JP2009023956A - Phosgenation method and phosgenation apparatus - Google Patents
Phosgenation method and phosgenation apparatus Download PDFInfo
- Publication number
- JP2009023956A JP2009023956A JP2007189303A JP2007189303A JP2009023956A JP 2009023956 A JP2009023956 A JP 2009023956A JP 2007189303 A JP2007189303 A JP 2007189303A JP 2007189303 A JP2007189303 A JP 2007189303A JP 2009023956 A JP2009023956 A JP 2009023956A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- phosgene
- phosgenation
- exhaust gas
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明はカルボン酸をホスゲン化して酸クロリドを製造する方法と、そのホスゲン化を行うための装置に関する。 The present invention relates to a method for producing an acid chloride by phosgenating a carboxylic acid and an apparatus for performing the phosgenation.
飽和もしくは不飽和脂肪酸、あるいは芳香族や複素環などのカルポン酸をホスゲンガスによってホスゲン化して、各々対応する酸クロリドを製造するものとして知られている従来の方法は、反応原料であるカルボン酸と溶媒または無溶媒下に触媒を添加してホスゲンガスを吹き込み、過剰のホスゲンガスを含む排ガスを中和処理する方法がほとんどである。排ガスの中和は副生する塩化水素ガスと未反応でパスするホスゲンガスを中和する必要があり、中和剤としてアルカリ剤が用いられる(例えば、特許文献1参照)。
中和剤としてNaOHを用いる場合、化学量論的にホスゲン1モルに対して4モルのNaOHが必要であり膨大な量に必要となる。また、ホスゲン化の反応が長時間になる場合、大量のホスゲンガスが塩化水素と共に排出され、その中和処理にアルカリが大量に必要となる。 When NaOH is used as a neutralizing agent, 4 moles of NaOH is stoichiometrically required for 1 mole of phosgene, and a huge amount is required. When the phosgenation reaction takes a long time, a large amount of phosgene gas is discharged together with hydrogen chloride, and a large amount of alkali is required for the neutralization treatment.
例えば、通常のホスゲン化を行う場合、ホスゲン量は仕込み原料の理論必要量に対して1.05〜1.10倍モル使用されるが、非常にホスゲン化反応速度が小さい場合は反応速度を上げるために反応温度を高くするため、反応時間とホスゲン量が多く必要になる。また、ホスゲン化の反応触媒として添加する触媒、例えばジメチルホルムアミド(DMFと言う)の使用量を多くして反応速度を上げる場合もあるが、触媒量が多くなると反応速度は上がるが、相対的にホスゲン量が多くなったリ触媒の分離が煩雑になったリ、また生成反応液が着色して、精製操作を追加しなければならない。 For example, when normal phosgenation is carried out, the amount of phosgene used is 1.05 to 1.10 times moles of the theoretical required amount of the raw material to be charged, but the reaction rate is increased when the phosgenation reaction rate is very low. Therefore, in order to increase the reaction temperature, a large reaction time and a large amount of phosgene are required. In addition, the reaction rate may be increased by increasing the amount of a catalyst added as a reaction catalyst for phosgenation, for example, dimethylformamide (referred to as DMF), but the reaction rate increases as the amount of the catalyst increases. Separation of the catalyst containing a large amount of phosgene has become complicated, and the resulting reaction solution has become colored, so a purification operation must be added.
ホスゲン化の反応触媒として添加するDMFは反応終了後、活性をもったビルスマイヤー試薬(VMと言う)となり、生成反応液との溶解度差から分離するが、取り扱いが面倒なため、一回の使用で廃棄される場合が多い。そのためホスゲン化反応における排ガス中のホスゲンガスの回収および有効利用と活性がまだあるVMの回収リサイクル使用の効率的な方法が望まれていた。 DMF added as a reaction catalyst for phosgenation becomes an active Vilsmeier reagent (referred to as VM) after the completion of the reaction, and is separated from the difference in solubility from the generated reaction solution. Is often discarded. For this reason, there has been a demand for an efficient method for recovering and using VM that is still active and active in recovery and recovery of phosgene gas in exhaust gas in the phosgenation reaction.
そこで本発明は、上記の問題点に鑑み、上述の不具合を解消することのできるホスゲン化方法とホスゲン化装置とを提供することを課題とする。 Then, this invention makes it a subject to provide the phosgenation method and phosgenation apparatus which can eliminate the above-mentioned malfunction in view of said problem.
上記課題を解決するために本発明によるホスゲン化方法は、反応槽内に充填されたカルボン酸と触媒とを無溶媒または溶媒の存在下でホスゲンガスを作用させして酸クロリドを製造するためのホスゲン化方法において、次回反応槽に充填されるカルボン酸と触媒とを溶媒または無溶媒にて反応排ガス捕集設備に予め仕込み、反応槽内から排出される排出ガス中のホスゲンガスを捕集し、反応排ガス捕集設備に導入することを特徴とする。 In order to solve the above-mentioned problems, the phosgenation method according to the present invention comprises a phosgene for producing acid chloride by reacting a carboxylic acid and a catalyst charged in a reaction vessel with phosgene gas in the absence of a solvent or in the presence of a solvent. In the conversion method, the carboxylic acid and catalyst to be filled in the next reaction tank are charged in advance into the reaction exhaust gas collection equipment with a solvent or no solvent, and the phosgene gas in the exhaust gas discharged from the reaction tank is collected and reacted. It is characterized by being introduced into an exhaust gas collection facility.
初回のホスゲン化反応時に排出される排ガスを次の反応の仕込み原料であるカルボン酸が仕込まれた反応排ガス捕集設備に導き、排ガス中のホスゲンガスを吸収する。一方、初回のホスゲン化反応で得られるホスゲン化反応液と触媒から生成したVM試薬とは分液され、ホスゲン化反応液は次工程に移送され、VM試薬は次の反応原料であるカルボン酸が仕込まれた反応排ガス捕集設備に仕込まれた状態で再度反応槽に移送して、次のホスゲン化反応を行う。 The exhaust gas discharged during the first phosgenation reaction is led to a reaction exhaust gas collection facility in which carboxylic acid, which is a raw material for the next reaction, is charged, and phosgene gas in the exhaust gas is absorbed. On the other hand, the phosgenation reaction liquid obtained in the first phosgenation reaction and the VM reagent produced from the catalyst are separated, the phosgenation reaction liquid is transferred to the next step, and the VM reagent contains the carboxylic acid as the next reaction raw material. In the state of being charged into the reaction exhaust gas collection facility that has been charged, it is transferred again to the reaction vessel, and the next phosgenation reaction is performed.
例えぱ、カルボン酸として飽和脂肪酸の一例である酪酸をホスゲン化する場合は、初回仕込みとして反応槽に酪酸とDMF触媒を仕込み、反応排ガスを受ける反応排ガス捕集設備に次の反応の原料となる酪酸とDMF触媒を仕込んでから反応槽でホスゲン化を開始する。ホスゲン化反応に使用される触媒はホスゲン化でVM試薬なる触媒に形をかえ活性ある着色した液体となる。 For example, when phosgenating butyric acid, which is an example of saturated fatty acid, as carboxylic acid, butyric acid and DMF catalyst are charged to the reaction tank as the initial charge, and used as the raw material for the next reaction in the reaction exhaust gas collection facility that receives the reaction exhaust gas After butyric acid and DMF catalyst are charged, phosgenation is started in the reaction vessel. The catalyst used in the phosgenation reaction is converted into a VM reagent by phosgenation and becomes an active colored liquid.
生成した活性あるVM触媒はリサイクル使用しても反応活性が落ちないので、少なくとも4回以上はリサイクル使用される。4回使用したなら反応生成物と分液後、廃棄のため水分解、中和して別途に設置された排水処理設備に移送し処理される。ホスゲン化の温度は使用する溶媒、原料の物性や反応速度などによって適当に選択されるが、一般的に80℃以下で実施する方がよい。ホスゲン化反応は気体と液体の接触反応であるから、余リ反応温度が高いと反応条件としては好ましくない。できれば50℃以下で実施する方が適当である。 Since the produced active VM catalyst does not decrease the reaction activity even when it is recycled, it is recycled at least four times. If it is used four times, the reaction product is separated from the reaction product, then it is decomposed and neutralized for disposal, transferred to a separate wastewater treatment facility and processed. The phosgenation temperature is appropriately selected depending on the solvent used, the physical properties of the raw materials, the reaction rate, and the like, but it is generally better to carry out the reaction at 80 ° C. or lower. Since the phosgenation reaction is a gas-liquid contact reaction, a high reaction temperature is not preferable as a reaction condition. If possible, it is more appropriate to carry out at 50 ° C. or lower.
ホスゲン化槽の冷却水は50℃以下になるように通常、10〜20℃の冷却水がよい。反応排ガス捕集設備は反応槽と同様または若干低い程度の温度に設定し、原料であるカルボン酸を気液接触効果が良くなる様にシャワリングして循環させる。反応槽に付設するコンデンサー、捕集缶に垂設されるコンデンサーおよび連結して付設されるコンデンサーの冷却はブラインによって実施するのが適当である。反応槽で分液し分離したVM試薬をストックするVM槽の冷却温度は15〜20℃である。この温度が低いとVMが結晶となって析出したり固化したりする可能性が増すので、あまり低い温度は好ましくない。また、VM試薬は活性を有し吸湿性があるのでVM槽は湿気から遮断した条件を保持することが必要である。 The cooling water for the phosgenation tank is usually preferably 10 to 20 ° C. so that the cooling water is 50 ° C. or lower. The reaction exhaust gas collection facility is set to a temperature similar to or slightly lower than that of the reaction tank, and the raw carboxylic acid is showered and circulated so as to improve the gas-liquid contact effect. It is appropriate to cool the condenser attached to the reaction tank, the condenser suspended in the collection can and the condenser attached in a connected manner with brine. The cooling temperature of the VM tank for stocking the VM reagent separated and separated in the reaction tank is 15 to 20 ° C. If this temperature is low, the possibility that the VM precipitates as a crystal and solidifies increases, so a very low temperature is not preferable. Further, since the VM reagent is active and hygroscopic, it is necessary for the VM tank to maintain a condition that is shielded from moisture.
反応槽は内周面がガラスでコーティングされたグラスライニング製(GL製と言う)が好ましく、付設する排ガスセパレターはGL製で反応槽から上昇する排ガスと共に同伴する酪酸や酪酸クロリドのミストを分離するためのものであるが、充填物を充填するとガス圧抵抗になるので充填しない方がよい。併設するホスゲン化槽コンデンサーは冷却効果がよく耐酸性が優れている材質部材がよい。反応排ガス捕集設備はGL製が好ましく垂設するコンデンサーは磁性ラシヒリングが充填されており気液接触によってホスゲンの捕集効果が向上する。 The reaction tank is preferably made of glass-lined inner surface coated with glass (referred to as GL), and the attached exhaust gas separator is made of GL and separates the mist of butyric acid and butyric acid chloride accompanying the exhaust gas rising from the reaction tank. However, it is better not to fill the filler because filling it with a gas pressure resistance. The phosgenation tank condenser to be provided is preferably made of a material member that has a good cooling effect and excellent acid resistance. The reaction exhaust gas collecting equipment is preferably made of GL, and the vertically suspended condenser is filled with magnetic Raschig ring, and the effect of collecting phosgene is improved by gas-liquid contact.
併設する排ホスゲンコンデンサーは磁製ラシヒリングが充填された耐酸性材質部材がよい。連結併設される排ガスセパレターはGL製がよく、塩化水素などと同伴して飛散する酪酸や酪酸クロリドなどが捕集される。反応排ガス捕集設備に仕込むDMF仕込み槽はSUS材質でよい。リサイクル使用して活性が低下したVM試薬は分液しVM貯槽に移送して静置後、分解処理されて廃棄のため別途廃水処理設備に移送される。 The exhaust phosgene condenser to be provided is preferably an acid-resistant material member filled with magnetic Raschig rings. The connected exhaust gas separator is preferably made of GL, and collects butyric acid and butyric chloride that are scattered with hydrogen chloride. The DMF charging tank charged into the reaction exhaust gas collection facility may be made of SUS material. The VM reagent whose activity has been reduced by recycling is separated, transferred to a VM storage tank, allowed to stand, decomposed, and transferred to a separate wastewater treatment facility for disposal.
本発明によリホスゲン化反応で排出される排ガスの未反応ホスゲンガスを次の反応原料であるカルボン酸が仕込まれた反応排ガス捕集設備に導入し、ホスゲンガスを完全に捕集することができる。また、触媒であるVMを少なくとも4回以上リサイクル使用するので、触媒量が少なくてよい。 According to the present invention, the unreacted phosgene gas of the exhaust gas discharged by the phosphination reaction can be introduced into a reaction exhaust gas collection facility charged with carboxylic acid as the next reaction raw material, and the phosgene gas can be completely collected. In addition, since the catalyst VM is recycled at least four times, the amount of catalyst may be small.
本発明に使用する主要な装置として、反応周りでは撹拌機付きGL反応槽(1)、ホスゲン気化器からの吹き込み配管(15)、排ガスセパレター(2)、ホスゲン化槽コンデンサー(3)が配設されている。また、反応排ガス捕集設備である排ガス捕集缶周リには排ホスゲン捕集缶(4)、これに垂設して付帯する排ホスゲン捕集塔(7)、排ホスゲンコンデンサー(8)、排ガスセパレター(9)、仕込みのための貯槽からのDMF受槽(5)、別途の酪酸貯槽からの酪酸移送配管(6)、反応中の排ガスホスゲンを効率よく補集するための循環ポンプ(13)、ホスゲン化槽への仕込みポンプ(12)がある。そのほか、分離したVMを静置ストックするVM受槽(10)、活性がなくなったVMを分解するためのVM分解槽(11)、分解液を移送するためのポンプ(14)からなる。 As the main equipment used in the present invention, a GL reaction tank with a stirrer (1), a blow-in pipe from a phosgene vaporizer (15), an exhaust gas separator (2), and a phosgenation tank condenser (3) are arranged around the reaction. It is installed. In addition, an exhaust phosgene collection can (4), an exhaust phosgene collection tower (7), an exhaust phosgene condenser (8) attached vertically to the exhaust phosgene collection can (4), Exhaust gas separator (9), DMF receiving tank (5) from storage tank for charging, butyric acid transfer pipe (6) from a separate butyric acid storage tank, circulation pump (13) for efficiently collecting exhaust gas phosgene during reaction ), A feed pump (12) to the phosgenation tank. In addition, it comprises a VM receiving tank (10) for stationary stocking of the separated VM, a VM decomposition tank (11) for decomposing the VM that has lost its activity, and a pump (14) for transferring the decomposition solution.
使用される撹拌機付きGL反応槽(1)は5〜15m3の容量でジャケット付きである。撹拌回転数はホスゲンガスとの接触率を良くするため回転が速い方がいいが、余り速いとガス抜け現象が発生するので、60〜105rpmの範囲で適当に決定すればよい。ホスゲン化槽の竪型排ガスセパレター(2)は排ガスに同伴する酪酸や生成物を凝縮して反応槽にリターンさせるためのものであり、容量は100〜500リットル程度がよい。凝固させるためにジャケットで−8〜−10℃にブライン冷却される。 The GL reactor (1) with stirrer used is jacketed with a capacity of 5 to 15 m 3 . The rotation speed of stirring is preferably faster in order to improve the contact ratio with the phosgene gas. However, if it is too fast, the outgassing phenomenon occurs, so it may be appropriately determined in the range of 60 to 105 rpm. The vertical exhaust gas separator (2) of the phosgenation tank is for condensing butyric acid and products accompanying the exhaust gas and returning them to the reaction tank, and the capacity is preferably about 100 to 500 liters. Brine cooled to −8 to −10 ° C. in the jacket to solidify.
ホスゲン化コンデンサー(3)に移行する排ガスはホスゲン、塩化水素ガスと炭酸ガスであり、水分と接触すると強力な腐食性を発生するので、材質はカーベイトが最もよく容量は4〜8m3で竪型とし、−8〜−10℃のブラインで冷却される。反応槽周りを連結する配管は全てGL配管部材が適している。排ホスゲン捕集缶(4)はジャケット付きのGL缶で容量は5〜15m3が適している。廃ホスゲン捕集缶には通常、酪酸と触媒と溶媒とを仕込んで循環するが、無溶媒であっても勿論差し支えない。 The exhaust gas transferred to the phosgenation condenser (3) is phosgene, hydrogen chloride gas, and carbon dioxide gas. Since it generates strong corrosiveness when it comes into contact with moisture, the material is carbait and the capacity is 4-8m 3 and the vertical type And cooled with -8 to -10 ° C brine. GL piping members are suitable for all piping connecting around the reaction tank. The waste phosgene collection can (4) is a jacketed GL can with a capacity of 5 to 15 m 3 . Normally, butyric acid, a catalyst and a solvent are circulated in the waste phosgene collection can, but it can of course be used without a solvent.
排ホスゲン捕集缶の上部に垂設される廃ホスゲン捕集塔は1〜2Bの太さのラシヒリングが充填される。DMF受槽(5)の材質はSUS304またはSUS316でよく、容量は100〜300リットル程度あればよい。酪酸の場合では酪酸を500〜3000リットル/時の流量で循環ポンプ(13)によって循環シャワリングさせた中に、反応槽から排出される排ガスを接触されて反応させる。排ホスゲン捕集缶に連結する排ホスゲンコンデンサー(8)の材質は耐酸性に優れるカーペイトが最も適当であり、容量は2〜6m3あれば十分である。更に連結する排ガスセパレター(9)はGL製で100〜500リットルあればよい。 The waste phosgene collection tower suspended from the upper part of the waste phosgene collection can is filled with Raschig rings having a thickness of 1 to 2B. The material of the DMF receiving tank (5) may be SUS304 or SUS316, and the capacity may be about 100 to 300 liters. In the case of butyric acid, butyric acid is circulated and showered by the circulation pump (13) at a flow rate of 500 to 3000 liters / hour, and the exhaust gas discharged from the reaction tank is contacted and reacted. The most suitable material for the waste phosgene condenser (8) connected to the waste phosgene collection can is carpate having excellent acid resistance, and a capacity of 2 to 6 m 3 is sufficient. Further, the exhaust gas separator (9) to be connected may be 100 to 500 liters made of GL.
排ホスゲンコンデンサー(8)と排ガスセパレター(9)とは共に−8〜−10℃のブラインで冷却される。排ホスゲン捕集缶周リの連結配管はGL配管部材が適当である。ホスゲン化反応が終了したならVM試薬を分離し、VM受槽(10)に移され次回の反応に再使用される。VM受槽(10)の材質はSUS316でも良いが、GL槽が適しており容量は100〜400リットル程度あればよい。反応終了後の触媒分離は静電容量方式または電磁導伝率方式によって感知するバルブによって反応液からVM試薬を分離する。分離リサイクル使用が不可になったVM試薬は2〜5m3容量のVM分解槽(11)に移送され、15〜25℃程度の冷却水を通水した撹拌下でゆっくり分解される。分解が終了したならばVM分解槽ポンプ(14)によって別途に設置されている排水設備に移送して排水処理される。 Both the exhaust phosgene condenser (8) and the exhaust gas separator (9) are cooled with brine at -8 to -10 ° C. A GL piping member is suitable for the connecting piping around the exhaust phosgene collection can. When the phosgenation reaction is completed, the VM reagent is separated, transferred to the VM receiving tank (10), and reused for the next reaction. The material of the VM receiving tank (10) may be SUS316, but a GL tank is suitable and the capacity may be about 100 to 400 liters. After completion of the reaction, the catalyst is separated by separating the VM reagent from the reaction solution by a valve that is sensed by a capacitance method or an electromagnetic conductivity method. The VM reagent, which cannot be used for separation and recycling, is transferred to a VM decomposition tank (11) having a capacity of 2 to 5 m 3 and slowly decomposed under stirring with cooling water of about 15 to 25 ° C. When the decomposition is completed, it is transferred to a drainage facility separately installed by a VM decomposition tank pump (14) and subjected to wastewater treatment.
次回の反応として反応槽(1)のホスゲン化終了した反応液は次工程へ移送され、排ホスゲン捕集缶(4)の内容物は仕込みポンプ(12)によって反応槽(1)に移送される。例えば、酪酸とDMFを添加した反応原料を反応槽(1)に移送するのに6500リットル/35分程度の移送時間を必要とする。ホスゲンガスは別途に設置されたホスゲン気化器から配管(15)によって反応槽(1)に吹き込み導入される。 As the next reaction, the reaction solution after completion of phosgenation in the reaction tank (1) is transferred to the next step, and the contents of the waste phosgene collection can (4) are transferred to the reaction tank (1) by the feed pump (12). . For example, a transfer time of about 6500 liters / 35 minutes is required to transfer the reaction raw material added with butyric acid and DMF to the reaction tank (1). Phosgene gas is blown into the reaction tank (1) through a pipe (15) from a separately installed phosgene vaporizer.
排ホスゲン捕集缶から排ホスゲンコンデンサーを通リ排ガスセパレターを経て排出される排ガスは反応中緩い減圧下で吸引され、反応終点時に排ガス配管系の吸引圧が変化することをセンサーで捕らてホスゲン化の終点が決定されるシステムがコンピューターに組みこまれている。 The exhaust gas discharged from the exhaust phosgene collection can through the exhaust phosgene condenser and exhausted through the exhaust gas separator is sucked in under a moderately reduced pressure during the reaction, and the sensor detects that the suction pressure of the exhaust gas piping system changes at the end of the reaction. A system is built into the computer to determine the end point of conversion.
反応排ガスを排ホスゲン捕集缶に導入し、次回反応のホスゲンガス有効利用をはかる本発明の方法によれば、酪酸を気化器に導入する液体ホスゲン量が200リットル/時でホスゲン化する場合、排ホスゲン捕集缶がなく、そのまま排ガスを中和処理する方法に比較し、ホスゲン化反応時間として2時間以上の短縮に貢献するので、規模が大きくなると一層効果的で有効な方法と言える。 According to the method of the present invention in which reaction exhaust gas is introduced into an exhaust phosgene collection can and effective utilization of phosgene gas for the next reaction is performed, when the amount of liquid phosgene introduced into the vaporizer is phosgenated at 200 liters / hour, Since there is no phosgene collection can and it contributes to shortening the phosgenation reaction time by 2 hours or more as compared with the method of neutralizing exhaust gas as it is, it can be said that the method becomes more effective and effective when the scale is increased.
次に実施例を挙げて本発明を更に詳細に説明する。
(実施例1)
EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.
Example 1
原料貯槽から移送ポンプで酪酸6200リットル(比重0.960/20℃、5952Kg、67.55kmol)を、DMF40リットル(比重0.9445/25℃、37.8kg)を8m3の排ホスゲン捕集缶(GL缶)に仕込み、ポンプ循環後に8m3のホスゲン化槽(GL槽)へ、移送用ポンプを使用して6200リットル/34分の時間を要して移送した。再度、排ホスゲン捕集缶に6200リットルの酪酸と触媒のDMF40リットルを仕込み、循環ポンプによって2000リットル/時の流量で循環シャワリングを開始した。 Butyric 6,200 liters with transfer pump from the material storage tank (specific gravity 0.960 / 20 ℃, 5952Kg, 67.55kmol ) and, DMF40 liters discharge phosgene collecting cans (specific gravity 0.9445 / 25 ℃, 37.8kg) of 8m 3 (GL can) was charged and transferred to an 8 m 3 phosgenation tank (GL tank) after pump circulation using a transfer pump over a time of 6200 liters / 34 minutes. Again, 6200 liters of butyric acid and 40 liters of catalyst DMF were charged into the waste phosgene collector, and circulation showering was started at a flow rate of 2000 liters / hour by a circulation pump.
一方、移送した酪酸とDMFの反応原料が仕込まれたホスゲン化槽は撹拌を開始し、スチームで加温し42.5±1℃に反応槽を温度調節した。別途に設置されたホスゲン気化器に液体ホスゲンを190リットル/時で供給し、気化ホスゲンガスを25時間ホスゲン化槽に吹き込んだ。反応の終点は排ガス系の吸引圧の変化を捕らえてホスゲンガスを停止させた。 On the other hand, the phosgenation tank charged with the transferred butyric acid and DMF reaction raw materials was stirred and heated with steam to adjust the temperature of the reaction tank to 42.5 ± 1 ° C. Liquid phosgene was supplied at a rate of 190 liter / hour to a separately installed phosgene vaporizer, and vaporized phosgene gas was blown into the phosgenation tank for 25 hours. At the end of the reaction, the phosgene gas was stopped by capturing the change in the suction pressure of the exhaust gas system.
この間、反応槽の温度は18〜20℃の冷却水で反応温度を保持するように自動コントロールさせた。反応槽と廃ホスゲン捕集缶周りのガスセパレーターとコンデンサーは−8〜−10℃のブラインで冷却した。排ホスゲン捕集缶の温度は反応開始前に41〜43℃にスチーム加温し、その後スチームを停止し、排ガス中のホスゲンガスとの反応熱でバランスさせ冷却することなく同温度に保持することができた。排ガスセパレーターの排ホスゲン捕集缶への戻り配管でサンプリングしホスゲン量をチェックしたが、ホスゲンは全く存在しなかった。ホスゲン化反応が終了したので反応槽抜き出し口に設置してある静電容量方式の分液界面検知装置でVM試薬と酪酸クロリドを分液した。 During this time, the temperature of the reaction vessel was automatically controlled to maintain the reaction temperature with cooling water of 18 to 20 ° C. The gas separator and condenser around the reaction vessel and the waste phosgene collection can were cooled with brine at -8 to -10 ° C. The temperature of the exhaust phosgene collector can be steam-heated to 41 to 43 ° C. before the start of the reaction, and then the steam is stopped, balanced with the heat of reaction with the phosgene gas in the exhaust gas, and kept at the same temperature without cooling. did it. The amount of phosgene was checked by sampling in the return pipe to the exhaust phosgene collection can of the exhaust gas separator, but no phosgene was present. Since the phosgenation reaction was completed, the VM reagent and butyric acid chloride were separated using a capacitive separation interface detector installed at the outlet of the reaction vessel.
分液したVM量は60リットルであった。生成した7010リットルの酪酸クロリド(比重1.023/20℃、7171Kg、67.27kmol)は次工程に使用するため、移送ポンプで移送した。酪酸クロリド生成収率99,6モル%であった。 The amount of VM separated was 60 liters. The produced 7010 liters of butyric chloride (specific gravity 1.023 / 20 ° C., 7171 Kg, 67.27 kmol) was transferred by a transfer pump for use in the next step. The butyric acid chloride production yield was 99,6 mol%.
排ホスゲン捕集缶の排ガスホスゲンを吸収した原料6200リットルをホスゲン化槽に移送し、VM受槽のVM試薬60リットルを排ホスゲン捕集缶に移送し、次回のホスゲン化反応に備えた。同様にしてホスゲン化反応を4回繰り返し行ってから反応活性が低下し反応触媒として使用できないVM試薬を3m3のVM分解槽に1.5m3の水と共に入れ、3時間を要して分解し、その後中和して別途の排水集合槽に移送、処理した後、排水処理設備に移送した。 6200 liters of raw material that absorbed exhaust gas phosgene in the waste phosgene collection can was transferred to the phosgenation tank, and 60 liters of the VM reagent in the VM receiving tank was transferred to the waste phosgene collection can to prepare for the next phosgenation reaction. Similarly the VM reagent can not be used as a reaction catalyst was reduced reaction activity after repeated 4 times the phosgenation reaction placed together with water in the 1.5 m 3 in VM decomposition tank of 3m 3, the disassembled it takes 3 hours Then, after neutralizing, transferring to a separate drainage collecting tank, processing, and then transferring to a wastewater treatment facility.
(実施例2) (Example 2)
実施例1と同様にプロピオン酸を5030リットル(67.63kmol)とDMF61リットル(1.16モル%)を8m3のホスゲン化槽に仕込み撹拌して40±1℃に保持した。排ホスゲン捕集缶に1680リットル(22.6kmol)のプロピオン酸とDMF55リットルを仕込み、ボンプ循環しながら緩く加温し40〜42℃に保持した。気化器に液体ホスゲンを190リットル/時で供給しホスゲンガスとして、吹き込み速度66Nm3/時で25時間51分吹き込んで反応を終了した。ホスゲン導入量は7033kg(71.10kmol)で103.9mol%であった。 In the same manner as in Example 1, 5030 liters (67.63 kmol) of propionic acid and 61 liters (1.16 mol%) of DMF were placed in an 8 m 3 phosgenation tank and stirred and maintained at 40 ± 1 ° C. 1680 liters (22.6 kmol) of propionic acid and 55 liters of DMF were charged into a waste phosgene collection can, and warmed gently while maintaining the temperature of 40 to 42 ° C. while circulating through a bomb. Liquid phosgene was supplied to the vaporizer at 190 liters / hour, and phosgene gas was blown in at a blowing speed of 66 Nm 3 / hour for 25 hours and 51 minutes to complete the reaction. The amount of phosgene introduced was 703.9 kg (71.10 kmol) and was 103.9 mol%.
実施例1と同様に排ガスセパレターの排ホスゲン捕集缶への戻り配管でサンプリングしホスゲン量を分析したが、ホスゲンは全く存在しなかった。塩酸としての回収率は対ホスゲン106.4mol%であった。収得プロピオン酸クロリド6092kg、有姿収率97.7%であった。 The amount of phosgene was analyzed by sampling in the return pipe to the exhaust phosgene collection can of the exhaust gas separator as in Example 1, but no phosgene was present. The recovery rate as hydrochloric acid was 106.4 mol% with respect to phosgene. The yield was 6092 kg of propionic acid chloride, and the solid yield was 97.7%.
(比較例) (Comparative example)
18m3の容積のGL製撹拌機付き反応槽に酪酸6200リットルを入れ、排ホスゲン捕集缶を使用しない以外は実施例1と同様の反応条件で実施した。ホスゲン化時間は28時間を要し、排ホスゲン捕集缶を使用した排ガス処理方法に比較して使用液体ホスゲン量に換算して380kg余分に吹き込んだ結果が得られた。 The reaction was carried out under the same reaction conditions as in Example 1 except that 6200 liters of butyric acid was placed in a reaction vessel equipped with a GL stirrer having a volume of 18 m 3 and no waste phosgene collector was used. The phosgenation time required 28 hours, and compared with the exhaust gas treatment method using a waste phosgene collection can, the result of blowing in excess of 380 kg in terms of the amount of liquid phosgene used was obtained.
除害設備に使用した10%NaOH溶液は廃ホスゲン捕集缶設備を使った反応方法に比較して6.5m3余分に必要であった。 Compared with the reaction method using the waste phosgene collection can equipment, the 10% NaOH solution used for the detoxification equipment required 6.5 m 3 extra.
なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。 In addition, this invention is not limited to an above-described form, You may add a various change in the range which does not deviate from the summary of this invention.
1 反応槽
2 排ガスセパレター
3 ホスゲン化槽コンデンサー
4 排ホスゲン捕集缶
5 DMF受槽
6 酪酸移送配管
7 排ホスゲン捕集塔
8 排ホスゲンコンデンサー
9 排ガスセパレター
10 VM受槽
11 VM分解槽
12 仕込みポンプ
13 循環ポンプ
14 VM分解槽ポンプ
15 ホスゲン吹き込み配管
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007189303A JP5032230B2 (en) | 2007-07-20 | 2007-07-20 | Phosgenation method and phosgenation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007189303A JP5032230B2 (en) | 2007-07-20 | 2007-07-20 | Phosgenation method and phosgenation apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009023956A true JP2009023956A (en) | 2009-02-05 |
JP5032230B2 JP5032230B2 (en) | 2012-09-26 |
Family
ID=40396113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007189303A Active JP5032230B2 (en) | 2007-07-20 | 2007-07-20 | Phosgenation method and phosgenation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5032230B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111686556A (en) * | 2020-07-31 | 2020-09-22 | 济宁康盛彩虹生物科技有限公司 | Industrial treatment system and treatment method for solid light tail gas in process of synthesizing fluorinated phase transfer catalyst |
-
2007
- 2007-07-20 JP JP2007189303A patent/JP5032230B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111686556A (en) * | 2020-07-31 | 2020-09-22 | 济宁康盛彩虹生物科技有限公司 | Industrial treatment system and treatment method for solid light tail gas in process of synthesizing fluorinated phase transfer catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP5032230B2 (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6327333B2 (en) | ||
JP5668319B2 (en) | Method for producing 2,2-bis (4-hydroxyphenyl) hexafluoropropane | |
CN112830875A (en) | Method and system for recycling acid wastewater and rectification residual liquid in trichloro-acetic chloride production process | |
EP0881248B1 (en) | Continuous hydrolysis of organochlorosilanes | |
TWI511947B (en) | Method for producing alkylene carbonate and/or alkylene glycol | |
JP5032230B2 (en) | Phosgenation method and phosgenation apparatus | |
CN103787894A (en) | Method for recovering TDA (Toluene Diamine) from residues and wastes formed in preparation process of TDI (Toluene Diisocyanate) | |
CN102040522A (en) | Method for recycling triethylamine from production of propargite | |
JP2004149421A (en) | Method for separating dimethylamide compound and carboxylic acid by distillation and apparatus therefor | |
CN217856082U (en) | Fluoroethylene carbonate production equipment | |
CN107118073A (en) | The method that two alcohol catalysis prepare dichloro alkyl halide | |
CN111348998A (en) | Energy-saving environment-friendly acetic acid production process | |
CN105480948A (en) | Method and system for recycling byproduct hydrogen chloride in fatty acid or fatty acyl chloride chlorination production process | |
US4220609A (en) | Process for the recovery of alkyl chlorides | |
JPH0138112B2 (en) | ||
CN107879313A (en) | A kind of processing method and system of toluene or chlorotoluene chlorination production byproduct in process hydrochloric acid | |
CN216879293U (en) | Silane coupling agent intermediate product processing apparatus | |
JP2010030866A (en) | Purification method of hydrogen sulfide gas | |
JP2005194201A (en) | Apparatus and method for producing 4-hydroxybutyl (meth)acrylate and production apparatus therefor | |
CN108997135A (en) | A kind of method and device producing the chloro- 4- fluoroaniline of 3- | |
JP4004689B2 (en) | Method for producing diaryl carbonate | |
JP4080117B2 (en) | Method for producing diaryl carbonate | |
CN108373485A (en) | A kind of production method and device of cyclic phosphonic acid anhydrides | |
JP2001131124A (en) | Production process of diaryl carbonate | |
CN211595461U (en) | Methane chloride chlorination system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5032230 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |