JP2009020347A - Optical transmission device, optical module and optical cable - Google Patents

Optical transmission device, optical module and optical cable Download PDF

Info

Publication number
JP2009020347A
JP2009020347A JP2007183407A JP2007183407A JP2009020347A JP 2009020347 A JP2009020347 A JP 2009020347A JP 2007183407 A JP2007183407 A JP 2007183407A JP 2007183407 A JP2007183407 A JP 2007183407A JP 2009020347 A JP2009020347 A JP 2009020347A
Authority
JP
Japan
Prior art keywords
optical
optical transmission
central axis
elements
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007183407A
Other languages
Japanese (ja)
Inventor
Akira Sakamoto
朗 坂本
Shinya Kyozuka
信也 経塚
Tomoo Baba
智夫 馬場
Kazuhiro Sakasai
一宏 逆井
Osamu Ueno
修 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007183407A priority Critical patent/JP2009020347A/en
Publication of JP2009020347A publication Critical patent/JP2009020347A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission device capable of connecting an optical cable to an optical element with high accuracy although the device is in a simple configuration, and to provide an optical module and an optical cable. <P>SOLUTION: The optical transmission device 1 includes a plurality of light emitting elements, a light emitting element housing in which the plurality of light emitting elements are disposed at predetermined positions with respect to a first center axis 2a, an optical cable 4 having a plurality cores 40a to 40d disposed at predetermined positions with respect to a second center axis 4a, a plurality of light receiving elements, and a light receiving housing in which the plurality of light receiving elements are disposed at predetermined positions with respect to a third center axis 3a. The optical axes of the plurality of light emitting parts 22a to 22d are respectively aligned to the optical axes of the plurality of cores 40a to 40d by mutually aligning the first and second center axes and rotating a ferrule of the optical cable 4 with respect to the light emitting element housing; and the optical axes of the plurality of light receiving parts are respectively aligned to the optical axes of the plurality of cores by mutually aligning the second and third center axes and rotating the ferrule of the optical cable 4 with respect to the light receiving element housing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光伝送装置、光モジュール及び光ケーブルに関する。   The present invention relates to an optical transmission device, an optical module, and an optical cable.

光信号を効果的かつ確実に伝送するため、光伝送装置では、一般に位置決め機構を用いて受発光素子の光軸と光伝送路の光軸を一致させている(例えば、特許文献1参照。)。   In order to transmit an optical signal effectively and reliably, an optical transmission apparatus generally uses a positioning mechanism to match the optical axis of a light receiving / emitting element and the optical axis of an optical transmission path (see, for example, Patent Document 1). .

特許文献1に開示された光伝送装置は、レーザアレイ及び光検知器アレイを保持するレセプタクルと、光ファイバアレイを保持するフェルールとを備え、位置決め機構として、レセプタクルに一対の整列ピンを設け、フェルールに一対の孔を設け、レセプタクルの一対の整列ピンにフェルールの一対の孔を嵌入させることで、レーザアレイ及び光検知器アレイの各チャンネルの光軸と光ファイバアレイの各チャンネルの光軸とを一致させている。
特開2004−287432号公報
The optical transmission device disclosed in Patent Document 1 includes a receptacle that holds a laser array and a photodetector array, and a ferrule that holds an optical fiber array, and a pair of alignment pins is provided on the receptacle as a positioning mechanism. The optical axis of each channel of the laser array and the optical detector array and the optical axis of each channel of the optical fiber array are obtained by inserting a pair of holes of the ferrule into a pair of alignment pins of the receptacle. Match.
JP 2004-287432 A

本発明の目的は、簡易な構成でありながら、光ケーブルを光素子に高い精度で接続することができる光伝送装置、光モジュール及び光ケーブルを提供することにある。   An object of the present invention is to provide an optical transmission device, an optical module, and an optical cable that can connect an optical cable to an optical element with high accuracy while having a simple configuration.

本発明の一態様は、上記目的を達成するため、以下の光伝送装置及び光ケーブルを提供する。   In order to achieve the above object, an aspect of the present invention provides the following optical transmission device and optical cable.

[1]複数の光素子と、前記複数の光素子を第1の中心軸に対して所定の位置に配置した光素子収容部材と、複数の光伝送路を第2の中心軸に対して所定の位置に配置した光ケーブルと、前記第1及び第2の中心軸を一致させ、前記光素子収容部材に対して前記光ケーブルを相対的に回転させることで前記複数の光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とを一致させる位置決め機構とを備えた光伝送装置。 [1] A plurality of optical elements, an optical element housing member in which the plurality of optical elements are arranged at predetermined positions with respect to the first central axis, and a plurality of optical transmission paths with respect to the second central axis The optical cable arranged at the position of the optical cable is aligned with the first and second central axes, and the optical cables of the plurality of optical elements are rotated by rotating the optical cable relative to the optical element housing member. An optical transmission apparatus comprising: a positioning mechanism that aligns optical axes of the plurality of optical transmission paths.

[2]前記複数の光素子のうちの1つの光素子は、前記第1の中心軸上に配置され、前記複数の光伝送路のうちの1つの光伝送路は、前記第2の中心軸上に配置された前記[1]に記載の光伝送装置。 [2] One optical element of the plurality of optical elements is disposed on the first central axis, and one optical transmission path of the plurality of optical transmission paths is the second central axis. The optical transmission device according to [1], which is disposed above.

[3]前記第2の中心軸上に配置された光伝送路は、光信号による制御信号又は同期信号を伝送する前記[2]に記載の光伝送装置。 [3] The optical transmission device according to [2], wherein the optical transmission line disposed on the second central axis transmits a control signal or a synchronization signal based on an optical signal.

[4]前記複数の光素子及び前記複数の光伝送路は、前記所定の位置として、前記複数の光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とが一致する回転方向の角度が一意に定まる位置に配置された前記[1]に記載の光伝送装置。 [4] The plurality of optical elements and the plurality of optical transmission lines rotate as the predetermined positions so that the optical axes of the plurality of optical elements coincide with the optical axes of the plurality of optical transmission lines. The optical transmission device according to [1], wherein the optical transmission device is disposed at a position where a direction angle is uniquely determined.

[5]前記複数の光素子のうち少なくとも隣り合う1組の光素子は、他の隣合う光素子の組とは前記第1の中心軸からの開き角が異なるように配置され、前記複数の光伝送路のうち前記少なくとも隣り合う1組の光素子に対応する少なくとも隣り合う1組の光伝送路は、他の隣り合う光伝送路の組とは前記第2の中心軸からの開き角が異なるように配置された前記[4]に記載の光伝送装置。 [5] At least one set of adjacent optical elements among the plurality of optical elements is arranged so that an opening angle from the first central axis is different from the set of the other adjacent optical elements. Among the optical transmission lines, at least one set of adjacent optical transmission lines corresponding to the at least one set of adjacent optical elements has an opening angle from the second central axis different from that of the other adjacent optical transmission lines. The optical transmission device according to [4], which is arranged differently.

[6]前記複数の光素子のうち少なくとも1つの光素子は、他の光素子とは前記第1の中心軸から異なる半径の位置に配置され、前記複数の光伝送路のうち前記少なくとも1つの光素子に対応する少なくとも1つの光伝送路は、他の光伝送路とは前記第2の中心軸から異なる半径の位置に配置された前記[4]又は[5]に記載の光伝送装置。 [6] At least one of the plurality of optical elements is disposed at a different radius from the first central axis with respect to the other optical elements, and the at least one of the plurality of optical transmission lines is The optical transmission device according to [4] or [5], wherein at least one optical transmission path corresponding to the optical element is disposed at a position having a different radius from the second central axis with respect to the other optical transmission paths.

[7]前記位置決め機構は、前記光素子収容部材に設けられ、前記第1の中心軸を中心とする穴又は軸による第1の案内部と、前記光ケーブルの前記光素子収容部材側の端部に設けられ、前記第1の案内部に回転可能に嵌合する軸又は穴による第2の案内部とを備えた前記[1]に記載の光伝送装置。 [7] The positioning mechanism is provided in the optical element housing member, and includes a first guide portion formed by a hole or shaft centered on the first central axis, and an end portion of the optical cable on the optical element housing member side. The optical transmission device according to [1], further including a second guide portion provided by a shaft or a hole that is provided in the first guide portion so as to be rotatably fitted to the first guide portion.

[8]前記位置決め機構は、前記第2の案内部を前記第1の案内部に嵌合させたとき、前記第1の案内部に対する前記第2の案内部の回転可能な範囲を、前記複数の光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とが一致する位置を含む所定の範囲に制限する制限機構を備えた前記[7]に記載の光伝送装置。 [8] In the positioning mechanism, when the second guide portion is fitted to the first guide portion, the plurality of ranges in which the second guide portion can rotate with respect to the first guide portion are set to the plurality of positions. [7] The optical transmission device according to [7], further including a limiting mechanism that limits a predetermined range including a position where each optical axis of each of the optical elements coincides with each optical axis of the plurality of optical transmission paths.

[9]複数の発光素子と、前記複数の発光素子を第1の中心軸に対して所定の位置に配置した発光素子収容部材と、複数の光伝送路を第2の中心軸に対して所定の位置に配置した光ケーブルと、複数の受光素子と、前記複数の受光素子を第3の中心軸に対して所定の位置に配置した受光素子収容部材と、前記第1及び第2の中心軸を一致させ、前記発光素子収容部材に対して前記光ケーブルの前記発光素子収容部材側を相対的に回転させることで前記複数の発光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とを一致させる第1の位置決め機構と、前記第2及び第3の中心軸を一致させ、前記受光素子収容部材に対して前記光ケーブルの前記受光素子収容部材側を相対的に回転させることで前記複数の受光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とを一致させる第2の位置決め機構とを備えた光伝送装置。 [9] A plurality of light emitting elements, a light emitting element housing member in which the plurality of light emitting elements are arranged at predetermined positions with respect to the first central axis, and a plurality of optical transmission paths with respect to the second central axis. An optical cable disposed at a position, a plurality of light receiving elements, a light receiving element housing member in which the plurality of light receiving elements are disposed at predetermined positions with respect to a third central axis, and the first and second central axes. The optical axes of the plurality of light emitting elements and the optical axes of the plurality of optical transmission paths are made to coincide with each other and by rotating the light emitting element housing member side of the optical cable relative to the light emitting element housing member. By matching the first and second positioning mechanisms with the second and third central axes and rotating the light receiving element housing member side of the optical cable relative to the light receiving element housing member. Light from each of multiple light receiving elements And the plurality of optical transmission apparatus and a respective second positioning mechanism to match the optical axis of the optical transmission path.

[10]前記光ケーブルは、前記複数の光伝送路を保持する保持体を備え、前記保持体は、光信号を伝送しない媒質からなる前記[1]又は[9]に記載の光伝送装置。 [10] The optical transmission device according to [1] or [9], wherein the optical cable includes a holding body that holds the plurality of optical transmission lines, and the holding body is made of a medium that does not transmit an optical signal.

[11]複数の光素子と、前記複数の光素子を中心軸に対して回転対称となるように配置した光素子収容部材と、光ケーブルに設けられた軸又は穴による案内部が回転可能に嵌合するように前記光素子収容部材に設けられ、前記中心軸を中心とする穴又は軸による案内部とを備えた光モジュール。 [11] A plurality of optical elements, an optical element housing member in which the plurality of optical elements are arranged so as to be rotationally symmetric with respect to the central axis, and a guide portion by a shaft or a hole provided in the optical cable are rotatably fitted. An optical module provided with a hole or a guide portion with a shaft centered on the central axis, provided in the optical element housing member so as to match.

[12]断面円形の複数の光伝送路と、前記光伝送路と同一の外径を有し、前記複数の光伝送路の横断面における位置が回転対称となるように前記複数の光伝送路の間に配置された複数のダミー部材とを備えた光ケーブル。 [12] A plurality of optical transmission lines having a circular cross section and the plurality of optical transmission lines having the same outer diameter as the optical transmission lines, and the positions of the plurality of optical transmission lines in a cross section being rotationally symmetric. An optical cable comprising a plurality of dummy members arranged between the two.

[13]前記ダミー部材は、前記光伝送路よりも大きい光伝送損失を有する前記[12]に記載の光ケーブル。 [13] The optical cable according to [12], wherein the dummy member has a larger optical transmission loss than the optical transmission path.

請求項1に係る光伝送装置によれば、簡易な構成でありながら、光ケーブルを光素子に高い精度で接続することができる。   According to the optical transmission device of the first aspect, the optical cable can be connected to the optical element with high accuracy while having a simple configuration.

請求項2に係る光伝送装置によれば、中心線上に位置する光素子と光伝送路を用いて回転方向の位置決めを行うことができる。   According to the optical transmission device of the second aspect, positioning in the rotational direction can be performed using the optical element and the optical transmission path located on the center line.

請求項3に係る光伝送装置によれば、制御信号又は同期信号を用いて回転方向の位置決めを行うことができる。   According to the optical transmission device of the third aspect, positioning in the rotation direction can be performed using the control signal or the synchronization signal.

請求項4に係る光伝送装置によれば、R信号、G信号、B信号、クロック信号等のように各光伝送路が異なる信号を伝送する場合に、誤接続を防止することができる。   According to the optical transmission apparatus of the fourth aspect, it is possible to prevent erroneous connection when signals having different optical transmission paths such as R signal, G signal, B signal, and clock signal are transmitted.

請求項5に係る光伝送装置によれば、一部の開き角を変えるだけの簡単な構成により、光素子及び光伝送路を回転方向の角度が一意に定まる配置とすることができる。   According to the optical transmission device of the fifth aspect, the optical element and the optical transmission line can be arranged so that the angle in the rotation direction is uniquely determined by a simple configuration in which a part of the opening angle is changed.

請求項6に係る光伝送装置によれば、中心軸から光素子及び光伝送路の配置される位置の半径を一部を変えるだけの簡単な構成により、光素子及び光伝送路を回転方向の角度が一意に定まる配置とすることができる。   According to the optical transmission device of the sixth aspect, the optical element and the optical transmission line are rotated in the rotational direction with a simple configuration in which a part of the radius of the position where the optical element and the optical transmission line are arranged from the central axis is changed. The arrangement can be such that the angle is uniquely determined.

請求項7に係る光伝送装置によれば、第1の案内部に第2の案内部に嵌合し、回転させるという簡単な構成により、光素子の各光軸と光伝送路の各光軸とを一致させることができる。   According to the optical transmission device of the seventh aspect, each optical axis of the optical element and each optical axis of the optical transmission path can be simply configured by fitting the first guide portion to the second guide portion and rotating the first guide portion. Can be matched.

請求項8に係る光伝送装置によれば、回転可能な範囲を制限しない場合と比較して、回転調整時間を短縮することができる。   According to the optical transmission device of the eighth aspect, the rotation adjustment time can be shortened compared to the case where the rotatable range is not limited.

請求項9に係る光伝送装置によれば、簡易な構成でありながら、光ケーブルを発光素子及び受光素子に高い精度で接続することができる。   According to the optical transmission device of the ninth aspect, the optical cable can be connected to the light emitting element and the light receiving element with high accuracy while having a simple configuration.

請求項10に係る光伝送装置によれば、光信号が保持体に洩れても、光伝送路間でクロストークの発生を抑制することができる。   According to the optical transmission device of the tenth aspect, even if an optical signal leaks into the holding body, it is possible to suppress the occurrence of crosstalk between the optical transmission lines.

請求項11に係る光モジュールによれば、簡易な構成でありながら、光ケーブルを光素子に高い精度で接続することができる。   According to the optical module of the eleventh aspect, the optical cable can be connected to the optical element with high accuracy while having a simple configuration.

請求項12に係る光ケーブルによれば、簡易な構成でありながら、光ケーブルを光素子に高い精度で接続することができ、光伝送路を所望の位置に配置することができる。   According to the optical cable of the twelfth aspect, the optical cable can be connected to the optical element with high accuracy while having a simple configuration, and the optical transmission line can be arranged at a desired position.

請求項13に係る光ケーブルによれば、光信号がダミー部材に洩れても、光伝送路間でクロストークの発生を抑制することができる。   According to the optical cable of the thirteenth aspect, even if an optical signal leaks into the dummy member, it is possible to suppress the occurrence of crosstalk between the optical transmission lines.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る光伝送装置の概略の構成例を示す斜視図である。なお、同図は、内部構造の理解を容易にするため、光送信部側と光受信部側とで斜視方向が異なり、一部の部品の図示を省略している。
[First Embodiment]
FIG. 1 is a perspective view showing a schematic configuration example of an optical transmission apparatus according to the first embodiment of the present invention. In the figure, in order to facilitate understanding of the internal structure, the perspective directions are different between the optical transmission unit side and the optical reception unit side, and some components are not shown.

この光伝送装置1は、第1の中心軸2aに対して所定の位置に配置された複数(例えば4つ)の発光素子21A〜21Dを有する光送信部2と、第3の中心軸3aに対して所定の位置に配置された複数(例えば4つ)の受光素子31A〜31Dを有する光受信部3と、第2の中心軸4aに対して所定の位置に配置された光伝送路としての複数(例えば4つ)のコア40a〜40dを有し、光送信部2と光受信部3との間を接続する光ケーブル4とを備えて構成されている。なお、発光素子、受光素子、コアの数は、4つに限定されない。   The optical transmission device 1 includes an optical transmitter 2 having a plurality of (for example, four) light emitting elements 21A to 21D arranged at predetermined positions with respect to the first central axis 2a, and a third central axis 3a. On the other hand, an optical receiver 3 having a plurality of (for example, four) light receiving elements 31A to 31D arranged at a predetermined position, and an optical transmission path arranged at a predetermined position with respect to the second central axis 4a. The optical cable 4 includes a plurality of (for example, four) cores 40 a to 40 d and includes an optical cable 4 that connects the optical transmitter 2 and the optical receiver 3. The number of light emitting elements, light receiving elements, and cores is not limited to four.

(光送信部)
光送信部2は、基板20と、基板20上に実装された上記の複数の発光素子21A〜21Dと、発光素子21A〜21Dを駆動して発光素子21A〜21Dの各発光部22a〜22dから光信号を出力させる駆動回路23と、後述する発光素子ハウジングとを備える。
(Optical transmitter)
The optical transmission unit 2 drives the light emitting elements 21A to 21D and the light emitting elements 21A to 21D from the light emitting parts 22a to 22d of the light emitting elements 21A to 21D. A drive circuit 23 for outputting an optical signal and a light emitting element housing described later are provided.

基板20は、樹脂、ガラス、セラミック等の絶縁性材料からなる基材を有し、この基材の表面に配線パターンを形成したものである。なお、基板20は、配線との間に絶縁部材を配置すれば、金属から形成されていてもよい。   The board | substrate 20 has a base material which consists of insulating materials, such as resin, glass, a ceramic, and forms a wiring pattern on the surface of this base material. In addition, the board | substrate 20 may be formed from the metal, if an insulating member is arrange | positioned between wiring.

発光素子21A〜21Dは、例えば、発光ダイオードやレーザダイオード等を用いることができる。本実施の形態では、光信号を出力する光出力面と反対側に実装面を有する面型の発光素子、例えば、面発光レーザを用いる。この面発光レーザは、例えば、n型GaAs基板上に、n型下部反射鏡層、活性層、電流狭窄層、p型上部反射鏡層、p型コンタクト層、p側電極を形成し、n型GaAs基板の裏面にn側電極を形成して作製される。   For example, a light emitting diode or a laser diode can be used as the light emitting elements 21A to 21D. In this embodiment mode, a surface light emitting element having a mounting surface on the opposite side to the light output surface that outputs an optical signal, for example, a surface emitting laser is used. In this surface emitting laser, for example, an n-type lower reflector layer, an active layer, a current confinement layer, a p-type upper reflector layer, a p-type contact layer, and a p-side electrode are formed on an n-type GaAs substrate. The n-side electrode is formed on the back surface of the GaAs substrate.

(光受信部)
光受信部3は、基板30と、基板30上に実装された上記の複数の受光素子31A〜31Dと、受光素子31A〜31Dの出力信号を増幅する増幅回路33と、後述する受光素子ハウジングとを備える。
(Optical receiver)
The optical receiver 3 includes a substrate 30, a plurality of light receiving elements 31A to 31D mounted on the substrate 30, an amplifier circuit 33 for amplifying output signals of the light receiving elements 31A to 31D, and a light receiving element housing described later. Is provided.

基板30は、樹脂、ガラス、セラミック等の絶縁性材料からなる基材を有し、この基材の表面に配線パターンを形成したものである。なお、基板30は、配線との間に絶縁部材を配置すれば、金属から形成されていてもよい。   The board | substrate 30 has a base material which consists of insulating materials, such as resin, glass, a ceramic, and forms a wiring pattern on the surface of this base material. In addition, the board | substrate 30 may be formed from the metal, if an insulating member is arrange | positioned between wiring.

受光素子31A〜31Dは、例えば、フォトダイオード等を用いることができる。本実施の形態では、光信号を入力する光入力面と反対側に実装面を有する面型の受光素子であって、高速応答性に優れたGaAs系のPINフォトダイオードを用いる。このPINフォトダイオードは、例えば、GaAs基板上に、PIN接合されたP層、I層およびN層と、P層に接続されたp側電極と、N層に形成されたn側電極とを備える。   For example, a photodiode or the like can be used as the light receiving elements 31A to 31D. In the present embodiment, a GaAs PIN photodiode that is a surface type light receiving element having a mounting surface on the side opposite to the light input surface for inputting an optical signal and excellent in high-speed response is used. The PIN photodiode includes, for example, a P-layer, an I-layer, and an N-layer that are PIN-bonded on a GaAs substrate, a p-side electrode connected to the P layer, and an n-side electrode formed on the N layer. .

(光ケーブル)
光ケーブル4は、複数(例えば4つ)の光伝送路としてのコア40a〜40dと、コア40a〜40dの周囲に形成され、コア40a〜40dの屈折率よりも低い屈折率を有し、光信号を伝送しない媒質からなるクラッド(保持体)41とから構成されている。なお、クラッド41の外周に保護層を設けてもよい。光ケーブル4は、コア及びクラッドが石英ガラスから形成された石英ガラス系光ファイバ、コアが石英ガラスから形成され、クラッドがプラスチックから形成されたポリマークラッド光ファイバ、コア及びクラッドがプラスチックから形成されたプラスチック光ファイバ等を用いることができる。
(Optical cable)
The optical cable 4 is formed around a plurality of (for example, four) optical cores 40a to 40d and around the cores 40a to 40d, and has a refractive index lower than that of the cores 40a to 40d. And a clad (holding body) 41 made of a medium that does not transmit light. A protective layer may be provided on the outer periphery of the clad 41. The optical cable 4 includes a silica glass-based optical fiber having a core and a clad made of quartz glass, a polymer clad optical fiber having a core made of quartz glass and a clad made of plastic, and a plastic having a core and a clad made of plastic. An optical fiber or the like can be used.

クラッド41を構成する媒質として、例えば、テトラフルオロエチレン/フッ素化ビニリデン共重合体、フルオロアルキルメタクリレート系ポリマー、ポリメチルメタアクリレート(PMMA:Poly Methyl MethAcrylate)に色素等を分散させた材料等を用いることができる。   As a medium constituting the clad 41, for example, a tetrafluoroethylene / fluorinated vinylidene copolymer, a fluoroalkyl methacrylate polymer, a material in which a dye or the like is dispersed in polymethyl methacrylate (PMMA) is used. Can do.

図2(a)は、図1に示す光伝送装置の縦断面図、図2(b)は、発光素子とコアの位置関係を示す要部断面図である。   2A is a longitudinal cross-sectional view of the optical transmission device shown in FIG. 1, and FIG. 2B is a cross-sectional view of the main part showing the positional relationship between the light emitting element and the core.

光伝送装置1は、図2(a)に示すように、発光素子21を収容する発光素子ハウジング(発光素子収容部材)24と、受光素子31を収容する受光素子ハウジング(受光素子収容部材)34とを有する。   As shown in FIG. 2A, the optical transmission device 1 includes a light emitting element housing (light emitting element accommodating member) 24 that accommodates the light emitting element 21 and a light receiving element housing (light receiving element accommodating member) 34 that accommodates the light receiving element 31. And have.

光ケーブル4の両端には、金属、樹脂等から形成されたフェルール(第2の案内部)42A,42Bが設けられており、フェルール42A,42Bは、先端側の外周縁に全周に渡って傾斜面42aが形成されている。光ケーブル4の両方の端面4bは、例えば、フェルール42A,42B、コア40a〜40d、及びクラッド41を同時に研磨することにより面一に形成される。   At both ends of the optical cable 4, ferrules (second guide portions) 42A and 42B made of metal, resin, etc. are provided, and the ferrules 42A and 42B are inclined over the entire circumference on the outer peripheral edge on the front end side. A surface 42a is formed. Both end faces 4b of the optical cable 4 are formed flush with each other by, for example, simultaneously polishing the ferrules 42A and 42B, the cores 40a to 40d, and the clad 41.

発光素子ハウジング24は、樹脂、金属等から形成され、光ケーブル4の端部に設けられたフェルール42Aが嵌入される嵌入穴(第1の案内部)24aと、発光素子21が実装された基板20が収容される収容部24dとが形成されている。嵌入穴24aの底部には、フェルール42Aの端面4bが当接してフェルール42Aの軸方向を位置決めする当接面24bが形成され、開放端側の内周縁には、フェルール42Aの嵌入穴24aへの挿入を容易にするための傾斜面24cが全周に渡って形成されている。   The light emitting element housing 24 is formed of resin, metal, or the like, and the board 20 on which the fitting hole (first guide part) 24a into which the ferrule 42A provided at the end of the optical cable 4 is fitted, and the light emitting element 21 is mounted. 24d is formed. A contact surface 24b for positioning the ferrule 42A in the axial direction is formed at the bottom of the insertion hole 24a to contact the end surface 4b of the ferrule 42A, and the inner peripheral edge on the open end side is connected to the insertion hole 24a of the ferrule 42A. An inclined surface 24c for facilitating insertion is formed over the entire circumference.

図2(b)に示すように、発光部22a〜22dから出射される発光光210が他のチャンネルのコア40a〜40dに入射しないように、発光部22a〜22dの間隔、コア40a〜40dの間隔、発光部22a〜22dと光ケーブル4の入射側の端面4bとの間の距離、発光部22a〜22dから出射される光信号の広がり角等を設計する必要がある。   As shown in FIG. 2B, the interval between the light emitting units 22a to 22d and the distance between the cores 40a to 40d so that the emitted light 210 emitted from the light emitting units 22a to 22d does not enter the cores 40a to 40d of the other channels. It is necessary to design the distance, the distance between the light emitting units 22a to 22d and the end face 4b on the incident side of the optical cable 4, the spread angle of the optical signal emitted from the light emitting units 22a to 22d, and the like.

受光素子ハウジング34は、樹脂、金属等から形成され、光ケーブル4の端部に設けられたフェルール42Bが嵌入される嵌入穴(第1の案内部)34aと、受光素子31が実装された基板30が収容される収容部34dとが形成されている。嵌入穴34aの底部には、フェルール42Bの端面4bが当接してフェルール42Bの軸方向を位置決めする当接面34bが形成され、開放端側の内周縁には、フェルール42Bの嵌入穴34aへの挿入を容易にするための傾斜面34cが全周に渡って形成されている。   The light receiving element housing 34 is made of resin, metal, or the like, and a board 30 on which the insertion hole (first guide part) 34a into which the ferrule 42B provided at the end of the optical cable 4 is inserted, and the light receiving element 31 is mounted. Is formed. A contact surface 34b for positioning the ferrule 42B in the axial direction is formed at the bottom of the insertion hole 34a to contact the end surface 4b of the ferrule 42B, and the inner peripheral edge on the open end side is connected to the insertion hole 34a of the ferrule 42B. An inclined surface 34c for facilitating insertion is formed over the entire circumference.

なお、嵌入穴24a及びフェルール42Aは、第1の位置決め機構を構成し、嵌入穴34a及びフェルール42Bは、第2の位置決め機構を構成する。   The fitting hole 24a and the ferrule 42A constitute a first positioning mechanism, and the fitting hole 34a and the ferrule 42B constitute a second positioning mechanism.

図3は、発光部、コア、受光部の位置関係を説明するための図であり、(a)は、発光部の位置を示す図、(b)は、光受信部の後方から見たコアの位置を示す横断面図、(c)は、光受信部の後方から見た受光部の位置を示す図である。   3A and 3B are diagrams for explaining the positional relationship among the light emitting unit, the core, and the light receiving unit. FIG. 3A is a diagram showing the position of the light emitting unit, and FIG. 3B is the core viewed from the rear of the light receiving unit. (C) is a figure which shows the position of the light-receiving part seen from the back of a light receiving part.

光送信部2は、図3(a)に示すように、第1の中心軸2a上に1つの発光部22aが配置され、第1の中心軸2aから半径rの線上の全周を等分した位置(開き角θ=120°)に残りの3つの発光部22b、22c、22dが配置されている。すなわち、4つの発光部22a〜22dは、1回転させたとき、回転対称位置が3回現れる3回回転対称を有する。   As shown in FIG. 3A, the light transmitting unit 2 has one light emitting unit 22a arranged on the first central axis 2a, and equally divides the entire circumference on the line of radius r from the first central axis 2a. The remaining three light emitting units 22b, 22c, and 22d are arranged at the position (opening angle θ = 120 °). That is, the four light emitting units 22a to 22d have a three-fold rotational symmetry in which the rotational symmetry position appears three times when rotated once.

光ケーブル4は、図3(b)に示すように、第2の中心軸4a上に1つのコア40aが配置され、第2の中心軸4aから半径rの線上の全周を等分した位置(開き角θ=120°)に残りの3つのコア40b、40c、40dが配置され、それらのコア40a〜40dの周囲にクラッド41が配置されている。すなわち、コア40a〜40dは、1回転させたとき、回転対称位置が3回現れる3回回転対称を有する。   In the optical cable 4, as shown in FIG. 3B, one core 40a is arranged on the second central axis 4a, and the entire circumference on the line of the radius r is equally divided from the second central axis 4a ( The remaining three cores 40b, 40c, and 40d are disposed at an opening angle θ = 120 °, and a clad 41 is disposed around the cores 40a to 40d. That is, when the cores 40a to 40d are rotated once, the cores 40a to 40d have three-fold rotational symmetry in which the rotational symmetry position appears three times.

光受信部3は、図3(c)に示すように、第3の中心軸3a上に1つの受光部32aが配置され、第3の中心軸3aから半径rの線上の全周を等分した位置(開き角θ=120°)に残りの3つの受光部32b、32c、32dが配置されている。すなわち、受光部32a〜32dは、1回転させたとき、回転対称位置が3回現れる3回回転対称を有する。   As shown in FIG. 3C, the light receiving unit 3 has one light receiving unit 32a arranged on the third central axis 3a, and equally divides the entire circumference on the line of the radius r from the third central axis 3a. The remaining three light receiving portions 32b, 32c, and 32d are arranged at the position (open angle θ = 120 °). That is, the light-receiving portions 32a to 32d have a three-fold rotational symmetry in which the rotational symmetry position appears three times when rotated once.

(光ケーブルの接続作業)
次に、第1の実施の形態に係る光ケーブル4の接続作業を図4乃至図6を参照して説明する。
(Optical cable connection work)
Next, connection work of the optical cable 4 according to the first embodiment will be described with reference to FIGS.

図4は、光送信部側の光ケーブルの回転方向の位置調整を説明するための図であり、(a)は、調整前、(b)は、調整後を示す図である。図5は、光送信部側の光ケーブルの回転方向の位置調整を説明するための図、図6は、光受信部側の光ケーブルの回転方向の位置調整を説明するための図である。   4A and 4B are diagrams for explaining the position adjustment in the rotation direction of the optical cable on the optical transmission unit side, where FIG. 4A is a diagram before adjustment, and FIG. FIG. 5 is a diagram for explaining position adjustment in the rotation direction of the optical cable on the optical transmission unit side, and FIG. 6 is a diagram for explaining position adjustment in the rotation direction of the optical cable on the optical reception unit side.

(1)第1及び第2の中心軸の一致
光ケーブル4の光送信部2側のフェルール42Aを発光素子ハウジング24の嵌入穴24aに嵌入させる。このとき、フェルール42Aの端面4bの外周縁には、傾斜面42aが形成され、発光素子ハウジング24の嵌入穴24aの開放端側の内周縁には、傾斜面24cが形成されているため、第1の中心軸2aと第2の中心軸4aとが多少ずれていても傾斜面24c,42aによってセルフアライメントが働き、第1の中心軸2aと第2の中心軸4aが一致するように案内される。フェルール42Aを奥まで嵌入すると、フェルール42Aの端面4bが発光素子ハウジング24の当接面24bに当接し、光送信部2の第1の中心軸2aと光ケーブル4の光送信部2側の第2の中心軸4aとが一致する。このとき、図4(a)に示すように、発光素子ハウジング24の中央に位置する発光部22aの光軸と光ケーブル4の中央に位置するコア40aの光軸とは一致しているが、周囲の発光部22b〜22dの各光軸と周囲のコア40b〜40dの各光軸は一致していない。
(1) Coincidence between the first and second central axes The ferrule 42A on the optical transmission unit 2 side of the optical cable 4 is inserted into the insertion hole 24a of the light emitting element housing 24. At this time, an inclined surface 42a is formed on the outer peripheral edge of the end surface 4b of the ferrule 42A, and an inclined surface 24c is formed on the inner peripheral edge on the open end side of the insertion hole 24a of the light emitting element housing 24. Even if the first central axis 2a and the second central axis 4a are slightly deviated from each other, the inclined surfaces 24c and 42a perform self-alignment so that the first central axis 2a and the second central axis 4a are guided to coincide with each other. The When the ferrule 42A is fully inserted, the end face 4b of the ferrule 42A comes into contact with the contact surface 24b of the light emitting element housing 24, and the first central axis 2a of the optical transmitter 2 and the second of the optical cable 4 on the optical transmitter 2 side. Coincides with the central axis 4a. At this time, as shown in FIG. 4A, the optical axis of the light emitting portion 22a located at the center of the light emitting element housing 24 and the optical axis of the core 40a located at the center of the optical cable 4 coincide with each other. The optical axes of the light emitting portions 22b to 22d are not aligned with the optical axes of the surrounding cores 40b to 40d.

(2)発光部の各光軸とコアの各光軸との一致
次に、図5(a)に示すように、光受信部3の代わりにパワーメータ5を配置し、発光素子21A〜21Dから光信号を発生させ、光ケーブル4の光送信部2側のフェルール42Aを回転させながら、図5(b)に示すように、パワーメータ5の出力(光量)が最大となるフェルール42Aの角度を探す。すなわち、駆動回路23により各発光素子21A〜21Dを駆動し、各発光素子21A〜21Dの発光部22a〜22dから光信号を出射させる。各発光部22a〜22dから出力された光信号は、光ケーブル4のコア40a〜40dに入射し、パワーメータ5に到達する。パワーメータ5は、受光した光量に応じて電気信号を出力する。従って、パワーメータ5の出力が最大となる位置で、図4(b)に示すように、発光部22b〜22dの各光軸とコア40a〜40dの各光軸がそれぞれ一致する。次に、発光素子ハウジング24に対するフェルール42Aの位置を封止樹脂等により固定する。なお、フェルール42Aに長穴を形成し、発光素子ハウジング24にねじ穴を形成し、長穴を通してねじ穴にねじ止めしてもよい。
(2) Coincidence between Each Optical Axis of Light Emitting Unit and Each Optical Axis of Core Next, as shown in FIG. 5A, a power meter 5 is arranged instead of the light receiving unit 3, and the light emitting elements 21A to 21D As shown in FIG. 5B, the angle of the ferrule 42A at which the output (light quantity) of the power meter 5 is maximized is generated while rotating the ferrule 42A on the optical transmission unit 2 side of the optical cable 4 and generating an optical signal from the optical cable 4. look for. That is, the light emitting elements 21A to 21D are driven by the drive circuit 23, and light signals are emitted from the light emitting portions 22a to 22d of the light emitting elements 21A to 21D. The optical signals output from the light emitting units 22 a to 22 d are incident on the cores 40 a to 40 d of the optical cable 4 and reach the power meter 5. The power meter 5 outputs an electrical signal according to the received light quantity. Therefore, at the position where the output of the power meter 5 becomes maximum, as shown in FIG. 4B, the optical axes of the light emitting units 22b to 22d and the optical axes of the cores 40a to 40d coincide with each other. Next, the position of the ferrule 42A with respect to the light emitting element housing 24 is fixed with a sealing resin or the like. Alternatively, a long hole may be formed in the ferrule 42A, a screw hole may be formed in the light emitting element housing 24, and the screw hole may be screwed through the long hole.

(3)第2及び第3の中心軸の一致
光ケーブル4の光受信部3側のフェルール42Bを受光素子ハウジング34の嵌入穴34aに嵌入させる。このとき、フェルール42Bの端面4bの外周縁には、傾斜面42aが形成され、受光素子ハウジング34の嵌入穴34aの開放端側の内周縁には、傾斜面34cが形成されているため、第2の中心軸4aと第3の中心軸3aとが多少ずれていても傾斜面34c,42aによってセルフアライメントが働き、第2の中心軸4aと第3の中心軸3aが一致するように案内される。フェルール42Bを奥まで嵌入すると、フェルール42Bの端面4bが受光素子ハウジング34の当接面34bに当接し、光ケーブル4の光受信部3側の第2の中心軸4aと光受信部3の第3の中心軸3aとが一致する。
(3) Alignment of second and third central axes The ferrule 42B on the optical receiver 3 side of the optical cable 4 is inserted into the insertion hole 34a of the light receiving element housing 34. At this time, the inclined surface 42a is formed on the outer peripheral edge of the end surface 4b of the ferrule 42B, and the inclined surface 34c is formed on the inner peripheral edge on the open end side of the insertion hole 34a of the light receiving element housing 34. Even if the second central axis 4a and the third central axis 3a are slightly deviated from each other, the inclined surfaces 34c and 42a perform self-alignment so that the second central axis 4a and the third central axis 3a are guided to coincide with each other. The When the ferrule 42B is fully inserted, the end surface 4b of the ferrule 42B comes into contact with the contact surface 34b of the light receiving element housing 34, and the second central axis 4a on the optical receiver 3 side of the optical cable 4 and the third of the optical receiver 3 are arranged. Coincides with the central axis 3a.

(4)受光部の各光軸とコアの各光軸との一致
次に、図6(a)に示すように、発光素子21A〜21Dから光信号を発生させ、光ケーブル4の光受信部3側のフェルール42Bを回転させながら、図6(b)に示すように、増幅回路33から矩形状の信号が出力されるフェルール42Bの角度を探す。すなわち、駆動回路23により各発光素子21A〜21Dを駆動し、各発光素子21A〜21Dの発光部22a〜22dから光信号を出射させる。このとき、発光素子ハウジング24の中央に位置する発光素子21Aは、同期信号による光信号を送信する。各発光部22a〜22dから出射された光信号は、光ケーブル4のコア40a〜40dに入射し、コア40a〜40dを伝播した後、光受信部3の受光素子31A〜31Dの受光部32a〜32dに入射する。中央の受光素子31Aが受信した同期信号に同期して、他の3つの受光素子31B〜31Dは、受光した光信号の光量に応じた電気信号を出力する。増幅回路33は、受光素子31A〜31Dから出力された電気信号を増幅したのちに2値化された信号を出力する。光ケーブル4のコア40a〜40dの各光軸と受光部32a〜32dの各光軸がそれぞれ一致したとき、図6(b)に示すように、増幅回路33からそれぞれの光軸が揃ったときに出力される矩形状の信号が得られる。増幅回路33から矩形状の信号が得られると、受光素子ハウジング34に対するフェルール42Bの位置を封止樹脂等により固定する。なお、フェルール42Bに長穴を形成し、受光素子ハウジング34にねじ穴を形成し、長穴を通してねじ穴にねじ止めしてもよい。
(4) Coincidence between Each Optical Axis of Light Receiving Unit and Each Optical Axis of Core Next, as shown in FIG. 6A, optical signals are generated from the light emitting elements 21A to 21D, and the optical receiving unit 3 of the optical cable 4 While rotating the side ferrule 42B, as shown in FIG. 6B, the angle of the ferrule 42B from which the rectangular signal is output from the amplifier circuit 33 is searched. That is, the light emitting elements 21A to 21D are driven by the drive circuit 23, and light signals are emitted from the light emitting portions 22a to 22d of the light emitting elements 21A to 21D. At this time, the light emitting element 21A located at the center of the light emitting element housing 24 transmits an optical signal based on a synchronization signal. The optical signals emitted from the light emitting units 22a to 22d enter the cores 40a to 40d of the optical cable 4 and propagate through the cores 40a to 40d, and then the light receiving units 32a to 32d of the light receiving elements 31A to 31D of the light receiving unit 3. Is incident on. In synchronization with the synchronization signal received by the central light receiving element 31A, the other three light receiving elements 31B to 31D output an electrical signal corresponding to the amount of the received optical signal. The amplifying circuit 33 amplifies the electrical signal output from the light receiving elements 31A to 31D and then outputs a binarized signal. When the optical axes of the cores 40a to 40d of the optical cable 4 coincide with the optical axes of the light receiving portions 32a to 32d, respectively, when the optical axes are aligned from the amplifier circuit 33 as shown in FIG. An output rectangular signal is obtained. When a rectangular signal is obtained from the amplifier circuit 33, the position of the ferrule 42B with respect to the light receiving element housing 34 is fixed by a sealing resin or the like. Alternatively, a long hole may be formed in the ferrule 42B, a screw hole may be formed in the light receiving element housing 34, and the screw hole may be screwed through the long hole.

[第2の実施の形態]
図7は、本発明の第2の実施の形態に係る光伝送装置の要部を示し、(a)は、発光部の位置を示す図、(b)は、光受信部の後方からみたコアの位置を示す図、光受信部の後方から見た受光部の位置を示す図である。
[Second Embodiment]
7A and 7B show the main part of the optical transmission apparatus according to the second embodiment of the present invention, where FIG. 7A is a diagram showing the position of the light emitting unit, and FIG. 7B is the core viewed from the rear of the optical receiving unit. It is a figure which shows the position of this, and is a figure which shows the position of the light-receiving part seen from the back of the optical receiver.

本実施の形態は、第1の実施の形態とは、発光部、コア、受光部の配置が異なり、他は第1の実施の形態と同様に構成されている。   The present embodiment is different from the first embodiment in the arrangement of the light emitting unit, the core, and the light receiving unit, and the other configuration is the same as that of the first embodiment.

発光部22a〜22dは、光ケーブル4のコア40a〜40dとは、発光部22a〜22dのそれぞれの光軸とコア40a〜40dのそれぞれの光軸とが一致する回転方向の角度が一意に定まる位置関係にある。すなわち、発光部22a〜22dは、360°回転させたとき、回転対称位置が1回現れる1回回転対称を有する。具体的には、図7(a)に示すように、第1の中心軸2a上に1つの発光部22aが配置され、2つの発光部22b、22dは、半径r上に開き角θを有して配置され、発光部22cは、半径r上に発光部22bとは開き角θを有し、発光部22dとは開き角θを有して配置されている。 The light emitting units 22a to 22d are positions where the angles of the rotation direction in which the optical axes of the light emitting units 22a to 22d and the optical axes of the cores 40a to 40d coincide with the cores 40a to 40d of the optical cable 4 are uniquely determined. There is a relationship. That is, the light emitting units 22a to 22d have a one-time rotational symmetry in which the rotational symmetry position appears once when rotated by 360 °. Specifically, as shown in FIG. 7 (a), it is arranged one light emitting portion 22a on the first central axis 2a, 2 one light emitting unit 22b, 22 d is an opening angle over a radius r 1 theta 1 is arranged with a light emitting portion 22c has an opening angle theta 2 to the light emitting portion 22b on the radius r 2, and is disposed with the opening angle theta 3 is a light emitting unit 22d.

コア40a〜40dは、発光部22a〜22dと同様に1回回転対称を有し、図7(b)に示すように、第2の中心軸4a上に1つのコア40aが配置され、2つのコア40b、40dは、半径r上に開き角θを有して配置され、コア40cは、半径r上にコア40bとは開き角θを有し、コア40dとは開き角θを有して配置されている。 The cores 40a to 40d have one-time rotational symmetry similar to the light emitting units 22a to 22d, and as shown in FIG. 7B, one core 40a is disposed on the second central axis 4a, core 40b, 40d are arranged at an opening angle theta 1 on the radius r 1, core 40c has the opening angle theta 2 to the core 40b on the radius r 2, the angle of aperture from the core 40d theta 3 are arranged.

受光部32a〜32dは、発光部22a〜22dと同様に、光ケーブル4のコア40a〜40dとは、受光部32a〜32dのそれぞれの光軸とコア40a〜40dのそれぞれの光軸とが一致する回転方向の角度が一意に定まる位置関係にある。すなわち、受光部32a〜32dは、360°回転させたとき、回転対称位置が1回現れる1回回転対称を有する。具体的には、図7(c)に示すように、第3の中心軸3a上に1つの受光部32aが配置され、2つの受光部32b、32dは、半径r上に開き角θを有して配置され、受光部32cは、半径r上に受光部32bとは開き角θを有し、受光部32dとは開き角θを有して配置されている。 Similarly to the light emitting units 22a to 22d, the light receiving units 32a to 32d are aligned with the optical axes of the light receiving units 32a to 32d and the optical axes of the cores 40a to 40d, respectively. The rotation direction angle is uniquely determined. That is, the light receiving portions 32a to 32d have a one-time rotational symmetry in which the rotational symmetry position appears once when rotated by 360 °. Specifically, as shown in FIG. 7 (c), the third central axis 3a on one light receiving portion 32a is disposed on the two light receiving portions 32 b, 32d is an opening angle over a radius r 1 theta 1 is arranged with a light receiving portion 32c has an open angle theta 2 to the light receiving portion 32b on the radius r 2, and is disposed with the opening angle theta 3 to the light receiving portion 32d.

なお、1回回転対称とすることができるのなら、例えば、発光部22b〜22c、コア40b〜40d、受光部32b〜32dは、それぞれ第1の中心軸2a、第2の中心軸4a、第3の中心軸3aからの半径を同一としてもよい。また、発光部22b〜22c、コア40b〜40d、受光部32b〜32dは、それぞれ開き角を等しくしてもよい。   If the rotational symmetry can be made once, for example, the light emitting units 22b to 22c, the cores 40b to 40d, and the light receiving units 32b to 32d have the first central axis 2a, the second central axis 4a, 3 may have the same radius from the central axis 3a. The light emitting units 22b to 22c, the cores 40b to 40d, and the light receiving units 32b to 32d may have the same opening angle.

(光ケーブルの接続)
次に、第2の実施の形態に係る光ケーブ4の接続作業を図8を参照して説明する。
(Optical cable connection)
Next, connection work of the optical cable 4 according to the second embodiment will be described with reference to FIG.

図8は、光送信部及び光受信部の回転方向の位置調整を説明するための図であり、(a)は、調製前、(b)は、調製後を示す図である。   8A and 8B are diagrams for explaining the positional adjustment in the rotation direction of the optical transmission unit and the optical reception unit. FIG. 8A is a diagram illustrating the pre-preparation and FIG. 8B is a diagram illustrating the post-preparation.

(1)第1及び第2の中心軸の一致
光ケーブル4の光送信部2側のフェルール42Aを発光素子ハウジング24の嵌入穴24aに嵌入させる。これにより、光送信部2の第1の中心軸2aと光ケーブル4の光送信部2側の第2の中心軸4aとが一致する。このとき、図8(a)に示すように、発光素子ハウジング24の中央に位置する発光部22aの光軸と、光ケーブル4の中央に位置するコア40aの光軸と、受光素子ハウシング34の中央に位置する受光部32aの光軸とは一致しているが、周囲の発光部22b〜22dの各光軸と、コア40b〜40dの各光軸と、受光部32b〜32dの各光軸とは一致していない。
(1) Coincidence between the first and second central axes The ferrule 42A on the optical transmission unit 2 side of the optical cable 4 is inserted into the insertion hole 24a of the light emitting element housing 24. Thereby, the 1st central axis 2a of the optical transmission part 2 and the 2nd central axis 4a by the side of the optical transmission part 2 of the optical cable 4 correspond. At this time, as shown in FIG. 8A, the optical axis of the light emitting portion 22a located at the center of the light emitting element housing 24, the optical axis of the core 40a located at the center of the optical cable 4, and the center of the light receiving element housing 34 Are coincident with the optical axes of the light receiving parts 32a located at the center, but the optical axes of the surrounding light emitting parts 22b to 22d, the optical axes of the cores 40b to 40d, and the optical axes of the light receiving parts 32b to 32d Does not match.

(2)発光素子の各光軸とコアの各光軸との一致
次に、図5(a)で説明したように、光受信部3の代わりにパワーメータ5を配置し、発光素子21A〜21Dから光信号を発生させ、光ケーブル4の光送信部2側のフェルール42A又は光送信部2を回転させながら、図5(b)に示すように、パワーメータ5の出力(光量)が最大となるフェルール42A又は光送信部2の角度を探す。図8(a)に示す場合では、光送信部2をフェルール42Aに対して相対的に左へθ回転させると、図8(b)に示すように、発光部22b〜22dの各光軸とコア40b〜40dの各光軸がそれぞれ一致する。次に、発光素子ハウジング24に対するフェルール42Aの位置を封止樹脂等により固定する。
(2) Coincidence between Each Optical Axis of Light Emitting Element and Each Optical Axis of Core Next, as described in FIG. 5A, the power meter 5 is arranged instead of the light receiving unit 3, and the light emitting elements 21A to 21A While the optical signal is generated from 21D and the ferrule 42A or the optical transmission unit 2 on the optical transmission unit 2 side of the optical cable 4 is rotated, as shown in FIG. The angle of the ferrule 42A or the optical transmitter 2 is searched. In the case shown in FIG. 8A, when the optical transmission unit 2 is rotated by θ 4 to the left relative to the ferrule 42A, as shown in FIG. 8B, each optical axis of the light emitting units 22b to 22d. And the optical axes of the cores 40b to 40d coincide with each other. Next, the position of the ferrule 42A with respect to the light emitting element housing 24 is fixed with a sealing resin or the like.

(3)第2及び第3の中心軸の一致
光ケーブル4の光受信部3側のフェルール42Bを受光素子ハウジング34の嵌入穴34aに嵌入させる。これにより、光受信部3の第3の中心軸3aと光ケーブル4の光受信部3側の第2の中心軸4aとが一致する。このとき、図8(a)に示すように、光ケーブル4の中央に位置するコア40aの光軸と受光素子ハウジング34の中央に位置する受光部32aの光軸とは一致しているが、周囲のコア40b〜40dの各光軸と受光部32b〜32dの各光軸とは一致していない。
(3) Alignment of second and third central axes The ferrule 42B on the optical receiver 3 side of the optical cable 4 is inserted into the insertion hole 34a of the light receiving element housing 34. As a result, the third central axis 3a of the optical receiver 3 and the second central axis 4a of the optical cable 4 on the optical receiver 3 side coincide with each other. At this time, as shown in FIG. 8A, the optical axis of the core 40a located at the center of the optical cable 4 and the optical axis of the light receiving portion 32a located at the center of the light receiving element housing 34 are coincident with each other. The optical axes of the cores 40b to 40d do not coincide with the optical axes of the light receiving portions 32b to 32d.

(4)受光素子の各光軸とコアの各光軸との一致
次に、図6(a)で説明したように、発光素子21A〜21Dから光信号を発生させ、光ケーブル4の光受信部3側のフェルール42B又は光受信部3を回転させながら、図6(b)に示すように、駆動回路23から矩形状の信号が出力されるフェルール42B又は光受信部3の角度を探す。図8(a)に示す場合では、光受信部3をフェルール42Bに対して相対的に左へθ回転させると、図8(b)に示すように、コア40b〜40dの各光軸と受光部32b〜32dの各光軸とがそれぞれ一致する。次に、受光素子ハウジング34に対するフェルール42Bの位置を封止樹脂等により固定する。この構成により、発光素子21A〜21Dのそれぞれを、所望の受光素子31A〜Dへ一意に接続することが可能となる。
(4) Coincidence between Each Optical Axis of Light Receiving Element and Each Optical Axis of Core Next, as described in FIG. 6A, an optical signal is generated from the light emitting elements 21A to 21D, and the optical receiving unit of the optical cable 4 While rotating the three-side ferrule 42B or the optical receiver 3, as shown in FIG. 6B, the angle of the ferrule 42B or the optical receiver 3 from which a rectangular signal is output from the drive circuit 23 is searched. In the case shown in FIG. 8 (a), when the light receiving unit 3 is theta 5 rotates relatively in the left relative to the ferrule 42B, as shown in FIG. 8 (b), and the optical axis of the core 40b~40d The optical axes of the light receiving parts 32b to 32d are respectively coincident. Next, the position of the ferrule 42B with respect to the light receiving element housing 34 is fixed with a sealing resin or the like. With this configuration, each of the light emitting elements 21A to 21D can be uniquely connected to the desired light receiving elements 31A to 31D.

[第3の実施の形態]
図9は、本発明の第3の実施の形態に係る光伝送装置の要部を示し、(a)は、発光部の位置を示す図、(b)は、光受信部の後方からみたコアの位置を示す図、光受信部の後方から見た受光部の位置を示す図である。
[Third Embodiment]
FIG. 9 shows the main part of the optical transmission apparatus according to the third embodiment of the present invention, (a) shows the position of the light emitting part, and (b) shows the core viewed from the rear of the optical receiving part. It is a figure which shows the position of this, and is a figure which shows the position of the light-receiving part seen from the back of the optical receiver.

第1の実施の形態では、第1の中心軸2a、第2の中心軸4a、第3の中心軸3aにそれぞれ発光部22a、コア40a、受光部32aを配置したが、本実施の形態は、第1の中心軸2a、第2の中心軸4a、第3の中心軸3aに発光部22a、コア40a、受光部32aを配置せずに周囲にのみ配置したものである。   In the first embodiment, the light emitting unit 22a, the core 40a, and the light receiving unit 32a are arranged on the first central axis 2a, the second central axis 4a, and the third central axis 3a, respectively. The first central axis 2a, the second central axis 4a, and the third central axis 3a are arranged only around the light emitting portion 22a, the core 40a, and the light receiving portion 32a.

光送信部2は、図9(a)に示すように、第1の中心軸2aから半径rの線上の全周を等分した位置(開き角θ=90°)に4つの発光部22a〜22dが配置されている。すなわち、4つの発光部22a〜22dは、1回転させたとき、回転対称位置が4回現れる4回回転対称を有する。   As shown in FIG. 9A, the optical transmission unit 2 includes four light emitting units 22a to 22 at positions (open angle θ = 90 °) equally divided from the first central axis 2a on the line of radius r. 22d is arranged. That is, the four light emitting units 22a to 22d have a four-fold rotational symmetry in which the rotational symmetry position appears four times when rotated once.

光ケーブル4は、図9(b)に示すように、第2の中心軸4aから半径rの線上の全周を等分した位置(開き角θ=90°)に4つのコア40a〜40dが配置され、それらのコア40a〜40dの周囲にクラッド41が配置されている。すなわち、コア40a〜40dは、1回転させたとき、回転対称位置が4回現れる4回回転対称を有する。   In the optical cable 4, as shown in FIG. 9B, the four cores 40a to 40d are arranged at positions (opening angle θ = 90 °) equally divided from the second central axis 4a on the radius r line. The clad 41 is disposed around the cores 40a to 40d. That is, when the cores 40a to 40d are rotated once, the cores 40a to 40d have four-fold rotational symmetry in which the rotational symmetry position appears four times.

光受信部3は、図9(c)に示すように、第3の中心軸3aから半径rの線上の全周を等分した位置(開き角θ=90°)に4つの受光部32a〜32dが配置されている。すなわち、受光部32a〜32dは、1回転させたとき、回転対称位置が4回現れる4回回転対称を有する。   As shown in FIG. 9C, the light receiving unit 3 includes four light receiving units 32a to 32a at positions (opening angle θ = 90 °) equally divided from the third central axis 3a on the line of radius r. 32d is arranged. That is, the light receiving portions 32a to 32d have a four-fold rotational symmetry in which the rotational symmetry position appears four times when rotated one time.

[第4の実施の形態]
図10は、本発明の第4の実施の形態に係る光伝送装置の概略の構成例を示す斜視図である。なお、同図は、内部構造の理解を容易にするため、光送信部側と光受信部側とで斜視方向が異なり、また、一部の部品の図示を省略している。
[Fourth Embodiment]
FIG. 10 is a perspective view showing a schematic configuration example of an optical transmission apparatus according to the fourth embodiment of the present invention. In the figure, in order to facilitate understanding of the internal structure, the perspective directions are different between the optical transmission unit side and the optical reception unit side, and some components are not shown.

第1の実施の形態では、独立した4つの発光素子21A〜21Dを用いたが、本実施の形態は、同一の基板200上に4つの発光部22a〜22dを形成した発光素子アレイ25を用いたものである。第1の中心軸2aに対する発光部22a〜22dの位置は、第1の実施の形態と同じである。   In the first embodiment, four independent light emitting elements 21A to 21D are used, but this embodiment uses a light emitting element array 25 in which four light emitting portions 22a to 22d are formed on the same substrate 200. It was. The positions of the light emitting units 22a to 22d with respect to the first central axis 2a are the same as those in the first embodiment.

また、第1の実施の形態では、独立した4つの受光素子31A〜31Dを用いたが、本実施の形態は、同一の基板300上に4つの受光部32a〜32dを形成した受光素子アレイ35を用いたものである。第3の中心軸3aに対する受光部32a〜32dの位置は、第1の実施の形態と同じである。   In the first embodiment, four independent light receiving elements 31 </ b> A to 31 </ b> D are used, but in this embodiment, the light receiving element array 35 in which four light receiving parts 32 a to 32 d are formed on the same substrate 300. Is used. The positions of the light receiving portions 32a to 32d with respect to the third central axis 3a are the same as those in the first embodiment.

発光素子アレイ25は、複数(例えば4つ)の発光素子が所定の位置(回転対称)に配列され、発光素子は、例えば、面型発光ダイオードや面発光レーザ等を用いることができる。本実施の形態では、面発光レーザを用いる。この面発光レーザを用いた面発光レーザアレイは、例えば、n型GaAs基板上に、n型下部反射鏡層、活性層、電流狭窄層、p型上部反射鏡層、p型コンタクト層、p側電極を形成し、n型GaAs基板の裏面にn側電極を形成したものであり、活性層、電流狭窄層、p型上部反射鏡層、p型コンタクト層、およびp側電極は、発光素子毎に形成されている。   In the light emitting element array 25, a plurality of (for example, four) light emitting elements are arranged in a predetermined position (rotationally symmetric), and for example, a surface light emitting diode or a surface emitting laser can be used. In this embodiment mode, a surface emitting laser is used. A surface emitting laser array using this surface emitting laser has, for example, an n-type lower reflector layer, an active layer, a current confinement layer, a p-type upper reflector layer, a p-type contact layer, and a p-side on an n-type GaAs substrate. An electrode is formed, and an n-side electrode is formed on the back surface of the n-type GaAs substrate. The active layer, the current confinement layer, the p-type upper reflector layer, the p-type contact layer, and the p-side electrode are provided for each light emitting element. Is formed.

受光素子アレイ35は、複数(例えば4つ)の受光素子が所定の位置(回転対称)に配列され、受光素子は、例えば、面型のフォトダイオード等を用いることができる。本実施の形態では、高速応答性に優れたGaAs系のPINフォトダイオードを用いる。このPINフォトダイオードを用いた受光素子アレイ512は、例えば、GaAs基板上に、PIN接合されたP層、I層およびN層と、P層に接続されたp側電極と、N層に形成されたn側電極とを備え、P層、I層、N層、p側電極およびn側電極は、受光素子毎に形成されされている。   In the light receiving element array 35, a plurality of (for example, four) light receiving elements are arranged at predetermined positions (rotationally symmetric), and, for example, a planar photodiode or the like can be used. In this embodiment, a GaAs PIN photodiode having excellent high-speed response is used. The light receiving element array 512 using the PIN photodiode is formed on, for example, a P-layer, I-layer and N-layer that are PIN-bonded on a GaAs substrate, a p-side electrode connected to the P-layer, and an N-layer. In addition, the P layer, the I layer, the N layer, the p side electrode, and the n side electrode are formed for each light receiving element.

[第5の実施の形態]
図11は、本発明の第5の実施の形態に係る光伝送装置の要部を示す斜視図である。本実施の形態は、第1の実施の形態において、発光素子ハウジング24に溝24eを形成し、フェルール42Aに溝24eに入る突部42bを形成し、フェルール42Aの回転可能な範囲を所定の範囲に制限したものである。回転可能な所定の範囲には、発光部22a〜22dの各光軸とコア40a〜40dの各光軸とが一致する位置が含まれる。また、受光素子ハウジング34及び受光素子ハウジング34側のフェルール42Bも、図示は省略するが、発光素子ハウジング24及び発光素子ハウジング24側のフェルール42Aと同様に、受光素子ハウジング34に溝を形成し、フェルール42Bに突部を形成している。
[Fifth Embodiment]
FIG. 11 is a perspective view showing a main part of an optical transmission apparatus according to the fifth embodiment of the present invention. In the present embodiment, in the first embodiment, the groove 24e is formed in the light emitting element housing 24, the protrusion 42b that enters the groove 24e is formed in the ferrule 42A, and the rotatable range of the ferrule 42A is a predetermined range. Is limited to. The predetermined range in which rotation is possible includes positions where the optical axes of the light emitting units 22a to 22d coincide with the optical axes of the cores 40a to 40d. Further, the light receiving element housing 34 and the ferrule 42B on the light receiving element housing 34 side are not shown in the figure, but, similar to the light emitting element housing 24 and the ferrule 42A on the light emitting element housing 24 side, a groove is formed in the light receiving element housing 34, A protrusion is formed on the ferrule 42B.

図11(b)に示すように、溝24eは、幅Wと深さHを有し、突部42bは、溝24eの幅Wよりも小さい幅wと溝24eの深さHよりも小さい高さhを有する。溝24eの幅Wと突部42bの幅wを適宜選択することにより、フェルール42Aの回転可能な範囲を、例えば、10°に設定することができる。これと同様に、フェルール42Bの回転可能な範囲を、例えば、10°に設定することができる。   As shown in FIG. 11B, the groove 24e has a width W and a depth H, and the protrusion 42b has a width w smaller than the width W of the groove 24e and a height smaller than the depth H of the groove 24e. H. By appropriately selecting the width W of the groove 24e and the width w of the projection 42b, the rotatable range of the ferrule 42A can be set to 10 °, for example. Similarly, the rotatable range of the ferrule 42B can be set to 10 °, for example.

[第6の実施の形態]
図12は、本発明の第6の実施の形態に係る光ケーブルの横断面図である。本実施の形態の光ケーブルは、光信号を伝送する断面円形の複数のコア40a〜40dと、コア40a〜40dが容易に3回回転対称をなすように、コア40a〜40dと同一の外径を有し、複数のコア40a〜40dの横断面における位置が3回回転対称となるように複数のコア40a〜40dの間に接するように配置された複数のダミー部材44と、ダミー部材44を覆うクラッド41とを備える。なお、1回回転対称、4回回転対称等の他の回転対称となるようにコアを配置してもよい。
[Sixth Embodiment]
FIG. 12 is a cross-sectional view of an optical cable according to the sixth embodiment of the present invention. The optical cable of the present embodiment has the same outer diameter as the cores 40a to 40d so that the cores 40a to 40d having a circular cross section for transmitting an optical signal and the cores 40a to 40d are easily three-fold rotationally symmetric. A plurality of dummy members 44 disposed so as to be in contact with the plurality of cores 40a to 40d so that the positions in the cross section of the plurality of cores 40a to 40d are rotationally symmetrical three times, and the dummy members 44 are covered. And a clad 41. The core may be arranged so as to have another rotational symmetry such as one-time rotational symmetry and four-time rotational symmetry.

ダミー部材44は、コア40a〜40dよりも大きい光伝送損失を有する。このようなダミー部材44の材料として、例えば、テトラフルオロエチレン/フッ素化ビニリデン共重合体、フルオロアルキルメタクリレート系ポリマー、PMMAに色素等を分散させた材料等を用いることができる。   The dummy member 44 has a larger optical transmission loss than the cores 40a to 40d. As a material of such a dummy member 44, for example, a tetrafluoroethylene / fluorinated vinylidene copolymer, a fluoroalkyl methacrylate polymer, a material in which a dye or the like is dispersed in PMMA, and the like can be used.

発光素子から出射された発光光210が他のチャンネルのコア40a〜40dに入射しないように、コア40a〜40d間にダミー用部材44が配置される。   The dummy member 44 is disposed between the cores 40a to 40d so that the emitted light 210 emitted from the light emitting element does not enter the cores 40a to 40d of the other channels.

なお、コア40a〜40dは、光信号の伝送用としてコアとクラッドからなる光ファイバを用いてもよい。また、ダミー用部材44は、光信号の伝送用の光ファイバと同一の外径を有するダミー用の光ファイバを用いてもよい。   The cores 40a to 40d may use optical fibers composed of a core and a clad for optical signal transmission. The dummy member 44 may be a dummy optical fiber having the same outer diameter as the optical signal transmission optical fiber.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々な変形実施が可能である。例えば、発光素子ハウジング及び受光素子ハウジングに嵌入穴を設け、その嵌入穴にフェルールの外径が嵌入するようにしたが、これとは逆に、フェルールに嵌入穴を設け、この嵌入穴に嵌入する軸をハウジングに設けてもよい。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, an insertion hole is provided in the light emitting element housing and the light receiving element housing, and the outer diameter of the ferrule is inserted into the insertion hole. On the contrary, an insertion hole is provided in the ferrule, and the insertion hole is inserted into the insertion hole. A shaft may be provided in the housing.

また、本発明の趣旨を逸脱しない範囲で各実施の形態の構成要素を任意に組み合わせることができる。例えば、第5の実施の形態の構成を第1の実施の形態だけでなく、他の実施の形態に適用してもよい。   In addition, the constituent elements of each embodiment can be arbitrarily combined without departing from the spirit of the present invention. For example, the configuration of the fifth embodiment may be applied not only to the first embodiment but also to other embodiments.

図1は、本発明の第1の実施の形態に係る光伝送装置の概略の構成例を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration example of an optical transmission apparatus according to the first embodiment of the present invention. 図2(a)は、図1に示す光伝送装置の縦断面図、図2(b)は、発光素子とコアの位置関係を示す要部断面図である。2A is a longitudinal cross-sectional view of the optical transmission device shown in FIG. 1, and FIG. 2B is a cross-sectional view of the main part showing the positional relationship between the light emitting element and the core. 図3は、発光部、コア、受光部の位置関係を説明するための図であり、(a)は、発光部の位置を示す図、(b)は、光受信部の後方から見たコアの位置を示す横断面図、(c)は、光受信部の後方から見た受光部の位置を示す図である。3A and 3B are diagrams for explaining the positional relationship among the light emitting unit, the core, and the light receiving unit. FIG. 3A is a diagram showing the position of the light emitting unit, and FIG. 3B is the core viewed from the rear of the light receiving unit. (C) is a figure which shows the position of the light-receiving part seen from the back of a light receiving part. 図4は、光送信部側の光ケーブルの回転方向の位置調整を説明するための図であり、(a)は、調整前、(b)は、調整後を示す図である。4A and 4B are diagrams for explaining the position adjustment in the rotation direction of the optical cable on the optical transmission unit side, where FIG. 4A is a diagram before adjustment, and FIG. 図5は、光送信部側の光ケーブルの回転方向の位置調整を説明するための図である。FIG. 5 is a diagram for explaining position adjustment in the rotation direction of the optical cable on the optical transmission unit side. 図6は、光受信部側の光ケーブルの回転方向の位置調整を説明するための図である。FIG. 6 is a diagram for explaining position adjustment in the rotation direction of the optical cable on the optical receiver side. 図7は、本発明の第2の実施の形態に係る光伝送装置の要部を示し、(a)は、発光部の位置を示す図、(b)は、光受信部の後方からみたコアの位置を示す図、光受信部の後方から見た受光部の位置を示す図である。7A and 7B show the main part of the optical transmission apparatus according to the second embodiment of the present invention, where FIG. 7A is a diagram showing the position of the light emitting unit, and FIG. 7B is the core viewed from the rear of the optical receiving unit. It is a figure which shows the position of this, and is a figure which shows the position of the light-receiving part seen from the back of the optical receiver. 図8は、光送信部及び光受信部の回転方向の位置調整を説明するための図であり、(a)は、調製前、(b)は、調製後を示す図である。8A and 8B are diagrams for explaining the positional adjustment in the rotation direction of the optical transmission unit and the optical reception unit. FIG. 8A is a diagram illustrating the pre-preparation and FIG. 8B is a diagram illustrating the post-preparation. 図9は、本発明の第3の実施の形態に係る光伝送装置の要部を示し、(a)は、発光部の位置を示す図、(b)は、光受信部の後方からみたコアの位置を示す図、(c)は、光受信部の後方から見た受光部の位置を示す図である。FIG. 9 shows the main part of the optical transmission apparatus according to the third embodiment of the present invention, (a) shows the position of the light emitting part, and (b) shows the core viewed from the rear of the optical receiving part. The figure which shows the position of (2), (c) is a figure which shows the position of the light-receiving part seen from the back of the optical receiver. 図10は、本発明の第4の実施の形態に係る光伝送装置の概略の構成例を示す斜視図である。FIG. 10 is a perspective view showing a schematic configuration example of an optical transmission apparatus according to the fourth embodiment of the present invention. 図11は、本発明の第5の実施の形態に係る光伝送装置の要部を示す斜視図である。FIG. 11 is a perspective view showing a main part of an optical transmission apparatus according to the fifth embodiment of the present invention. 図12は、本発明の第6の実施の形態に係る光ケーブルの横断面図である。FIG. 12 is a cross-sectional view of an optical cable according to the sixth embodiment of the present invention.

符号の説明Explanation of symbols

1 光伝送装置
2 光送信部
2a 第1の中心軸
3 光受信部
3a 第3の中心軸
4 光ケーブル
4a 第2の中心軸
4b 端面
5 パワーメータ
20 基板
21,21A〜21D 発光素子
22a〜22d 発光部
23 駆動回路
24 発光素子ハウジング
24a 嵌入穴
24b 当接面
24c 傾斜面
24d 収容部
24e 溝
25 発光素子アレイ
30 基板
31,31A〜31D 受光素子
32a〜32d 受光部
33 増幅回路
34 受光素子ハウジング
34a 嵌入穴
34b 当接面
34c 傾斜面
34d 収容部
35 受光素子アレイ
40a〜40d コア
41 クラッド
42A,42B フェルール
42a 傾斜面
42b 突部
44 ダミー部材
200 基板
210 発光光
300 基板
DESCRIPTION OF SYMBOLS 1 Optical transmission apparatus 2 Optical transmission part 2a 1st central axis 3 Optical receiving part 3a 3rd central axis 4 Optical cable 4a 2nd central axis 4b End surface 5 Power meter 20 Board | substrates 21, 21A-21D Light emitting element 22a-22d Light emission Part 23 drive circuit 24 light emitting element housing 24a fitting hole 24b contact surface 24c inclined surface 24d accommodating part 24e groove 25 light emitting element array 30 substrate 31, 31A to 31D light receiving element 32a to 32d light receiving part 33 amplifying circuit 34 light receiving element housing 34a fit Hole 34b Abutting surface 34c Inclined surface 34d Housing portion 35 Light receiving element array 40a to 40d Core 41 Clad 42A, 42B Ferrule 42a Inclined surface 42b Protruding portion 44 Dummy member 200 Substrate 210 Light emitting light 300 Substrate

Claims (13)

複数の光素子と、
前記複数の光素子を第1の中心軸に対して所定の位置に配置した光素子収容部材と、
複数の光伝送路を第2の中心軸に対して所定の位置に配置した光ケーブルと、
前記第1及び第2の中心軸を一致させ、前記光素子収容部材に対して前記光ケーブルを相対的に回転させることで前記複数の光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とを一致させる位置決め機構とを備えた光伝送装置。
A plurality of optical elements;
An optical element housing member in which the plurality of optical elements are arranged at predetermined positions with respect to the first central axis;
An optical cable having a plurality of optical transmission lines arranged at predetermined positions with respect to the second central axis;
By aligning the first and second central axes and rotating the optical cable relative to the optical element housing member, each of the optical axes of the plurality of optical elements and each of the plurality of optical transmission paths An optical transmission device comprising a positioning mechanism for matching the optical axis of the optical transmission device.
前記複数の光素子のうちの1つの光素子は、前記第1の中心軸上に配置され、
前記複数の光伝送路のうちの1つの光伝送路は、前記第2の中心軸上に配置された請求項1に記載の光伝送装置。
One optical element of the plurality of optical elements is disposed on the first central axis,
2. The optical transmission device according to claim 1, wherein one of the plurality of optical transmission paths is disposed on the second central axis.
前記第2の中心軸上に配置された光伝送路は、光信号による制御信号又は同期信号を伝送する請求項2に記載の光伝送装置。   The optical transmission device according to claim 2, wherein the optical transmission line disposed on the second central axis transmits a control signal or a synchronization signal based on an optical signal. 前記複数の光素子及び前記複数の光伝送路は、前記所定の位置として、前記複数の光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とが一致する回転方向の角度が一意に定まる位置に配置された請求項1に記載の光伝送装置。   The plurality of optical elements and the plurality of optical transmission paths are, as the predetermined positions, rotation angles at which the optical axes of the plurality of optical elements coincide with the optical axes of the plurality of optical transmission paths. The optical transmission device according to claim 1, wherein the optical transmission device is disposed at a position where the 前記複数の光素子のうち少なくとも隣り合う1組の光素子は、他の隣合う光素子の組とは前記第1の中心軸からの開き角が異なるように配置され、
前記複数の光伝送路のうち前記少なくとも隣り合う1組の光素子に対応する少なくとも隣り合う1組の光伝送路は、他の隣り合う光伝送路の組とは前記第2の中心軸からの開き角が異なるように配置された請求項4に記載の光伝送装置。
The at least one set of adjacent optical elements among the plurality of optical elements is arranged so that an opening angle from the first central axis is different from a set of other adjacent optical elements,
Among the plurality of optical transmission lines, at least one set of adjacent optical transmission lines corresponding to the at least one set of adjacent optical elements is different from the set of other adjacent optical transmission lines from the second central axis. The optical transmission device according to claim 4, wherein the optical transmission devices are arranged to have different opening angles.
前記複数の光素子のうち少なくとも1つの光素子は、他の光素子とは前記第1の中心軸から異なる半径の位置に配置され、
前記複数の光伝送路のうち前記少なくとも1つの光素子に対応する少なくとも1つの光伝送路は、他の光伝送路とは前記第2の中心軸から異なる半径の位置に配置された請求項4又は5に記載の光伝送装置。
At least one optical element among the plurality of optical elements is disposed at a position of a different radius from the first central axis with respect to the other optical elements,
5. The at least one optical transmission line corresponding to the at least one optical element among the plurality of optical transmission lines is disposed at a position having a different radius from the second central axis with respect to the other optical transmission lines. Or the optical transmission apparatus of 5.
前記位置決め機構は、前記光素子収容部材に設けられ、前記第1の中心軸を中心とする穴又は軸による第1の案内部と、
前記光ケーブルの前記光素子収容部材側の端部に設けられ、前記第1の案内部に回転可能に嵌合する軸又は穴による第2の案内部とを備えた請求項1に記載の光伝送装置。
The positioning mechanism is provided in the optical element housing member, and a first guide portion by a hole or shaft centered on the first central axis;
2. The optical transmission according to claim 1, further comprising: a second guide portion that is provided at an end portion of the optical cable on the optical element housing member side and is rotatably fitted to the first guide portion. apparatus.
前記位置決め機構は、前記第2の案内部を前記第1の案内部に嵌合させたとき、前記第1の案内部に対する前記第2の案内部の回転可能な範囲を、前記複数の光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とが一致する位置を含む所定の範囲に制限する制限機構を備えた請求項7に記載の光伝送装置。   When the second guide portion is fitted to the first guide portion, the positioning mechanism defines a rotatable range of the second guide portion with respect to the first guide portion as the plurality of optical elements. The optical transmission device according to claim 7, further comprising a limiting mechanism that limits a predetermined range including a position where each of the optical axes of the plurality of optical axes of the plurality of optical transmission lines coincides. 複数の発光素子と、
前記複数の発光素子を第1の中心軸に対して所定の位置に配置した発光素子収容部材と、
複数の光伝送路を第2の中心軸に対して所定の位置に配置した光ケーブルと、
複数の受光素子と、
前記複数の受光素子を第3の中心軸に対して所定の位置に配置した受光素子収容部材と、
前記第1及び第2の中心軸を一致させ、前記発光素子収容部材に対して前記光ケーブルの前記発光素子収容部材側を相対的に回転させることで前記複数の発光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とを一致させる第1の位置決め機構と、
前記第2及び第3の中心軸を一致させ、前記受光素子収容部材に対して前記光ケーブルの前記受光素子収容部材側を相対的に回転させることで前記複数の受光素子のそれぞれの光軸と前記複数の光伝送路のそれぞれの光軸とを一致させる第2の位置決め機構とを備えた光伝送装置。
A plurality of light emitting elements;
A light emitting element housing member in which the plurality of light emitting elements are arranged at predetermined positions with respect to the first central axis;
An optical cable having a plurality of optical transmission lines arranged at predetermined positions with respect to the second central axis;
A plurality of light receiving elements;
A light receiving element housing member in which the plurality of light receiving elements are arranged at predetermined positions with respect to the third central axis;
By aligning the first and second central axes and rotating the light emitting element housing member side of the optical cable relative to the light emitting element housing member, the respective optical axes of the plurality of light emitting elements and the light axis A first positioning mechanism for matching the optical axes of the plurality of optical transmission paths;
By aligning the second and third central axes and rotating the light receiving element accommodating member side of the optical cable relative to the light receiving element accommodating member, the optical axes of the plurality of light receiving elements and the optical axis An optical transmission device comprising: a second positioning mechanism that aligns optical axes of a plurality of optical transmission paths.
前記光ケーブルは、前記複数の光伝送路を保持する保持体を備え、
前記保持体は、光信号を伝送しない媒質からなる請求項1又は9に記載の光伝送装置。
The optical cable includes a holding body that holds the plurality of optical transmission paths,
The optical transmission device according to claim 1, wherein the holding body is made of a medium that does not transmit an optical signal.
複数の光素子と、
前記複数の光素子を中心軸に対して回転対称となるように配置した光素子収容部材と、
光ケーブルに設けられた軸又は穴による案内部が回転可能に嵌合するように前記光素子収容部材に設けられ、前記中心軸を中心とする穴又は軸による案内部とを備えた光モジュール。
A plurality of optical elements;
An optical element housing member in which the optical elements are arranged so as to be rotationally symmetric with respect to a central axis;
An optical module provided with the guide part by the hole or axis centering on the central axis, provided in the optical element housing member so that the guide part by the axis or hole provided in the optical cable is rotatably fitted.
断面円形の複数の光伝送路と、
前記光伝送路と同一の外径を有し、前記複数の光伝送路の横断面における位置が回転対称となるように前記複数の光伝送路の間に配置された複数のダミー部材とを備えた光ケーブル。
A plurality of circular optical transmission lines,
A plurality of dummy members having the same outer diameter as the optical transmission line and disposed between the plurality of optical transmission lines so that the positions in the cross-section of the plurality of optical transmission lines are rotationally symmetric. Optical cable.
前記ダミー部材は、前記光伝送路よりも大きい光伝送損失を有する請求項12に記載の光ケーブル。   The optical cable according to claim 12, wherein the dummy member has an optical transmission loss larger than that of the optical transmission path.
JP2007183407A 2007-07-12 2007-07-12 Optical transmission device, optical module and optical cable Pending JP2009020347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183407A JP2009020347A (en) 2007-07-12 2007-07-12 Optical transmission device, optical module and optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183407A JP2009020347A (en) 2007-07-12 2007-07-12 Optical transmission device, optical module and optical cable

Publications (1)

Publication Number Publication Date
JP2009020347A true JP2009020347A (en) 2009-01-29

Family

ID=40360024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183407A Pending JP2009020347A (en) 2007-07-12 2007-07-12 Optical transmission device, optical module and optical cable

Country Status (1)

Country Link
JP (1) JP2009020347A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193459A (en) * 2010-03-10 2011-09-29 Ofs Fitel Llc Multicore fiber transmission system and method
JP2013029758A (en) * 2011-07-29 2013-02-07 Sumitomo Electric Ind Ltd Core position specification method and alignment device
WO2013157245A1 (en) * 2012-04-20 2013-10-24 日本電気株式会社 Multiplexed optical transmission line, optical transmission system, and optical transmission method
JP2014017451A (en) * 2012-07-11 2014-01-30 Fuji Xerox Co Ltd Optical transmission system and surface-emitting semiconductor laser
JP2014093731A (en) * 2012-11-06 2014-05-19 Fuji Xerox Co Ltd Transmitter and optical transmission system
JP2015031818A (en) * 2013-08-02 2015-02-16 住友電気工業株式会社 Lens component and optical module
JP2015099869A (en) * 2013-11-20 2015-05-28 富士ゼロックス株式会社 Surface-emitting type semiconductor laser array, surface-emitting type semiconductor laser device, optical transmission device and information processor
JP2017224802A (en) * 2016-06-13 2017-12-21 株式会社東芝 Photon detection device and method of manufacturing photon detection device
JP2020027147A (en) * 2018-08-10 2020-02-20 国立研究開発法人情報通信研究機構 Small optical transceiver
JP2021089283A (en) * 2019-12-04 2021-06-10 ロッキード マーティン コーポレイションLockheed Martin Corporation Sectional optical block
WO2022244153A1 (en) * 2021-05-19 2022-11-24 日本電信電話株式会社 Ultraviolet light transmission system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274435A1 (en) * 2010-03-10 2011-11-10 Ofs Fitel, Llc. Multicore fiber transmission systems and methods
US8725001B2 (en) 2010-03-10 2014-05-13 Ofs Fitel, Llc Multicore fiber transmission systems and methods
JP2011193459A (en) * 2010-03-10 2011-09-29 Ofs Fitel Llc Multicore fiber transmission system and method
JP2013029758A (en) * 2011-07-29 2013-02-07 Sumitomo Electric Ind Ltd Core position specification method and alignment device
JPWO2013157245A1 (en) * 2012-04-20 2015-12-21 日本電気株式会社 Multiplex optical transmission line, optical transmission system, and optical transmission method
WO2013157245A1 (en) * 2012-04-20 2013-10-24 日本電気株式会社 Multiplexed optical transmission line, optical transmission system, and optical transmission method
JP2014017451A (en) * 2012-07-11 2014-01-30 Fuji Xerox Co Ltd Optical transmission system and surface-emitting semiconductor laser
JP2014093731A (en) * 2012-11-06 2014-05-19 Fuji Xerox Co Ltd Transmitter and optical transmission system
JP2015031818A (en) * 2013-08-02 2015-02-16 住友電気工業株式会社 Lens component and optical module
JP2015099869A (en) * 2013-11-20 2015-05-28 富士ゼロックス株式会社 Surface-emitting type semiconductor laser array, surface-emitting type semiconductor laser device, optical transmission device and information processor
JP2017224802A (en) * 2016-06-13 2017-12-21 株式会社東芝 Photon detection device and method of manufacturing photon detection device
GB2551483B (en) * 2016-06-13 2020-05-27 Toshiba Res Europe Limited A photon detection device and a method of manufacturing a photon detection device
US11513299B2 (en) 2016-06-13 2022-11-29 Kabushiki Kaisha Toshiba Photon detection device and a method of manufacturing a photon detection device
JP2020027147A (en) * 2018-08-10 2020-02-20 国立研究開発法人情報通信研究機構 Small optical transceiver
JP7144786B2 (en) 2018-08-10 2022-09-30 国立研究開発法人情報通信研究機構 small optical transceiver
JP2021089283A (en) * 2019-12-04 2021-06-10 ロッキード マーティン コーポレイションLockheed Martin Corporation Sectional optical block
WO2022244153A1 (en) * 2021-05-19 2022-11-24 日本電信電話株式会社 Ultraviolet light transmission system

Similar Documents

Publication Publication Date Title
JP2009020347A (en) Optical transmission device, optical module and optical cable
JP4012785B2 (en) Optical connection device
US8469610B2 (en) Optical connection system with plug having optical turn
JP4927028B2 (en) Communication light detector
EP2790048B1 (en) Optical module
WO2005006032A1 (en) Optical path change type optical coupling element
US9022669B2 (en) Gradient index lens assemblies, fiber optic connectors, and fiber optic cable assemblies employing lens alignment channels
JP2014115649A (en) Optical communication module with fiber submount and latching optics assembly
JP2009151051A (en) Single-fiber bidirectional optical communication module
US6674941B2 (en) Optical coupling for optical fibers
JP2007241105A (en) Connector
JP2001324649A (en) Active optical connector for large diameter optical fiber
CN112041718A (en) Optical communication connector, optical transmitter, optical receiver, optical communication system, and optical communication cable
JP2004333590A (en) Optical connector
US20120213473A1 (en) Rotary optical link joint
TWI539193B (en) Optical fiber connector
JP2016180920A (en) Method of manufacturing optical module, receptacle for optical module, and optical module
JP3777590B2 (en) Optical transceiver
JP2007171463A (en) Connector for bidirectional optical communication
US7016559B2 (en) Optical transmitter-receiver and optical fiber
WO2020153238A1 (en) Optical connector, optical cable, and electronic apparatus
EP3757639A1 (en) Interposer
TW201441699A (en) Optical communication module
JPH07311320A (en) Multichannel optical module
KR101660958B1 (en) Bi-directional optical module