JP3821638B2 - Light receiving device for POF communication - Google Patents

Light receiving device for POF communication Download PDF

Info

Publication number
JP3821638B2
JP3821638B2 JP2000260791A JP2000260791A JP3821638B2 JP 3821638 B2 JP3821638 B2 JP 3821638B2 JP 2000260791 A JP2000260791 A JP 2000260791A JP 2000260791 A JP2000260791 A JP 2000260791A JP 3821638 B2 JP3821638 B2 JP 3821638B2
Authority
JP
Japan
Prior art keywords
light
light receiving
pof
component
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000260791A
Other languages
Japanese (ja)
Other versions
JP2002072021A (en
Inventor
康博 小池
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIIMA ELECTRONICS INC.
Original Assignee
SHIIMA ELECTRONICS INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIIMA ELECTRONICS INC. filed Critical SHIIMA ELECTRONICS INC.
Priority to JP2000260791A priority Critical patent/JP3821638B2/en
Publication of JP2002072021A publication Critical patent/JP2002072021A/en
Application granted granted Critical
Publication of JP3821638B2 publication Critical patent/JP3821638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック光ファイバ(POF)を利用する光通信用の接続部品付き受光装置に係わり、信号光の入射効率に優れ且つ光伝送時の接続損失を低減する技術に関するものである。
【0002】
【従来の技術】
POFを用いた光通信の受信システムは、POFによる光信号伝送路の一端側に受信系を備えている。受信系はフォトダイオード(PD)などの受光素子を有しており、POFからの信号光を受光素子に光学接続させるものである。受光素子又は受光半導体部品の入手先としては、日立製作所、東芝、松下電器産業、浜松ホトニクス等を挙げることができる。
【0003】
このような光通信システムにおける受信性能は信号光の入射効率及び伝送効率に大きく影響される。現在の受光装置は極細線の石英ファイバ(数μm径)を想定したもので数百μmの径を持つPOFにとっては信号光を有効に入射し難い構造となっている。
【0004】
現在の受光装置は、石英ファイバと受光素子との間にレンズを介在させるものである。しかし、これは精密接続が必要でコストが高く汎用性に乏しいだけでなく、POFに適用した場合にはレンズ面での反射により大きな接続損失を生じる問題を抱えていた。
【0005】
又、POF用の接続部品を標準化する動きが活発となっている。個別企業、日本又は世界のレベルで標準化する運動が行われている(家電会社、日本電子機械工業会、POFコンソーシアム)。
【0006】
本発明者は、光通信システムの接続損失を低減するため、光ファイバと受光素子との間に反射面で囲まれた導光路を有する導光体を介在させる結合構造(レンズレス結合、特開平10−221573)を提案している。
【0007】
本発明者は、さらなる実用化検討を鋭意行ない、市販の接続部品を使用した場合でも入射光制御型導光体部品を介在させることにより効率的なPOF通信を可能にする方法を見い出したものである。市販の接続部品、効率的な導光体部品及び受光半導体部品を一体化し、POFと接続することにより信号光の伝送損失の少ないレンズレス接合を実現したものである。
【0008】
【発明が解決しようとする課題】
本発明は、信号光の入射効率が良く接続損失の少ないPOF通信用受光装置を提供するものである。現在の受光装置及び接続装置は産業用途(石英ファイバ)を前提に開発されており、民生用途(POF)の低コストで簡便な汎用製品の開発が望まれている。
【0009】
【課題を解決するための手段】
本発明は、市販の接続部品に高効率の導光体部品及び受光半導体部品を一体化したPOF通信用受光装置であり、各部品の光軸が一致しており各部品の端面が密着している。尚、市販の接続部品は、モレックス、AMP等より手に入れることができる。
【0010】
【発明が解決しようとする課題】
本発明は、プラスチック光ファイバ(POF)と受光素子とを光学的に結合する装置において、その構造がPOFとの接続部品、信号光を誘導する導光体部品及び受光半導体部品より構成されており、各部品の光軸が一致しており各部品の端面が密着していること、導光体部品が反射面で囲まれ受光素子側に向けて先細りとなる形状の導光路を有し、該導光路端面の円径がPOF側はPOF同等以上であり受光素子側は受光素子の受光部同等以下であるとともに、導光体部品の導光路内部に、屈折率1.30から1.60、硬さJIS(A型)60度以下の特性を有する透明樹脂(シリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂、熱可塑性樹脂等)である柔軟性の光透過体が充填されていること、及び、受光半導体部品が受光素子と増幅素子とを備え、回路基板に受光素子をフリップ搭載した構造であり、回路基板には受光素子の受光部へ信号光を導く通光孔が加工されており、この通光孔が前記柔軟性のある光透過体で封止されていることを特徴とするPOF通信用受光装置である。導光路の形状としては、回転楕円体、回転放物体、円錐台等を挙げることができる。
【0011】
請求項2は、接続部品と導光体部品及び又は導光体部品と受光半導体部品が前記柔軟性のある光透過体を介して密着していることを特徴とするPOF通信用受光装置である
【0014】
市販の接続部品を使用する場合、高効率の導光体部品及び受光半導体部品を一体化し、各部品の光軸を合わせ且つ端面を密着させることが必要である。信号光はPOFより伝送され導光路を通って有効に受光素子に入射される。各部品の取り付けは、光軸合わせの精度が得られるならば、固定方式又は脱着方式のどちらでも良い。導光体部品と受光半導体部品とは、接着固定するか複合化製造することが好ましい。両部品の取付には高精度の接合技術が要求され、両部品の光軸がズレると伝送損失を招くためである。
【0015】
導光路の構造としては、反射面で囲まれ受光素子側に向けて先細りとなる形状を有し、該端面(円)寸法がPOF側はPOF同等以上であり受光素子側は受光素子の受光部同等以下であることが好ましい。POFよりの信号光が導光路に誘導され受光素子の受光部に有効に入射するためである。
【0016】
一般的に、POFのコア径(250μmから900μm)は受光素子の受光部(100μmから500μm)より大きい。POFを組成で分類するとポリメチルメタクリレート樹脂(クラベ、三菱レイヨン)、フッソ樹脂(旭硝子)の2種類を挙げることができる。
【0017】
導光体部品の導光路内部は光透過体が充填されていることが好ましい。信号光の反射防止や気密性の向上といった効果が得られる。
【0018】
又、精度の悪い部品の一体化を想定すると、接続部品と導光体部品の界面、及び又は導光体部品と受光半導体部品の界面は光透過体を介して密着していることが好ましい。界面隙間での反射等による光伝送損失を防ぐことができる。
【0019】
受光半導体部品は、受光素子及び増幅素子等を複合化した構造であり少なくとも信号光の通路部が光透過体で封止されていることが好ましい。民生市場の要求する汎用高速伝送型軽薄短小装置を実現するためには、複合プラスチックパッケージが必要となる。
【0020】
又、受光半導体部品は受光素子へ信号光を導く通光孔が加工された回路基板に受光素子をフリップ搭載した構造が好ましい。POFから受光素子への導光通路の総距離を短くすることが伝送損失の低減につながるからである。更に、気密面で該通光孔が光透過体で封止されていることが好ましい。
【0021】
光透過体の屈折率は1.30から1.60の範囲内、該硬さはJIS(A型)70度以下であることが好ましい。屈折率は光ファイバとほぼ同じであることが反射や屈折による損失を最小にできる。該硬さは硬すぎると密着性が悪くなり隙間発生による伝送損失を招く。又、光透過体としては実績があり品質の安定性な樹脂、シリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、熱可塑性樹脂、及びこれら樹脂の誘導体より選択するのが好ましい。
【0022】
民生用受光装置は廉価で小型であることが要求される。即ち、金属封止よりは樹脂封止されていることが好ましい。本発明の光透過体は、受光素子の透明封止材料であり受光素子を自然環境及び人的取扱環境より守る機能が要求される。受光素子は環境変動に対して敏感であるため、光透過体は強固に受光素子を保護することが求められる。市販品は信越化学工業、東芝シリコーン、東亞合成、日本化薬、旭化成等の製品カタログより選択することができる。又、これらメーカーより中間製品を購入し所望の光透過体及びその誘導体を製造することも可能である。
【0023】
図1は、本発明によるPOF通信用受光装置の一例を示している(接続方向の横から見た断面)。(1)は一体化時、(2)は各部品の状態を示したものである。接続部品11は高効率の導光体部品12及び受光半導体部品13と一体化されている。導光体部品は反射面で囲まれた導光路15を持ち、受光半導体部品は通光孔17、受光素子18及び回路基板19より構成されている。導光体部品はPOFより大きい端面と受光素子受光部同等の端面を有する。尚、接続部品は市販品であり(例:PN型、SMI型等)、10はPOF接続時にPOF端面が露出する部分である。
【0024】
図2は、本発明によるPOF通信用受光装置の別の一例を示す。21は接続部品、22は導光体部品、23は受光半導体部品、25は導光路、27は通光孔、28は受光素子、29は回路基板である。図1に比べ受光半導体部品の構造が異なっており、受光素子裏面を金線結合し樹脂封止したものである。又、接続部品と導光体部品は光透過体24を介して密着している。更に、導光路にも同様の光透過体が充填されている。
【0025】
図3は、本発明によるPOF通信用受光装置の更に別の一例を示す図である。31は接続部品、32は導光体部品、33は受光半導体部品、35は導光路、37は通光孔、38は受光素子である。受光半導体部品は一般的な構造をしており、受光素子をリードフレーム39に搭載し透明材料(光透過体)40で封止したものである。
【0026】
図4は、複合型受光半導体部品の構造を例示したものである。部品の実装方法(電気接続及び封止方法)が異なっている。(A)は半導体素子を回路基板にバンプ結合(フリップ搭載)したものであり。(C)は従来型の裏面搭載及び金線結合によるものである。(B)はバンプ及び金線により半導体素子と回路基板との電気接続を行ったものである。40は透明材料、46は増幅素子、47は通光孔、48は受光素子、49は回路基板又はリードフレームである。尚、通光孔は光透過体で充填されている。
【0027】
【実施形態】
本発明の実施形態を、実施例及び比較例等にて具体的に説明する。尚、各例とも接続部品は日本モレックス製、PDはインフィニオン製、片側回路基板は三井金属鉱山製の同じ製品を使用した。
【0028】
【実施例1】
図1のような構造を持つPOF通信用受光装置を製造した。接続部品11は市販のSMI型コネクターである。導光体部品12はPPS樹脂を射出成形し加工した試作品であり、円錐台状の導光体15を持ちその内部はメッキ加工されている。受光半導体部品は、まず片面回路基板19に電気回路及び通光孔17を加工し、次にPD18を格納する中空枠を貼り付け、最後にPDを搭載した回路基板を貼り合わした試作品である。尚、通光孔は光透過体(透明エポキシ樹脂、日本化薬製)を用いて封止した。この受光装置とPOFを接続し接続損失を測定したところ0.3dBであった。
【0029】
POFは、屈折率1.50、コア径0.9mmのポリメチルメタクリレート製光ファイバ(三菱レイヨン製)であり、封止エポキシ樹脂の硬化物特性は屈折率1.49、硬さ58であった。
【0030】
【実施例2】
市販の接続部品21と高効率の導光体部品22及び受光半導体部品23を一体化し図2のような受光装置を製造した。導光体部品は実施例1と同様の成形品であるが、導光路25の内部に光透過体が充填されている。実施例と同じ片側回路基板にPDをフリップ実装し光透過体で受光部を封止したものである。PDの裏面は金線にて結線し、市販の黒色半導体用液状材料(ナミックス製)にて封止保護したものである。又、接続部品と導光体部品は光透過体の薄膜を介して密着している。この受光装置とPOFを実施例1同様に接続し損失を測定したところ、0.2dBの数値を示した。
【0031】
尚、本実施例で使用した光透過体は、シリコーン系樹脂(信越化学工業製)で屈折率1.50、硬さ41の硬化物特性を持つ。
【0032】
【実施例3】
実施例1において、受光半導体部品として市販の透明樹脂封止部品CAI(インフィニオン製)を用いた以外は、実施例1同様に図3のような受光装置を組み立て接続損失を測定した。その数値は1.2dBであり他の実施例に比べると劣るが、比較例に比べると優れる。
【0033】
【比較例1】
実施例1において、導光体部品を介さずに接続部品と受光半導体部品を一体化した。この受光装置の接続損失を測定したところ6.2dBであった。
【0034】
【比較例2】
実施例3において、導光体部品を介さずに接続部品と受光半導体部品を一体化した。この受光装置の接続損失は3.8dBの値を示した。
【0035】
比較例は、POFからの信号光が反射及び又は散乱され伝送損失を招いたものと考えられる。
【0036】
【参考例】
実施例1において、受光半導体部品として受光素子と増幅素子を複合搭載した図4(B)のような部品を使用した。一般的には、実施例1の受光半導体部品に増幅部品を電気接続する方法が通常である。但し、最近になって電力消費を低減したり電気信号伝送を高速にする場合に適用されており、本実施例でも有効性が確認された。
【0037】
【発明の効果】
本発明は、信号光の入射効率が良く接続損失の少ないPOF通信用受光装置を市場に提供するものである。本発明により、民生用の汎用受光装置を供給でき、一般家庭で高速通信が可能となる。
【図面の簡単な説明】
【図1】 本発明の受光装置の一例を示す図である。
【図2】 本発明の受光装置の一例を示す図である。
【図3】 本発明の受光装置の一例を示す図である。
【図4】 本発明の受光半導体部品の複合化例を示す図である。
【符号の説明】
10 POF端面露出部
11、21、31 接続部品
12、22、32 導光体部品
13、23、33 受光半導体部品
15、25、35 導光路
17、27、47 通光孔
18、28、38、48 受光素子
19、29、39、49 回路基板又はリードフレーム
24 接続部品と導光体部品の界面
40 透明材料
46 増幅素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light receiving device with a connection part for optical communication using a plastic optical fiber (POF), and relates to a technique that is excellent in incident efficiency of signal light and reduces connection loss during optical transmission.
[0002]
[Prior art]
An optical communication reception system using POF includes a reception system on one end side of an optical signal transmission path using POF. The receiving system has a light receiving element such as a photodiode (PD), and optically connects signal light from the POF to the light receiving element. Hitachi, Toshiba, Matsushita Electric Industrial, Hamamatsu Photonics, etc. can be cited as the source of the light receiving element or the light receiving semiconductor component.
[0003]
The reception performance in such an optical communication system is greatly influenced by the incident efficiency and transmission efficiency of signal light. The current light-receiving device assumes a very thin quartz fiber (diameter of several μm), and has a structure that makes it difficult for a POF having a diameter of several hundred μm to effectively receive signal light.
[0004]
The current light receiving device has a lens interposed between a quartz fiber and a light receiving element. However, this requires not only precise connection but high cost and poor versatility, but when it is applied to POF, it has a problem of causing large connection loss due to reflection on the lens surface.
[0005]
In addition, there is an active movement to standardize connection parts for POF. Movements to standardize at the level of individual companies, Japan or the world are being carried out (home electronics companies, Japan Electronic Machinery Manufacturers Association, POF consortium).
[0006]
In order to reduce connection loss in an optical communication system, the present inventor has a coupling structure (lensless coupling, Japanese Patent Application Laid-Open No. Hei 10) that interposes a light guide having a light guide path surrounded by a reflective surface between an optical fiber and a light receiving element. 10-221573).
[0007]
The present inventor has eagerly investigated further practical application, and has found a method that enables efficient POF communication by interposing an incident light control type light guide component even when a commercially available connection component is used. is there. A commercially available connection part, an efficient light guide part and a light receiving semiconductor part are integrated and connected to POF to realize lensless joining with little transmission loss of signal light.
[0008]
[Problems to be solved by the invention]
The present invention provides a light receiving device for POF communication that has good incidence of signal light and low connection loss. The current light receiving device and connection device are developed on the premise of industrial use (quartz fiber), and development of a low-cost and simple general-purpose product for consumer use (POF) is desired.
[0009]
[Means for Solving the Problems]
The present invention is a light receiving device for POF communication in which a highly efficient light guide component and a light receiving semiconductor component are integrated with a commercially available connection component. The optical axes of the components are aligned and the end faces of the components are in close contact with each other. Yes. Commercially available connection parts can be obtained from Molex, AMP or the like.
[0010]
[Problems to be solved by the invention]
The present invention is an apparatus for optically coupling a plastic optical fiber (POF) and a light receiving element, and its structure is composed of a POF connection part, a light guide part for guiding signal light, and a light receiving semiconductor part. The optical axis of each component is coincident and the end faces of each component are in close contact, the light guide body component is surrounded by a reflective surface, and has a light guide path that is tapered toward the light receiving element, The circular diameter of the end face of the light guide path is equal to or greater than the POF on the POF side and equal to or less than the light receiving part of the light receiving element on the POF side, and a refractive index of 1.30 to 1.60 inside the light guide path of the light guide component. Hardness JIS (A type) Filled with a flexible light transmitting body which is a transparent resin (silicone resin, epoxy resin, acrylic resin, thermoplastic resin, etc.) having a characteristic of 60 degrees or less, and The number of light receiving semiconductor parts is increased The light receiving element is flip-mounted on the circuit board. The circuit board has a light passage hole for guiding the signal light to the light receiving portion of the light receiving element. It is a light receiving device for POF communication, which is sealed with a certain light transmitting body. Examples of the shape of the light guide include a spheroid, a rotating paraboloid, and a truncated cone.
[0011]
According to a second aspect of the present invention, there is provided a light receiving device for POF communication in which a connection component and a light guide component, or a light guide component and a light receiving semiconductor component are in close contact with each other through the flexible light transmitting body. .
[0014]
When using a commercially available connection component, it is necessary to integrate a highly efficient light guide component and a light receiving semiconductor component, align the optical axes of the components, and bring the end faces into close contact. The signal light is transmitted from the POF and effectively enters the light receiving element through the light guide. Each component may be attached by either the fixing method or the detaching method as long as the optical axis alignment accuracy can be obtained. The light guide body component and the light receiving semiconductor component are preferably bonded and fixed or manufactured in a composite manner. This is because a high-precision joining technique is required for mounting both parts, and transmission loss is caused if the optical axes of both parts are shifted.
[0015]
The structure of the light guide path is a shape that is surrounded by a reflective surface and tapers toward the light receiving element side. The end face (circle) dimension is equal to or greater than POF on the POF side, and the light receiving element side is the light receiving portion of the light receiving element. It is preferable that it is equivalent or less. This is because the signal light from the POF is guided to the light guide and is effectively incident on the light receiving portion of the light receiving element.
[0016]
In general, the core diameter (250 μm to 900 μm) of POF is larger than the light receiving portion (100 μm to 500 μm) of the light receiving element. When POF is classified by composition, it can be classified into two types: polymethyl methacrylate resin (Clave, Mitsubishi Rayon) and fluorine resin (Asahi Glass).
[0017]
It is preferable that the light guide path of the light guide body component is filled with a light transmitting body. The effect of preventing reflection of signal light and improving airtightness can be obtained.
[0018]
In addition, assuming integration of parts with poor accuracy, it is preferable that the interface between the connection part and the light guide part and / or the interface between the light guide part and the light receiving semiconductor part are in close contact with each other through the light transmitting body. It is possible to prevent optical transmission loss due to reflection at the interface gap.
[0019]
The light receiving semiconductor component preferably has a structure in which a light receiving element, an amplifying element, and the like are combined, and at least a signal light passage is preferably sealed with a light transmitting body. In order to realize a general-purpose high-speed transmission type thin, thin and small device required by the consumer market, a composite plastic package is required.
[0020]
The light receiving semiconductor component preferably has a structure in which the light receiving element is flip-mounted on a circuit board in which a light passage hole for guiding signal light to the light receiving element is processed. This is because shortening the total distance of the light guide path from the POF to the light receiving element leads to a reduction in transmission loss. Furthermore, it is preferable that the light-transmitting hole is sealed with a light transmitting body on the airtight surface.
[0021]
The refractive index of the light transmitting body is preferably in the range of 1.30 to 1.60, and the hardness is preferably JIS (A type) 70 degrees or less. It is possible to minimize loss due to reflection and refraction when the refractive index is almost the same as that of an optical fiber. If the hardness is too high, the adhesion is deteriorated and transmission loss due to generation of a gap is caused. Further, it is preferable to select a light transmissive material from a resin having a proven record and a stable quality, a silicone resin, an acrylic resin, an epoxy resin, a thermoplastic resin, and derivatives of these resins.
[0022]
Consumer light-receiving devices are required to be inexpensive and small. That is, resin sealing is preferable to metal sealing. The light transmitting body of the present invention is a transparent sealing material for a light receiving element, and is required to have a function of protecting the light receiving element from a natural environment and a human handling environment. Since the light receiving element is sensitive to environmental fluctuations, the light transmitting body is required to firmly protect the light receiving element. Commercial products can be selected from product catalogs such as Shin-Etsu Chemical, Toshiba Silicone, Toagosei, Nippon Kayaku and Asahi Kasei. It is also possible to purchase intermediate products from these manufacturers to produce the desired light-transmitting body and its derivatives.
[0023]
FIG. 1 shows an example of a light receiving device for POF communication according to the present invention (cross section viewed from the side in the connection direction). (1) shows the state of each part, and (2) shows the state of each part. The connection component 11 is integrated with a highly efficient light guide component 12 and a light receiving semiconductor component 13. The light guide component has a light guide path 15 surrounded by a reflecting surface, and the light receiving semiconductor component is composed of a light transmission hole 17, a light receiving element 18, and a circuit board 19. The light guide body component has an end face larger than POF and an end face equivalent to the light receiving element light receiving portion. Note that the connecting parts are commercially available products (eg, PN type, SMI type, etc.), and 10 is a portion where the POF end face is exposed when POF is connected.
[0024]
FIG. 2 shows another example of the light receiving device for POF communication according to the present invention. Reference numeral 21 denotes a connection part, 22 denotes a light guide part, 23 denotes a light receiving semiconductor part, 25 denotes a light guide path, 27 denotes a light passage hole, 28 denotes a light receiving element, and 29 denotes a circuit board. The structure of the light receiving semiconductor component is different from that of FIG. 1, and the back surface of the light receiving element is gold-bonded and sealed with resin. Further, the connection component and the light guide component are in close contact with each other through the light transmitting body 24. Further, the light guide is filled with the same light transmitting body.
[0025]
FIG. 3 is a view showing still another example of the light receiving device for POF communication according to the present invention. Reference numeral 31 is a connection part, 32 is a light guide part, 33 is a light receiving semiconductor part, 35 is a light guide path, 37 is a light passage hole, and 38 is a light receiving element. The light receiving semiconductor component has a general structure, in which a light receiving element is mounted on a lead frame 39 and sealed with a transparent material (light transmitting body) 40.
[0026]
FIG. 4 exemplifies the structure of a composite light receiving semiconductor component. The component mounting method (electrical connection and sealing method) is different. (A) is a semiconductor element bump-bonded (flip-mounted) to a circuit board. (C) is due to conventional backside mounting and gold wire bonding. (B) shows the electrical connection between the semiconductor element and the circuit board using bumps and gold wires. 40 is a transparent material, 46 is an amplifying element, 47 is a light passage hole, 48 is a light receiving element, and 49 is a circuit board or a lead frame. The light passage hole is filled with a light transmitting body.
[0027]
Embodiment
Embodiments of the present invention will be specifically described with reference to examples and comparative examples. In each example, the same product made by Nihon Molex, PD made by Infineon, and one side circuit board made by Mitsui Mining Co., Ltd. were used.
[0028]
[Example 1]
A light receiving device for POF communication having a structure as shown in FIG. 1 was manufactured. The connection component 11 is a commercially available SMI type connector. The light guide member 12 is a prototype made by injection-molding PPS resin and has a truncated cone-shaped light guide 15 which is plated. The light receiving semiconductor component is a prototype in which an electric circuit and a light transmission hole 17 are first processed on a single-sided circuit board 19, a hollow frame for storing the PD 18 is attached, and a circuit board on which the PD is mounted is finally attached. . The light passage hole was sealed with a light transmitting material (transparent epoxy resin, manufactured by Nippon Kayaku Co., Ltd.). When this light receiving device and POF were connected and the connection loss was measured, it was 0.3 dB.
[0029]
POF is a polymethyl methacrylate optical fiber (manufactured by Mitsubishi Rayon) having a refractive index of 1.50 and a core diameter of 0.9 mm, and the cured epoxy resin has a refractive index of 1.49 and a hardness of 58. .
[0030]
[Example 2]
A commercially available connecting component 21, a highly efficient light guide component 22 and a light receiving semiconductor component 23 were integrated to manufacture a light receiving device as shown in FIG. The light guide member is a molded product similar to that of the first embodiment, but the light guide 25 is filled with a light transmitting member. The PD is flip-mounted on the same one-side circuit board as in the embodiment, and the light receiving part is sealed with a light transmitting body. The back surface of the PD is connected with a gold wire and sealed and protected with a commercially available liquid material for black semiconductor (manufactured by NAMICS). Further, the connection component and the light guide component are in close contact with each other through a thin film of light transmitting material. When this light receiving device and POF were connected in the same manner as in Example 1 and the loss was measured, a numerical value of 0.2 dB was shown.
[0031]
The light transmitting material used in this example is a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.) and has a cured product characteristic of a refractive index of 1.50 and a hardness of 41.
[0032]
[Example 3]
In Example 1, a light receiving device as shown in FIG. 3 was assembled and the connection loss was measured in the same manner as in Example 1 except that a commercially available transparent resin-encapsulated part CAI (manufactured by Infineon) was used as the light receiving semiconductor component. The numerical value is 1.2 dB, which is inferior to the other examples, but is superior to the comparative example.
[0033]
[Comparative Example 1]
In Example 1, the connection component and the light receiving semiconductor component were integrated without using the light guide component. The connection loss of this light receiving device was measured and found to be 6.2 dB.
[0034]
[Comparative Example 2]
In Example 3, the connection component and the light receiving semiconductor component were integrated without using the light guide component. The connection loss of this light receiving device showed a value of 3.8 dB.
[0035]
In the comparative example, it is considered that the signal light from the POF is reflected and / or scattered to cause transmission loss.
[0036]
[Reference example]
In Example 1, a component as shown in FIG. 4B in which a light receiving element and an amplifying element are mounted in combination is used as a light receiving semiconductor component. In general, a method of electrically connecting an amplification component to the light receiving semiconductor component of Example 1 is normal. However, it has recently been applied to reduce power consumption and increase the speed of electrical signal transmission, and the effectiveness has been confirmed in this embodiment.
[0037]
【The invention's effect】
The present invention provides to the market a light receiving device for POF communication that has good incidence of signal light and low connection loss. According to the present invention, a general-purpose light receiving device for consumer use can be supplied, and high-speed communication can be performed in a general home.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a light receiving device of the present invention.
FIG. 2 is a diagram showing an example of a light receiving device of the present invention.
FIG. 3 is a diagram showing an example of a light receiving device according to the present invention.
FIG. 4 is a diagram showing a composite example of the light receiving semiconductor component of the present invention.
[Explanation of symbols]
10 POF end face exposed parts 11, 21, 31 Connection parts 12, 22, 32 Light guide parts 13, 23, 33 Light receiving semiconductor parts 15, 25, 35 Light guide paths 17, 27, 47 Light passing holes 18, 28, 38, 48 Light receiving element 19, 29, 39, 49 Circuit board or lead frame 24 Interface 40 between connecting part and light guide part Transparent material 46 Amplifying element

Claims (2)

プラスチック光ファイバ(POF)と受光素子とを光学的に結合する装置において、その構造がPOFとの接続部品、信号光を誘導する導光体部品及び受光半導体部品より構成されており、各部品の光軸が一致しており各部品の端面が密着していること、導光体部品が反射面で囲まれ受光素子側に向けて先細りとなる形状(回転楕円体、回転放物体、円錐台等)の導光路を有し、該導光路端面の円径がPOF側はPOF同等以上であり受光素子側は受光素子の受光部同等以下であるとともに、導光体部品の導光路内部に、屈折率1.30から1.60、硬さJIS(A型)60度以下の特性を有する透明樹脂(シリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂、熱可塑性樹脂等)である柔軟性の光透過体が充填されていること、及び、受光半導体部品が受光素子と増幅素子とを備え、回路基板に受光素子をフリップ搭載した構造であり、回路基板には受光素子の受光部へ信号光を導く通光孔が加工されており、この通光孔が前記柔軟性のある光透過体で封止されていることを特徴とするPOF通信用受光装置。In an apparatus for optically coupling a plastic optical fiber (POF) and a light receiving element, the structure is composed of a connecting part to POF, a light guide part for guiding signal light, and a light receiving semiconductor part. The optical axes are aligned and the end faces of each component are in close contact, and the light guide component is surrounded by a reflective surface and tapers toward the light receiving element (spheroid, rotating paraboloid, truncated cone, etc. ), The circular diameter of the end face of the light guide path is equal to or greater than the POF on the POF side and equal to or less than the light receiving part of the light receiving element on the POF side, and is refracted inside the light guide path of the light guide component. Flexible light transmission which is a transparent resin (silicone resin, epoxy resin, acrylic resin, thermoplastic resin, etc.) having a ratio of 1.30 to 1.60 and a hardness of JIS (A type) 60 degrees or less That the body is filled and A semiconductor component includes a light receiving element and an amplifying element, and the light receiving element is flip-mounted on the circuit board. The circuit board has a light passage hole for guiding the signal light to the light receiving portion of the light receiving element. A light receiving device for POF communication, wherein a light hole is sealed with the flexible light transmitting body . 接続部品と導光体部品及び又は導光体部品と受光半導体部品が前記柔軟性のある光透過体を介して密着していることを特徴とする請求項1に記載のPOF通信用受光装置。 The light receiving device for POF communication according to claim 1, wherein the connection component and the light guide component or the light guide component and the light receiving semiconductor component are in close contact with each other through the flexible light transmitting body .
JP2000260791A 2000-08-30 2000-08-30 Light receiving device for POF communication Expired - Fee Related JP3821638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260791A JP3821638B2 (en) 2000-08-30 2000-08-30 Light receiving device for POF communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260791A JP3821638B2 (en) 2000-08-30 2000-08-30 Light receiving device for POF communication

Publications (2)

Publication Number Publication Date
JP2002072021A JP2002072021A (en) 2002-03-12
JP3821638B2 true JP3821638B2 (en) 2006-09-13

Family

ID=18748746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260791A Expired - Fee Related JP3821638B2 (en) 2000-08-30 2000-08-30 Light receiving device for POF communication

Country Status (1)

Country Link
JP (1) JP3821638B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870915B2 (en) * 2003-03-05 2007-01-24 セイコーエプソン株式会社 Optical communication module, optical communication device, and manufacturing method thereof
JP3960257B2 (en) * 2003-04-25 2007-08-15 セイコーエプソン株式会社 Optical communication module, optical communication device, and manufacturing method thereof
JP3991318B2 (en) * 2004-01-20 2007-10-17 セイコーエプソン株式会社 OPTICAL MODULE MANUFACTURING METHOD, OPTICAL COMMUNICATION DEVICE, ELECTRONIC DEVICE
US9018074B2 (en) 2009-10-01 2015-04-28 Excelitas Canada, Inc. Photonic semiconductor devices in LLC assembly with controlled molding boundary and method for forming same
US8791492B2 (en) 2009-10-01 2014-07-29 Excelitas Canada, Inc. Semiconductor laser chip package with encapsulated recess molded on substrate and method for forming same
US8431951B2 (en) * 2009-10-01 2013-04-30 Excelitas Canada, Inc. Optoelectronic devices with laminate leadless carrier packaging in side-looker or top-looker device orientation
EP3056143B1 (en) 2011-08-19 2023-08-02 Murata Manufacturing Co., Ltd. Biosensor

Also Published As

Publication number Publication date
JP2002072021A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
US7300217B2 (en) Optical semiconductor device, optical connector and electronic equipment
JP6399365B2 (en) Structure of photoelectric conversion assembly
KR100352107B1 (en) Optical transmit-receive module, optical transmit-receive coupler and optical transmit-receive system using same
JP4713634B2 (en) Single fiber bidirectional optical module
US6718091B2 (en) Optical cable for an optical transmission and reception system
US6527458B2 (en) Compact optical transceiver integrated module using silicon optical bench
JP4181515B2 (en) Optical semiconductor device and electronic device using the same
US6721503B1 (en) System and method for bi-directional optical communication using stacked emitters and detectors
JP2006201226A (en) Optical coupler
JP2004226845A (en) Optical transmission and reception module and its manufacturing method
TW201821846A (en) Method for manufacturing active optical cable
JP3821638B2 (en) Light receiving device for POF communication
JP3430088B2 (en) Optical transceiver module
JP3821639B2 (en) 2-core type light emitting / receiving device for POF communication
JP2002156563A (en) Receptacle type optical module
JP2001059922A (en) Light emitting and light guiding device
JPH07168061A (en) Light transmitting receiving module
JP2003185891A (en) Device for receiving and transmitting light
JP2001059920A (en) Light guide body for joining optical fiber and optical semiconductor
JPH11271572A (en) Optical coupling system, optical module, and optical transmission system
JP2001264591A (en) Light emitting composite parts for optical communication
JP2002311260A (en) Plastic optical fiber, production method therefor, optical package using the same and optical wiring device
JP2001264592A (en) Light receiving composite parts for optical communication
JP3339069B2 (en) Optical transmitter
JP2001059921A (en) Light guiding and light receiving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees