JP2009019950A - Method and device for estimating tire abrasion - Google Patents

Method and device for estimating tire abrasion Download PDF

Info

Publication number
JP2009019950A
JP2009019950A JP2007181852A JP2007181852A JP2009019950A JP 2009019950 A JP2009019950 A JP 2009019950A JP 2007181852 A JP2007181852 A JP 2007181852A JP 2007181852 A JP2007181852 A JP 2007181852A JP 2009019950 A JP2009019950 A JP 2009019950A
Authority
JP
Japan
Prior art keywords
tire
time
index
deformation
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181852A
Other languages
Japanese (ja)
Other versions
JP5183114B2 (en
Inventor
Hiroshi Morinaga
啓詩 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007181852A priority Critical patent/JP5183114B2/en
Publication of JP2009019950A publication Critical patent/JP2009019950A/en
Application granted granted Critical
Publication of JP5183114B2 publication Critical patent/JP5183114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device therefor having excellent durability, capable of accurately estimating the abrasion degree of a tire. <P>SOLUTION: An acceleration sensor 11 is provided on the inner surface side of an inner liner part of the tire, and an acceleration waveform in the tire diameter direction of a tire tread is detected, and a deformation time being a time between two peaks corresponding to a swelling point appearing in the acceleration waveform is calculated. A deformation length X which is an index of a grounding out-of-plane deformation range of the tire is calculated, and a grounding time which is a time between two peaks corresponding to the ground contact end of the tread appearing in a differential waveform which is a time-series waveform of a differentiated value of the acceleration is calculated, and a grounding length L which is an index of a deflection amount of the tire is calculated. The abrasion degree of the tire is estimated based on the calculated deformation length X and grounding length L and a map 17M showing a relation between the deformation length X corresponding to the abrasion degree of the tire and the grounding length L, determined beforehand. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、タイヤの摩耗の度合いを推定する方法とその装置に関するものである。   The present invention relates to a method and apparatus for estimating the degree of tire wear.

一般に、タイヤが摩耗すると排水性能が低下し、湿潤路面での制動距離が長くなる。また、スタッドレスタイヤでは、摩耗により氷雪路面上のグリップ性能が低下する。更に、過度の摩耗はトレッドベルトへ水が浸入しタイヤの破壊を引き起こすこともあり、非常に危険である。小型乗用車の場合、タイヤの残溝量が1.6mmになるとスリップサインと呼ばれるゴムの突起が溝部に現れるようになっている。車両の走行安全性を考えると、上記スリップサインの出現より前にタイヤは交換されるべきであるが、こういったメンテナンスに無関心な運転者も少なくないのが現状である。
運転者への警告のため、タイヤの摩耗を自動的に検出する技術が求められている。また、車両制御の面からも、摩耗によるタイヤ特性の変化を把握し、より安全な制御を実現することが期待されている。
タイヤの摩耗を推定する方法としては、従来、GPSや光学センサなどにより車両の絶対速度を算出してこれを車輪回転速度と比較することによりタイヤ動半径を算出し、このタイヤ動半径と新品時のタイヤ半径の差からタイヤ摩耗量を求める方法が知られている。しかし、完全に摩耗したタイヤであっても、その回転数と新品タイヤの回転数との差は高々1%程度であるため、上記タイヤ半径の差からタイヤ摩耗量を求めるためには、高い精度の計測が必要なだけでなく、実際の走行においては、旋回時の内外輪誤差や、制駆動時の加速度スリップによる誤差、勾配に伴う誤差などを含むため、安定して精度の良い推定を実現することが困難であった。
そこで、トレッド部に磁性材料から成る検知体を埋め込んでおくとともに、車体側に磁気センサを配置して、タイヤの摩耗により上記検知体が摩耗して検出信号が変化することを検知してトレッド部の摩耗を推定する方法や、導電ゴムから成る抵抗体を備えたセンサを埋め込んでおき、タイヤの摩耗により上記センサの特性値が変化することを検知してトレッド部の摩耗を推定する方法が提案されている(例えば、特許文献1,2参照)。
特開2003−214808号公報 特開2005−28950号公報
Generally, when a tire is worn, drainage performance is lowered, and a braking distance on a wet road surface is increased. In addition, with a studless tire, the grip performance on an icy and snowy road surface decreases due to wear. Furthermore, excessive wear is very dangerous because water can enter the tread belt and cause tire destruction. In the case of a small passenger car, rubber protrusions called slip signs appear in the groove when the remaining groove amount of the tire is 1.6 mm. Considering the driving safety of the vehicle, tires should be replaced before the appearance of the slip sign, but there are not many drivers who are indifferent to such maintenance.
In order to warn the driver, a technique for automatically detecting tire wear is required. In terms of vehicle control, it is expected to grasp changes in tire characteristics due to wear and realize safer control.
As a method for estimating tire wear, conventionally, the tire dynamic radius is calculated by calculating the absolute speed of the vehicle using a GPS or an optical sensor and comparing it with the wheel rotational speed. A method for obtaining the tire wear amount from the difference in tire radii is known. However, even if the tire is completely worn, the difference between the rotational speed of the tire and the rotational speed of a new tire is at most about 1%. In actual driving, it includes stable inner and outer wheel errors during turning, errors due to acceleration slip during braking and driving, and errors due to gradients. It was difficult to do.
Therefore, the tread portion is embedded with a detection body made of a magnetic material, and a magnetic sensor is disposed on the vehicle body side to detect that the detection body is worn by tire wear and the detection signal changes, thereby detecting the tread portion. A method for estimating wear on the tread part by embedding a sensor with a resistor made of conductive rubber and detecting that the characteristic value of the sensor changes due to tire wear is proposed. (For example, see Patent Documents 1 and 2).
JP 2003-214808 A JP 2005-28950 A

しかしながら、トレッド部に磁性材料や導電ゴムを埋め込む方法では、摩耗が進展すると検知体やセンサが接地面に露出するため、タイヤの耐久性への悪影響が懸念されるだけでなく、トレッドゴムとは異なる物性のゴムがトレッド表面に露出した場合には、タイヤのグリップ力が低下してしまうといった問題やこれらが亀裂破壊核となるなどの問題があった。   However, in the method of embedding a magnetic material or conductive rubber in the tread part, when wear progresses, the detection body and sensor are exposed to the grounding surface, so there is a concern about the adverse effect on the durability of the tire. When rubber having different physical properties is exposed on the tread surface, there is a problem that the grip strength of the tire is reduced, and that these become crack fracture nuclei.

本発明は、従来の問題点に鑑みてなされたもので、耐久性に優れるとともに、タイヤの摩耗度合を精度よく推定することのできる方法とその装置を提供することを目的とする。   The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method and an apparatus capable of accurately estimating the wear degree of a tire while being excellent in durability.

図6(a)は、タイヤに荷重を加えて撓ませたときのタイヤの外形を示す模式図で、図6(b)は路面近傍の拡大図である。タイヤに荷重を加えると、接地面がタイヤ中心方向に押し込められ、その周辺は、同図の一点鎖線で示す初期プロファイルから外側に膨れる変形をする。ここで、接地面外において最も外側へ膨れる点を膨出点と定義する。
本発明者は鋭意検討の結果、同図の破線で示す摩耗したタイヤの外形と同図の実線で示す新品のタイヤの外形とを比較すると、同じたわみ量を与えた際に、摩耗したタイヤでは上記膨出点がより接地面に近いところにあることから、タイヤのたわみ量と上記膨出点間のタイヤに沿った長さである接地面外変形の範囲とを比較することにより、荷重やタイヤの摩耗形態が異なった場合でも、タイヤの摩耗を精度よく推定することができることを見出し、本発明に到ったものである。
すなわち、本願の請求項1に記載の発明は、タイヤの摩耗を推定する方法であって、タイヤトレッド部に配置されたセンサからの入力情報に基づいて、タイヤトレッド部の接地面外変形の範囲を表す指標とそのときのタイヤのたわみ量を表す指標とを算出し、上記算出された接地面外変形範囲の指標とタイヤたわみ量の指標との関係から、当該タイヤの摩耗の度合いを推定することを特徴とするものである。これにより、例えば、センター部に対してショルダー部の方が摩耗気味であるなど、タイヤの摩耗形態が異なった場合や、積載する重量が変化して荷重が変化した場合でも、タイヤの摩耗を精度よく推定することができる。
FIG. 6A is a schematic diagram showing an outer shape of the tire when the tire is bent by applying a load, and FIG. 6B is an enlarged view of the vicinity of the road surface. When a load is applied to the tire, the ground contact surface is pushed toward the center of the tire, and the periphery thereof is deformed so as to swell outward from the initial profile indicated by the one-dot chain line in FIG. Here, the point that swells outward most outside the ground plane is defined as a bulging point.
As a result of diligent study, the inventor compared the outer shape of a worn tire indicated by a broken line in the same figure with the outer shape of a new tire indicated by a solid line in the same figure. Since the bulging point is closer to the ground contact surface, by comparing the amount of deflection of the tire and the range of deformation outside the ground contact surface that is the length along the tire between the bulging points, the load and The present inventors have found that the wear of a tire can be accurately estimated even when the wear form of the tire is different, and have arrived at the present invention.
That is, the invention according to claim 1 of the present application is a method for estimating tire wear, and based on input information from a sensor disposed in a tire tread portion, a range of out-of-ground deformation of the tire tread portion. And an index indicating the amount of deflection of the tire at that time, and the degree of wear of the tire is estimated from the relationship between the calculated index of the outside-surface deformation range and the index of tire deflection. It is characterized by this. As a result, for example, even if the tire wear form is different from the center part, for example, the shoulder part is more worn out, or even if the load changes due to the weight being loaded, the tire wear accuracy is improved. Can be estimated well.

請求項2に記載の発明は、請求項1に記載のタイヤ摩耗推定方法において、上記センサを加速度センサとするとともに、この加速度センサで検出された加速度の時系列波形、または、上記加速度を微分した値の時系列波形、または、上記加速度を積分した値の時系列波形のいずれかから、上記接地面外変形範囲の指標とタイヤたわみ量の指標とを算出するようにしたもので、これにより、上記各指標を精度よく算出することができる。
なお、加速度の時系列波形は時間により変化する加速度センサの出力の大きさを時間軸に沿って並べたもので、加速度波形と加速度の時系列波形とは同じであり、上記加速度波形を微分した波形も積分した波形もいずれも時系列波形である。
請求項3に記載の発明は、請求項2に記載のタイヤ摩耗検知方法において、上記加速度の検出方向をタイヤ径方向、または、タイヤ周方向としたもので、これにより、上記指標を更に精度よく算出できる。
請求項4に記載の発明は、請求項1に記載のタイヤの摩耗推定方法において、上記センサを歪センサとするとともに、この歪センサで検出されたタイヤ周方向歪の時系列波形、または、上記歪を微分した値の時系列波形、または、上記歪を微分した値の時系列波形のいずれかから、上記接地面外変形範囲の指標とタイヤたわみ量の指標とを算出することを特徴とするものである。このように、上記加速度に代えて、タイヤトレッド部の周方向歪波形を用いても、タイヤの摩耗を精度よく推定することができる。
請求項5に記載の発明は、請求項2〜請求項4のいずれかに記載のタイヤ摩耗推定方法において、上記センサをタイヤのインナーライナー部に配置したもので、これにより、センサをトレッドゴム内に配置する場合に比べてセンサの耐久性を向上させることができる。
The invention according to claim 2 is the tire wear estimation method according to claim 1, wherein the sensor is an acceleration sensor, and a time series waveform of acceleration detected by the acceleration sensor or the acceleration is differentiated. From the time series waveform of the value or the time series waveform of the value obtained by integrating the acceleration, the index of the out-of-contact surface deformation range and the index of the tire deflection amount are calculated. The above indices can be calculated with high accuracy.
The time series waveform of acceleration is the time series waveform of acceleration sensor outputs that change with time. The acceleration waveform and the time series waveform of acceleration are the same, and the acceleration waveform is differentiated. Both the waveform and the integrated waveform are time-series waveforms.
A third aspect of the present invention is the tire wear detection method according to the second aspect, wherein the acceleration detection direction is a tire radial direction or a tire circumferential direction, whereby the index is more accurately determined. It can be calculated.
The invention according to claim 4 is the tire wear estimation method according to claim 1, wherein the sensor is a strain sensor, and the time series waveform of the tire circumferential strain detected by the strain sensor, or the tire The index of the out-of-surface deformation range and the index of tire deflection are calculated from either a time-series waveform of a value obtained by differentiating strain or a time-series waveform of a value obtained by differentiating the strain. Is. As described above, tire wear can be accurately estimated even when the circumferential distortion waveform of the tire tread portion is used instead of the acceleration.
According to a fifth aspect of the present invention, in the tire wear estimation method according to any one of the second to fourth aspects, the sensor is disposed in an inner liner portion of the tire, whereby the sensor is placed in the tread rubber. The durability of the sensor can be improved as compared with the case where the sensor is disposed in the sensor.

請求項6に記載の発明は、請求項2〜請求項4のいずれかに記載のタイヤ摩耗推定方法において、上記時系列波形に現れるトレッドの接地面外における変形に対応する2つのピーク間の時間である変形時間を算出し、この算出された変形時間にタイヤ速度を掛け合わせて得られる変形長を、上記タイヤ接地面外変形範囲の指標とすることを特徴とするもので、これにより、タイヤ接地面外変形範囲の指標を精度よく算出することができる。
また、請求項7に記載の発明は、請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法において、上記時系列波形に現れるトレッドの接地面外における変形に対応する2つのピーク間の時間である変形時間を算出し、この算出された変形時間をタイヤ1回転に要する時間で除して得られる変形時間比を、上記タイヤ接地面外変形範囲の指標とすることを特徴とするもので、この方法でもタイヤ接地面外変形範囲の指標を精度よく算出することができる。
請求項8に記載の発明は、請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法方法において、上記時系列波形に現れるトレッドの接地端における変形に対応する2つのピーク間の時間である接地時間を算出し、この算出された接地時間にタイヤ速度を掛け合わせて得られる接地長を、上記タイヤたわみ量の指標とすることを特徴とするもので、これにより、タイヤたわみ量の指標を精度よく算出することができる。
請求項9に記載の発明は、請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法において、上記時系列波形に現れるトレッドの接地端における変形に対応する2つのピーク間の時間である接地時間を算出し、この算出された接地時間をタイヤ1回転に要する時間で除して得られる接地時間比を、上記タイヤたわみ量の指標とすることを特徴とするもので、この方法でもタイヤたわみ量の指標を精度よく算出することができる。
請求項10に記載の発明は、請求項1〜請求項9のいずれかに記載のタイヤ摩耗推定方法において、上記摩耗の度合いの推定を行うタイヤ速度の上限値を100km/hrとしたことを特徴とするもので、これにより安定した摩耗推定を行うことができる。
請求項11に記載の発明は、請求項1〜請求項10のいずれかに記載のタイヤ摩耗推定方法において、タイヤの摩耗の度合いに応じた、接地面外変形範囲を表す指標とそのときのタイヤたわみ量を表す指標との関係を予め求めておき、この予め求めておいた接地面外変形範囲を表す指標とタイヤたわみ量との関係と、上記算出された接地面外変形範囲の指標とタイヤたわみ量の指標との関係とを比較して当該タイヤの摩耗の度合いを推定することを特徴とするもので、これにより、タイヤの摩耗の度合いを更に精度よく推定することができる。
A sixth aspect of the present invention is the tire wear estimation method according to any one of the second to fourth aspects, wherein the time between two peaks corresponding to the deformation of the tread that appears in the time series waveform outside the contact surface. The deformation length obtained by multiplying the calculated deformation time by the tire speed is used as an index of the tire contact surface out-of-plane deformation range. It is possible to accurately calculate the index of the deformation range outside the ground plane.
Further, the invention according to claim 7 is the tire wear estimation method according to any one of claims 2 to 5, wherein the tread between the two peaks corresponding to the deformation outside the contact surface of the tread appearing in the time series waveform. And a deformation time ratio obtained by dividing the calculated deformation time by the time required for one rotation of the tire is used as an index of the tire contact surface out-of-plane deformation range. Therefore, this method can also accurately calculate the index of the deformation range outside the tire contact surface.
The invention according to claim 8 is the tire wear estimation method according to any one of claims 2 to 5, wherein the time between two peaks corresponding to the deformation at the contact end of the tread appearing in the time series waveform. The contact length obtained by multiplying the calculated contact time by the tire speed is used as an index of the tire deflection amount. The index can be calculated with high accuracy.
According to a ninth aspect of the present invention, in the tire wear estimation method according to any one of the second to fifth aspects, the time between two peaks corresponding to the deformation at the contact end of the tread that appears in the time series waveform. A certain contact time is calculated, and the contact time ratio obtained by dividing the calculated contact time by the time required for one rotation of the tire is used as an index of the tire deflection amount. An index of the amount of tire deflection can be calculated with high accuracy.
A tenth aspect of the present invention is the tire wear estimation method according to any one of the first to ninth aspects, wherein an upper limit value of the tire speed at which the degree of wear is estimated is set to 100 km / hr. Thus, stable wear estimation can be performed.
The invention according to claim 11 is the tire wear estimation method according to any one of claims 1 to 10, wherein the index representing the out-of-contact surface deformation range according to the degree of tire wear and the tire at that time The relationship between the index representing the amount of deflection is determined in advance, the relationship between the index representing the out-of-surface deformation range and the amount of tire deflection determined in advance, the index of the calculated out-of-surface deformation range and the tire The degree of wear of the tire is estimated by comparing the relationship with the index of the amount of deflection, and thereby the degree of wear of the tire can be estimated with higher accuracy.

請求項12に記載の発明は、タイヤの摩耗を推定する装置であって、トレッド部のタイヤ周方向もしくはタイヤ径方向の加速度を検出する加速度センサと、上記検出された加速度の時系列波形のタイヤ膨出点に対応するピークから当該タイヤの接地面外変形範囲の指標を算出する接地面外変形範囲算出手段と、上記加速度を微分した値の時系列波形である加速度の微分波形を演算する微分波形演算手段と、上記加速度の微分波形のタイヤ接地端に対応するピークから当該タイヤのたわみ量の指標を算出するたわみ量算出手段と、上記算出された接地面外変形範囲の指標とたわみ量の指標とから当該タイヤの摩耗を推定する摩耗状態推定手段とを備えたことを特徴とするものである。これにより、上記のタイヤ摩耗推定方法を実現するための装置を得ることができる。
請求項13に記載の発明は、タイヤの摩耗を推定する装置であって、トレッド部の周方向歪を検出する歪センサと、上記検出された周方向歪の時系列波形のタイヤ膨出点に対応するピークから当該タイヤの接地面外変形範囲の指標を算出する接地面外変形範囲算出手段と、上記周方向歪を微分した値の時系列波形である周方向歪の微分波形を演算する微分波形演算手段と、上記周方向歪の微分波形のタイヤ接地端に対応するピークから当該タイヤのたわみ量の指標を算出するたわみ量算出手段と、上記算出された接地面外変形範囲の指標とたわみ量の指標とから当該タイヤの摩耗を推定する摩耗状態推定手段とを備えたことを特徴とするものである。これによっても、上記のタイヤ摩耗推定方法を実現するための装置を得ることができる。
The invention according to claim 12 is an apparatus for estimating tire wear, an acceleration sensor for detecting acceleration in a tire circumferential direction or a tire radial direction of a tread portion, and a tire having a time-series waveform of the detected acceleration. Out-of-surface deformation range calculation means for calculating an index of the out-of-contact surface deformation range of the tire from the peak corresponding to the bulging point, and differential for calculating a differential waveform of acceleration, which is a time-series waveform of values obtained by differentiating the acceleration. Waveform calculating means; deflection amount calculating means for calculating an index of the deflection amount of the tire from a peak corresponding to the tire ground contact edge of the differential waveform of the acceleration; and an index of the calculated out-of-contact surface deformation range and the deflection amount A wear state estimating means for estimating the wear of the tire from the index is provided. Thereby, the apparatus for implement | achieving said tire wear estimation method can be obtained.
The invention according to claim 13 is an apparatus for estimating tire wear, comprising a strain sensor for detecting a circumferential strain of a tread portion, and a tire bulging point of the time series waveform of the detected circumferential strain. Out-of-ground surface deformation range calculation means for calculating an index of the tire's out-of-ground surface deformation range from the corresponding peak, and differential for calculating a differential waveform of the circumferential strain, which is a time-series waveform of the value obtained by differentiating the above-mentioned circumferential strain. Waveform calculating means; deflection amount calculating means for calculating an index of the amount of deflection of the tire from a peak corresponding to the tire ground contact edge of the differential waveform of the circumferential distortion; and an index of the calculated out-of-surface deformation range and deflection A wear state estimating means for estimating the wear of the tire from the quantity index is provided. Also by this, the apparatus for implement | achieving said tire wear estimation method can be obtained.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本最良の形態に係るタイヤ摩耗推定装置10の構成を示す機能ブロック図で、同図において、11はタイヤトレッド部の加速度を検出する加速度センサ、12は車輪の回転速度を検出する車輪速センサ、13は上記加速度センサの出力からタイヤトレッド部の加速度の時系列波形を抽出する加速度波形抽出手段、14は上記加速度を微分した値の時系列波形である加速度の微分波形を演算する微分波形演算手段、15は上記加速度の時系列波形に現れる膨出点に対応する2つのピーク間の時間である変形時間を算出するとともに、この算出された変形時間にタイヤ速度を掛け合わせ、当該タイヤの接地面外変形範囲の指標である変形長Xを算出する変形長算出手段、16は上記加速度の微分波形に現れるトレッドの接地端における変形に対応する2つのピーク間の時間である接地時間を算出し、この算出された接地時間にタイヤ速度を掛け合わせ、当該タイヤのたわみ量の指標である接地長Lを算出する接地長算出手段、17は予め求めておいたタイヤ摩耗の度合に応じた変形長Xと接地長Lとの関係を示すマップ17Mを記憶する記憶手段、18は上記算出された変形長Xと接地長Lと上記マップ17Mとから、当該タイヤの摩耗の度合を推定する摩耗推定手段である。なお、本例では、上記タイヤ速度を、車輪速センサ12で検出された車輪の回転速度と当該タイヤの径とを用いて算出するようにしている。
また、本例では、加速度センサ11を、図2に示すように、タイヤ1のインナーライナー部2のタイヤの幅方向中心に、その検出方向がタイヤ径方向になるように配置して、路面からタイヤトレッド3の内面に作用するタイヤ径方向の加速度を検出する。
車輪速センサ12は、ヨークとコイルとから成るセンサ部を図示しないナックルに装着して車軸の回転を検出する周知の電磁誘導型の車輪速センサを用いている。
また、上記加速度波形抽出手段13から摩耗推定手段18までの各手段は車体側に設置されて演算部19を構成する。
上記加速度センサ11の出力信号を演算部19に送る構成としては、例えば、図2に示すように、インナーライナー部2もしくはホイール4に送信器11Fを設置して、上記出力信号を図示しない増幅器で増幅した後、無線にて上記演算部19に送信する構成とすることが好ましい。なお、演算部19をタイヤ側に設けて摩耗推定手段18の判定結果を車体側の図示しない車両制御装置に送信する構成としてもよい。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing the configuration of a tire wear estimation apparatus 10 according to the best mode. In FIG. 1, 11 is an acceleration sensor for detecting the acceleration of the tire tread portion, and 12 is for detecting the rotational speed of the wheel. A wheel speed sensor 13 is an acceleration waveform extracting means for extracting a time series waveform of acceleration of the tire tread portion from the output of the acceleration sensor, and 14 is a differential waveform of acceleration which is a time series waveform obtained by differentiating the acceleration. The differential waveform calculation means 15 calculates a deformation time which is a time between two peaks corresponding to the bulging point appearing in the time series waveform of the acceleration, and multiplies the calculated deformation time by the tire speed, A deformation length calculation means 16 for calculating a deformation length X that is an index of the deformation range outside the ground contact surface of the tire, 16 is a change at the contact end of the tread that appears in the differential waveform of the acceleration. A contact length calculation means for calculating a contact length L that is an index of the amount of deflection of the tire; Reference numeral 17 denotes storage means for storing a map 17M indicating the relationship between the deformation length X and the contact length L corresponding to the tire wear degree obtained in advance, and 18 denotes the calculated deformation length X, the contact length L and the map. 17M is wear estimation means for estimating the degree of wear of the tire. In this example, the tire speed is calculated using the rotational speed of the wheel detected by the wheel speed sensor 12 and the diameter of the tire.
Further, in this example, as shown in FIG. 2, the acceleration sensor 11 is disposed at the center in the width direction of the tire of the inner liner portion 2 of the tire 1 so that the detection direction is the tire radial direction. The tire radial acceleration acting on the inner surface of the tire tread 3 is detected.
The wheel speed sensor 12 uses a well-known electromagnetic induction type wheel speed sensor that detects rotation of an axle by attaching a sensor unit including a yoke and a coil to a knuckle (not shown).
Further, each means from the acceleration waveform extracting means 13 to the wear estimating means 18 is installed on the vehicle body side and constitutes a calculation unit 19.
As a configuration for sending the output signal of the acceleration sensor 11 to the calculation unit 19, for example, as shown in FIG. 2, a transmitter 11F is installed in the inner liner part 2 or the wheel 4, and the output signal is sent by an amplifier (not shown). After amplification, it is preferable to transmit the signal to the calculation unit 19 wirelessly. In addition, it is good also as a structure which provides the calculating part 19 in the tire side and transmits the determination result of the wear estimation means 18 to the vehicle control apparatus which is not shown in figure on the vehicle body side.

次に、本最良の形態に係るタイヤ摩耗推定方法について説明する。
まず、加速度センサ11によりタイヤトレッド3の変形に伴って変形するインナーライナー部2内面のタイヤ径方向の加速度を検出する。加速度波形抽出手段13では、上記加速度センサの出力信号から、上記径方向加速度の時系列波形(以下、加速度波形という)を抽出する。図3は上記加速度波形の一例を示す図で、横軸は時間[sec.]で、縦軸は径方向の加速度の大きさ[G]である。加速度がプラスの値の場合にはタイヤ外側に加速度が発生しており、マイナスの値の場合にはタイヤ中心方向に加速度が発生している。この加速度は、タイヤトレッドが径方向に受けている力にほぼ比例して発生しており、若干の
位相差はあるが、径方向の変形量に比例している。
プラス側の2つのピーク近傍は接地面外であり、トレッドがタイヤ外側に変形するような力を受けていることから、上記2つのピークは膨出点であることが分かる。したがって、上記2つのピーク間の時間を変形時間と定義し、この変形時間に速度を掛け合せたものを変形長Xとする。変形長算出手段15では、上記加速度波形から上記変形長Xを算出し、これを接地面外変形範囲の指標とする。なお、ピーク検出においては、加速度センサ11の感度にもよるが、適度なローパスフィルタを掛けてからピーク検出する方がデータが安定する。すなわち、より安定した摩耗推定をすることができる。また、上記ピーク間の時間間隔はタイヤ速度によって大きく変化するので、ローパスフィルタの周波数はタイヤ速度に応じて変える方が、各速度における波形形状を同様にすることができるので、より安定した推定を行うことができる。
Next, a tire wear estimation method according to the best mode will be described.
First, the acceleration sensor 11 detects the acceleration in the tire radial direction on the inner surface of the inner liner portion 2 that is deformed as the tire tread 3 is deformed. The acceleration waveform extracting means 13 extracts a time series waveform of the radial acceleration (hereinafter referred to as an acceleration waveform) from the output signal of the acceleration sensor. FIG. 3 is a diagram showing an example of the acceleration waveform, where the horizontal axis is time [sec.] And the vertical axis is the radial acceleration magnitude [G]. When the acceleration is a positive value, the acceleration is generated outside the tire, and when the acceleration is a negative value, the acceleration is generated in the tire center direction. This acceleration is generated approximately in proportion to the force that the tire tread receives in the radial direction, and is proportional to the amount of deformation in the radial direction with a slight phase difference.
The vicinity of the two peaks on the plus side is outside the ground contact surface, and since the tread is subjected to a force that deforms to the outside of the tire, it can be seen that the two peaks are bulging points. Accordingly, the time between the two peaks is defined as the deformation time, and the deformation length X is obtained by multiplying the deformation time by the speed. The deformation length calculation means 15 calculates the deformation length X from the acceleration waveform, and uses this as an index of the out-of-ground surface deformation range. In peak detection, depending on the sensitivity of the acceleration sensor 11, data is more stable when peak detection is performed after applying an appropriate low-pass filter. That is, more stable wear estimation can be performed. Also, since the time interval between the peaks varies greatly depending on the tire speed, changing the frequency of the low-pass filter according to the tire speed can make the waveform shape at each speed the same, so that more stable estimation is possible. It can be carried out.

微分波形演算手段14では、上記加速度波形抽出手段13で抽出した加速度を微分した値の時系列波形である加速度の微分波形を演算する。図4は上記加速度の微分波形の一例を示す図で、横軸は時間[sec.]で、縦軸は径方向の加速度微分値[G/sec.]である。同図のピークはトレッドの受けている径方向の力が最も変化している点に相当する。上記2つのピーク間の時間を接地時間と定義し、この接地時間に速度を掛け合せたものを接地長Lとする。接地長算出手段16では、上記微分波形から上記接地長Lを算出し、これをタイヤのたわみ量の指標とする。
図6(a),(b)に示すように、タイヤに荷重を加えると、接地面がタイヤ中心方向に押し込められ、その周辺は、同図の一点鎖線で示す初期プロファイルから外側に膨れる変形をするが、タイヤのたわみ量が同じ場合、すなわち、接地長Lが同じ場合には、変形長Xは摩耗したタイヤの方が短くなる。
そこで、摩耗推定手段18では、上記変形長算出手段15で算出された変形長Xと接地長算出手段16で算出された接地長Lと予め記憶手段17に記憶しておいたタイヤ摩耗の度合に応じた変形長Xと接地長Lとの関係を示すマップ17Mとを用いて当該タイヤの摩耗の度合を推定する。
The differential waveform calculation means 14 calculates a differential waveform of acceleration, which is a time series waveform of a value obtained by differentiating the acceleration extracted by the acceleration waveform extraction means 13. FIG. 4 is a diagram illustrating an example of the differential waveform of the acceleration. The horizontal axis represents time [sec.], And the vertical axis represents the radial acceleration differential value [G / sec.]. The peak in the figure corresponds to the point where the radial force received by the tread changes most. The time between the two peaks is defined as the contact time, and the contact length multiplied by the speed is defined as the contact length L. The contact length calculation means 16 calculates the contact length L from the differential waveform, and uses this as an index of the amount of deflection of the tire.
As shown in FIGS. 6 (a) and 6 (b), when a load is applied to the tire, the ground contact surface is pushed toward the center of the tire, and the periphery thereof is deformed to bulge outward from the initial profile indicated by the one-dot chain line in FIG. However, when the deflection amount of the tire is the same, that is, when the contact length L is the same, the deformation length X is shorter in the worn tire.
Therefore, the wear estimation means 18 determines the deformation length X calculated by the deformation length calculation means 15, the contact length L calculated by the contact length calculation means 16, and the degree of tire wear previously stored in the storage means 17. The degree of wear of the tire is estimated using a map 17M showing the relationship between the corresponding deformation length X and contact length L.

変形長Xと接地長Lとの関係は以下の試験結果に基づいて求めた。
摩耗量だけでなく、摩耗の形態の影響も含めて検討すべく、以下の4種の試験タイヤを準備した。言うまでもなく、市場における摩耗の形態にはバラツキがあり、摩耗形態が異なっても推定誤差が小さいことが重要である。
試験タイヤ1〜新品タイヤ;溝約8mm
試験タイヤ2〜摩耗タイヤ;残溝約4mm、
ショルダー部が摩耗気味
試験タイヤ3〜摩耗タイヤ;残溝約4mm、
センター部が摩耗気味、ショルダー部は残っている形態
試験タイヤ4〜摩耗タイヤ;残溝約2mm、
ほぼ均等に摩耗、スリップサインに近いレベル
試験タイヤ1〜4を、フラットベルト試験機上で時速40kmにて走行させ、タイヤ径方向の加速度を計測し、上記加速度波形を用いて変形量Xと接地長Lとを算出した。用いたタイヤはサイズが205/65R15のタイヤで、そのときの内圧は230kPaである。また、荷重については、3〜7kNまで1kNおきに変化させた。
接地長Lと変形長Xとの関係を図5のグラフに示す。グラフの横軸は接地長L(m)で縦軸は変形長X(m)である。このグラフから、試験タイヤ1と試験タイヤ2,3と試験タイヤ4とはそれぞれ別々のライン上にのっており、同じ接地長Lで比較すると、摩耗が進むほど変形長Xが短くなっていることが分かる。
また、同図の□印で示す試験タイヤ2と△印で示す試験タイヤ3とは摩耗の形態が異なっている。一般に、摩耗の形態が異なると接地長Lや変形長Xは異なるが、グラフでは同一ライン上を動いている。したがって、接地長Lと変形長Xとの関係からタイヤの摩耗を推定すれば、摩耗の形態が異なっていても安定して摩耗レベルを推定できる。
ところで、タイヤ速度が大きくなると変形への遠心力の影響が大きくなり、その結果、接地長Lと変形長Xとの関係も変ってくる。そこで、推定を行う際のタイヤ速度の上限値を定め、低速側で推定する方が安定した摩耗推定が実現できる。また、摩耗の進展は非常に遅いため、高速走行時に推定できなくても実用上は何ら問題はない。タイヤの種類にもよるが、タイヤ速度が100km/hrを超えるとタイヤの動半径への遠心力の影響が大きくなるので、100km/hr以下で測定することが好ましい。なお、上記試験をタイヤ速度を変えて行ったところ、100km/hrまでの範囲では各ラインは動かず安定していることが確認された。
The relationship between the deformation length X and the contact length L was determined based on the following test results.
In order to examine not only the amount of wear but also the influence of the form of wear, the following four types of test tires were prepared. Needless to say, there are variations in the form of wear in the market, and it is important that the estimation error is small even if the wear form is different.
Test tire 1 to new tire; groove about 8mm
Test tire 2-worn tire; remaining groove about 4 mm,
Shoulder is worn out Test tire 3-Wear tire; Remaining groove about 4mm,
Form where the center part is worn out and the shoulder part remains Test tire 4-worn tire; remaining groove about 2 mm,
Level almost similar to wear and slip sign Test tires 1 to 4 are run at a speed of 40 km / h on a flat belt testing machine, and the acceleration in the tire radial direction is measured. The length L was calculated. The tire used was a tire of size 205 / 65R15, and the internal pressure at that time was 230 kPa. Further, the load was changed every 3 kN from 3 to 7 kN.
The relationship between the contact length L and the deformation length X is shown in the graph of FIG. The horizontal axis of the graph is the contact length L (m), and the vertical axis is the deformation length X (m). From this graph, the test tire 1, the test tires 2, 3 and the test tire 4 are on separate lines, and when compared with the same contact length L, the deformation length X becomes shorter as the wear progresses. I understand that.
Further, the test tire 2 indicated by □ and the test tire 3 indicated by △ in FIG. In general, the contact length L and the deformation length X differ depending on the form of wear, but they move on the same line in the graph. Therefore, if the wear of the tire is estimated from the relationship between the contact length L and the deformation length X, the wear level can be estimated stably even if the form of wear is different.
By the way, when the tire speed increases, the influence of the centrifugal force on the deformation increases, and as a result, the relationship between the contact length L and the deformation length X also changes. Therefore, more stable wear estimation can be realized by setting an upper limit value of the tire speed at the time of estimation and estimating on the low speed side. Further, since the progress of wear is very slow, there is no problem in practical use even if it cannot be estimated during high-speed driving. Although it depends on the type of tire, if the tire speed exceeds 100 km / hr, the influence of centrifugal force on the tire dynamic radius increases, so measurement at 100 km / hr or less is preferable. In addition, when the said test was done by changing tire speed, it was confirmed that each line is stable without moving in the range up to 100 km / hr.

このように本最良の形態では、タイヤ1のインナーライナー部2内面側に加速度センサ11を設けて、タイヤトレッド3のタイヤ径方向の加速度の時系列波形(加速度波形)を検出し、この加速度波形に現れる膨出点に対応する2つのピーク間の時間である変形時間を算出して当該タイヤの接地面外変形範囲の指標である変形長Xを算出するとともに、上記加速度を微分した値の時系列波形である微分波形に現れるタイヤトレッド3の接地端に対応する2つのピーク間の時間である接地時間を算出して当該タイヤのたわみ量の指標である接地長Lを算出し、この算出された変形長Xと、接地長Lと、予め求めておいたタイヤ摩耗の度合に応じた変形長Xと接地長Lとの関係を示すマップ17Mとに基づいて当該タイヤの摩耗の度合を推定するようにしたので、荷重やタイヤの摩耗形態が異なった場合でも、タイヤの摩耗を精度よく推定することができる。また、加速度センサ11はタイヤ踏面に露出しないので、耐久性に優れるとともに、グリップ力などのタイヤ性能を損なうことなく、タイヤの摩耗を推定することができる。   Thus, in this best mode, the acceleration sensor 11 is provided on the inner surface of the inner liner portion 2 of the tire 1 to detect a time series waveform (acceleration waveform) of the tire tread 3 in the tire radial direction, and this acceleration waveform. When calculating the deformation time, which is the time between two peaks corresponding to the bulging point appearing on the tire, calculating the deformation length X, which is an index of the deformation range outside the contact surface of the tire, and the value obtained by differentiating the acceleration The contact time L, which is the time between two peaks corresponding to the contact edge of the tire tread 3 appearing in the differential waveform which is a series waveform, is calculated, and the contact length L which is an index of the deflection amount of the tire is calculated. The degree of wear of the tire is estimated based on the deformation length X, the contact length L, and a map 17M showing the relationship between the deformation length X and the contact length L corresponding to the previously determined degree of tire wear. Because it was Unishi, even if the wear type of load and the tire is different, it is possible to accurately estimate the wear of the tire. In addition, since the acceleration sensor 11 is not exposed to the tire tread, it is excellent in durability, and tire wear can be estimated without impairing tire performance such as gripping force.

なお、上記最良の形態では、加速度センサ11を、図2に示すように、タイヤ1のインナーライナー部2の内面のタイヤの幅方向中心に配置したが、インナーライナー部2のタイヤ径方向外側でかつベルト層の内側や、ベルト層よりもタイヤ径方向外側でかつトレッドゴムに形成された溝部よりも内側に配置しても同様の効果を得ることができる。但し、耐久性や取付けの容易さを考慮すると、本例のように、インナーライナー部2の内面側に取付ける方が有利である。
また、上記例では、車輪速センサ12を用いて当該タイヤの速度を検出するようにしたが、車体側に速度センサもしくは加速度センサを設けて車体速度を計測し、この車体速度からタイヤ速度を求めるようにしてもよい。
上記加速度波形のピークもしくは微分波形のピークは、タイヤの1回転毎に繰り返し現れるので、上記ピークの時間間隔と当該タイヤの径とを用いてタイヤ速度を算出するようにしてもよい。
In the best mode, the acceleration sensor 11 is arranged at the center in the width direction of the tire on the inner surface of the inner liner portion 2 of the tire 1 as shown in FIG. Further, the same effect can be obtained even if the belt layer is disposed inside the belt layer or outside the belt layer in the tire radial direction and inside the groove portion formed in the tread rubber. However, in consideration of durability and ease of attachment, it is more advantageous to attach to the inner surface side of the inner liner portion 2 as in this example.
In the above example, the tire speed is detected using the wheel speed sensor 12, but a speed sensor or an acceleration sensor is provided on the vehicle body side to measure the vehicle speed, and the tire speed is obtained from the vehicle speed. You may do it.
Since the peak of the acceleration waveform or the peak of the differential waveform appears repeatedly every rotation of the tire, the tire speed may be calculated using the time interval of the peak and the diameter of the tire.

また、上記例では、タイヤたわみ量の指標を接地長Lとし、タイヤ接地面外変形範囲の指標を変形長Xとしたが、接地時間と変形時間をそのまま用いてもよい。この場合には、更にタイヤ速度を考慮したマップが必要なので、本例のように、長さをメジャーとした方が、速度が変動しても一つの基準で安定した推定ができるので好ましい。
また、タイヤたわみ量の指標として、接地時間をタイヤ1回転分に要する時間で除した接地時間比を用い、タイヤ面外変形範囲の指標として、変形時間をタイヤ1回転分に要する時間で除した変形時間比を用いてもよい。このような時間比を用いることにより、長さをメジャーとして用いる場合と同様に、速度が変動しても、一つの基準で安定した推定が可能となる。
また、タイヤたわみ量の指標については、図7(a)に示すような、タイヤ周方向加速度波形や、図7(b)に示すような、径方向加速度を積分した値の時系列波形である径方向加速度の積分波形に現れる2つのピーク値の時間間隔を計測してこれを接地時間とし、この接地時間とタイヤ速度とからタイヤたわみ量の指標である接地長Lを算出するようにしてもよい。
In the above example, the tire deflection amount index is the contact length L, and the tire contact surface deformation range index is the deformation length X. However, the contact time and the deformation time may be used as they are. In this case, since a map that further considers the tire speed is necessary, it is preferable to set the length as a measure, as in this example, because stable estimation can be performed on one basis even if the speed fluctuates.
Further, the contact time ratio obtained by dividing the contact time by the time required for one rotation of the tire is used as an index of the amount of tire deflection, and the deformation time is divided by the time required for one rotation of the tire as an index of the tire out-of-plane deformation range. A deformation time ratio may be used. By using such a time ratio, as in the case where the length is used as a measure, even if the speed fluctuates, it is possible to perform stable estimation with one reference.
The tire deflection index is a tire circumferential acceleration waveform as shown in FIG. 7A or a time series waveform of values obtained by integrating radial acceleration as shown in FIG. 7B. The time interval between two peak values appearing in the integrated waveform of radial acceleration is measured and this is used as the contact time, and the contact length L, which is an index of tire deflection, is calculated from the contact time and tire speed. Good.

また、上記例では、加速度センサ11により検出したタイヤ径方向加速度からタイヤの摩耗を推定したが、上記加速度センサ11に変えて歪センサを設け、タイヤ周方向歪波形を検出してタイヤの摩耗を推定するようにしてもよい。図8(a)はタイヤ周方向歪波形の一例を示す図で、図8(b)はその微分波形である。上記膨出点においては、上記のように、タイヤ径方向加速度がプラスであり、トレッドがタイヤ外側に変形するが、その場合、タイヤ内面側はベルトを中立軸として圧縮されるように曲げられるので、タイヤ周方向歪はマイナスになる。したがって、タイヤ周方向歪波形のマイナス側のピーク間の時間を計測してこれを変形時間とすればよい。この変形時間とタイヤ速度とからタイヤ接地面外変形範囲の指標である変形長Xを算出することができる。また、径方向の力が最も変化している点は、タイヤ周方向歪も最も変化する点でもあるので、タイヤ周方向歪波形の微分波形に現れる2つのピーク間の時間を計測して接地時間とすれば、この接地時間とタイヤ速度とからタイヤ歪の指標である接地長Lを算出することができる。   In the above example, the wear of the tire is estimated from the tire radial acceleration detected by the acceleration sensor 11, but a strain sensor is provided instead of the acceleration sensor 11, and the tire circumferential strain waveform is detected to detect the tire wear. You may make it estimate. FIG. 8A is a diagram showing an example of a tire circumferential direction distortion waveform, and FIG. 8B is a differential waveform thereof. At the bulging point, as described above, the tire radial acceleration is positive and the tread is deformed to the outer side of the tire, but in that case, the inner surface of the tire is bent so as to be compressed with the belt as a neutral axis. The tire circumferential distortion is negative. Therefore, the time between the negative peaks of the tire circumferential distortion waveform may be measured and used as the deformation time. From the deformation time and the tire speed, the deformation length X that is an index of the deformation range outside the tire contact surface can be calculated. In addition, the point where the radial force changes most is the point where the tire circumferential strain also changes most. Therefore, the time between the two peaks appearing in the differential waveform of the tire circumferential strain waveform is measured to determine the contact time. Then, the contact length L that is an index of tire distortion can be calculated from the contact time and the tire speed.

以上説明したように、本発明のタイヤの摩耗推定装置は、耐久性に優れるとともに、タイヤの摩耗形態によらずタイヤの摩耗を精度よく検知できるので、当該タイヤの摩耗を、例えば、警報手段等を用いてドライバーに認識させるなどすれば、車輌の走行安全性を向上させることができる。   As described above, the tire wear estimation apparatus of the present invention is excellent in durability and can accurately detect tire wear regardless of the tire wear form. If the driver is made to recognize the vehicle, the driving safety of the vehicle can be improved.

本発明の最良の形態に係るタイヤ摩耗推定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the tire wear estimation apparatus which concerns on the best form of this invention. 加速度センサの取付け例を示す図である。It is a figure which shows the example of attachment of an acceleration sensor. タイヤ径方向加速度波形を示す図である。It is a figure which shows a tire radial direction acceleration waveform. タイヤ径方向加速度の微分波形を示す図である。It is a figure which shows the differential waveform of tire radial direction acceleration. 接地長Lと変形量Xとの関係を示す図である。It is a figure which shows the relationship between the contact length L and the deformation amount X. 荷重負荷時におけるタイヤの外形変化を示す模式図である。It is a schematic diagram which shows the external shape change of the tire at the time of a load load. タイヤ周方向加速度波形と径方向加速度の積分波形を示す図である。It is a figure which shows the integrated waveform of a tire circumferential direction acceleration waveform and radial direction acceleration. タイヤ周方向歪波形及びこの歪波形の微分波形を示す図である。It is a figure which shows the tire circumferential direction distortion waveform and the differential waveform of this distortion waveform.

符号の説明Explanation of symbols

1 タイヤ、2 インナーライナー部、3 タイヤトレッド、4 ホイール、
10 タイヤ摩耗推定装置、11 加速度センサ、11F 送信器、
12 車輪速センサ、13 加速度波形抽出手段、14 微分波形演算手段、
15 変形長算出手段、16 接地長算出手段、17 記憶手段、17M マップ、
18 摩耗推定手段、19 演算部。
1 tire, 2 inner liner, 3 tire tread, 4 wheel,
10 tire wear estimation device, 11 acceleration sensor, 11F transmitter,
12 wheel speed sensors, 13 acceleration waveform extraction means, 14 differential waveform calculation means,
15 deformation length calculation means, 16 contact length calculation means, 17 storage means, 17M map,
18 Wear estimation means, 19 calculation unit.

Claims (13)

タイヤトレッド部に配置されたセンサからの入力情報に基づいて、タイヤトレッド部の接地面外変形の範囲を表す指標とそのときのタイヤのたわみ量を表す指標とを算出し、上記算出された接地面外変形範囲の指標とタイヤたわみ量の指標との関係から、当該タイヤの摩耗の度合いを推定することを特徴とするタイヤ摩耗推定方法。   Based on the input information from the sensor arranged in the tire tread portion, an index indicating the range of deformation of the tire tread portion outside the ground contact surface and an index indicating the amount of tire deflection at that time are calculated, and the calculated contact A tire wear estimation method, wherein the degree of wear of a tire is estimated from a relationship between an index of an out-of-ground deformation range and a tire deflection amount index. 上記センサを加速度センサとするとともに、この加速度センサで検出された加速度の時系列波形、または、上記加速度を微分した値の時系列波形、または、上記加速度を積分した値の時系列波形のいずれかから、上記接地面外変形範囲の指標とタイヤたわみ量の指標とを算出することを特徴とする請求項1に記載のタイヤ摩耗推定方法。   The sensor is an acceleration sensor, and either a time series waveform of acceleration detected by the acceleration sensor, a time series waveform of a value obtained by differentiating the acceleration, or a time series waveform of a value obtained by integrating the acceleration The tire wear estimation method according to claim 1, further comprising: calculating an index of the out-of-ground surface deformation range and an index of tire deflection. 上記加速度の検出方向がタイヤ径方向、または、タイヤ周方向であることを特徴とする請求項2に記載のタイヤ摩耗推定方法。   The tire wear estimation method according to claim 2, wherein the acceleration detection direction is a tire radial direction or a tire circumferential direction. 上記センサを歪センサとするとともに、この歪センサで検出されたタイヤ周方向歪の時系列波形、または、上記歪を微分した値の時系列波形、または、上記歪を積分した値の時系列波形のいずれかから、上記接地面外変形範囲の指標とタイヤたわみ量の指標とを算出することを特徴とする請求項1に記載のタイヤ摩耗推定方法。   A time series waveform of tire circumferential strain detected by the strain sensor, a time series waveform obtained by differentiating the strain, or a time series waveform obtained by integrating the strain. 2. The tire wear estimation method according to claim 1, wherein an index of the out-of-ground surface deformation range and an index of tire deflection are calculated from any one of the above. 上記センサをタイヤのインナーライナー部に配置したことを特徴とする請求項2〜請求項4のいずれかに記載のタイヤ摩耗推定方法。   The tire wear estimation method according to any one of claims 2 to 4, wherein the sensor is arranged in an inner liner portion of the tire. 上記時系列波形に現れるトレッドの接地面外における変形に対応する2つのピーク間の時間である変形時間を算出し、この算出された変形時間にタイヤ速度を掛け合わせて得られる変形長を、上記タイヤ接地面外変形範囲の指標とすることを特徴とする請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法。   The deformation time, which is the time between two peaks corresponding to the deformation of the tread that appears in the time series waveform outside the contact surface, is calculated, and the deformation length obtained by multiplying the calculated deformation time by the tire speed is The tire wear estimation method according to any one of claims 2 to 5, wherein the tire wear estimation method is used as an index of a deformation range outside the tire contact surface. 上記時系列波形に現れるトレッドの接地面外における変形に対応する2つのピーク間の時間である変形時間を算出し、この算出された変形時間をタイヤ1回転に要する時間で除して得られる変形時間比を、上記タイヤ接地面外変形範囲の指標とすることを特徴とする請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法。   A deformation time obtained by calculating a deformation time which is a time between two peaks corresponding to the deformation of the tread appearing in the time series waveform outside the ground contact surface, and dividing the calculated deformation time by a time required for one rotation of the tire. The tire wear estimation method according to any one of claims 2 to 5, wherein the time ratio is used as an index of the deformation range outside the tire contact surface. 上記時系列波形に現れるトレッドの接地端における変形に対応する2つのピーク間の時間である接地時間を算出し、この算出された接地時間にタイヤ速度を掛け合わせて得られる接地長を、上記タイヤたわみ量の指標とすることを特徴とする請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法。   The contact time, which is the time between two peaks corresponding to the deformation at the contact edge of the tread appearing in the time series waveform, is calculated, and the contact length obtained by multiplying the calculated contact time by the tire speed is the tire. 6. The tire wear estimation method according to claim 2, wherein the tire wear estimation method is used as an index of a deflection amount. 上記時系列波形に現れるトレッドの接地端における変形に対応する2つのピーク間の時間である接地時間を算出し、この算出された接地時間をタイヤ1回転に要する時間で除して得られる接地時間比を、上記タイヤたわみ量の指標とすることを特徴とする請求項2〜請求項5のいずれかに記載のタイヤ摩耗推定方法。   The contact time obtained by calculating the contact time, which is the time between two peaks corresponding to the deformation at the contact end of the tread appearing in the time series waveform, and dividing the calculated contact time by the time required for one rotation of the tire. The tire wear estimation method according to claim 2, wherein the ratio is used as an index of the tire deflection amount. 上記摩耗の度合いの推定を行うタイヤ速度の上限値を100km/hrとしたことを特徴とする請求項1〜請求項9のいずれかに記載のタイヤ摩耗推定方法。   The tire wear estimation method according to any one of claims 1 to 9, wherein an upper limit value of a tire speed at which the degree of wear is estimated is set to 100 km / hr. タイヤの摩耗の度合いに応じた、接地面外変形範囲を表す指標とそのときのタイヤたわみ量を表す指標との関係を予め求めておき、この予め求めておいた接地面外変形範囲を表す指標とタイヤたわみ量との関係と、上記算出された接地面外変形範囲の指標とタイヤたわみ量の指標との関係とを比較して当該タイヤの摩耗の度合いを推定することを特徴とする請求項1〜請求項10のいずれかに記載のタイヤ摩耗推定方法。   In accordance with the degree of tire wear, a relationship between an index representing the out-of-ground surface deformation range and an index representing the tire deflection at that time is obtained in advance, and the pre-determined index representing the out-of-ground surface deformation range. The degree of wear of the tire is estimated by comparing the relationship between the tire deflection amount and the tire deflection amount, and the relationship between the calculated out-of-ground surface deformation range index and the tire deflection amount index. The tire wear estimation method according to any one of claims 1 to 10. トレッド部のタイヤ周方向もしくはタイヤ径方向の加速度を検出する加速度センサと、上記検出された加速度の時系列波形のタイヤ膨出点に対応するピークから当該タイヤの接地面外変形範囲の指標を算出する接地面外変形範囲算出手段と、上記加速度を微分した値の時系列波形である加速度の微分波形を演算する微分波形演算手段と、上記加速度の微分波形のタイヤ接地端に対応するピークから当該タイヤのたわみ量の指標を算出するたわみ量算出手段と、上記算出された接地面外変形範囲の指標とたわみ量の指標とから当該タイヤの摩耗を推定する摩耗状態推定手段とを備えたことを特徴とするタイヤ摩耗推定装置。   An acceleration sensor that detects acceleration in the tire circumferential direction or tire radial direction of the tread portion and an index of the deformation range outside the contact surface of the tire from the peak corresponding to the tire bulging point of the time-series waveform of the detected acceleration. From the contact surface out-of-surface deformation range calculating means, differential waveform calculating means for calculating a differential waveform of acceleration, which is a time-series waveform of a value obtained by differentiating the acceleration, and a peak corresponding to the tire ground contact edge of the differential waveform of the acceleration Deflection amount calculating means for calculating an index of the amount of deflection of the tire, and a wear state estimating means for estimating the wear of the tire from the calculated index of the outside-surface deformation range and the index of deflection amount. A tire wear estimation device. トレッド部の周方向歪を検出する歪センサと、上記検出された周方向歪の時系列波形のタイヤ膨出点に対応するピークから当該タイヤの接地面外変形範囲の指標を算出する接地面外変形範囲算出手段と、上記周方向歪を微分した値の時系列波形である周方向歪の微分波形を演算する微分波形演算手段と、上記周方向歪の微分波形のタイヤ接地端に対応するピークから当該タイヤのたわみ量の指標を算出するたわみ量算出手段と、上記算出された接地面外変形範囲の指標とたわみ量の指標とから当該タイヤの摩耗を推定する摩耗状態推定手段とを備えたことを特徴とするタイヤ摩耗推定装置。   A strain sensor that detects the circumferential strain of the tread portion, and an out-of-ground surface that calculates an index of the tire's out-of-ground surface deformation range from the peak corresponding to the tire bulging point of the time-series waveform of the detected circumferential strain. Deformation range calculating means, differential waveform calculating means for calculating a differential waveform of circumferential distortion, which is a time-series waveform of a value obtained by differentiating the circumferential distortion, and a peak corresponding to the tire ground contact edge of the differential waveform of circumferential distortion A deflection amount calculating means for calculating an index of the deflection amount of the tire, and a wear state estimating means for estimating the wear of the tire from the calculated index of the deformation range outside the contact surface and the deflection amount index. A tire wear estimation device.
JP2007181852A 2007-07-11 2007-07-11 Tire wear estimation method and tire wear estimation apparatus Active JP5183114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181852A JP5183114B2 (en) 2007-07-11 2007-07-11 Tire wear estimation method and tire wear estimation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181852A JP5183114B2 (en) 2007-07-11 2007-07-11 Tire wear estimation method and tire wear estimation apparatus

Publications (2)

Publication Number Publication Date
JP2009019950A true JP2009019950A (en) 2009-01-29
JP5183114B2 JP5183114B2 (en) 2013-04-17

Family

ID=40359725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181852A Active JP5183114B2 (en) 2007-07-11 2007-07-11 Tire wear estimation method and tire wear estimation apparatus

Country Status (1)

Country Link
JP (1) JP5183114B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168211A (en) * 2010-02-19 2011-09-01 Bridgestone Corp Estimating method of tire partial wear
JP2013169816A (en) * 2012-02-17 2013-09-02 Bridgestone Corp Method and device for estimating tire wear amount
JP2015505366A (en) * 2011-12-29 2015-02-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン System and method for determining tire uniformity parameters from piezoelectric measurements in the anti-deflection region of a tire
WO2015079741A1 (en) * 2013-11-26 2015-06-04 株式会社ブリヂストン Method for estimating uneven wear of tire, and device for estimating uneven wear of tire
KR20160036565A (en) * 2013-08-01 2016-04-04 엠티에스 시스템즈 코포레이숀 Tire testing apparatus
CN111959205A (en) * 2020-08-05 2020-11-20 铁将军汽车电子股份有限公司 Tire wear amount detection method, tire wear amount detection device, electronic device, and nonvolatile storage medium
CN112590464A (en) * 2019-10-02 2021-04-02 韩国轮胎与科技株式会社 Tire wear measuring device and tire wear measuring method using the same
WO2021192474A1 (en) * 2020-03-25 2021-09-30 株式会社ブリヂストン Method for estimating tire wear and method for determining tire wear shape
CN114585523A (en) * 2019-10-21 2022-06-03 株式会社普利司通 Tire wear amount estimation system, tire wear amount estimation program, and tire wear amount estimation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205956A (en) * 2004-01-20 2005-08-04 Bridgestone Corp Method and device for estimating tire state and tire with sensor
JP2006145366A (en) * 2004-11-19 2006-06-08 Yokohama Rubber Co Ltd:The Tire deformation amount calculating method, and tire deformation amount calculator
JP2007091183A (en) * 2005-09-30 2007-04-12 Toyota Motor Corp Tire state presumption device and tire
JP2007153034A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Tire abrasion state judging device
JP2007168671A (en) * 2005-12-22 2007-07-05 Toyota Motor Corp Tire damage determination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205956A (en) * 2004-01-20 2005-08-04 Bridgestone Corp Method and device for estimating tire state and tire with sensor
JP2006145366A (en) * 2004-11-19 2006-06-08 Yokohama Rubber Co Ltd:The Tire deformation amount calculating method, and tire deformation amount calculator
JP2007091183A (en) * 2005-09-30 2007-04-12 Toyota Motor Corp Tire state presumption device and tire
JP2007153034A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Tire abrasion state judging device
JP2007168671A (en) * 2005-12-22 2007-07-05 Toyota Motor Corp Tire damage determination device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168211A (en) * 2010-02-19 2011-09-01 Bridgestone Corp Estimating method of tire partial wear
JP2015505366A (en) * 2011-12-29 2015-02-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン System and method for determining tire uniformity parameters from piezoelectric measurements in the anti-deflection region of a tire
JP2013169816A (en) * 2012-02-17 2013-09-02 Bridgestone Corp Method and device for estimating tire wear amount
JP2016527516A (en) * 2013-08-01 2016-09-08 エムティーエス システムズ コーポレイション Tire testing equipment
KR102319564B1 (en) * 2013-08-01 2021-10-29 엠티에스 시스템즈 코포레이숀 Tire testing apparatus
KR20160036565A (en) * 2013-08-01 2016-04-04 엠티에스 시스템즈 코포레이숀 Tire testing apparatus
WO2015079741A1 (en) * 2013-11-26 2015-06-04 株式会社ブリヂストン Method for estimating uneven wear of tire, and device for estimating uneven wear of tire
US10286734B2 (en) 2013-11-26 2019-05-14 Bridgestone Corporation Method and apparatus for estimating uneven tire wear
JP2015102445A (en) * 2013-11-26 2015-06-04 株式会社ブリヂストン Method and device for estimating tire partial wear
CN112590464A (en) * 2019-10-02 2021-04-02 韩国轮胎与科技株式会社 Tire wear measuring device and tire wear measuring method using the same
CN114585523A (en) * 2019-10-21 2022-06-03 株式会社普利司通 Tire wear amount estimation system, tire wear amount estimation program, and tire wear amount estimation method
EP4049864A4 (en) * 2019-10-21 2023-11-01 Bridgestone Corporation Tire wear amount estimation system, tire wear amount estimation program, and tire wear amount estimation method
CN114585523B (en) * 2019-10-21 2024-02-13 株式会社普利司通 Tire wear amount estimation system, tire wear amount estimation program, and tire wear amount estimation method
WO2021192474A1 (en) * 2020-03-25 2021-09-30 株式会社ブリヂストン Method for estimating tire wear and method for determining tire wear shape
CN111959205A (en) * 2020-08-05 2020-11-20 铁将军汽车电子股份有限公司 Tire wear amount detection method, tire wear amount detection device, electronic device, and nonvolatile storage medium

Also Published As

Publication number Publication date
JP5183114B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5111505B2 (en) Tire wear estimation method
JP5036459B2 (en) Tire wear estimation method and tire wear estimation apparatus
JP5183114B2 (en) Tire wear estimation method and tire wear estimation apparatus
JP5620268B2 (en) Tire wear estimation method and tire wear estimation apparatus
JP5165603B2 (en) Tire running state estimation method, steady running state estimation device, tire wear estimation method and apparatus
EP1897706B1 (en) Road surface state estimating method, road surface state estimating tire, road surface state estimating device, and vehicle control device
US7694556B2 (en) Method of detecting hydroplaning and estimating an intensity of hydroplaning of a tire on a wet road
JP5412315B2 (en) Estimation method for uneven tire wear
JP5184252B2 (en) Estimating the effective grip margin of tires during rolling
JP6265375B2 (en) Tire slip angle estimation system and method
JP5902473B2 (en) Tire uneven wear detection method and tire uneven wear detection device
JP5898519B2 (en) Tire wear amount estimation method and tire wear amount estimation device
EP2857227A1 (en) Method for detecting uneven wear on tire and device for detecting uneven wear on tire
US7832262B2 (en) Method of detecting an occurrence of hydroplaning of a tire on a road
WO2019049808A1 (en) Tire load estimation method and tire load estimation device
EP3925805B1 (en) Tire load estimation system and method
US7739905B2 (en) Method of estimating a height of water in contact with a tire on a road
JP2007137086A (en) Method, device and tire for estimating road friction state
JP2008143312A (en) Estimation method of road surface state, estimation device of road surface state, tire and vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250