JP2009020425A - Optical waveguide holding member and optical transceiver - Google Patents

Optical waveguide holding member and optical transceiver Download PDF

Info

Publication number
JP2009020425A
JP2009020425A JP2007184447A JP2007184447A JP2009020425A JP 2009020425 A JP2009020425 A JP 2009020425A JP 2007184447 A JP2007184447 A JP 2007184447A JP 2007184447 A JP2007184447 A JP 2007184447A JP 2009020425 A JP2009020425 A JP 2009020425A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
holding member
connection portion
waveguide holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007184447A
Other languages
Japanese (ja)
Other versions
JP4874181B2 (en
Inventor
Osamu Daikuhara
治 大工原
Hideo Miyazawa
英夫 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Component Ltd
Original Assignee
Fujitsu Component Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Component Ltd filed Critical Fujitsu Component Ltd
Priority to JP2007184447A priority Critical patent/JP4874181B2/en
Publication of JP2009020425A publication Critical patent/JP2009020425A/en
Application granted granted Critical
Publication of JP4874181B2 publication Critical patent/JP4874181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide holding member which has an optical fiber disposed as an optical waveguide to suppress misalignment between optical centers of a printed board side and the optical waveguide holding member side due to temperature change, and to provide an optical transceiver. <P>SOLUTION: The optical transceiver 10 has the optical waveguide holding member 12 mounted on a printed board 11. A housing 12A of the optical waveguide holding member 12 is made of a clad material containing carbon nanotubes as a filler integrally with an element-side lens 12E and a fiber-side lens 12F. When the optical waveguide holding member 12 is bonded to the printed board 11, the element-side lens 12E faces a light emission/reception portion 13A of a photoelectric converting element 13 formed on the printed board 11. The coefficient of linear expansion of the housing 12A is decreased by the carbon nanotubes, so that the misalignment between the element-side lens 12E and light mission/reception portion 13A due to temperature change can be suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気信号と光信号との変換を行う光トランシーバのプリント基板に実装され
る光導波路保持部材と、この光導波路保持部材を用いた光トランシーバに関する。
The present invention relates to an optical waveguide holding member mounted on a printed circuit board of an optical transceiver that performs conversion between an electric signal and an optical signal, and an optical transceiver using the optical waveguide holding member.

従来より、高速、大容量の通信網や通信制御機器等の発達により光ファイバによる通信が主流となっている。例えばオフィスや家庭に設置された情報端末等にも光ファイバによりインターネット等の通信網を接続して信号の送受信が行われている。パソコンや周辺機器と光ファイバ(外部光ファイバ)の接続部には、電気信号と光信号を双方向に変換可能な光トランシーバが用いられている。このような光トランシーバは、外部光ファイバと光電変換素子との間に形成される光導波路を備える(例えば、特許文献1参照)。
特開2001−051271号公報
Conventionally, communication using optical fibers has become mainstream due to the development of high-speed, large-capacity communication networks and communication control devices. For example, signals are transmitted and received by connecting a communication network such as the Internet to an information terminal installed in an office or home by an optical fiber. An optical transceiver capable of bidirectionally converting an electric signal and an optical signal is used at a connection portion between a personal computer and peripheral devices and an optical fiber (external optical fiber). Such an optical transceiver includes an optical waveguide formed between an external optical fiber and a photoelectric conversion element (see, for example, Patent Document 1).
JP 2001-05271 A

上述のような光トランシーバは、光電変換素子が配設されるプリント基板の上に光導波路用の光導波路保持部材が実装される。通常、プリント基板はガラスエポキシ樹脂で構成され、一方、光導波路保持部材は、クラッド材料としての機能を確保するためにオレフィン系の樹脂で構成される。プリント基板側に配設される光電変換素子と光導波路保持部材側に配設される光導波路との間の光路の接続は、光電変換素子の受発光部と、光導波路の端部とを対向させ、それぞれの光学中心を一致させることによって実現される。光学中心同士の位置精度は、±数μmレベルが求められる。   In the optical transceiver as described above, an optical waveguide holding member for an optical waveguide is mounted on a printed circuit board on which a photoelectric conversion element is disposed. Usually, the printed circuit board is made of glass epoxy resin, while the optical waveguide holding member is made of olefin resin in order to ensure the function as a clad material. The optical path connection between the photoelectric conversion element arranged on the printed circuit board side and the optical waveguide arranged on the optical waveguide holding member side is such that the light receiving and emitting part of the photoelectric conversion element faces the end of the optical waveguide This is realized by matching each optical center. The positional accuracy between the optical centers is required to be ± several μm level.

ところで、光トランシーバは使用中に約80〜90℃程度まで温度が上昇する。また、プリント基板と光導波路保持部材の熱膨張率は相違する。このため、プリント基板と光導波路保持部材の接合位置とそれぞれの光学中心との間の距離によっては、熱膨張により光学中心同士の位置ずれが生じる可能性があった。すなわち、プリント基板及び光導波路保持部材の接合位置とそれぞれの光学中心との間の距離が熱膨張によって数μm以上ずれると、光トランシーバの性能に大きな影響を与える可能性があった。   By the way, the temperature of the optical transceiver rises to about 80 to 90 ° C. during use. Further, the thermal expansion coefficients of the printed board and the optical waveguide holding member are different. For this reason, depending on the distance between the bonding position of the printed circuit board and the optical waveguide holding member and the respective optical centers, there is a possibility that the optical centers may be displaced due to thermal expansion. That is, if the distance between the bonding position of the printed circuit board and the optical waveguide holding member and each optical center is shifted by several μm or more due to thermal expansion, the performance of the optical transceiver may be greatly affected.

そこで、本発明は、プリント基板側と光導波路保持部材側との光学中心同士の温度変化による位置ずれを抑制した光導波路保持部材及び光トランシーバを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical waveguide holding member and an optical transceiver in which a positional shift due to a temperature change between optical centers on a printed circuit board side and an optical waveguide holding member side is suppressed.

本発明の一局面の光導波路保持部材は、電気信号と光信号との変換を行う光トランシーバのプリント基板に実装され、外部光ファイバと前記プリント基板に実装又は形成される光電変換素子との間の光導波路を保持する光導波路保持部材であって、前記光導波路の第1端を前記光電変換素子の受発光部に光学的に接続する第1接続部と、前記光導波路の第2端を前記外部光ファイバに光学的に接続する第2接続部と、前記第1接続部及び前記第2接続部を保持するとともに、当該第1接続部及び当該第2接続部の間に形成される光導波路を保持する筐体とを含み、前記第1接続部、前記第2接続部、及び前記筐体は、カーボンナノチューブ又はカーボンフラーレンを含有するクラッド材料により一体成形される。   An optical waveguide holding member according to one aspect of the present invention is mounted on a printed circuit board of an optical transceiver that performs conversion between an electric signal and an optical signal, and between an external optical fiber and a photoelectric conversion element mounted or formed on the printed circuit board. An optical waveguide holding member for holding the optical waveguide, wherein a first connection portion that optically connects the first end of the optical waveguide to the light receiving and emitting portion of the photoelectric conversion element, and a second end of the optical waveguide A second connection portion that is optically connected to the external optical fiber, and the light that is formed between the first connection portion and the second connection portion while holding the first connection portion and the second connection portion. A housing for holding a waveguide, and the first connecting portion, the second connecting portion, and the housing are integrally formed of a clad material containing carbon nanotubes or carbon fullerenes.

また、前記第1接続部及び前記第2接続部に、当該第1接続部及び前記第2接続部と一体成形されるレンズを備えてもよい。   Moreover, you may provide the said 1st connection part and the said 2nd connection part with the lens integrally molded with the said 1st connection part and the said 2nd connection part.

また、前記カーボンナノチューブの長さは前記光信号の波長以下であってもよい。   The length of the carbon nanotube may be equal to or shorter than the wavelength of the optical signal.

本発明の一局面の光トランシーバは、前記光電変換素子が実装又は形成されるプリント基板と、前記いずれかの光導波路保持部材とを備える。   An optical transceiver according to an aspect of the present invention includes a printed circuit board on which the photoelectric conversion element is mounted or formed, and any one of the optical waveguide holding members.

本発明によれば、プリント基板側と光導波路保持部材側との光学中心同士の温度変化による位置ずれを抑制した光導波路保持部材及び光トランシーバを提供できるという特有の効果が得られる。   According to the present invention, it is possible to provide a specific effect that an optical waveguide holding member and an optical transceiver can be provided in which a positional shift due to a temperature change between optical centers of the printed circuit board side and the optical waveguide holding member side is suppressed.

以下、本発明の光導波路保持部材及び光トランシーバを適用した実施の形態について説明する。   Hereinafter, embodiments to which the optical waveguide holding member and the optical transceiver of the present invention are applied will be described.

図1は、本実施の形態の光導波路保持部材及び光トランシーバを示す図であり、(a)は全体を示す斜視図、(b)はプリント基板のみを示す斜視図である。   1A and 1B are diagrams showing an optical waveguide holding member and an optical transceiver according to the present embodiment. FIG. 1A is a perspective view showing the whole, and FIG. 1B is a perspective view showing only a printed circuit board.

本実施の形態の光トランシーバ10は、プリント基板11の上に実装される光導波路保持部材12を備える。この光導波路保持部材12はプリント基板11に接着される。   The optical transceiver 10 of this embodiment includes an optical waveguide holding member 12 mounted on a printed board 11. The optical waveguide holding member 12 is bonded to the printed board 11.

プリント基板11は、ガラスエポキシ樹脂製の基板に図示しない銅配線を形成したものである。このプリント基板11には、図1(b)に示すように、光電変換素子13が形成される。光電変換素子13は、図示しない銅配線を介してプリント基板11上に形成されるIC等と接続される。なお、光電変換素子13は受発光部13Aがプリント基板11の上面と略同一面上に位置するように形成されるが、説明の便宜上、その輪郭を図1(b)では実線で示す。   The printed board 11 is formed by forming a copper wiring (not shown) on a glass epoxy resin board. A photoelectric conversion element 13 is formed on the printed board 11 as shown in FIG. The photoelectric conversion element 13 is connected to an IC or the like formed on the printed board 11 via a copper wiring (not shown). Note that the photoelectric conversion element 13 is formed so that the light emitting / receiving portion 13A is positioned substantially on the same plane as the upper surface of the printed board 11, but for the sake of convenience of description, the outline is shown by a solid line in FIG.

図2は、本実施の形態の光導波路保持部材の筐体を示す図であり、(a)は正面、平面、及び右側面を示す斜視図、(b)は底面、背面、及び左側面を示す斜視図である。   2A and 2B are views showing a housing of the optical waveguide holding member according to the present embodiment, in which FIG. 2A is a perspective view showing a front surface, a plane surface, and a right side surface, and FIG. It is a perspective view shown.

光導波路保持部材12は、カーボンナノチューブを含有するクラッド材料で構成される筐体12Aを有する。このクラッド材料は、オレフィン系の樹脂で構成される。   The optical waveguide holding member 12 has a housing 12A made of a clad material containing carbon nanotubes. This clad material is made of an olefin resin.

筐体12Aは、背面側の接続部12Bに接続される外部光ファイバ(図示せず)と、底面側に配設される光電変換素子13との間で光信号を伝送するための光導波路を保持する部材である。光導波路は、光導波路形成面12Cに形成される。この光導波路形成面12Cは、筐体12Aの上面側から正面側にかけて略90度湾曲しており、円柱体の外周面の略1/4分に相当する3次元的な形状を有する。なお、接続部12Bには、外部光ファイバのフェルールを位置決めするためのピン穴が両側に設けられている。   The housing 12A includes an optical waveguide for transmitting an optical signal between an external optical fiber (not shown) connected to the connection portion 12B on the back side and the photoelectric conversion element 13 provided on the bottom side. It is a member to hold. The optical waveguide is formed on the optical waveguide forming surface 12C. The optical waveguide forming surface 12C is curved approximately 90 degrees from the upper surface side to the front side of the housing 12A, and has a three-dimensional shape corresponding to approximately ¼ of the outer peripheral surface of the cylindrical body. The connecting portion 12B is provided with pin holes on both sides for positioning the ferrule of the external optical fiber.

図2(a)に示すように光導波路形成面12Cには、溝12Dが形成されており、この溝12D内にコア部材14(図1参照)が注入される。このコア部材14の上面には、クラッド材料性のフィルム(図示せず)が形成される。このようにして、光導波路形成面12Cに光ファイバが形成されることになる。図1にはコア部材14が8本形成されている状態を示す。   As shown in FIG. 2A, a groove 12D is formed on the optical waveguide forming surface 12C, and the core member 14 (see FIG. 1) is injected into the groove 12D. A clad material film (not shown) is formed on the upper surface of the core member 14. Thus, an optical fiber is formed on the optical waveguide forming surface 12C. FIG. 1 shows a state in which eight core members 14 are formed.

筐体12Aの底部(底面側の部分)には、光電変換素子13の受発光部13Aとの間で光信号を授受するための素子側レンズ12Eが一体成形され、筐体12Aの背面(の接続部12B内)には、外部光ファイバとの間で光信号を授受するためのファイバ側レンズ12Fが一体成形される。素子側レンズ12E及びファイバ側レンズ12Fが形成される位置は、コア部材14の両端に向き合う位置である。   An element side lens 12E for transmitting and receiving an optical signal to and from the light emitting / receiving unit 13A of the photoelectric conversion element 13 is integrally formed at the bottom (portion on the bottom side) of the housing 12A, and the rear surface of the housing 12A In the connecting portion 12B), a fiber side lens 12F for transmitting / receiving an optical signal to / from an external optical fiber is integrally formed. The positions where the element side lens 12E and the fiber side lens 12F are formed are positions facing both ends of the core member 14.

素子側レンズ12Eは、例えば、直径が0.2mm程度であり、導波路保持部材12がプリント基板11に接着された状態において、光電変換素子13の受発光部13Aとコア部材14との間を光学的に接続するレンズである。   The element side lens 12E has, for example, a diameter of about 0.2 mm, and a gap between the light emitting / receiving portion 13A of the photoelectric conversion element 13 and the core member 14 in a state where the waveguide holding member 12 is bonded to the printed circuit board 11. This is an optically connected lens.

コア部材14と光電変換素子13の受発光部13Aとの間には、例えば500μm程度の空隙があるが、コア部材14から放出される光信号は、素子側レンズ12Eで集光され、光電変換素子13の受発光部13Aに入射する。また、逆方向についても同様である。   There is a gap of, for example, about 500 μm between the core member 14 and the light receiving / emitting part 13A of the photoelectric conversion element 13, but the optical signal emitted from the core member 14 is condensed by the element side lens 12E and photoelectrically converted. The light is incident on the light emitting / receiving portion 13A of the element 13. The same applies to the reverse direction.

なお、ここでは、受発光部13Aとして記載するが、実際には、図1(b)に示す一対の光電変換素子13のうちの一方が光信号を受信して電気信号に変換するための光電変換素子であり、こちらの光電変換素子には受光部が形成される。また、図1(b)に示す一対の光電変換素子13のうちの他方は電気信号を光信号に変換して発信するための光電変換素子であり、こちらの光電変換素子には発光部が形成される。ここでは、特に両者を区別せず、光電変換素子13及び受発光部13Aと示す。   Here, although described as the light emitting / receiving unit 13A, in reality, one of the pair of photoelectric conversion elements 13 shown in FIG. 1B receives photoelectric signals for receiving optical signals and converting them into electric signals. A light receiving portion is formed in this photoelectric conversion element. The other of the pair of photoelectric conversion elements 13 shown in FIG. 1B is a photoelectric conversion element for converting an electric signal into an optical signal and transmitting the light signal, and a light emitting portion is formed in this photoelectric conversion element. Is done. Here, the photoelectric conversion element 13 and the light emitting / receiving unit 13A are shown without any particular distinction.

また、ファイバ側レンズ12Fは、直径が0.2mm程度であり、導波路保持部材12がプリント基板11に接着された状態において、図示しない外部光ファイバとコア部材14との間を光学的に接続するレンズである。   The fiber side lens 12F has a diameter of about 0.2 mm, and optically connects between an external optical fiber (not shown) and the core member 14 in a state where the waveguide holding member 12 is bonded to the printed circuit board 11. It is a lens to do.

このファイバ側レンズ12Fは、筐体12の接続部12Bに形成される。コア部材14とファイバ側レンズ12Fとの間、及び、ファイバ側レンズ12Fと外部光ファイバとの間には、それぞれ、例えば500μm程度の空隙があるが、コア部材14から放出される光信号は、ファイバ側レンズ12Fで集光され、外部光ファイバに入射する。また、逆方向についても同様である。   The fiber side lens 12 </ b> F is formed in the connection portion 12 </ b> B of the housing 12. Between the core member 14 and the fiber side lens 12F, and between the fiber side lens 12F and the external optical fiber, there are gaps of about 500 μm, for example, but the optical signal emitted from the core member 14 is The light is collected by the fiber side lens 12F and enters the external optical fiber. The same applies to the reverse direction.

ここで、筐体12Aは、オレフィン系の樹脂にカーボンナノチューブを含有するクラッド材料で構成される。このカーボンナノチューブとしては、長さが約800nm、直径が1nmのものを用いる。長さを800nmとする理由は、筐体12Aは素子側レンズ12E及びファイバ側レンズ12Fと一体成型されるため、素子側レンズ12E及びファイバ側レンズ12Fを透過する光信号の損失を抑えるためであり、そのために光信号(レーザ光)の波長(800nm〜1600nm)よりも短くするためである。   Here, the housing 12A is made of a clad material containing carbon nanotubes in an olefin resin. As the carbon nanotube, one having a length of about 800 nm and a diameter of 1 nm is used. The reason why the length is set to 800 nm is to suppress loss of an optical signal transmitted through the element side lens 12E and the fiber side lens 12F because the housing 12A is integrally formed with the element side lens 12E and the fiber side lens 12F. This is because the wavelength of the optical signal (laser light) is shorter than 800 nm to 1600 nm.

また、オレフィン系の樹脂の線膨張率は約70ppm/℃であり、一方、カーボンナノチューブの線膨張率は約7ppm/℃である。   The linear expansion coefficient of the olefin resin is about 70 ppm / ° C., whereas the linear expansion coefficient of the carbon nanotube is about 7 ppm / ° C.

このため、カーボンナノチューブを含有させることによって筐体12Aの線膨張率を低下させることができ、その含有率(重量比)を最適化することにより、光トランシーバ10の温度が使用中に上昇しても、素子側レンズ12Eと受発光部13Aの位置ずれの発生を抑制することができる。   For this reason, the linear expansion coefficient of the housing 12A can be reduced by including the carbon nanotubes, and the temperature of the optical transceiver 10 is increased during use by optimizing the content ratio (weight ratio). In addition, it is possible to suppress the occurrence of positional deviation between the element side lens 12E and the light emitting / receiving unit 13A.

素子側レンズ12Eの光学中心と受発光部13Aとの光学中心との位置精度は、例えば、±0.5〜20μm程度のレベルが要求される。このため、カーボンナノチューブの含有率は、例えば、光導波路保持部材12のプリント基板11に対する固定位置から素子側レンズ12Eまでの長さ等を考慮して、温度上昇による位置ずれが上述の位置精度以下(すなわち許容限度内)となるように設定されればよい。   The positional accuracy between the optical center of the element-side lens 12E and the optical center of the light emitting / receiving unit 13A is required to have a level of about ± 0.5 to 20 μm, for example. For this reason, the content rate of the carbon nanotube is, for example, the positional deviation due to the temperature rise is equal to or less than the above-described positional accuracy in consideration of the length from the fixed position of the optical waveguide holding member 12 to the printed board 11 to the element side lens 12E. (That is, it may be set to be within the allowable limit).

なお、プリント基板11の線膨張率は約14ppm/℃、コア部材14の線膨張率は約70ppm/℃、光導波路保持部材12をプリント基板11に接着するための接着剤の線膨張率は約70ppm/℃である。このため、これらの部材の線膨張率を考慮してカーボンナノチューブの含有率を決定してもよい。   The linear expansion coefficient of the printed circuit board 11 is about 14 ppm / ° C., the linear expansion coefficient of the core member 14 is about 70 ppm / ° C., and the linear expansion coefficient of the adhesive for bonding the optical waveguide holding member 12 to the printed circuit board 11 is about 70 ppm / ° C. For this reason, you may determine the content rate of a carbon nanotube in consideration of the linear expansion coefficient of these members.

オレフィン系の樹脂のようなポリマー材料の線膨張率を低下させるために、従来はガラス繊維又はガラスビーズ等がフィラーとして用いられていた。しかし、ガラス繊維やガラスビーズ等とポリマー材料との屈折率の相違により、光信号の乱反射が生じるため、本実施の形態のように素子側レンズ12E及びファイバ側レンズ12Fが一体成形される筐体12Aの材料には不向きであった。   Conventionally, glass fibers or glass beads have been used as fillers in order to reduce the linear expansion coefficient of polymer materials such as olefin resins. However, since the optical signal is irregularly reflected due to the difference in refractive index between the glass fiber or glass bead and the polymer material, the housing in which the element side lens 12E and the fiber side lens 12F are integrally molded as in the present embodiment. Not suitable for 12A material.

これに対して本実施の形態では、カーボンナノチューブをフィラーとして用いることにより、光学的特性の劣化を防止しつつ、温度変化による性能低下を抑制した光導波路保持部材12及び光トランシーバ10を提供することができる。   On the other hand, the present embodiment provides an optical waveguide holding member 12 and an optical transceiver 10 that use carbon nanotubes as fillers to prevent deterioration of optical characteristics and suppress performance degradation due to temperature changes. Can do.

なお、以上では、一例として光信号の波長が800nm〜1600nmである場合について説明したが、波長がさらに短い場合には、その波長以下のカーボンナノチューブを用いればよい。   In the above, the case where the wavelength of the optical signal is 800 nm to 1600 nm has been described as an example. However, if the wavelength is shorter, carbon nanotubes having the wavelength or less may be used.

また、以上では、カーボンナノチューブを含有するクラッド材料で一体成形する光導波路保持部材について説明したが、カーボンナノチューブの代わりに、又は、カーボンナノチューブに加えて、クラッド材料にカーボンフラーレンを含有させて光導波路保持部材を一体成形してもよい。カーボンフラーレンは、直径が約0.7nm程度であり、また、線膨張率はカーボンナノチューブと略同一であるため、カーボンナノチューブの代わりにクラッド材料に含有させれば、上述のようにカーボンナノチューブを含有させる場合と同様の結果を得ることができる。   In the above description, the optical waveguide holding member integrally formed with the clad material containing carbon nanotubes has been described. However, instead of or in addition to the carbon nanotubes, the clad material contains carbon fullerene and the optical waveguide. The holding member may be integrally formed. Since carbon fullerene has a diameter of about 0.7 nm and the linear expansion coefficient is substantially the same as that of carbon nanotubes, if carbon clad material is used instead of carbon nanotubes, carbon nanotubes are contained as described above. The same result as that obtained can be obtained.

また、以上では、プリント基板11に光電変換素子13が形成されている形態について説明したが、プリント基板11とは別に作成された光電変換素子13を実装するように構成してもよい。   Moreover, although the form in which the photoelectric conversion element 13 was formed in the printed circuit board 11 was demonstrated above, you may comprise so that the photoelectric conversion element 13 produced separately from the printed circuit board 11 may be mounted.

以上、本発明の例示的な実施の形態の光導波路保持部材及び光トランシーバについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。   The optical waveguide holding member and the optical transceiver according to the exemplary embodiment of the present invention have been described above. However, the present invention is not limited to the specifically disclosed embodiment, and from the claims. Various modifications and changes can be made without departing.

本実施の形態の光導波路保持部材及び光トランシーバを示す図であり、(a)は全体を示す斜視図、(b)はプリント基板のみを示す斜視図である。It is a figure which shows the optical waveguide holding member and optical transceiver of this Embodiment, (a) is a perspective view which shows the whole, (b) is a perspective view which shows only a printed circuit board. 本実施の形態の光導波路保持部材の筐体を示す図であり、(a)は正面、平面及び右側面を示す斜視図、(b)は底面、背面、及び左側面を示す斜視図である。It is a figure which shows the housing | casing of the optical waveguide holding member of this Embodiment, (a) is a perspective view which shows a front surface, a plane, and a right side surface, (b) is a perspective view which shows a bottom surface, a back surface, and a left side surface. .

符号の説明Explanation of symbols

10 光トランシーバ
11 プリント基板
12 光導波路保持部材
12A 筐体
12B 接続部
12C 光導波路形成面
12D 溝
12E 素子側レンズ
12F ファイバ側レンズ
13 光電変換素子
13A 受発光部
14 コア部材
DESCRIPTION OF SYMBOLS 10 Optical transceiver 11 Printed circuit board 12 Optical waveguide holding member 12A Case 12B Connection part 12C Optical waveguide formation surface 12D Groove 12E Element side lens 12F Fiber side lens 13 Photoelectric conversion element 13A Light emitting / receiving part 14 Core member

Claims (4)

電気信号と光信号との変換を行う光トランシーバのプリント基板に実装され、外部光ファイバと前記プリント基板に実装又は形成される光電変換素子との間の光導波路を保持する光導波路保持部材であって、
前記光導波路の第1端を前記光電変換素子の受発光部に光学的に接続する第1接続部と、
前記光導波路の第2端を前記外部光ファイバに光学的に接続する第2接続部と、
前記第1接続部及び前記第2接続部を保持するとともに、当該第1接続部及び当該第2接続部の間に形成される光導波路を保持する筐体と
を含み、前記第1接続部、前記第2接続部、及び前記筐体は、カーボンナノチューブ又はカーボンフラーレンを含有するクラッド材料により一体成形される、光導波路保持部材。
An optical waveguide holding member that is mounted on a printed circuit board of an optical transceiver that converts electrical signals and optical signals, and that holds an optical waveguide between an external optical fiber and a photoelectric conversion element mounted or formed on the printed circuit board. And
A first connection part for optically connecting the first end of the optical waveguide to the light receiving and emitting part of the photoelectric conversion element;
A second connection for optically connecting the second end of the optical waveguide to the external optical fiber;
A housing for holding the first connection portion and the second connection portion and holding an optical waveguide formed between the first connection portion and the second connection portion, and the first connection portion, The optical waveguide holding member, wherein the second connection portion and the casing are integrally formed of a clad material containing carbon nanotubes or carbon fullerenes.
前記第1接続部及び前記第2接続部に、当該第1接続部及び前記第2接続部と一体成形されるレンズを備える、請求項1に記載の光導波路保持部材。   2. The optical waveguide holding member according to claim 1, wherein the first connection portion and the second connection portion include lenses that are integrally formed with the first connection portion and the second connection portion. 前記カーボンナノチューブの長さは前記光信号の波長以下である、請求項1又は2に記載の光導波路保持部材。   The optical waveguide holding member according to claim 1 or 2, wherein a length of the carbon nanotube is equal to or less than a wavelength of the optical signal. 前記光電変換素子が実装又は形成されるプリント基板と、
請求項1乃至3のいずれか一項に記載の光導波路保持部材と
を備える光トランシーバ。
A printed circuit board on which the photoelectric conversion element is mounted or formed;
An optical transceiver comprising the optical waveguide holding member according to any one of claims 1 to 3.
JP2007184447A 2007-07-13 2007-07-13 Optical waveguide holding member and optical transceiver Expired - Fee Related JP4874181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184447A JP4874181B2 (en) 2007-07-13 2007-07-13 Optical waveguide holding member and optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184447A JP4874181B2 (en) 2007-07-13 2007-07-13 Optical waveguide holding member and optical transceiver

Publications (2)

Publication Number Publication Date
JP2009020425A true JP2009020425A (en) 2009-01-29
JP4874181B2 JP4874181B2 (en) 2012-02-15

Family

ID=40360088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184447A Expired - Fee Related JP4874181B2 (en) 2007-07-13 2007-07-13 Optical waveguide holding member and optical transceiver

Country Status (1)

Country Link
JP (1) JP4874181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2885667A2 (en) * 2012-08-14 2015-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical element, sensor element and method for the production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2885667A2 (en) * 2012-08-14 2015-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical element, sensor element and method for the production thereof
JP2015526765A (en) * 2012-08-14 2015-09-10 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Planar optical element, sensor element and manufacturing method thereof

Also Published As

Publication number Publication date
JP4874181B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5102550B2 (en) Optical waveguide holding member and optical transceiver
US7539367B2 (en) Optical system connection structure, optical component, and optical communication module
JP5702596B2 (en) Lens array and optical module having the same
WO2014034458A1 (en) Structure for connecting optical module and optical connector
US9739962B2 (en) Plastic optical fiber data communication links
JP2006091241A (en) Optoelectronic composite wiring component and electronic equipment using the same
JP2010122312A (en) Transmission/reception lens block and optical module using the same
JP2004212847A (en) Optical coupler
JP2009122354A (en) Optical block reinforcing member, optical block, and optical module using them
JP4819000B2 (en) Optical waveguide holding member and optical transceiver
JP2008209767A (en) Optical module and its manufacturing method
WO2014017109A1 (en) Integrated optical module
JP5024199B2 (en) Optical transmission module
JPWO2018042984A1 (en) Optical connection structure
JP4874181B2 (en) Optical waveguide holding member and optical transceiver
JP4898257B2 (en) Optical connection structure, photoelectric module using the same, and optical waveguide unit
WO2016162943A1 (en) Photoelectric circuit substrate
JP2009069501A (en) Optoelectronic circuit board and optical transmission device
JP4965699B2 (en) Optical connection structure, optoelectric module using the same, and optical waveguide unit
JP2008233556A (en) Lens case and optical module
JP2008020721A (en) Parallel optical transmitter-receiver
JP2008134444A (en) Optical module and optical waveguide structure
CN112083526A (en) Optical subassembly structure
JP2016218327A (en) Optical transmission module, optical transmission/reception module, and optical module substrate
JP3821639B2 (en) 2-core type light emitting / receiving device for POF communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4874181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees