JP3821639B2 - 2-core type light emitting / receiving device for POF communication - Google Patents

2-core type light emitting / receiving device for POF communication Download PDF

Info

Publication number
JP3821639B2
JP3821639B2 JP2000260792A JP2000260792A JP3821639B2 JP 3821639 B2 JP3821639 B2 JP 3821639B2 JP 2000260792 A JP2000260792 A JP 2000260792A JP 2000260792 A JP2000260792 A JP 2000260792A JP 3821639 B2 JP3821639 B2 JP 3821639B2
Authority
JP
Japan
Prior art keywords
light
emitting
light receiving
pof
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000260792A
Other languages
Japanese (ja)
Other versions
JP2002072022A (en
Inventor
康博 小池
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIIMA ELECTRONICS INC.
Original Assignee
SHIIMA ELECTRONICS INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIIMA ELECTRONICS INC. filed Critical SHIIMA ELECTRONICS INC.
Priority to JP2000260792A priority Critical patent/JP3821639B2/en
Publication of JP2002072022A publication Critical patent/JP2002072022A/en
Application granted granted Critical
Publication of JP3821639B2 publication Critical patent/JP3821639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック光ファイバ(POF)を利用する光通信用の接続部品付き受発光装置に係わり、信号光の入出射効率に優れ且つ光伝送時の接続損失を低減する技術に関するものである。
【0002】
【従来の技術】
POFを用いた光通信の受発信システムは、POFによる光信号伝送路に受信系及び発信系を備えている。一般的には2本のPOFを使用し受発信を行う2芯型が主流であり、受発光装置には受発光素子が搭載されており発光素子より信号光を発信し受光素子にて信号光を受信する。一方の受発光装置の発光素子より発した信号光をPOFを経由し他方の受光素子に光学接続させ互いに信号光の交信を行うものである。発光素子としてはレーザ(LD、VCSEL)やダイオード(LED、RC−LED)、受光素子としてはダイオード(PD)等が主に使用される。受発光素子又は受発光部品の入手先としては、日本電気、日立製作所、東芝、ソニー、松下電器産業、浜松ホトニクス、インフィニオン、ヒューレットパッカード等を挙げることができる。
【0003】
このような光通信システムにおける受発信性能は信号光の入出射効率及び伝送効率に大きく影響される。現在の受発光装置は、極細線の石英ファイバ(数μm径)を想定したもので数百μmの径を持つPOFにとっては信号光を有効に入出射し難い構造となっている。
【0004】
現在の受発光装置は、石英ファイバと受発光素子との間にレンズを介在させるものである。しかし、これは精密接続が必要でコストが高く汎用性に乏しいだけでなく、POFに適用した場合にはレンズ面での反射により大きな接続損失を生じる問題を抱えていた。
【0005】
又、POF用の接続部品を標準化する動きが活発となっている。個別企業、日本又は世界のレベルで標準化する運動が行われている(家電会社、日本電子機械工業会、POFコンソーシアム)。
【0006】
本発明者は、光通信システムの接続損失を低減するため、光ファイバと受発光素子との間に反射面で囲まれた導光路を有する導光体を介在させる結合構造(レンズレス結合、特開平10−221573、特開平10−221574)を提案している。
【0007】
本発明者は、さらなる実用化検討を鋭意行ない、市販の接続部品を使用した場合でも入出射光制御型導光体部品を介在させることにより効率的なPOF通信を可能にする方法を見い出したものである。市販の接続部品、効率的な導光体部品及び受発光部品を一体化し、POFと接続することにより信号光の伝送損失の少ないレンズレス接合を実現したものである。
【0008】
【発明が解決しようとする課題】
本発明は、信号光の入出射効率が良く接続損失の少ないPOF通信用2芯型受発光装置を提供するものである。現在の受発光装置及び接続装置は産業用途(石英ファイバ)を前提に開発されており、民生用途(POF)の低コストで簡便な汎用製品の開発が望まれている。
【0009】
【課題を解決するための手段】
本発明は、市販の接続部品に高効率の導光体部品及び受発光部品を一体化したPOF通信用2芯型受発光装置であり、各部品の光軸が一致しており各部品の端面が密着している。即ち、本願発明の要旨は、プラスチック光ファイバ(以下、POFという)と受光素子及び発光素子を光学的に結合する装置において、その構造がPOF用2芯型の接続部品、信号光を誘導する導光体部品及び受光素子と発光素子とを備えた受発光部品より構成されており、接続部品、導光体部品及び受発光部品とが結合一体化され、導光体部品は反射面で囲まれた受光側導光路及び反射面で囲まれた発光側導光路を備え、受発光部品は回路基板を備え、回路基板に受光素子及び発光素子が設けられ、更に回路基板に受光側導光路端面から受光素子へ信号を導くために加工された孔である受光側通光孔及び発光素子から発光側導光路端面へ信号を導くために加工された孔である発光側通光孔を備え、受光素子及び発光素子は回路基板にフリップ搭載され、かつ、回路基板には受光素子の受光部への信号光を導く通光孔及び発光素子の発光部から信号光を導く通光孔が加工されていることを特徴とするPOF通信用2芯型受発光装置である。尚、市販の接続部品は、モレックス、AMP等より手に入れることができる。
【0010】
請求項2は導光体部品の受光側導光路構造に関するものであり、受光側導光路が、反射面で囲まれ、受光素子側に向けて先細りとなる回転楕円体、回転放物体又は円錐台の形状をなし、かつ受光側導光路端面の大きさは導光路のPOF側端面寸法がPOF端面寸法以上で、受光素子側端面寸法が受光素子の受光部寸法以下であることを特徴としている。請求項3は発光側の構造であり、発光側導光路が、反射面で囲まれ、発光素子側に向けて先細りもしくは平行となる回転楕円体、回転放物線、円錐台又は円柱形状をなし、かつ発光側導光路端面の大きさは導光路の発光素子側端面寸法が発光素子の発光部寸法以上で、POF側端面寸法がPOF端面寸法以下であることを特徴としている。
【0011】
請求項4は導光体部品の導光路内部に光透過体が充填されていることを特徴とするものである。即ち、受光側導光路及び発光側導光路の内部に、光透過体が充填されていることを特徴とするものである。
【0012】
請求項は受発光部品の構造に関するものであり、受発光部品が、受光素子、発光素子及びドライバー又はアンプからなる関連素子を複合化した構造を有することを特徴とするものである。
【0013】
請求項は光透過体が、屈折率1.30から1.60で、硬さJIS(A型)が53度以下の特性を有するシリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂及び熱可塑性樹脂から選択される一の透明樹脂であることを特徴とするものである。
【0014】
市販の接続部品を使用する場合、高効率の導光体部品及び受発光部品を一体化し、各部品の光軸を合わせ且つ端面を密着させることが必要である。信号光は発光素子より出射されPOF中を伝送され受光素子に入射される。各部品の取り付けは、光軸合わせの精度が得られるならば、固定方式又は脱着方式のどちらでも良い。導光体部品と受発光部品とは、接着固定するか複合化製造することが特に好ましい。両部品の取付には高精度の接合技術が要求され、両部品の光軸がズレると伝送損失を招くためである。
【0015】
導光路の構造としては、受光側は反射面で囲まれ受光素子側に向けて先細りとなる形状を有し該端面(円)寸法がPOF側はPOF同等以上であり受光素子側は受光素子の受光部同等以下であることが好ましい。POFよりの信号光が導光路に誘導され受光素子の受光部に有効に入射するためである。又、発光側は反射面で囲まれ発光素子側に向けて先細りもしくは並行である形状を有し該端面の寸法が発光素子側は発光素子の発光部同等でありPOF側はPOF同等以下であることが好ましい。発光素子からの信号光が導光路に誘導されPOFへ有効に入射するためである。
【0016】
一般的に、POFのコア径(250μmから900μm)は受発光素子の受光部(100μmから500μm)より大きい。POFを組成で分類するとポリメチルメタクリレート樹脂(クラベ、三菱レイヨン)、フッソ樹脂(旭硝子)の2種類を挙げることができる。
【0017】
導光体部品の導光路内部は光透過体が充填されていることが好ましい。信号光の反射防止や気密性の向上といった効果が得られる。
【0018】
又、精度の悪い部品の一体化を想定すると、接続部品と導光体部品の界面、及び又は導光体部品と受発光部品の界面は光透過体を介して密着していることが好ましい。界面隙間での反射等による光伝送損失を防ぐことができる。
【0019】
受発光部品は、受発光素子及び関連素子等(ドライバー、アンプ、コンデンサー、抵抗等)を複合化した構造であり光透過体で封止されていることが好ましい。民生市場の要求する汎用高速伝送型軽薄短小装置を実現するためには、複合プラスチックパッケージが必要となる。
【0020】
又、受発光部品は信号光を導くための通光孔が加工された回路基板に受発光素子をフリップ搭載した構造が好ましい。POFと受発光素子間の導光通路距離が短くなり伝送損失の低減につながるからである。更に、気密面で該通光孔が光透過体で封止されていることが好ましい。
【0021】
