 0.0001% or more and 0.0010% or less, Al: 0.020% or more and 0.100% or less, and Fe: Contains 0.40% or less, Mn: 0.30% or less, Ti: 0.05% or less, B: 0.0030% or less, and C: 0.02% or less. And the balance Ni and impurities,
The ΔS parameter defined by (S-0.3 × Mg) (S: mass% of S, Mg: mass% of Mg) has a chemical composition of −0.0030% or more and −0.0011% or less. Nickel material characterized by that.
(T.CaO/Al) (T.CaO:スラグにおける総Ca含有量をCaO含有量(質量%)に換算した値、Al:スラグにおけるAl含有量をAl含有量(質量%)に換算した値)で規定されるスラグ塩基度が2.6以下であって、MgO濃度が、質量%で、4.0%以上、12.0%未満のスラグを用いて、
下記(1)式で表される酸素活量パラメータaoを0.70以上1.30以下の範囲に成分を調整し取鍋精錬を行ったことを特徴とする、請求項1に記載される化学組成を有するニッケル材の精錬方法。
ao = 104 ×10(-4.325-0.2355*(T.CaO/Al2O3)-0.667log(%Al)-0.05%Al)……(1)
ここで、上記(1)式において、(T.CaO/Al)は前記スラグ塩基度であり、%Alは取鍋内のニッケル溶湯中のAl含有量(単位:質量%)である。
(T.CaO / Al 2 O 3 ) (T.CaO: Value obtained by converting the total Ca content in slag to CaO content (mass%), Al 2 O 3 : Al content in slag containing Al 2 O 3 The slag basicity defined by the amount (value converted to mass (mass%)) is 2.6 or less, and the MgO concentration is mass%, using 4.0% or more and less than 12.0% slag. ,
The chemical activity according to claim 1, wherein the oxygen activity parameter ao represented by the following formula (1) is adjusted in the range of 0.70 to 1.30 and ladle refining is performed. A method for refining a nickel material having a composition.
ao = 10 4 × 10 (-4.325-0.2355 * (T.CaO / Al2O3) -0.667log (% Al) -0.05% Al) ...... (1)
Here, in the above formula (1), (T.CaO / Al 2 O 3 ) is the slag basicity, and% Al is the Al content (unit: mass%) in the molten nickel in the ladle. .
JP2007190791A 2007-07-23 2007-07-23 Nickel material and its refining method Active JP4840277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190791A JP4840277B2 (en) 2007-07-23 2007-07-23 Nickel material and its refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190791A JP4840277B2 (en) 2007-07-23 2007-07-23 Nickel material and its refining method

Publications (2)

Publication Number Publication Date
JP2009024241A true JP2009024241A (en) 2009-02-05
JP4840277B2 JP4840277B2 (en) 2011-12-21

Family

ID=40396334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190791A Active JP4840277B2 (en) 2007-07-23 2007-07-23 Nickel material and its refining method

Country Status (1)

Country Link
JP (1) JP4840277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672609C1 (en) * 2017-12-29 2018-11-16 Акционерное общество "Металлургический завод "Электросталь" Method of recovery and activation of substandard waste for nickel-based alloys

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223414A (en) * 1990-06-25 1991-10-02 Mitsui Eng & Shipbuild Co Ltd Production of iron-nickel-cobalt-base alloy minimal in respective contents of sulfur, oxygen, and nitrogen
JP2005023346A (en) * 2003-06-30 2005-01-27 Nippon Yakin Kogyo Co Ltd METHOD OF REFINING Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY
JP2006328508A (en) * 2005-05-30 2006-12-07 Sumitomo Metal Ind Ltd Nickel composition, and member for solder joining provided with nickel composition
JP2007162051A (en) * 2005-12-12 2007-06-28 Sumitomo Metal Ind Ltd Nickel rolling stock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223414A (en) * 1990-06-25 1991-10-02 Mitsui Eng & Shipbuild Co Ltd Production of iron-nickel-cobalt-base alloy minimal in respective contents of sulfur, oxygen, and nitrogen
JP2005023346A (en) * 2003-06-30 2005-01-27 Nippon Yakin Kogyo Co Ltd METHOD OF REFINING Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY
JP2006328508A (en) * 2005-05-30 2006-12-07 Sumitomo Metal Ind Ltd Nickel composition, and member for solder joining provided with nickel composition
JP2007162051A (en) * 2005-12-12 2007-06-28 Sumitomo Metal Ind Ltd Nickel rolling stock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672609C1 (en) * 2017-12-29 2018-11-16 Акционерное общество "Металлургический завод "Электросталь" Method of recovery and activation of substandard waste for nickel-based alloys

Also Published As

Publication number Publication date
JP4840277B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
EP3358029B1 (en) High-strength stainless steel sheet having excellent fatigue characteristics, and method for manufacturing same
JP5687590B2 (en) Method for producing boron-containing stainless steel
JP2009007638A (en) Duplex stainless steel, and method for producing the same
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6999475B2 (en) Highly Si-containing austenitic stainless steel with excellent manufacturability
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
KR101574446B1 (en) Boron-containing stainless steel having excellent hot workability and excellent surface properties
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP2014162948A (en) Ferritic stainless steel less in rust formation
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP5961296B2 (en) Method of overlaying stainless steel for welding
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP2009114544A (en) METHOD OF REFINING Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP6762414B1 (en) Stainless steel with excellent surface properties and its manufacturing method
JP5744576B2 (en) Ferritic stainless steel with excellent rust resistance
JP7015410B1 (en) Nickel alloy with excellent surface properties and its manufacturing method
JP4840277B2 (en) Nickel material and its refining method
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
JP6191783B2 (en) Stainless steel
JP7369266B1 (en) Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method
WO2024084877A1 (en) Ni-cr-fe-mo-based alloy having excellent surface properties, and method for producing same
JP6941003B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4840277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350