JP2011168211A - Estimating method of tire partial wear - Google Patents

Estimating method of tire partial wear Download PDF

Info

Publication number
JP2011168211A
JP2011168211A JP2010035196A JP2010035196A JP2011168211A JP 2011168211 A JP2011168211 A JP 2011168211A JP 2010035196 A JP2010035196 A JP 2010035196A JP 2010035196 A JP2010035196 A JP 2010035196A JP 2011168211 A JP2011168211 A JP 2011168211A
Authority
JP
Japan
Prior art keywords
tire
peak value
acceleration
wear
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010035196A
Other languages
Japanese (ja)
Other versions
JP5412315B2 (en
Inventor
Go Masago
剛 真砂
Hiroshi Morinaga
啓詩 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010035196A priority Critical patent/JP5412315B2/en
Publication of JP2011168211A publication Critical patent/JP2011168211A/en
Application granted granted Critical
Publication of JP5412315B2 publication Critical patent/JP5412315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate a part of causing partial wear of a tire. <P>SOLUTION: The method detects an acceleration waveform in the tire radial direction by arranging an acceleration sensor 11 on the inner surface side of a tire tread, determines a peak value P<SB>f</SB>of the grounding end and a peal value Q<SB>f</SB>outside of a grounding surface from an acceleration differential waveform determined by differentiating this acceleration waveform, calculates the peak value ratio R<SB>f</SB>=(Q<SB>f</SB>/P<SB>f</SB>) being the ratio of the peak value Q<SB>f</SB>outside of the grounding surface to the peak value P<SB>f</SB>of the grounding end, compares this calculated peak value ratio R<SB>f</SB>with the peak value ratio R<SB>O</SB>=(Q<SB>fO</SB>/P<SB>fO</SB>) in a new tire, and estimates the part of causing the partial wear of the tire. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タイヤトレッドの内面側に配置された加速度センサーの出力信号からタイヤ摩耗が進行している部位を推定する方法に関するものである。   The present invention relates to a method for estimating a portion where tire wear has progressed from an output signal of an acceleration sensor arranged on the inner surface side of a tire tread.

タイヤは走行中に路面との摩擦によりトレッドが摩耗していく。タイヤの性能面からは、トレッド表面が均一に摩耗することで接地形状が大きく変化しないことが望ましいが、旋回時や加減速時には、タイヤの進行方向に対して横方向の力や前後方向の力が作用するので、タイヤトレッドのセンター部とショルダー部とで摩耗量が異なる場合がある。
これらの偏った摩耗が積み重なると、タイヤは、タイヤトレッドのセンター部が極端に摩耗した状態(センター摩耗)か、逆に、ショルダー部が極端に摩耗した状態(ショルダー摩耗)となってしまう。トレッド表面が均一に摩耗しているタイヤを正常摩耗タイヤといい、前記のような偏った摩耗が積み重なったタイヤを偏摩耗タイヤという。
極端な偏摩耗が起こっているタイヤを使用し続けると、タイヤ本来の性能が発揮できなくなる。特にスタッドレスタイヤでは、路面のグリップ不足が発生し、走行中にスリップしやすくなるといった問題点がある。
また、偏摩耗タイヤは、タイヤの接地形状が理想としている状態から外れていることから、燃費性能もトレッド表面が均一に摩耗している正常摩耗タイヤに比べて低下する。
As the tires run, the tread wears due to friction with the road surface. From the standpoint of tire performance, it is desirable that the tread surface wear evenly, so that the ground contact shape does not change significantly. Therefore, the wear amount may be different between the center portion and the shoulder portion of the tire tread.
When these uneven wears are accumulated, the tire is in a state where the center portion of the tire tread is extremely worn (center wear) or, conversely, a state where the shoulder portion is extremely worn (shoulder wear). A tire whose tread surface is evenly worn is called a normal wear tire, and a tire in which such uneven wear is accumulated is called a uneven wear tire.
If you continue to use tires with extreme uneven wear, the tire's original performance cannot be achieved. In particular, a studless tire has a problem that a grip on the road surface is insufficient and slipping easily occurs during traveling.
Further, since the unevenly worn tire deviates from the ideal state of the ground contact shape of the tire, the fuel consumption performance is also lower than that of a normally worn tire in which the tread surface is evenly worn.

タイヤの摩耗を推定する方法としては、従来、タイヤトレッドの溝部もしくはトレッドゴムの内部などに磁性材料や導電ゴムから成る検知体を埋め込み、車体側にセンサーを配置して、タイヤの摩耗により検知体が摩耗してセンサーの検出信号が変化することからタイヤの摩耗を推定する方法(例えば、特許文献1,2参照)や、タイヤトレッドに有臭ガスや着色ガスを予め挿入しておき、トレッドの摩耗が進行しガス封入部が空気中に露出して有臭ガスや着色ガス空気中に放出されることで、タイヤが摩耗していることを周囲に認識させる方法(例えば、特許文献3参照)などが提案されている。   As a method of estimating tire wear, conventionally, a detection body made of a magnetic material or conductive rubber is embedded in a groove portion of a tire tread or the inside of a tread rubber, and a sensor is arranged on the vehicle body side. The wear signal of the sensor changes due to wear of the sensor (see, for example, Patent Documents 1 and 2), or odorous gas or colored gas is inserted in the tire tread in advance. A method of making the surroundings recognize that the tire is worn by the progress of wear and the gas-filled portion exposed to the air and released into the odorous gas or colored gas air (see, for example, Patent Document 3) Etc. have been proposed.

また、センサーをタイヤトレッドではなく、タイヤ内部に設置して摩耗の度合いを推定する方法として、タイヤのインナーライナー部に加速度センサーを設置して、タイヤ径方向の加速度波形を検出し、この加速度波形に現れる膨出点に対応する2つのピーク間の時間である変形時間と、加速度波形を微分した微分波形に現れる接地端に対応する2つのピーク間の時間である接地時間とから、当該タイヤの摩耗の度合いを推定する方法(例えば、特許文献4参照)や、異なるタイヤ速度における接地時間tとタイヤ回転時間Tとの比である接地時間比K=(t/K)から、当該タイヤの摩耗の度合いを推定する方法(例えば、特許文献5参照)などが提案されている。   In addition, as a method of estimating the degree of wear by installing the sensor inside the tire instead of the tire tread, an acceleration sensor is installed in the inner liner part of the tire to detect the acceleration waveform in the tire radial direction, and this acceleration waveform From the deformation time, which is the time between the two peaks corresponding to the bulging point appearing in the curve, and the contact time, which is the time between the two peaks corresponding to the grounding edge, which appears in the differential waveform obtained by differentiating the acceleration waveform, From the method of estimating the degree of wear (see, for example, Patent Document 4) and the contact time ratio K = (t / K), which is the ratio of the contact time t and the tire rotation time T at different tire speeds, the tire wear A method for estimating the degree of the above (for example, see Patent Document 5) has been proposed.

特開2003−214808号公報JP 2003-214808 A 特開2005−28950号公報JP 2005-28950 A 特開2005−153783号公報JP 2005-153783 A 特開2009−19950号公報JP 2009-19950 A 特開2009−61917号公報JP 2009-61917 A

しかしながら、タイヤトレッドにセンサーや磁性体などの異物を挿入すると、挿入した部位近辺に応力が集中して故障の核となる可能性があるため、タイヤの耐久性が低下することが懸念される。また、有臭ガスや着色ガスを用いる方法では、摩耗が進行したか否かの判定しか行えないので、トレッドの摩耗する過程における摩耗状態の変化を捉えることはできないといった問題があった。
また、インナーライナー部に設置された加速度センサーの出力からタイヤの摩耗の度合いを推定する方法は、タイヤの摩耗の度合いを精度よく推定することができるとともに、タイヤの摩耗の状態の変化を捉えることができ、更に、耐久性にも優れているが、タイヤの偏摩耗の推定までは行っていなかった。
However, if a foreign object such as a sensor or a magnetic material is inserted into the tire tread, stress may concentrate near the inserted portion and become the core of failure, so there is a concern that the durability of the tire may be reduced. In addition, the method using odorous gas or colored gas can only determine whether or not the wear has progressed, so there is a problem that it is impossible to capture the change in the wear state during the process of wearing the tread.
In addition, the method of estimating the degree of tire wear from the output of the acceleration sensor installed in the inner liner part can accurately estimate the degree of tire wear and capture changes in the state of tire wear. In addition, although it is excellent in durability, the estimation of uneven wear of the tire has not been performed.

本発明は、従来の問題点に鑑みてなされたもので、タイヤの偏摩耗の起こっている部位を精度よく推定することのできる方法を提供することを目的とする。   The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method capable of accurately estimating a portion where uneven wear of a tire occurs.

図6は、タイヤ1に荷重を加えて撓ませたときのタイヤ1の外形を示す模式図である。このようなタイヤ1の外形は、平坦な路面R上を走行中のタイヤの外形とほぼ同じである。
同図の符号Ef,Ekで示す接地端は、タイヤ1に荷重を加えたときタイヤ1が路面に接している部分(接地面)のタイヤ前後方向の端部である。
また、符号Df,Dkで示す膨出点は、接地面がタイヤ中心方向に押し込められて、タイヤ1のプロファイルが同図の一点鎖線で示す初期プロファイル(非荷重時)から外側に膨れる変形をしたときに、接地面外においてタイヤ1が最も外側へ膨れている点である。
図7は、タイヤのインナーライナー部に歪みセンサーを取付けて検出した、平坦な路面上を走行中のタイヤの踏面付近の歪みの時系列波形を示す図で、この図から、歪みの方向が変化する接地端Ef前方と接地端Ekの後方とに、それぞれ、接地面外においてタイヤ1が最も外側へ膨れている箇所(膨出点Df,Dk)があることがわかる。
FIG. 6 is a schematic diagram showing an outer shape of the tire 1 when the tire 1 is bent by applying a load. The outer shape of such a tire 1 is substantially the same as the outer shape of a tire traveling on a flat road surface R.
The ground contact end indicated by reference characters E f and E k in the figure is an end portion in the tire front-rear direction of a portion (ground contact surface) where the tire 1 is in contact with the road surface when a load is applied to the tire 1.
Further, the bulging points indicated by the symbols D f and D k are deformations in which the contact surface is pushed toward the center of the tire and the profile of the tire 1 swells outward from the initial profile (when no load is applied) indicated by the dashed line in FIG. This is a point that the tire 1 swells to the outermost side outside the contact surface.
FIG. 7 is a diagram showing a time-series waveform of distortion near the tread surface of a tire traveling on a flat road surface, which is detected by attaching a strain sensor to the inner liner portion of the tire. From this figure, the direction of the distortion changes. to a ground terminal E f front and rear ground end E k for each location where the tire 1 is bulging to the outermost outside the ground plane (bulge point D f, D k) it can be seen that there is a.

図8(a)は、タイヤトレッドの内面に加速度センサーを取付けて検出した、平坦な路面上を走行中のタイヤの踏面付近の径方向加速度の時系列波形(加速度波形)を示す図で、図8(b)は、この加速度波形を時間微分して得られた径方向加速度の微分波形(加速度微分波形)を示す図である。
加速度波形では、歪み波形と同様に、接地端Ef,Ekで検出値の符号が変化し、かつ、膨出点Df,Dkで検出値の大きさが最大となる。
一方、加速度微分波形では、接地端Ef,Ekで検出値の大きさが最大となり、膨出点では検出値の符号が変化する。そして、膨出点Df,Dkの前方と後方とに、接地面外における検出値のピークが出現する。
以下、接地端における検出値のピークの大きさを接地端微分ピーク値といい、接地面外における検出値のピークの大きさを接地面外微分ピーク値という。
FIG. 8A is a diagram showing a time-series waveform (acceleration waveform) of radial acceleration near the tread surface of a tire traveling on a flat road surface, which is detected by attaching an acceleration sensor to the inner surface of the tire tread. 8 (b) is a diagram showing a differential waveform (acceleration differential waveform) of radial acceleration obtained by time differentiation of this acceleration waveform.
In the acceleration waveform, similarly to the distortion waveform, the sign of the detected value changes at the grounding ends E f and E k , and the detected value becomes the maximum at the bulging points D f and D k .
On the other hand, in the acceleration differential waveform, the magnitude of the detected value becomes maximum at the grounding ends E f and E k , and the sign of the detected value changes at the bulging point. Then, detection value peaks appear outside the ground contact surface in front of and behind the bulging points D f and D k .
Hereinafter, the magnitude of the detected value peak at the ground end is referred to as a ground end differential peak value, and the magnitude of the detected value peak outside the ground plane is referred to as an out-of-ground differential peak value.

本願発明者らは、鋭意検討の結果、接地端微分ピーク値と接地面外微分ピーク値との比であるピーク値比がタイヤの偏摩耗の起こっている部位により異なることを見出した。
具体的には、図9に示すように、新品タイヤとセンター摩耗タイヤのそれぞれについて、インナーライナー部のタイヤ幅方向中央部(A点)、タイヤ幅方向中央部から30mmタイヤ幅方向外側の位置(B点)、及び、タイヤ幅方向中央部から60mmタイヤ幅方向外側の位置(C点)の3箇所にそれぞれ加速度センサー11a〜11cを取付けて、トレッド外面側とトレッド内面側の接地長比及び接地時間比を計測した。
同図の左側のグラフから、新品タイヤでは、接地長比及び接地時間比の大きさは、いずれも、計測点がショルダー側に近づくにつれて小さくなっていることがわかる。
一方、センター摩耗タイヤでは、接地長比及び接地時間比の大きさは、外面側では計測点がショルダー側に近づくにつれて大きくなり、内面側ではあまり変わらないことがわかる。
As a result of intensive studies, the inventors of the present application have found that the peak value ratio, which is the ratio between the ground contact edge differential peak value and the ground contact out-of-plane differential peak value, varies depending on the portion of the tire where uneven wear occurs.
Specifically, as shown in FIG. 9, for each of the new tire and the center worn tire, the inner liner portion in the tire width direction central portion (point A), the position 30 mm from the tire width direction central portion on the outer side in the tire width direction ( B points) and acceleration sensors 11a to 11c are attached to three positions 60 points from the tire width direction central portion (point C) on the outer side in the tire width direction, respectively, and the contact length ratio between the tread outer surface side and the tread inner surface side and the ground contact The time ratio was measured.
From the graph on the left side of the figure, it can be seen that in the new tire, the contact length ratio and the contact time ratio both decrease as the measurement point approaches the shoulder side.
On the other hand, in the center wear tire, it can be seen that the contact length ratio and the contact time ratio increase as the measurement point approaches the shoulder side on the outer surface side and does not change much on the inner surface side.

これは、新品タイヤでは、図10(a)に示すように、同図の実線で示す接地面の内面形状が破線で示す外面形状に追従していることを示している。
また、センター摩耗タイヤでは、図10(b)に示すように、同図の実線で示す接地面の内面形状は破線で示す外面形状に追従しておらず、特に、同図の一点鎖線で示す外面形状に追従していると仮定した場合に比較して、膨出点(同図の丸印)が外側へ移動していることがわかる。
一方、ショルダー摩耗タイヤでも、図10(c)に示すように、同図の実線で示す接地面の内面形状は破線で示す外面形状に追従していない。しかし、その接地形状は、センター摩耗タイヤとは逆に、同図の一点鎖線で示す外面形状に追従していると仮定した場合に比較して、膨出点(同図の丸印)が内側へ移動している。
図11は、センター摩耗時における膨出点Dの移動を示す模式図で、タイヤのこのような変形は、図12(a)に示すように、加速度波形に現れる。一方、加速度微分波形には、図12(b)に示すように、膨出点の外側への移動と接地面外微分ピーク値の増加として現れる。しかしながら、接地端微分ピーク値はほとんど変わらない。
This indicates that in the new tire, as shown in FIG. 10A, the inner surface shape of the ground contact surface indicated by the solid line in FIG. 10 follows the outer surface shape indicated by the broken line.
Further, in the center worn tire, as shown in FIG. 10B, the inner surface shape of the ground contact surface indicated by the solid line in FIG. 10 does not follow the outer surface shape indicated by the broken line, and is particularly indicated by the one-dot chain line in FIG. It can be seen that the bulging point (circled in the figure) moves outward as compared to the case where it is assumed that the outer surface shape is followed.
On the other hand, in the shoulder wear tire, as shown in FIG. 10C, the inner surface shape of the ground contact surface shown by the solid line in FIG. 10 does not follow the outer surface shape shown by the broken line. However, in contrast to the center worn tire, the ground contact shape has an bulging point (circled in the figure) on the inside compared to the case where it is assumed that the outer surface shape indicated by the alternate long and short dash line in FIG. Has moved to.
FIG. 11 is a schematic diagram showing the movement of the bulging point D during center wear, and such deformation of the tire appears in the acceleration waveform as shown in FIG. On the other hand, the acceleration differential waveform appears as an outward movement of the bulging point and an increase in the out-of-ground differential peak value, as shown in FIG. However, the ground end differential peak value hardly changes.

したがって、加速度微分波形における接地端微分ピーク値と接地面外微分ピーク値との比であるピーク値比をタイヤ偏摩耗の推定メジャーとして用いれば、タイヤの偏摩耗を精度よく推定することができる。
すなわち、本願の発明は、タイヤの偏摩耗の起こっている部位を推定する方法であって、タイヤのトレッドの内面側に配置された加速度センサーを用いてタイヤ径方向の加速度波形を検出する第1のステップと、検出された加速度波形を微分して加速度微分波形を求める第2のステップと、前記加速度微分波形における接地端のピーク値と接地面外のピーク値とを求める第3のステップと、前記接地端のピーク値に対する接地面外のピーク値の比であるピーク値比を算出する第4のステップと、前記算出されたピーク値比の大きさから当該タイヤの偏摩耗の起こっている部位を推定する第5のステップとを備えたことを特徴とする。
これにより、タイヤの偏摩耗の起こっている部位を精度よく推定することができる。また、センサーをタイヤの内面側に接地しているので、センサー及びタイヤの耐久性が低下することがない。
Therefore, if the peak value ratio, which is the ratio between the ground contact edge differential peak value and the out-of-ground differential peak value in the acceleration differential waveform, is used as an estimation measure for tire uneven wear, the tire uneven wear can be accurately estimated.
That is, the invention of the present application is a method for estimating a portion where uneven wear of a tire occurs, and is a first method for detecting an acceleration waveform in the tire radial direction using an acceleration sensor disposed on the inner surface side of the tire tread. A second step for differentiating the detected acceleration waveform to obtain an acceleration differential waveform, a third step for obtaining a peak value of the ground contact edge and a peak value outside the ground plane in the acceleration differential waveform, A fourth step of calculating a peak value ratio, which is a ratio of a peak value outside the ground contact surface to a peak value at the contact end, and a portion where uneven wear of the tire occurs from the calculated peak value ratio And a fifth step of estimating.
Thereby, the site | part where the partial wear of the tire has occurred can be estimated accurately. Further, since the sensor is grounded on the inner surface side of the tire, the durability of the sensor and the tire does not deteriorate.

また、本願発明は、前記第5のステップにおいて、前記算出されたピーク値比と新品タイヤにおけるピーク値比とを比較して、当該タイヤの偏摩耗の起こっている部位を推定することを特徴とする。
具体的には、算出されたピーク値比が新品タイヤにおけるピーク値比よりも大きく、かつ、その差が予め設定した値(例えば、新品タイヤにおけるピーク値比の10%)以上である場合には当該タイヤのセンター部の摩耗の度合いがショルダー部の摩耗の度合いよりも大きいと推定する。また、算出されたピーク値比が新品タイヤにおけるピーク値比よりも小さく、かつ、その差が予め設定した値以上である場合にはショルダー部の摩耗の度合いがセンター部の摩耗の度合いよりも大きいと推定する。なお、前記予め設定した値は必ずしも同じである必要はない。
これにより、タイヤの偏摩耗の推定精度を更に向上させることができる。
The invention of the present application is characterized in that, in the fifth step, the calculated peak value ratio is compared with a peak value ratio in a new tire to estimate a portion where uneven wear of the tire occurs. To do.
Specifically, when the calculated peak value ratio is larger than the peak value ratio for a new tire and the difference is equal to or greater than a preset value (for example, 10% of the peak value ratio for a new tire). It is estimated that the degree of wear at the center of the tire is greater than the degree of wear at the shoulder. In addition, when the calculated peak value ratio is smaller than the peak value ratio in the new tire and the difference is not less than a preset value, the degree of wear of the shoulder portion is larger than the degree of wear of the center portion. Estimated. The preset values are not necessarily the same.
Thereby, the estimation precision of the partial wear of a tire can further be improved.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本実施の形態に係るタイヤ偏摩耗の推定装置の構成を示す図である。It is a figure which shows the structure of the estimation apparatus of the tire partial wear which concerns on this Embodiment. 加速度センサーの取付け例を示す図である。It is a figure which shows the example of attachment of an acceleration sensor. センター摩耗時の加速度波形と加速度微分波形の一例を示す図である。It is a figure which shows an example of the acceleration waveform at the time of center wear, and an acceleration differential waveform. センター摩耗時における接地端微分ピーク値の大きさと接地面外微分ピーク値の大きさの関係を示す図である(実路;40km/h走行時)。It is a figure which shows the relationship between the magnitude | size of the contact edge differential peak value at the time of center wear, and the magnitude | size of a contact surface out-of-plane differential peak value (at the time of actual road; 40 km / h driving | running | working). センター摩耗時における接地端微分ピーク値の大きさと接地面外微分ピーク値の大きさの関係を示す図である(実路;80km/h走行時)。It is a figure which shows the relationship between the magnitude | size of the ground contact edge differential peak value at the time of center wear, and the magnitude | size of a ground contact out-of-plane differential peak value (at the time of actual road; 80 km / h driving | running | working). 荷重負荷時におけるタイヤの外形変化を示す模式図である。It is a schematic diagram which shows the external shape change of the tire at the time of a load load. タイヤ踏面付近の歪みの時系列波形の一例を示す図である。It is a figure which shows an example of the time-sequential waveform of the distortion of tire tread surface vicinity. タイヤ踏面付近の加速度波形及び加速度微分波形を示す図である。It is a figure which shows the acceleration waveform and acceleration differential waveform of the tire tread surface vicinity. 新品タイヤとセンター摩耗タイヤの通常走行時と加速時における接地長比及び接地時間比のタイヤ幅方向分布を示す図である。It is a figure which shows the tire width direction distribution of the contact length ratio and the contact time ratio at the time of normal driving | running | working and acceleration of a new tire and a center abrasion tire. 新品タイヤ、センター摩耗タイヤ、及び、ショルダー摩耗タイヤの接地面の外面形状と内面形状とを示す図である。It is a figure which shows the outer surface shape and inner surface shape of the contact surface of a new tire, a center abrasion tire, and a shoulder abrasion tire. センター摩耗時におけるタイヤの変形状態を示す図である。It is a figure which shows the deformation | transformation state of the tire at the time of center abrasion. センター摩耗時における加速度波形と加速度微分波形を示す図である。It is a figure which shows the acceleration waveform at the time of center wear, and an acceleration differential waveform.

以下、本発明の実施の形態について、図面に基づき説明する。
図1は、本実施の形態に係るタイヤ偏摩耗の推定装置10の構成を示す機能ブロック図である。同図において、11は加速度センサー、12は加速度波形抽出手段、13は加速度微分波形演算手段、14はピーク値抽出手段、15はピーク値比算出手段、16は偏摩耗推定手段である。
加速度センサー11はタイヤトレッド内面の加速度を検出するセンサーで、この加速度センサー11が本発明のタイヤ偏摩耗の推定装置10のセンサー部10Aを構成し、加速度波形抽出手段12から偏摩耗推定手段16までの各手段が演算部10Bを構成する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a configuration of a tire uneven wear estimation device 10 according to the present embodiment. In the figure, 11 is an acceleration sensor, 12 is an acceleration waveform extracting means, 13 is an acceleration differential waveform calculating means, 14 is a peak value extracting means, 15 is a peak value ratio calculating means, and 16 is uneven wear estimating means.
The acceleration sensor 11 is a sensor that detects the acceleration on the inner surface of the tire tread. The acceleration sensor 11 constitutes a sensor unit 10A of the tire uneven wear estimation device 10 of the present invention, and from the acceleration waveform extraction means 12 to the uneven wear estimation means 16. Each means constitutes the calculation unit 10B.

本例では、図2に示すように、加速度センサー11を、同図のCLで示すタイヤ1のインナーライナー部2のタイヤの幅方向中心に、その検出方向がタイヤ径方向になるように配置し、タイヤトレッド(以下、トレッドという)3の内面に作用するタイヤ径方向加速度を検出する。また、演算部10Bは、例えば、コンピュータのソフトウェアにより構成され、図示しない車体側に配置されている。
加速度センサー11の出力信号を演算部10Bに送る構成としては、例えば、図2に示すように、インナーライナー部2もしくはホイール4に送信器11Fを設置して、加速度センサー11の出力信号を図示しない増幅器で増幅した後、無線にて上記車体側に配置された演算部10Bに送信する構成とすることが好ましい。なお、演算部10Bをタイヤ1側に設けて偏摩耗推定手段16の推定結果を車体側の図示しない車両制御装置に送信する構成としてもよい。
In this example, as shown in FIG. 2, the acceleration sensor 11 is arranged at the center in the tire width direction of the inner liner portion 2 of the tire 1 indicated by CL in the figure so that the detection direction is the tire radial direction. The tire radial acceleration acting on the inner surface of the tire tread (hereinafter referred to as tread) 3 is detected. In addition, the calculation unit 10B is configured by software of a computer, for example, and is disposed on the vehicle body side (not shown).
As a configuration for sending the output signal of the acceleration sensor 11 to the arithmetic unit 10B, for example, as shown in FIG. 2, a transmitter 11F is installed on the inner liner part 2 or the wheel 4 and the output signal of the acceleration sensor 11 is not shown. It is preferable that the signal is amplified by an amplifier and then wirelessly transmitted to the calculation unit 10B disposed on the vehicle body side. In addition, it is good also as a structure which provides the calculating part 10B in the tire 1 side, and transmits the estimation result of the partial wear estimation means 16 to the vehicle control apparatus which is not shown in figure on the vehicle body side.

加速度波形抽出手段12は、加速度センサー11から連続して出力されるトレッド3に作用するタイヤ径方向加速度の大きさを表す信号から、タイヤ接地面近傍のタイヤ径方向の加速度の時系列波形である加速度波形を抽出する。
加速度微分波形演算手段13は、加速度波形抽出手段12で抽出された加速度波形を時間微分して加速度微分波形を求める。
ピーク値抽出手段14は、加速度微分波形に現れる踏み込み端側のピーク値である接地端微分ピーク値Pfと踏み込み端の接地面外のピーク値である接地面外微分ピーク値Qfとをそれぞれ算出する。
ピーク値比算出手段15は、接地端微分ピーク値Pfに対する接地面外微分ピーク値Qfの比であるピーク値比Rf=(Qf/Pf)を算出する。
偏摩耗推定手段16は記憶部16Aと推定部16Bとを備える。
記憶部16Aは、新品タイヤのピーク値比R0を記憶して保存する。推定部16Bは、ピーク値比算出手段15で算出したピーク値比Rf=(Qf/Pf)と記憶部16Aに保存されている新品タイヤのピーク値比R0=(Qf0/Pf0)とを比較して、当該タイヤ1の偏摩耗の起こっている部位を推定する。ここで、Pf0,Qf0はそれぞれ新品タイヤにおける接地端微分ピーク値と接地面外微分ピーク値である。
The acceleration waveform extraction means 12 is a time-series waveform of acceleration in the tire radial direction in the vicinity of the tire contact surface from a signal representing the magnitude of the tire radial acceleration acting on the tread 3 continuously output from the acceleration sensor 11. Extract acceleration waveform.
The acceleration differential waveform calculation means 13 obtains an acceleration differential waveform by time-differentiating the acceleration waveform extracted by the acceleration waveform extraction means 12.
The peak value extraction means 14 has a ground end differential peak value P f which is a peak value on the stepping end side appearing in the acceleration differential waveform and an out-of-ground differential peak value Q f which is a peak value outside the ground plane at the step end. calculate.
The peak value ratio calculation means 15 calculates a peak value ratio R f = (Q f / P f ), which is a ratio of the out-of-ground differential peak value Q f to the ground contact differential peak value P f .
The uneven wear estimation means 16 includes a storage unit 16A and an estimation unit 16B.
The storage unit 16A stores and stores the peak value ratio R 0 of a new tire. The estimation unit 16B uses the peak value ratio R f = (Q f / P f ) calculated by the peak value ratio calculation means 15 and the peak value ratio R 0 = (Q f0 / P) of a new tire stored in the storage unit 16A. f0 ) and the part where the partial wear of the tire 1 occurs is estimated. Here, P f0 and Q f0 are the contact end differential peak value and the out-of-contact differential peak value in the new tire, respectively.

次に、本実施の形態に係るタイヤ偏摩耗の推定方法について説明する。
まず、加速度センサー11により、トレッド3の変形に伴って変形する上記インナーライナー部2の内面のタイヤ径方向の加速度を検出し、図示しない増幅器で増幅した後、上記インナーライナー部2に設置された送信器11Fから車体側に配置された演算部10Bに送信する。演算部10Bでは、加速度センサー11から連続して出力されるトレッド3に作用するタイヤ径方向加速度の大きさを表す信号からタイヤ接地面近傍のタイヤ径方向の加速度の時系列波形である加速度波形を抽出するとともに、この加速度波形を時間微分して径方向加速度の微分波形である加速度微分波形を求める。
そして、ピーク値抽出手段14にて、加速度微分波形に現れる踏み込み端側のピーク値である接地端微分ピーク値Pfと踏み込み端の接地面外のピーク値である接地面外微分ピーク値Qfとをそれぞれ算出する。
Next, a method for estimating uneven tire wear according to the present embodiment will be described.
First, the acceleration sensor 11 detects the acceleration in the tire radial direction of the inner surface of the inner liner portion 2 that is deformed as the tread 3 is deformed, and is amplified by an amplifier (not shown) and then installed on the inner liner portion 2. It transmits to the calculating part 10B arrange | positioned at the vehicle body side from the transmitter 11F. In the calculation unit 10B, an acceleration waveform, which is a time-series waveform of acceleration in the tire radial direction near the tire contact surface, from a signal indicating the magnitude of the tire radial acceleration acting on the tread 3 continuously output from the acceleration sensor 11 is obtained. While extracting, the acceleration waveform is time-differentiated to obtain an acceleration differential waveform which is a differential waveform of radial acceleration.
Then, in the peak value extraction means 14, the ground end differential peak value P f that is the peak value on the stepping end side that appears in the acceleration differential waveform and the ground out-of-ground differential peak value Q f that is the peak value outside the ground contact surface at the stepping end. Are calculated respectively.

図3(a)は、加速度センサー11で検出した径方向加速度波形の一例を示す図で、横軸は時間[sec.]、縦軸は加速度の大きさ[G]である。図3(b)はこの加速度波形を微分して得られた加速度微分波形で、横軸は時間[sec.]、縦軸は微分加速度の大きさ[G/sec.]である。また、同図の実線がセンター摩耗タイヤのデータで、同図の破線が新品タイヤのデータである。
図3(a)に示すように、センター摩耗タイヤでは膨出点が前方にずれている。また、図3(b)に示すように、センター摩耗タイヤでは、接地端微分ピーク値Pfの大きさはあまり変わらないが、接地面外微分ピーク値Qfが大幅に増加している。
この接地端微分ピーク値Pfのデータと接地面外微分ピーク値Qfのデータとはピーク値比算出手段15に送られ、接地端微分ピーク値Pfと接地面外微分ピーク値Qfとの比であるピーク値比Rf=(Qf/Pf)が算出される。
センター摩耗タイヤでは、接地端微分ピーク値Pfの大きさは新品タイヤとあまり変わらないが、接地面外微分ピーク値Qfが大幅に増加しているので、ピーク値比Rf=(Qf/Pf)は新品タイヤのピーク値比R0=(Qf0/Pf0)よりも大きい。
したがって、当該タイヤ1はセンター摩耗タイヤであると推定できる。
FIG. 3A is a diagram illustrating an example of a radial acceleration waveform detected by the acceleration sensor 11, where the horizontal axis represents time [sec.] And the vertical axis represents acceleration magnitude [G]. FIG. 3B shows an acceleration differential waveform obtained by differentiating the acceleration waveform, where the horizontal axis represents time [sec.] And the vertical axis represents the magnitude of differential acceleration [G / sec.]. The solid line in the figure is the data for the center worn tire, and the broken line in the figure is the data for the new tire.
As shown in FIG. 3A, the bulging point is shifted forward in the center worn tire. Further, as shown in FIG. 3B, in the center wear tire, the magnitude of the ground contact edge differential peak value P f does not change much, but the ground contact out-of-plane differential peak value Q f increases significantly.
The data of the ground end differential peak value P f and the data of the ground out-of-ground differential peak value Q f are sent to the peak value ratio calculating means 15, and the ground end differential peak value P f and the ground out-of-plane differential peak value Q f are The peak value ratio R f = (Q f / P f ) is calculated.
In the center wear tire, the magnitude of the ground contact edge differential peak value P f is not much different from that of a new tire, but since the ground contact out-of-plane differential peak value Q f is greatly increased, the peak value ratio R f = (Q f / P f ) is greater than the peak value ratio R 0 = (Q f0 / P f0 ) of the new tire.
Therefore, it can be estimated that the tire 1 is a center worn tire.

このように本実施の形態では、タイヤ1のトレッド3の内面側に配置された加速度センサー11を用いて検出したタイヤ径方向の加速度波形を微分して求めた加速度微分波形から、接地端微分ピーク値Pfと接地面外微分ピーク値Qfとを求めるとともに、接地端微分ピーク値Pfに対する接地面外微分ピーク値Qfの比であるピーク値比Rfを算出して、この算出されたピーク値比Rfと新品タイヤにおけるピーク値比R0=(Qf0/Pf0)とを比較し、ピーク値比Rfがピーク値比R0よりも大きい場合には当該タイヤ1のセンター部の摩耗の度合いがショルダー部の摩耗の度合いよりも大きいと推定するようにしたので、タイヤ1の偏摩耗の起こっている部位を精度よく推定することができる。 As described above, in the present embodiment, the ground end differential peak is obtained from the acceleration differential waveform obtained by differentiating the acceleration waveform in the tire radial direction detected using the acceleration sensor 11 disposed on the inner surface side of the tread 3 of the tire 1. together determine the value P f and the ground plane outside the derivative peak value Q f, and calculate the peak value ratio R f is the ratio of the ground plane outside the differential peak value Q f with respect to the ground terminal derivative peak value P f, the calculated The peak value ratio R f is compared with the peak value ratio R 0 = (Q f0 / P f0 ) in a new tire. When the peak value ratio R f is larger than the peak value ratio R 0 , the center of the tire 1 is compared. Since it is estimated that the degree of wear of the portion is greater than the degree of wear of the shoulder portion, it is possible to accurately estimate the portion of the tire 1 where uneven wear occurs.

なお、前記実施の形態では、接地端微分ピーク値と接地面外微分ピーク値として踏み込み端側の微分ピーク値Pf,Qfを用いたが、蹴り出し端側の微分ピーク値Pk,Qkを用いてもよい。あるいは、踏み込み端側の微分ピーク値Pf,Qfと蹴り出し端側の微分ピーク値Pk,Qkの両方を用いてもよい。
また、上記例では、ピーク値比Rfがピーク値比R0よりも大きい場合にセンター部の摩耗が大きいと推定したが、ピーク値比Rfがピーク値比R0よりも大きく、かつ、その差が予め設定した所定の値(例えば、ピーク値比R0の10%)以上である場合にセンター部の摩耗が大きいと推定するようにすれば、センター摩耗を更に確実に推定できる。
In the above-described embodiment, the differential peak values P f and Q f on the step-in end side are used as the contact end differential peak value and the out-of-plane differential peak value, but the differential peak values P k and Q on the kick-out end side are used. k may be used. Alternatively, both the differential peak values P f and Q f on the depression end side and the differential peak values P k and Q k on the kicking end side may be used.
In the above example, the peak value ratio R f is estimated that a large wear of the center portion is greater than the peak value ratio R 0, the peak value ratio R f is greater than the peak value ratio R 0, and, If the difference is equal to or larger than a predetermined value (for example, 10% of the peak value ratio R 0 ), the center wear can be estimated more reliably by estimating that the wear of the center portion is large.

また、前記例では、センター摩耗について説明したが、本願発明を用いてショルダー摩耗を推定するも可能である。
すなわち、ショルダー摩耗タイヤにおいては、図10(c)に示したように、膨出点が内側へ移動している。このときの実際の加速度微分波形については省略するが、ショルダー摩耗タイヤの加速度微分波形においては、ピーク値比Rfも、センター摩耗とは逆に、新品タイヤにおけるピーク値比R0よりも小さくなる。
したがって、ピーク値比Rfとピーク値比R0とを比較し、ピーク値比Rfがピーク値比R0よりも小さい場合、もしくは、ピーク値比Rfがピーク値比R0よりも小さく、かつ、その差が予め設定した所定の値(例えば、ピーク値比R0の10%)以上である場合には当該タイヤ1のショルダー部の摩耗の度合いがセンター部の摩耗の度合いよりも大きいと推定できる。
In the above example, center wear has been described, but shoulder wear can also be estimated using the present invention.
That is, in the shoulder wear tire, as shown in FIG. 10C, the bulging point moves inward. Although the actual acceleration differential waveform at this time is omitted, in the acceleration differential waveform of the shoulder wear tire, the peak value ratio R f is also smaller than the peak value ratio R 0 of the new tire, contrary to the center wear. .
Therefore, the peak value ratio R f is compared with the peak value ratio R 0, and the peak value ratio R f is smaller than the peak value ratio R 0 , or the peak value ratio R f is smaller than the peak value ratio R 0. When the difference is equal to or greater than a predetermined value (for example, 10% of the peak value ratio R 0 ), the degree of wear of the shoulder portion of the tire 1 is greater than the degree of wear of the center portion. Can be estimated.

インナーライナー部のタイヤ幅方向中心に加速度センサーが取付けられた、サイズが195/65R15の新品タイヤ(同図の◆)と正常摩耗タイヤ(同図の■と▼)とセンター摩耗タイヤ(同図の▲)とを、耐久性試験用の路面(実路)にて、速度40km/hで走行させ、センター摩耗時における接地端微分ピーク値の大きさと接地面外微分ピーク値の大きさとを計測した結果を図4に示す。
正常摩耗タイヤは、トレッド表面が均一に摩耗したタイヤで、新品タイヤをバフ研磨して得られる。タイヤセンター部の残溝量が4mmのもの(同図の■)と残溝量が2mmのもの(同図の▼)とを準備した。
センター摩耗タイヤでは、タイヤセンター部の残溝量が3mmである。
図4に示すように、センター摩耗タイヤでは、接地端微分ピーク値の大きさと接地面外微分ピーク値の大きさとの相関ラインが、正常摩耗タイヤの相関ラインとは異なっていることがわかる。すなわち、センター摩耗タイヤでは、接地端微分ピークと接地面外微分ピーク値との関係が正常摩耗タイヤの相関ラインからずれている。
また、図5は、速度80km/hでの計測結果で、車速を変化させても、センター摩耗タイヤでは、接地端微分ピークと接地面外微分ピーク値との関係が正常摩耗タイヤの相関ラインからずれている。
したがって、接地端微分ピーク値Pに対する接地面外微分ピーク値Qの比であるピーク値比R=(Q/P)を新品のピーク値比R0と比較すれば、当該タイヤがセンター摩耗タイヤであるか否かを推定できることが確認された。
New tires (◆ in the figure), normal wear tires (■ and ▼ in the figure), and center wear tires (in the figure) with an acceleration sensor attached to the center of the inner liner in the tire width direction. ▲) was run at a speed of 40 km / h on the road surface for actual durability test (actual road), and the magnitude of the ground contact edge differential peak value and the out-of-ground differential peak value during center wear were measured. The results are shown in FIG.
A normally worn tire is a tire with a uniformly worn tread surface, and is obtained by buffing a new tire. A tire center portion having a remaining groove amount of 4 mm (■ in the figure) and a remaining groove amount of 2 mm (▼ in the figure) were prepared.
In the center worn tire, the remaining groove amount in the tire center portion is 3 mm.
As shown in FIG. 4, in the center worn tire, it can be seen that the correlation line between the magnitude of the contact edge differential peak value and the magnitude of the out-of-ground differential peak value is different from the correlation line of the normal wear tire. That is, in the center wear tire, the relationship between the contact edge differential peak and the out-of-surface differential peak value is deviated from the correlation line of the normal wear tire.
In addition, FIG. 5 shows the measurement result at a speed of 80 km / h. In the center wear tire, the relationship between the contact edge differential peak and the contact out-of-surface differential peak value from the correlation line of the normal wear tire even when the vehicle speed is changed. It is off.
Therefore, if the peak value ratio R = (Q / P), which is the ratio of the out-of-ground differential peak value Q to the ground end differential peak value P, is compared with the new peak value ratio R 0 , the tire is a center worn tire. It was confirmed that it can be estimated whether or not there is.

以上説明したように、タイヤ1の偏摩耗の起こっている部位を精度よく推定することができるので、当該タイヤの偏摩耗を、例えば、警報手段等を用いてドライバーに認識させるなどすれば、車両の走行安全性を向上させることができる。   As described above, since the portion of the tire 1 where uneven wear occurs can be accurately estimated, if the driver recognizes the uneven wear of the tire using, for example, warning means, the vehicle The driving safety of the vehicle can be improved.

1 タイヤ、2 インナーライナー部、3 タイヤトレッド、4 ホイール、
5 周方向溝、6 ショルダー部、7 センター部、
10 タイヤ偏摩耗の推定装置、10A センサー部、10B 演算部、
11 加速度センサー、11F 送信器、12 加速度波形抽出手段、
13 加速度微分波形演算手段、14 ピーク値抽出手段、
15 ピーク値比算出手段、16 偏摩耗推定手段、R 路面。
1 tire, 2 inner liner, 3 tire tread, 4 wheel,
5 circumferential groove, 6 shoulder, 7 center,
10 tire uneven wear estimation device, 10A sensor unit, 10B calculation unit,
11 acceleration sensor, 11F transmitter, 12 acceleration waveform extraction means,
13 acceleration differential waveform calculation means, 14 peak value extraction means,
15 peak value ratio calculation means, 16 uneven wear estimation means, R road surface.

Claims (2)

タイヤのトレッドの内面側に配置された加速度センサーを用いてタイヤ径方向の加速度波形を検出する第1のステップと、
検出された加速度波形を微分して加速度微分波形を求める第2のステップと、
前記加速度微分波形における接地端のピーク値と接地面外のピーク値とを求める第3のステップと、
前記接地端のピーク値に対する接地面外のピーク値の比であるピーク値比を算出する第4のステップと、
前記算出されたピーク値比の大きさから当該タイヤの偏摩耗の起こっている部位を推定する第5のステップとを備えたことを特徴とするタイヤ偏摩耗の推定方法。
A first step of detecting an acceleration waveform in a tire radial direction using an acceleration sensor disposed on an inner surface side of a tire tread;
A second step of differentiating the detected acceleration waveform to obtain an acceleration differential waveform;
A third step of obtaining a peak value at the ground contact edge and a peak value outside the ground contact surface in the acceleration differential waveform;
A fourth step of calculating a peak value ratio which is a ratio of a peak value outside the ground plane to a peak value at the ground end;
A tire uneven wear estimation method comprising: a fifth step of estimating a portion where uneven wear of the tire occurs from the calculated peak value ratio.
前記第5のステップでは、
前記算出されたピーク値比と新品タイヤにおけるピーク値比とを比較して、当該タイヤの偏摩耗の起こっている部位を推定することを特徴とする請求項1に記載のタイヤ偏摩耗の推定方法。
In the fifth step,
The tire uneven wear estimation method according to claim 1, wherein the calculated peak value ratio is compared with a peak value ratio of a new tire to estimate a portion where uneven wear of the tire occurs. .
JP2010035196A 2010-02-19 2010-02-19 Estimation method for uneven tire wear Active JP5412315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035196A JP5412315B2 (en) 2010-02-19 2010-02-19 Estimation method for uneven tire wear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035196A JP5412315B2 (en) 2010-02-19 2010-02-19 Estimation method for uneven tire wear

Publications (2)

Publication Number Publication Date
JP2011168211A true JP2011168211A (en) 2011-09-01
JP5412315B2 JP5412315B2 (en) 2014-02-12

Family

ID=44682764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035196A Active JP5412315B2 (en) 2010-02-19 2010-02-19 Estimation method for uneven tire wear

Country Status (1)

Country Link
JP (1) JP5412315B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136297A (en) * 2011-12-28 2013-07-11 Bridgestone Corp Method and device for detecting uneven wear of tire
CN104334375A (en) * 2012-05-24 2015-02-04 株式会社普利司通 Method for detecting uneven wear on tire and device for detecting uneven wear on tire
WO2017032467A1 (en) * 2015-08-25 2017-03-02 Continental Reifen Deutschland Gmbh Method for determining a tread depth of a tyre profile and control device therefore
CN107614294A (en) * 2015-03-31 2018-01-19 株式会社普利司通 Tire wear amount estimation method and tire wear amount estimation apparatus
FR3072165A1 (en) * 2017-10-10 2019-04-12 Continental Automotive France METHOD FOR DETERMINING THE THICKNESS OF A TIRE OF A MOTOR VEHICLE
WO2020250517A1 (en) * 2019-06-14 2020-12-17 アルプスアルパイン株式会社 Tire degradation estimating device, and tire degradation estimating method
WO2021192474A1 (en) * 2020-03-25 2021-09-30 株式会社ブリヂストン Method for estimating tire wear and method for determining tire wear shape
CN115284791A (en) * 2022-07-15 2022-11-04 山东玲珑轮胎股份有限公司 Early warning method and device for tire eccentric wear
US11597238B2 (en) 2018-09-10 2023-03-07 Denso Corporation Tire system
EP4190596A1 (en) * 2021-12-06 2023-06-07 The Goodyear Tire & Rubber Company Tire irregular wear detection system and method
EP4223561A1 (en) * 2022-02-08 2023-08-09 Continental Reifen Deutschland GmbH Method for determining non-uniform vehicle tire wear
EP4227118A1 (en) * 2022-02-11 2023-08-16 Continental Reifen Deutschland GmbH Method and device for monitoring the abrasion of a vehicle tyre profile
EP4230440A1 (en) * 2022-02-17 2023-08-23 Continental Reifen Deutschland GmbH Method and device for determining a tread depth of a vehicle tyre

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266844A (en) * 2014-09-22 2015-01-07 华晨汽车集团控股有限公司 Method for recognizing torsion mode and bending mode in mode test

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153034A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Tire abrasion state judging device
WO2009008502A1 (en) * 2007-07-11 2009-01-15 Kabushiki Kaisha Bridgestone Tire wear estimating method
JP2009019950A (en) * 2007-07-11 2009-01-29 Bridgestone Corp Method and device for estimating tire abrasion
JP2009018667A (en) * 2007-07-11 2009-01-29 Bridgestone Corp Method and device for detecting abrasion of tire
JP2009061917A (en) * 2007-09-06 2009-03-26 Bridgestone Corp Tire abrasion estimation method and tire abrasion estimation device
WO2009157516A1 (en) * 2008-06-25 2009-12-30 株式会社ブリヂストン Method for estimating tire wear and device for estimating tire wear

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153034A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Tire abrasion state judging device
WO2009008502A1 (en) * 2007-07-11 2009-01-15 Kabushiki Kaisha Bridgestone Tire wear estimating method
JP2009019950A (en) * 2007-07-11 2009-01-29 Bridgestone Corp Method and device for estimating tire abrasion
JP2009018667A (en) * 2007-07-11 2009-01-29 Bridgestone Corp Method and device for detecting abrasion of tire
JP2009061917A (en) * 2007-09-06 2009-03-26 Bridgestone Corp Tire abrasion estimation method and tire abrasion estimation device
WO2009157516A1 (en) * 2008-06-25 2009-12-30 株式会社ブリヂストン Method for estimating tire wear and device for estimating tire wear

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136297A (en) * 2011-12-28 2013-07-11 Bridgestone Corp Method and device for detecting uneven wear of tire
CN104334375A (en) * 2012-05-24 2015-02-04 株式会社普利司通 Method for detecting uneven wear on tire and device for detecting uneven wear on tire
EP2857227A4 (en) * 2012-05-24 2016-01-13 Bridgestone Corp Method for detecting uneven wear on tire and device for detecting uneven wear on tire
CN107614294A (en) * 2015-03-31 2018-01-19 株式会社普利司通 Tire wear amount estimation method and tire wear amount estimation apparatus
US10471779B2 (en) 2015-03-31 2019-11-12 Bridgestone Corporation Tire wear amount estimating method and tire wear amount estimating apparatus
WO2017032467A1 (en) * 2015-08-25 2017-03-02 Continental Reifen Deutschland Gmbh Method for determining a tread depth of a tyre profile and control device therefore
CN107848344A (en) * 2015-08-25 2018-03-27 大陆轮胎德国有限公司 For the method and its control device of the tread depth for determining tire tread
US10495457B2 (en) 2015-08-25 2019-12-03 Continental Reifen Deutschland Gmbh Method for determining a tread depth of a tire profile and control device therefor
US11199402B2 (en) 2017-10-10 2021-12-14 Continental Automotive Gmbh Method for determining the thickness of a motor vehicle tire
FR3072165A1 (en) * 2017-10-10 2019-04-12 Continental Automotive France METHOD FOR DETERMINING THE THICKNESS OF A TIRE OF A MOTOR VEHICLE
WO2019073155A1 (en) * 2017-10-10 2019-04-18 Continental Automotive France Method for determining the thickness of a motor vehicle tyre
US11597238B2 (en) 2018-09-10 2023-03-07 Denso Corporation Tire system
JP7216821B2 (en) 2019-06-14 2023-02-01 アルプスアルパイン株式会社 Tire deterioration estimation device
WO2020250517A1 (en) * 2019-06-14 2020-12-17 アルプスアルパイン株式会社 Tire degradation estimating device, and tire degradation estimating method
US12083832B2 (en) 2019-06-14 2024-09-10 Alps Alpine Co., Ltd. Tire deterioration inferring device and tire deterioration inferring method
CN114008435A (en) * 2019-06-14 2022-02-01 阿尔卑斯阿尔派株式会社 Tire deterioration estimation device and tire deterioration estimation method
US20220080779A1 (en) * 2019-06-14 2022-03-17 Alps Alpine Co., Ltd. Tire deterioration inferring device and tire deterioration inferring method
JPWO2020250517A1 (en) * 2019-06-14 2020-12-17
JP2021154792A (en) * 2020-03-25 2021-10-07 株式会社ブリヂストン Method of estimating tire wear and method of determining tire wear shape
JP7319940B2 (en) 2020-03-25 2023-08-02 株式会社ブリヂストン Tire wear estimation method and tire wear shape discrimination method
WO2021192474A1 (en) * 2020-03-25 2021-09-30 株式会社ブリヂストン Method for estimating tire wear and method for determining tire wear shape
EP4190596A1 (en) * 2021-12-06 2023-06-07 The Goodyear Tire & Rubber Company Tire irregular wear detection system and method
EP4223561A1 (en) * 2022-02-08 2023-08-09 Continental Reifen Deutschland GmbH Method for determining non-uniform vehicle tire wear
EP4227118A1 (en) * 2022-02-11 2023-08-16 Continental Reifen Deutschland GmbH Method and device for monitoring the abrasion of a vehicle tyre profile
EP4230440A1 (en) * 2022-02-17 2023-08-23 Continental Reifen Deutschland GmbH Method and device for determining a tread depth of a vehicle tyre
CN115284791A (en) * 2022-07-15 2022-11-04 山东玲珑轮胎股份有限公司 Early warning method and device for tire eccentric wear

Also Published As

Publication number Publication date
JP5412315B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5412315B2 (en) Estimation method for uneven tire wear
JP5902473B2 (en) Tire uneven wear detection method and tire uneven wear detection device
JP7141863B2 (en) Tire wear condition estimation system and method
JP5956250B2 (en) Tire uneven wear detection method and tire uneven wear detection device
JP7425579B2 (en) Tire wear amount estimation system, tire wear amount estimation program, and tire wear amount estimation method
JP5898519B2 (en) Tire wear amount estimation method and tire wear amount estimation device
JP5165603B2 (en) Tire running state estimation method, steady running state estimation device, tire wear estimation method and apparatus
US7694556B2 (en) Method of detecting hydroplaning and estimating an intensity of hydroplaning of a tire on a wet road
JP5184252B2 (en) Estimating the effective grip margin of tires during rolling
JP2015081090A (en) Road friction estimation system and method
JP5806278B2 (en) Tire uneven wear estimation method and tire uneven wear estimation apparatus
JP6265375B2 (en) Tire slip angle estimation system and method
JP2007153034A (en) Tire abrasion state judging device
JPWO2009157516A1 (en) Tire wear estimation method and tire wear estimation apparatus
JP5183114B2 (en) Tire wear estimation method and tire wear estimation apparatus
WO2020250517A1 (en) Tire degradation estimating device, and tire degradation estimating method
JP2019049488A (en) Tire load estimation method and tire load estimation device
JP2005138702A (en) Method, device and program for determining road surface state
JP2005306160A (en) Method and device for presuming road surface friction coefficient, vehicle control method, and device therefor
JP4030572B2 (en) Vehicle braking distance prediction device and vehicle braking distance prediction method
US7739905B2 (en) Method of estimating a height of water in contact with a tire on a road
JP2009292434A (en) Abrasion state estimation method for tire and its device
JP4813284B2 (en) Road surface friction state estimation method and road surface friction state estimation device
KR102659755B1 (en) A method for estimating tire wear using Effective Rolling Radius
JP2008143312A (en) Estimation method of road surface state, estimation device of road surface state, tire and vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5412315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250