光透過体の屈折率は1.30から1.60の範囲内、該硬さはJIS(A型)70度以下であることが好ましい。屈折率は光ファイバとはぼ同じであることが反射や屈折による損失を最小にできる。該硬さは硬すぎると密着性が悪くなり隙間発生による伝送損失を招く。又、光透過体としては実績があり品質の安定性な樹脂、シリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、熱可塑性樹脂、及びこれら樹脂の誘導体より選択するのが好ましい。
【0022】
民生用受光装置は廉価で小型であることが要求される。即ち、金属封止よりは樹脂封止されていることが好ましい。本発明の光透過体は、受発光素子の透明封止材料でもあり受発光素子を自然環境及び人的取扱環境より守る機能が要求される。受発光素子は環境変動に対して敏感であるため、光透過体は強固に受発光素子を保護することが求められる。市販品は信越化学工業、東芝シリコーン、東亞合成、日本化薬、旭化成等の製品カタログより選択することができる。又、これらメーカーより中間製品を購入し所望の光透過体及びその誘導体を製造することも可能である。
【0023】
図1は、POF通信用2芯型受発光装置の参考例を示している(接続方向の上から見た断面)。(1)は一体化時、(2)は各部品の状態を示したものである。接続部品11は高効率の導光体部品12及び受発光部品13と一体化されている。導光体部品は反射面で囲まれた導光路15を持ち、受発光部品は上部が受光部であり、通光孔17、光素子18及び回路基板19より構成されている。導光路は、受光側はPOFより大きい端面と受光素子受光部同等の端面、発光側は発光素子発光部同等の端面とPOFより小さい端面を有する。尚、接続部品は市販品であり(例:PN型、SMI型、LC型等)、10はPOF接続時にPOF端面が露出する部分である。
【0024】
図2は、本発明によるPOF通信用2芯型受発光装置のを示す。21は接続部品、22は導光体部品、23は受発光部品、25は導光路、27は通光孔、28は光素子、29は回路基板である。図1に比べて受発光部品の構造が異なっており、光素子裏面を金線結合し樹脂封止したものである。又、接続部品と導光体部品は光透過体24を介して密着している。更に、導光路にも同様の光透過体が充填されている。
【0026】
【実施形態】
本発明の実施形態を、実施例及び比較例等にて具体的に説明する。尚、各例とも接続部品は日本AMP製、PDは浜松ホトニクス製、回路基板は住友金属鉱山製の製品を使用した。
【0027】
参考例
図1のような構造を持つPOF通信用2芯型受発光装置を製造した。接続部品11は市販のPN型コネクターである。導光体部品12はPPE樹脂を射出成形し加工した試作品であり、円錐台状の導光体15を持ちその内部はメッキ加工されている。受発光部品は、回路基板19に電気回路及び通光孔17を加工し、次に光素子18を格納する中空枠を貼り付け、最後に光素子を搭載した回路基板を貼り合わした試作品である。尚、発光素子は東芝製LEDを使用した。受発光部品の通光孔は光透過体(エポキシ樹脂、日東電工製)を用いて封止した。この受発光装置とPOFを接続し光伝送時の接続損失を測定したところ、受光部は0.3dB、発光部は0.7dBであった。
【0028】
POFは、屈折率1.50、コア径0.75mmのポリメチルメタクリレート製光ファイバ(東レ製)であり、光透過体の硬化物特性は屈折率1.51、硬さ53であった。
【0029】
実施例
市販の接続部品21と高効率の導光体部品22及び受発光部品23を一体化し図2のような受発光装置を製造した。導光体部品は参考例と同様の成形品であるが、導光路25の内部に光透過体が充填されている。受発光部品は回路基板に光素子をフリップ実装し光透過体で受発光部を封止し、光素子の裏面は金線にて結線し市販の黒色半導体用液状材料(日本ペルノックス製)にて封止保護したものである。尚、発光素子はインフィニオン製RC−LEDを使用した。又、接続部品と導光体部品は光透過体を介して密着している。この受発光装置とPOFを接続したところ伝送損失は受光部で0.3dB、発光部で0.5dBの数値を示した。
【0030】
尚、本実施例で使用した光透過体は、シリコーン系樹脂(東芝シリコーン製)で屈折率1.49、硬さ38の硬化物特性を持つ。
【0032】
【比較例1】
実施例1において、導光体部品を介さずに接続部品と受発光部品を接続した。この受発光装置の光伝送損失は、受光部5.7dB、発光部1.3dBであった。
【0033】
【比較例2】
実施例3において、導光体部品を介さずに接続部品と受発光部品を一体化した。この装置の接続損失は受光部1.2dB、発光部0.4dBの値を示した。
【0034】
【発明の効果】
本発明は、信号光の入出射効率が良く接続損失の少ないPOF通信用2芯型受発光装置を市場に提供するものである。本発明により、民生用の汎用受発光装置を供給でき、一般家庭で高速通信が可能となる。
【図面の簡単な説明】
【図1】 本発明の受発光装置の参考例を示す図である。
【図2】 本発明の受発光装置の一例を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light receiving and emitting device with connection parts for optical communication using a plastic optical fiber (POF), and relates to a technique that is excellent in signal light input / output efficiency and reduces connection loss during optical transmission.
[0002]
[Prior art]
An optical communication reception / transmission system using POF includes a reception system and a transmission system in an optical signal transmission path using POF. In general, the two-core type that uses two POFs to transmit and receive is the mainstream, and the light emitting and receiving device is equipped with a light receiving and emitting element, and the signal light is transmitted from the light emitting element and the signal light is received by the light receiving element. Receive. The signal light emitted from the light emitting element of one light emitting / receiving device is optically connected to the other light receiving element via the POF to exchange the signal light with each other. Lasers (LD, VCSEL) and diodes (LED, RC-LED) are mainly used as light emitting elements, and diodes (PD) are mainly used as light receiving elements. Examples of the source of the light emitting / receiving element or light receiving / emitting component include NEC, Hitachi, Toshiba, Sony, Matsushita Electric Industrial, Hamamatsu Photonics, Infineon, Hewlett-Packard and the like.
[0003]
The transmission / reception performance in such an optical communication system is greatly influenced by the input / output efficiency and transmission efficiency of signal light. The current light emitting and receiving device assumes a very thin quartz fiber (diameter of several μm), and has a structure that makes it difficult for a POF having a diameter of several hundred μm to effectively input and output signal light.
[0004]
The current light emitting / receiving device has a lens interposed between a quartz fiber and a light emitting / receiving element. However, this requires not only precise connection but high cost and poor versatility, but when it is applied to POF, it has a problem of causing large connection loss due to reflection on the lens surface.
[0005]
In addition, there is an active movement to standardize connection parts for POF. Movements to standardize at the level of individual companies, Japan or the world are being carried out (home electronics companies, Japan Electronic Machinery Manufacturers Association, POF consortium).
[0006]
In order to reduce the connection loss of an optical communication system, the present inventor has a coupling structure (lensless coupling, specially characterized by interposing a light guide having a light guide path surrounded by a reflection surface between an optical fiber and a light emitting / receiving element. Kaihei 10-221573 and JP-A-10-221574 are proposed.
[0007]
The present inventor has eagerly investigated further practical application, and has found a method that enables efficient POF communication by interposing an input / output light control type light guide body part even when a commercially available connection part is used. is there. A commercially available connection component, an efficient light guide component, and a light receiving / emitting component are integrated and connected to the POF to realize lensless bonding with little transmission loss of signal light.
[0008]
[Problems to be solved by the invention]
The present invention provides a two-core type light receiving and emitting device for POF communication that has good input / output efficiency of signal light and low connection loss. Current light emitting / receiving devices and connection devices have been developed on the premise of industrial use (quartz fiber), and development of low-cost and simple general-purpose products for consumer use (POF) is desired.
[0009]
[Means for Solving the Problems]
The present invention is a POF communication two-core type light emitting / receiving device in which a highly efficient light guide component and a light receiving / emitting component are integrated with a commercially available connection component, and the optical axes of the respective components coincide with each other. Are in close contact. That is, the gist of the present invention is an apparatus for optically coupling a plastic optical fiber (hereinafter referred to as POF), a light receiving element and a light emitting element, the structure of which is a two-core connecting part for POF, a signal light guiding conductor. It is composed of a light receiving / emitting component including a light component, a light receiving element, and a light emitting element. The connecting component, the light guide component, and the light receiving / emitting component are combined and integrated, and the light guide component is surrounded by a reflective surface. The light receiving side light guide path and the light emitting side light guide path surrounded by the reflecting surface are provided, the light receiving and emitting component includes a circuit board, the circuit board is provided with the light receiving element and the light emitting element, and the circuit board is further provided with the light receiving side light guide path from the end face. A light-receiving side light-transmitting hole that is a hole processed to guide a signal to the light-receiving element, and a light-emitting side light-transmitting hole that is a hole processed to guide a signal from the light-emitting element to the light-emitting side light guide path end surface. And the light emitting element flickers on the circuit board. Mounted, and for POF communication on the circuit board, wherein the light passing hole for guiding the signal light from the light emitting portion of the light passing hole and the light emitting element to guide the signal light to the light receiving portion of the light receiving element is processed This is a two-core type light emitting / receiving device. Commercially available connection parts can be obtained from Molex, AMP or the like.
[0010]
Claim 2 relates to a light receiving side light guide structure of a light guide part, wherein the light receiving side light guide path is surrounded by a reflecting surface and is tapered toward the light receiving element side. And the size of the end face of the light receiving side light guide path is characterized in that the POF side end face dimension of the light guide path is equal to or larger than the POF end face dimension and the light receiving element side end face dimension is equal to or smaller than the light receiving portion dimension of the light receiving element. Claim 3 is a structure on the light emitting side, the light emitting side light guide path is surrounded by a reflecting surface, and has a spheroid, a rotating parabola, a truncated cone or a columnar shape which is tapered or parallel toward the light emitting element side, and The light emitting side light guide path end face is characterized in that the light emitting element side end face dimension of the light guide path is equal to or larger than the light emitting portion dimension of the light emitting element and the POF side end face dimension is equal to or smaller than the POF end face dimension.
[0011]
According to a fourth aspect of the present invention, a light transmitting body is filled in the light guide path of the light guide body component. That is, the inside of the light receiving side light guide and the light emitting side light guide is filled with a light transmitting body.
[0012]
The fifth aspect of the present invention relates to the structure of the light receiving / emitting component, wherein the light receiving / emitting component has a structure in which a light receiving element, a light emitting element, and related elements including a driver or an amplifier are combined.
[0013]
Claim 6 is a silicone resin, an epoxy resin, an acrylic resin, and a thermoplastic resin having a refractive index of 1.30 to 1.60 and a hardness JIS (A type) of 53 degrees or less. It is characterized by being one transparent resin selected from the following.
[0014]
When using a commercially available connection component, it is necessary to integrate a highly efficient light guide component and a light receiving / emitting component, align the optical axes of the components, and closely contact the end surfaces. The signal light is emitted from the light emitting element, transmitted through the POF, and incident on the light receiving element. Each component may be attached by either the fixing method or the detaching method as long as the optical axis alignment accuracy can be obtained. It is particularly preferable that the light guide component and the light emitting / receiving component are bonded and fixed or manufactured in a composite manner. This is because a high-precision joining technique is required for mounting both parts, and transmission loss is caused if the optical axes of both parts are shifted.
[0015]
As the structure of the light guide path, the light receiving side is surrounded by a reflecting surface and is tapered toward the light receiving element side, and the end face (circle) dimension is equal to or larger than POF on the POF side, and the light receiving element side is the light receiving element side. It is preferable that it is equal to or less than the light receiving part. This is because the signal light from the POF is guided to the light guide and is effectively incident on the light receiving portion of the light receiving element. Further, the light emitting side is surrounded by a reflecting surface and has a shape that is tapered or parallel to the light emitting element side, and the size of the end surface is the same as the light emitting part of the light emitting element on the light emitting element side, and the POF side is equal to or lower than the POF. It is preferable. This is because the signal light from the light emitting element is guided to the light guide and effectively enters the POF.
[0016]
Generally, the core diameter (250 μm to 900 μm) of POF is larger than the light receiving part (100 μm to 500 μm) of the light receiving / emitting element. When POF is classified by composition, it can be classified into two types: polymethyl methacrylate resin (Clave, Mitsubishi Rayon) and fluorine resin (Asahi Glass).
[0017]
It is preferable that the light guide path of the light guide body component is filled with a light transmitting body. The effect of preventing reflection of signal light and improving airtightness can be obtained.
[0018]
In addition, assuming integration of components with poor accuracy, it is preferable that the interface between the connection component and the light guide component and / or the interface between the light guide component and the light receiving / emitting component are in close contact with each other through the light transmitting body. It is possible to prevent optical transmission loss due to reflection at the interface gap.
[0019]
The light emitting / receiving component has a structure in which a light emitting / receiving element and related elements (driver, amplifier, capacitor, resistor, etc.) are combined, and is preferably sealed with a light transmitting body. In order to realize a general-purpose high-speed transmission type thin, thin and small device required by the consumer market, a composite plastic package is required.
[0020]
The light receiving / emitting component preferably has a structure in which the light receiving / emitting element is flip-mounted on a circuit board in which a light passage hole for guiding signal light is processed. This is because the light guide path distance between the POF and the light emitting / receiving element is shortened, leading to a reduction in transmission loss. Furthermore, it is preferable that the light-transmitting hole is sealed with a light transmitting body on the airtight surface.
[0021]
The refractive index of the light transmitting body is preferably in the range of 1.30 to 1.60, and the hardness is preferably JIS (A type) 70 degrees or less. The refractive index is almost the same as that of the optical fiber, so that the loss due to reflection and refraction can be minimized. If the hardness is too high, the adhesion is deteriorated and transmission loss due to generation of a gap is caused. Further, it is preferable to select a light transmissive material from a resin having a proven record and a stable quality, a silicone resin, an acrylic resin, an epoxy resin, a thermoplastic resin, and derivatives of these resins.
[0022]
Consumer light-receiving devices are required to be inexpensive and small. That is, resin sealing is preferable to metal sealing. The light transmitting body of the present invention is also a transparent sealing material for light receiving and emitting elements, and is required to have a function of protecting the light receiving and emitting elements from the natural environment and the human handling environment. Since the light emitting / receiving element is sensitive to environmental fluctuations, the light transmitting body is required to firmly protect the light receiving / emitting element. Commercial products can be selected from product catalogs such as Shin-Etsu Chemical, Toshiba Silicone, Toagosei, Nippon Kayaku and Asahi Kasei. It is also possible to purchase intermediate products from these manufacturers to produce the desired light-transmitting body and its derivatives.
[0023]
FIG. 1 shows a reference example of a two-core type light emitting / receiving device for POF communication (cross section viewed from above in the connection direction). (1) shows the state of each part, and (2) shows the state of each part. The connecting part 11 is integrated with a highly efficient light guide part 12 and light receiving / emitting part 13. The light guide member has a light guide path 15 surrounded by a reflection surface, and the light receiving / emitting component has a light receiving portion at the top, and is composed of a light transmission hole 17, an optical element 18, and a circuit board 19. The light guide path has an end face larger than POF and an end face equivalent to the light receiving element light receiving part on the light receiving side, and an end face equivalent to the light emitting element light emitting part and an end face smaller than POF on the light emitting side. Note that the connecting parts are commercially available (eg, PN type, SMI type, LC type, etc.), and 10 is a portion where the POF end face is exposed when the POF is connected.
[0024]
FIG. 2 shows an example of a two-core type light receiving and emitting device for POF communication according to the present invention. Reference numeral 21 denotes a connection part, 22 denotes a light guide part, 23 denotes a light receiving / emitting part, 25 denotes a light guide, 27 denotes a light passage hole, 28 denotes an optical element, and 29 denotes a circuit board. The structure of the light receiving and emitting component is different from that in FIG. 1, and the back surface of the optical element is gold-bonded and sealed with resin. Further, the connection component and the light guide component are in close contact with each other through the light transmitting body 24. Further, the light guide is filled with the same light transmitting body.
[0026]
Embodiment
Embodiments of the present invention will be specifically described with reference to examples and comparative examples. In each example, the connecting parts were manufactured by Japan AMP, the PD was manufactured by Hamamatsu Photonics, and the circuit board was manufactured by Sumitomo Metal Mining.
[0027]
[ Reference example ]
A two-core type light receiving and emitting device for POF communication having a structure as shown in FIG. 1 was manufactured. The connection component 11 is a commercially available PN type connector. The light guide body part 12 is a prototype made by injection-molding PPE resin and has a truncated cone-shaped light guide body 15 which is plated. The light receiving / emitting component is a prototype in which an electric circuit and a light transmission hole 17 are processed on the circuit board 19, a hollow frame for storing the optical element 18 is attached, and a circuit board on which the optical element is mounted is finally attached. is there. In addition, the LED made from Toshiba was used for the light emitting element. The light-transmitting holes of the light receiving / emitting component were sealed using a light transmitting material (epoxy resin, manufactured by Nitto Denko). When this light emitting / receiving device and POF were connected and the connection loss during optical transmission was measured, the light receiving part was 0.3 dB and the light emitting part was 0.7 dB.
[0028]
POF is a polymethylmethacrylate optical fiber (manufactured by Toray) having a refractive index of 1.50 and a core diameter of 0.75 mm, and the cured product properties of the light transmitting body were a refractive index of 1.51 and a hardness of 53.
[0029]
[ Example ]
A commercially available connection component 21, a highly efficient light guide component 22 and a light receiving / emitting component 23 were integrated to manufacture a light receiving and emitting device as shown in FIG. The light guide body part is a molded product similar to the reference example , but the light guide 25 is filled with a light transmitting body. The light receiving and emitting components are flip-mounted on the circuit board, and the light receiving and emitting part is sealed with a light transmissive body. Sealed and protected. In addition, RC-LED made from Infineon was used for the light emitting element. Further, the connection component and the light guide member are in close contact with each other through the light transmitting body. When this light emitting / receiving device and POF were connected, the transmission loss was 0.3 dB at the light receiving portion and 0.5 dB at the light emitting portion.
[0030]
The light transmitting material used in this example is a silicone resin (manufactured by Toshiba Silicone) and has a cured product characteristic of a refractive index of 1.49 and a hardness of 38.
[0032]
[Comparative Example 1]
In Example 1, the connection component and the light receiving and emitting component were connected without using the light guide component. The light transmission loss of this light emitting / receiving device was 5.7 dB for the light receiving part and 1.3 dB for the light emitting part.
[0033]
[Comparative Example 2]
In Example 3, the connection component and the light receiving / emitting component were integrated without using the light guide component. As for the connection loss of this device, the values of the light receiving part 1.2 dB and the light emitting part 0.4 dB were shown.
[0034]
【The invention's effect】
The present invention provides to the market a two-core type light emitting / receiving device for POF communication that has good input / output efficiency of signal light and low connection loss. According to the present invention, a general-purpose light emitting / receiving device for consumer use can be supplied, and high-speed communication can be performed in a general home.
[Brief description of the drawings]
FIG. 1 is a diagram showing a reference example of a light emitting / receiving device according to the present invention.
FIG. 2 is a diagram showing an example of a light receiving and emitting device according to the present invention.

Claims (6)

プラスチック光ファイバ(以下、POFという)と受光素子及び発光素子を光学的に結合する装置において、その構造がPOF用2芯型の接続部品、信号光を誘導する導光体部品及び受光素子と発光素子とを備えた受発光部品より構成されており、接続部品、導光体部品及び受発光部品とが結合一体化され、
導光体部品は反射面で囲まれた受光側導光路及び反射面で囲まれた発光側導光路を備え、
受発光部品は回路基板を備え、
回路基板に受光素子及び発光素子が設けられ、更に回路基板に受光側導光路端面から受光素子へ信号を導くために加工された孔である受光側通光孔及び発光素子から発光側導光路端面へ信号を導くために加工された孔である発光側通光孔を備え、
受光素子及び発光素子は回路基板にフリップ搭載され、かつ、
回路基板には受光素子の受光部への信号光を導く通光孔及び発光素子の発光部から信号光を導く通光孔が加工されていることを特徴とするPOF通信用2芯型受発光装置。
In a device that optically couples a plastic optical fiber (hereinafter referred to as POF), a light receiving element, and a light emitting element, the structure is a two-core connecting part for POF, a light guide part for guiding signal light, and a light receiving element. It is composed of a light receiving / emitting component including an element, and a connecting component, a light guide component, and a light receiving / emitting component are combined and integrated,
The light guide body component includes a light receiving side light guide path surrounded by a reflection surface and a light emission side light guide path surrounded by a reflection surface,
The light emitting / receiving component includes a circuit board,
A light receiving element and a light emitting element are provided on the circuit board, and a light receiving side light transmission hole and a light emitting element to the light emitting side light guide path end face, which are holes formed in the circuit board to guide signals from the light receiving side light guide path end face to the light receiving element. It has a light-emitting side light passage hole that is a hole processed to guide a signal to
The light receiving element and the light emitting element are flip-mounted on the circuit board, and
The circuit board has a light-transmitting hole for guiding signal light to the light-receiving part of the light-receiving element and a light-transmitting hole for guiding signal light from the light-emitting part of the light-emitting element. apparatus.
受光側導光路が、反射面で囲まれ、受光素子側に向けて先細りとなる回転楕円体、回転放物体又は円錐台の形状をなし、かつ受光側導光路端面の大きさは導光路のPOF側端面寸法がPOF端面寸法以上で、受光素子側端面寸法が受光素子の受光部寸法以下であることを特徴とする請求項1に記載のPOF通信用2芯型受発光装置。The light receiving side light guide is surrounded by a reflective surface and has a shape of a spheroid, a rotating paraboloid or a truncated cone that tapers toward the light receiving element, and the size of the end surface of the light receiving side light guide is the POF of the light guide 2. The two-core type light receiving and emitting device for POF communication according to claim 1, wherein the side end surface dimension is equal to or larger than the POF end surface dimension and the light receiving element side end surface dimension is equal to or smaller than the light receiving portion dimension of the light receiving element. 発光側導光路が、反射面で囲まれ、発光素子側に向けて先細りもしくは平行となる回転楕円体、回転放物線、円錐台又は円柱形状をなし、かつ発光側導光路端面の大きさは導光路の発光素子側端面寸法が発光素子の発光部寸法以上で、POF側端面寸法がPOF端面寸法以下であることを特徴とする請求項1又は請求項2に記載のPOF通信用2芯型受発光装置。  The light-emitting side light guide is surrounded by a reflective surface and has a spheroid, a rotating parabola, a truncated cone, or a columnar shape that is tapered or parallel toward the light-emitting element, and the size of the light-emitting side light guide is the light guide 3. The two-core type light receiving and emitting for POF communication according to claim 1, wherein the light emitting element side end face dimension is equal to or larger than the light emitting part dimension of the light emitting element, and the POF side end face dimension is equal to or less than the POF end face dimension. apparatus. 受光側導光路及び発光側導光路の内部に、光透過体が充填されていることを特徴とする請求項2又は請求項3に記載のPOF通信用2芯型受発光装置。  The two-core type light receiving and emitting device for POF communication according to claim 2 or 3, wherein a light transmitting body is filled in the light receiving side light guide path and the light emitting side light guide path. 受発光部品が、受光素子、発光素子及びドライバー又はアンプからなる関連素子を複合化した構造を有することを特徴とする請求項2から請求項のいずれか1項に記載のPOF通信用2芯型受発光装置。The double core for POF communication according to any one of claims 2 to 4 , wherein the light receiving / emitting component has a structure in which a light receiving element, a light emitting element, and a related element including a driver or an amplifier are combined. Type light emitting and receiving device. 光透過体が、屈折率1.30から1.60で、硬さJIS(A型)が53度以下の特性を有するシリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂及び熱可塑性樹脂から選択される一の透明樹脂であることを特徴とする請求項4又は請求項5に記載のPOF通信用2芯型受発光装置。The light transmitting body is selected from silicone resins, epoxy resins, acrylic resins and thermoplastic resins having a refractive index of 1.30 to 1.60 and a hardness JIS (A type) of 53 degrees or less. The two-core type light receiving and emitting device for POF communication according to claim 4 or 5 , wherein the transparent resin is one transparent resin.
JP2000260792A 2000-08-30 2000-08-30 2-core type light emitting / receiving device for POF communication Expired - Fee Related JP3821639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260792A JP3821639B2 (en) 2000-08-30 2000-08-30 2-core type light emitting / receiving device for POF communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260792A JP3821639B2 (en) 2000-08-30 2000-08-30 2-core type light emitting / receiving device for POF communication

Publications (2)

Publication Number Publication Date
JP2002072022A JP2002072022A (en) 2002-03-12
JP3821639B2 true JP3821639B2 (en) 2006-09-13

Family

ID=18748747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260792A Expired - Fee Related JP3821639B2 (en) 2000-08-30 2000-08-30 2-core type light emitting / receiving device for POF communication

Country Status (1)

Country Link
JP (1) JP3821639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266197B1 (en) 2011-03-15 2013-05-21 오므론 가부시키가이샤 Toner concentration sensor and image formation apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870915B2 (en) * 2003-03-05 2007-01-24 セイコーエプソン株式会社 Optical communication module, optical communication device, and manufacturing method thereof
JP2006270121A (en) * 2006-06-08 2006-10-05 Brother Ind Ltd Electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266197B1 (en) 2011-03-15 2013-05-21 오므론 가부시키가이샤 Toner concentration sensor and image formation apparatus

Also Published As

Publication number Publication date
JP2002072022A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
TWI579611B (en) Photoelectric conversion assembly
US7399125B1 (en) Lens array with integrated folding mirror
US6527458B2 (en) Compact optical transceiver integrated module using silicon optical bench
US7539367B2 (en) Optical system connection structure, optical component, and optical communication module
TWI572935B (en) Photoelectric conversion module
US9739962B2 (en) Plastic optical fiber data communication links
CN113835165B (en) Light emitting component, chip, optical module and optical communication equipment
KR100403813B1 (en) Oprical module
JP3821638B2 (en) Light receiving device for POF communication
JP3821639B2 (en) 2-core type light emitting / receiving device for POF communication
JP2001059922A (en) Light emitting and light guiding device
WO2020196696A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
JP2003185891A (en) Device for receiving and transmitting light
US20050013542A1 (en) Coupler having reduction of reflections to light source
JP2002350654A (en) Plastic optical fiber and its manufacturing method, and optical mount body and optical wiring device using the same
JP2001264591A (en) Light emitting composite parts for optical communication
JP2001059920A (en) Light guide body for joining optical fiber and optical semiconductor
JP2002311260A (en) Plastic optical fiber, production method therefor, optical package using the same and optical wiring device
JP2007256798A (en) Optical module
CN210744446U (en) Coupling isolation integrated piece and laser thereof
CN215575806U (en) Compact packaging structure and light emission component
JP2001264592A (en) Light receiving composite parts for optical communication
JP4874181B2 (en) Optical waveguide holding member and optical transceiver
CN111650703B (en) QSFP single-fiber bidirectional optical coupling assembly and optical module
JP4932664B2 (en) Optical fiber and single fiber bidirectional optical transceiver module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060313

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees