JP2007137086A - Method, device and tire for estimating road friction state - Google Patents

Method, device and tire for estimating road friction state Download PDF

Info

Publication number
JP2007137086A
JP2007137086A JP2005329281A JP2005329281A JP2007137086A JP 2007137086 A JP2007137086 A JP 2007137086A JP 2005329281 A JP2005329281 A JP 2005329281A JP 2005329281 A JP2005329281 A JP 2005329281A JP 2007137086 A JP2007137086 A JP 2007137086A
Authority
JP
Japan
Prior art keywords
road surface
tire
friction state
surface friction
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005329281A
Other languages
Japanese (ja)
Inventor
Yasushi Hanatsuka
泰史 花塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005329281A priority Critical patent/JP2007137086A/en
Publication of JP2007137086A publication Critical patent/JP2007137086A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device capable of accurately estimating a friction state between a tire and a rod with a simple constitution, and a tire for estimating a road friction condition used for estimating the road friction state. <P>SOLUTION: Ground pressure detection means 11 is made of conductive rubber. Signal of outputs of the ground pressure detection means 11 are processed, so as to extract a peak value p<SB>1</SB>on a treading side in a ground pressure variation waveform acting on a tread rubber of the tire and a bottom value q generated near a part immediately below the tread, and transmit them to a road friction state estimating device 20. A peak/bottom ratio R=(q/p<SB>1</SB>) is calculated by the road friction state estimating device 20, so that an friction state between the road, on which a vehicle is traveling, and a tire is estimated based on the calculated peak/bottom ratio R, and a map 23M stored in storage means 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両の走行する路面とタイヤ間の摩擦状態を推定する方法その装置、及び、路面摩擦状態の推定に使用されるタイヤに関するもので、特に、タイヤトレッドゴムに作用する接地荷重または接地圧から路面摩擦状態を推定する方法及び装置に関する。   The present invention relates to a method and apparatus for estimating a friction state between a road surface on which a vehicle travels and a tire, and a tire used for estimation of a road surface friction state, and more particularly to a ground load or a ground contact acting on a tire tread rubber. The present invention relates to a method and apparatus for estimating a road surface friction state from pressure.

自動車の走行安定性を高めるため、車両の走行している路面の状態、あるいは、タイヤと路面との間の摩擦係数(路面摩擦係数)を精度良く推定し、車両制御へフィードバックすることが求められている。特に、制駆動や操舵といった危険回避の操作を起こす前に、予め路面状態や路面摩擦係数の値を推定することができれば、ABSやVSC等の車両制御技術の精度を高めることが可能となり、安全性が一段と高まることが予想される。
従来、路面摩擦係数を推定する方法としては、アクセル、あるいはブレーキ操作を行ったときのスリップ率の変化と車両の車体加速度との関係から、路面状態、特に路面の最大摩擦係数を推定する手法が提案されている。これは、路面摩擦係数μの大きさが車体加速度Abと対応していることを利用したもので、車体加速度Ab−車輪滑りS特性曲線の安定領域内において、予め求めておいた、低μ路、中μ路、あるいは、高μ路を走行した時のAb/Sの値と比較して、走行中の路面の状態を推定する。これにより、車体加速度Abから路面摩擦係数μの大きさを容易に推定することができる(例えば、特許文献1参照)。
In order to improve the running stability of automobiles, it is required to accurately estimate the condition of the road surface on which the vehicle is traveling or the friction coefficient between the tire and the road surface (road friction coefficient) and feed it back to the vehicle control. ing. In particular, if the road surface condition and the value of the road surface friction coefficient can be estimated in advance before the risk avoidance operation such as braking / driving or steering, the accuracy of vehicle control technology such as ABS and VSC can be improved. The nature is expected to increase further.
Conventionally, as a method of estimating the road surface friction coefficient, there is a method of estimating the road surface condition, particularly the maximum friction coefficient of the road surface from the relationship between the change in the slip ratio when the accelerator or the brake operation is performed and the vehicle body acceleration. Proposed. This is based on the fact that the magnitude of the road surface friction coefficient μ corresponds to the vehicle body acceleration Ab. The low μ road previously obtained in the stable region of the vehicle body acceleration Ab-wheel slip S characteristic curve. Compared with the Ab / S value when traveling on a medium μ road or a high μ road, the state of the road surface during traveling is estimated. Thereby, the magnitude | size of road surface friction coefficient (micro | micron | mu) can be easily estimated from vehicle body acceleration Ab (for example, refer patent document 1).

一方、安全性の高いブロックパターンを開発する目的で、空気入りタイヤのトレッド部に感圧導電ゴム体を埋設し、トレッド部の踏面が接地した際に変形する上記感圧導電ゴム体の抵抗変化を検知して、トレッドブロックに作用する力の関係を調べる方法が提案されている(例えば、特許文献2参照)。具体的には、図5に示すように、トレッドブロック50に、タイヤ径方向に圧縮した際に抵抗値が減少する感圧導電ゴム体50Sを備えた第1のセンサ50Aと、タイヤ幅方向に圧縮した際に抵抗値が減少する感圧導電ゴム体を備えた第2のセンサ50Bと、タイヤ周方向に圧縮した際に抵抗値が減少する感圧導電ゴム体をを備えた第3のセンサ50Cとを取付けて、上記トレッドブロック50が接地したときの上記感圧導電ゴム体50Sの抵抗変化による電流値の変化をそれぞれ検出して車体側の車両装着ユニット60に送信する。車両装着ユニット60では、演算部61にて、上記各センサ50A〜50Cの出力から、タイヤの接地時に上記トレッドブロックに作用するタイヤ径方向の力Fv、幅方向の力Fw、及び、周方向の力Fcをそれぞれ算出して、これを表示部62に表示する。
また、上記Fvは接地時に上記トレッドブロックに作用する垂直抗力に相当するので、上記演算部61に摩擦係数推定手段61kを設けて、上記算出された径方向の力Fvと幅方向の力Fwとの比(Fw/Fv)からタイヤ幅方向の摩擦係数を、上記径方向の力Fvと周方向の力Fcとの比(Fc/Fv)からタイヤ周方向の摩擦係数を推定する。これにより、トレッドブロック50に作用する力Fv,Fw,Fcに加えて、タイヤのグリップ力についても評価することができるので、安全性を高めたブロックパターンを設計することができる。
特開平7−112659号公報 特開2005−82010号公報
On the other hand, in order to develop a highly safe block pattern, a pressure-sensitive conductive rubber body is embedded in the tread portion of a pneumatic tire, and the resistance change of the pressure-sensitive conductive rubber body deforms when the tread surface touches the ground. A method has been proposed in which the relationship between the forces acting on the tread block is examined by detecting the above (see, for example, Patent Document 2). Specifically, as shown in FIG. 5, the tread block 50 includes a first sensor 50A provided with a pressure-sensitive conductive rubber body 50S whose resistance value decreases when compressed in the tire radial direction, and in the tire width direction. A second sensor 50B having a pressure-sensitive conductive rubber body whose resistance value decreases when compressed, and a third sensor having a pressure-sensitive conductive rubber body whose resistance value decreases when compressed in the tire circumferential direction 50C is attached, and each change in current value due to the resistance change of the pressure-sensitive conductive rubber body 50S when the tread block 50 is grounded is detected and transmitted to the vehicle mounting unit 60 on the vehicle body side. In the vehicle mounting unit 60, in the calculation unit 61, from the outputs of the sensors 50A to 50C, the tire radial force Fv, the width force Fw acting on the tread block at the time of tire contact, and the circumferential force The force Fc is calculated and displayed on the display unit 62.
Further, since the Fv corresponds to the vertical drag acting on the tread block at the time of ground contact, the calculation unit 61 is provided with a friction coefficient estimation means 61k, and the calculated radial force Fv and width-direction force Fw The friction coefficient in the tire width direction is estimated from the ratio (Fw / Fv), and the friction coefficient in the tire circumferential direction is estimated from the ratio (Fc / Fv) between the radial force Fv and the circumferential force Fc. Thereby, in addition to the forces Fv, Fw, and Fc acting on the tread block 50, the grip force of the tire can be evaluated, so that a block pattern with improved safety can be designed.
JP-A-7-112659 JP 2005-82010 A

しかしながら、上記車両の車体加速度から路面摩擦係数を推定する方法では、運転者が加速や減速などの一定の操作を行ったときのみ路面摩擦係数を推定できるものであり、定常走行時においては路面摩擦係数を推定することができないことから、リアルタイムで路面状態を推定するには適していない。
一方、トレッドブロック50にそれぞれ検出方向の異なる感圧導電ゴム体50kを備えたセンサ50A〜50Cを埋設する方法では、感圧導電ゴム体50kを少なくとも3個、感度方向を変えて取付ける必要があるため、検出部分の構成が複雑になるだけでなく、定常走行時においては、タイヤ幅方向及びタイヤ周方向での感度が小さいため、路面摩擦係数を精度よく推定することができないといった問題点があった。
However, in the method of estimating the road surface friction coefficient from the vehicle body acceleration of the vehicle, the road surface friction coefficient can be estimated only when the driver performs a certain operation such as acceleration or deceleration. Since the coefficient cannot be estimated, it is not suitable for estimating the road surface condition in real time.
On the other hand, in the method of embedding the sensors 50A to 50C including the pressure-sensitive conductive rubber bodies 50k having different detection directions in the tread block 50, it is necessary to attach at least three pressure-sensitive conductive rubber bodies 50k with different sensitivity directions. As a result, the configuration of the detection part is not only complicated, but also during steady running, the sensitivity in the tire width direction and the tire circumferential direction is small, so the road surface friction coefficient cannot be accurately estimated. It was.

本発明は、従来の問題点に鑑みてなされたもので、簡単な構成で、タイヤと路面との間の摩擦状態を精度良く推定することのできる方法とその装置、及び、路面摩擦状態の推定に用いられる路面摩擦状態推定用タイヤを提供することを目的とする。   The present invention has been made in view of the conventional problems. A method and apparatus capable of accurately estimating the friction state between the tire and the road surface with a simple configuration, and estimation of the road friction state. An object of the present invention is to provide a road surface friction state estimation tire used for the vehicle.

本発明者らは、様々な路面状態を走行したときの、トレッド部の踏面が接地した際にトレッドゴムに作用する力(接地荷重または接地圧による圧縮力)の時間変化波形を比較したところ、摩擦力の大きな高μ路では接地圧の変動が小さいが、低μ路では接地圧の変動が大きく、接地直下での接地圧が踏込みまたは蹴り出し時よりもかなり小さくなることから、トレッドゴムに作用する接地荷重または接地圧の変動状態を検出すれば、タイヤと路面との間の摩擦状態を精度良く推定できることを見出し、本発明に至ったものである。
すなわち、本願の請求項1に記載の発明は、タイヤと路面との間の摩擦状態を推定する方法であって、走行中のタイヤのトレッドゴムに作用する接地荷重または接地圧を計測して、上記計測された接地荷重または接地圧の時間変化に基づいて、タイヤと路面間の摩擦状態を推定するようにしたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載の路面摩擦状態推定方法において、上記計測された接地荷重または接地圧の時間変化波形の、踏み込み点または蹴出し点付近に生じるピーク値の大きさと接地直下部付近に生じるボトム値の大きさとからタイヤと路面間の摩擦状態を推定するようにしたことを特徴とする。
The inventors compared the time-varying waveforms of the force (compression force due to contact load or contact pressure) that acts on the tread rubber when the tread surface treads on the ground when traveling on various road surface conditions. The ground pressure fluctuation is small on the high μ road with high frictional force, but the ground pressure fluctuation is large on the low μ road, and the ground pressure just below the ground is much smaller than when stepping on or kicking out. The present inventors have found that it is possible to accurately estimate the friction state between the tire and the road surface by detecting the variation state of the applied contact load or contact pressure.
That is, the invention according to claim 1 of the present application is a method for estimating a friction state between a tire and a road surface, and measures a contact load or a contact pressure acting on a tread rubber of a running tire, The friction state between the tire and the road surface is estimated based on the time change of the measured contact load or contact pressure.
The invention according to claim 2 is the road surface friction state estimation method according to claim 1, wherein the magnitude of the peak value generated near the stepping-on point or the kicking-out point of the time-varying waveform of the measured contact load or contact pressure. In addition, the friction state between the tire and the road surface is estimated from the magnitude of the bottom value generated near the bottom of the ground.

また、請求項3に記載の発明は、タイヤと路面との間の摩擦状態を推定する装置であって、走行中のタイヤのトレッドゴムに作用する接地荷重または接地圧を検出する手段と、上記検出された接地荷重または接地圧の時間変化波形から、上記接地荷重または接地圧の踏み込み点または蹴出し点付近に生じるピーク値と接地直下部付近に生じるボトム値を検出する手段と、上記ピーク値とボトム値とを用いた演算値を演算する手段と、上記演算値を用いてタイヤと路面間の摩擦状態を推定する路面摩擦状態推定手段とを備えたことを特徴とするものである。
また、請求項4に記載の発明は、請求項3に記載の路面摩擦状態推定装置において、上記ピーク値とボトム値とから得られる演算値に基づき、路面の滑りやすさを判定する手段を設けたものである。
請求項5に記載の発明は、請求項3または請求項4に記載の路面摩擦状態推定装置において、予め作成された、上記ピーク値と上記ボトム値とから得られる演算値と様々な路面状態との関係を示すマップを記憶する手段を備えるとともに、上記路面摩擦状態推定手段により、上記演算値と上記マップとを用いてタイヤと路面間の摩擦状態を推定するように構成したものである。
The invention according to claim 3 is an apparatus for estimating a friction state between a tire and a road surface, the means for detecting a contact load or a contact pressure acting on a tread rubber of a running tire, Means for detecting a peak value generated near the stepping-off point or the kicking-out point of the ground load or the ground pressure and a bottom value generated immediately below the ground from the time-varying waveform of the detected ground load or pressure, and the peak value And a bottom value and a road surface friction state estimating means for estimating a friction state between the tire and the road surface using the calculated value.
According to a fourth aspect of the present invention, there is provided the road surface friction state estimating device according to the third aspect, wherein means for determining the slipperiness of the road surface is provided on the basis of a calculated value obtained from the peak value and the bottom value. It is a thing.
The invention according to claim 5 is the road surface friction state estimation device according to claim 3 or claim 4, wherein the calculated values obtained from the peak value and the bottom value, and various road surface states, prepared in advance. And a road surface friction state estimating unit for estimating the friction state between the tire and the road surface using the calculated value and the map.

請求項6に記載の発明は、請求項1または請求項2に記載の路面摩擦状態推定方法に用いられるタイヤであって、タイヤトレッドの幅方向中心に陸部を有するとともに、上記陸部のトレッドゴム内に、上記トレッドゴムに作用する接地荷重または接地圧を検出する手段を配設したことを特徴とするものである。
請求項7に記載の発明は、請求項6に記載の路面摩擦状態推定用タイヤにおいて、上記接地荷重または接地圧を検出する手段を上記陸部の接地面から深さ方向に10mm以内の位置に配設したものである。
A sixth aspect of the present invention is a tire used in the road surface friction state estimation method according to the first or second aspect, wherein the tire has a land portion at a center in a width direction of the tire tread, and the tread of the land portion is used. Means for detecting a grounding load or a grounding pressure acting on the tread rubber is disposed in the rubber.
According to a seventh aspect of the present invention, in the road surface friction state estimation tire according to the sixth aspect, the means for detecting the ground load or the ground pressure is positioned at a position within 10 mm in the depth direction from the ground surface of the land portion. It is arranged.

本発明によれば、タイヤトレッドの陸部のトレッドゴム内に、走行中のタイヤのトレッドゴムに作用する接地荷重または接地圧を計測する手段を配設して、上記接地荷重または接地圧の時間変化波形を検出するとともに、上記接地圧の時間変化波形の、踏み込み点または蹴出し点付近に生じるピーク値の大きさと、接地直下部付近に生じるボトム値の大きさとから得られる演算値から、タイヤと路面間の摩擦状態を推定するようにしたので、簡単な構成でタイヤと路面との間の摩擦状態を精度良く推定することができる。   According to the present invention, means for measuring the ground load or the ground pressure acting on the tread rubber of the running tire is disposed in the tread rubber of the land portion of the tire tread, and the time of the ground load or ground pressure is set. From the calculated value obtained by detecting the change waveform and the peak value generated near the stepping-on point or the kick-out point and the bottom value generated near the ground contact point in the time-change waveform of the contact pressure, the tire Therefore, the friction state between the tire and the road surface can be accurately estimated with a simple configuration.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本最良の形態に係わる路面摩擦状態推定システムの構成を示す機能ブロック図で、同図において、10は当該タイヤのトレッドゴムに作用する接地圧を検出する接地圧検出手段11と、この接地圧検出手段11の出力を信号処理してタイヤのトレッドゴムに作用する接地圧の変動値を抽出する信号処理装置12と、上記抽出された接地圧の変動値を車体側に送信する送信手段13とを備えた計測ユニット14が取付けられた路面摩擦状態推定用タイヤ、20は車体側に設けられた、上記路面摩擦状態推定用タイヤ10から送信される接地圧の変動値から走行中のタイヤと路面との間の摩擦状態を推定する路面摩擦状態推定装置である。
本例では、上記接地圧検出手段11として導電性ゴムを用いるとともに、上記計測ユニット14を、図2に示すように、当該タイヤのトレッド部10aの幅方向中心に位置する陸部10b内に埋設して、当該陸部10bを構成するトレッドゴムに作用する路面に垂直な方向の力、すなわち、タイヤ接地圧を検出するようにしている。このとき、上記接地圧検出手段11の埋設位置としては、上記陸部10bの接地面から深さ方向に10mm以内の位置とすることが肝要で、これよりも深い位置にすると接地圧の検出精度が低下するので好ましくない。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a configuration of a road surface friction state estimation system according to the best mode. In FIG. 1, reference numeral 10 denotes a ground pressure detecting means 11 for detecting a ground pressure acting on a tread rubber of the tire; A signal processing device 12 for extracting the fluctuation value of the ground pressure acting on the tread rubber of the tire by performing signal processing on the output of the ground pressure detection means 11, and transmission for transmitting the extracted fluctuation value of the ground pressure to the vehicle body side. A road surface friction state estimation tire 20 to which a measurement unit 14 including means 13 is attached, 20 is provided on the vehicle body side and is running from the fluctuation value of the ground pressure transmitted from the road surface friction state estimation tire 10. A road surface friction state estimation device for estimating a friction state between a tire and a road surface.
In this example, conductive rubber is used as the contact pressure detecting means 11 and the measurement unit 14 is embedded in the land portion 10b located at the center in the width direction of the tread portion 10a of the tire as shown in FIG. Then, the force in the direction perpendicular to the road surface acting on the tread rubber constituting the land portion 10b, that is, the tire contact pressure is detected. At this time, it is important that the ground pressure detecting means 11 is buried within 10 mm from the ground surface of the land portion 10b in the depth direction. Is unfavorable because it decreases.

上記路面摩擦状態推定用タイヤ10に設けられた信号処理装置12は、詳細には、接地圧検出手段11の出力レベルを時系列に配列した接地圧波形を検出する接地圧波形検出手段12aと、上記接地圧波形から、踏み込み点に生じるピーク値pと接地直下部付近に生じるボトム値qとを抽出する接地圧値抽出手段12bとを備えており、上記抽出されたピーク値pとボトム値qのデータは、送信手段13から車体側の路面摩擦状態推定装置20に送信される。
また、上記路面摩擦状態推定装置20は、上記タイヤ10から送信されるピーク値pとボトム値qのデータを受信する受信手段21と、上記ピーク値pと上記ボトム値qとの比であるピーク・ボトム比Rを演算するピーク・ボトム比演算手段22と、予め求めておいた路面摩擦状態とピーク・ボトム比Rとの関係を示すマップ23Mを記憶する記憶手段23と、上記ピーク・ボトム比演算手段22で演算され、上記受信手段21で受信されたピーク・ボトム比Rと上記マップ23Mとに基づいて車両の走行している路面とタイヤとの間の摩擦状態を推定する路面摩擦状態推定手段24とを備え、上記路面摩擦状態推定用タイヤ10から送信されたトレッドゴムに作用する接地圧のピーク値pとボトム値qとに基づいて路面摩擦状態を推定する。
Specifically, the signal processing device 12 provided in the road surface friction state estimation tire 10 includes a ground pressure waveform detecting unit 12a that detects a ground pressure waveform in which output levels of the ground pressure detecting unit 11 are arranged in time series, and A ground pressure value extracting means 12b for extracting a peak value p 1 generated at the stepping point and a bottom value q generated near the ground contact point from the ground pressure waveform is provided. The extracted peak value p 1 and the bottom The data of the value q is transmitted from the transmission means 13 to the road surface friction state estimating device 20 on the vehicle body side.
Further, the road surface friction state estimating apparatus 20 includes a receiving means 21 for receiving data of the peak value p 1 and the bottom value q which is transmitted from the tire 10, a ratio between the peak value p 1 and the bottom value q A peak / bottom ratio calculating means 22 for calculating a certain peak / bottom ratio R; a storage means 23 for storing a map 23M indicating a relationship between a road surface friction state and a peak / bottom ratio R obtained in advance; Road surface friction which is calculated by the bottom ratio calculation means 22 and estimates the friction state between the road surface on which the vehicle is running and the tires based on the peak / bottom ratio R received by the receiving means 21 and the map 23M. and a state estimation unit 24, a road surface friction condition based on the peak value p 1 and the bottom value q of the ground pressure acting on the tread rubber which is transmitted from the road surface friction condition estimating tire 10 A constant.

図3(a)〜(c)は、本発明による路面摩擦状態推定用タイヤ10の接地状態とトレッド部10aの中央に位置する陸部10bのトレッドゴムに作用する接地圧の時間波形の一例を示す図で、(b)図は高μ路であるDRYアスファルト走行時の接地圧の変動を示す図、(c)図は低μ路であるICE路面走行時の接地圧の変動を示す図である。
路面摩擦は、タイヤトレッド表面のゴムと路面との間に発生するもので、図3(a)に示すように、タイヤが転動してトレッドが接地する際には、接地面以外ではほぼ円筒状であったものが平面上に変形させられることから、トレッドは周方向に圧縮力を受ける。このとき、高μ路では、路面との摩擦力が大きく、トレッドは路面に強く拘束されるので、上記圧縮力はトレッドの剪断歪として吸収される。一方、低μ路では、上記圧縮力に対向する力を発生することができず、そのため、トレッドは大きく圧縮され、タイヤに逆向きの曲げ変形(バックリング)が生じる。その結果、図3(b),(c)に示すように、高μ路では踏み込み〜蹴り出し間での接地圧の変動は小さいが、低μ路では上記バックリングのため、接地直下での接地圧が踏み込みまたは蹴り出し時よりも小さくなる。
したがって、接地圧変動が路面摩擦状態によって変化することを利用すれば、高精度で応答性のよい路面摩擦状態の推定を行うことができる。
FIGS. 3A to 3C are examples of a time waveform of a contact pressure acting on the tread rubber of the land portion 10b located at the center of the tread portion 10a and the ground contact state of the road surface friction state estimation tire 10 according to the present invention. FIG. 5B is a diagram showing a change in the contact pressure during DRY asphalt running on a high μ road, and FIG. 5C is a diagram showing a change in the contact pressure during ICE road running on a low μ road. is there.
The road surface friction is generated between the rubber on the tire tread surface and the road surface. As shown in FIG. 3 (a), when the tire rolls and the tread comes into contact with the ground, it is almost cylindrical except for the ground surface. Since the shape that has been shaped is deformed on a flat surface, the tread receives a compressive force in the circumferential direction. At this time, on the high μ road, the frictional force with the road surface is large, and the tread is strongly restrained by the road surface. Therefore, the compression force is absorbed as a shear strain of the tread. On the other hand, on the low μ road, it is not possible to generate a force that opposes the compressive force. Therefore, the tread is greatly compressed, and reverse bending deformation (buckling) occurs in the tire. As a result, as shown in FIGS. 3 (b) and 3 (c), the fluctuation of the ground pressure between the stepping-in and the kicking-out is small on the high μ road, but on the low μ road because of the above buckling, The contact pressure is smaller than when stepping on or kicking out.
Therefore, the use of the fact that the ground pressure fluctuation varies depending on the road friction state makes it possible to estimate the road friction state with high accuracy and good responsiveness.

次に、本最良の形態に係る路面摩擦状態の推定方法について説明する。
まず、接地圧検出手段11にて当該陸部10bのトレッドゴムに作用する接地圧を検出し、その出力を接地圧波形検出手段12aに送って、時系列に配列した陸部10bに作用する接地圧波形を求め、接地圧値抽出抽出手段12bにて、上記接地圧波形の踏み込み点に生じるピーク値p及び、接地直下部付近に生じるボトム値qを抽出した後上記ピーク値pとボトム値qのデータを、送信手段13を介して、路面摩擦状態推定装置20に送信する。
路面摩擦状態推定装置20では、上記ピーク値pと上記ボトム値qのデータを受信手段21で受信し、ピーク・ボトム比演算手段22にて、ピーク・ボトム比R=(q/p)を演算した後、路面摩擦状態推定手段24にて、上記ピーク・ボトム比Rと上記記憶手段23に記憶されたマップ23Mとに基づいて車両の走行している路面とタイヤとの間の摩擦状態を推定する。
Next, the road surface friction state estimation method according to the best mode will be described.
First, the contact pressure detecting means 11 detects the contact pressure acting on the tread rubber of the land portion 10b, and the output is sent to the contact pressure waveform detecting means 12a to contact the land portions 10b arranged in time series. seeking pressure waveform at the ground pressure value extracting extracting unit 12b, the grounding peak value p 1 occurs pressure waveform depression points and bottom and the peak value p 1 after extracting bottom value q that occurs in the vicinity of the ground immediately below the Data of the value q is transmitted to the road surface friction state estimation device 20 via the transmission means 13.
In the road surface friction state estimating device 20, the data of the peak value p 1 and the bottom value q is received by the receiving means 21, and the peak / bottom ratio calculating means 22 receives the peak / bottom ratio R = (q / p 1 ). Is calculated by the road surface friction state estimating means 24 based on the peak / bottom ratio R and the map 23M stored in the storage means 23, and the friction state between the road surface on which the vehicle is running and the tire. Is estimated.

このように、本最良の形態によれば、導電性ゴムから成る接地圧検出手段11と、この接地圧検出手段11の出力を信号処理してタイヤのトレッドゴムに作用する接地圧の変動波形における踏み込み側のピーク値pと接地直下部付近に生じるボトム値qとを抽出して路面摩擦状態推定装置20に送信し、路面摩擦状態推定装置20にて、ピーク・ボトム比R=(q/p)を演算し、上記演算されたピーク・ボトム比Rと記憶手段23に記憶されたマップ23Mとに基づいて車両の走行している路面とタイヤとの間の摩擦状態を推定するようにしたので、簡単な構成でタイヤと路面との間の摩擦状態を精度良く推定することができる。
また、本例では、タイヤのトレッドゴムに作用する接地圧の変動から路面摩擦状態を推定するようにしているので、スリップ率が実質0の場合でも、路面摩擦状態を推定することが可能であり、このため、制動開始前に適切な初期制動力を決定することができるという利点を有する。
As described above, according to the best mode, the contact pressure detecting means 11 made of conductive rubber and the fluctuation waveform of the contact pressure acting on the tire tread rubber by signal processing the output of the contact pressure detecting means 11. The peak value p 1 on the depression side and the bottom value q generated in the vicinity immediately below the ground are extracted and transmitted to the road surface friction state estimation device 20, and the road surface friction state estimation device 20 calculates the peak / bottom ratio R = (q / p 1 ) is calculated, and the friction state between the road surface on which the vehicle is running and the tire is estimated based on the calculated peak / bottom ratio R and the map 23M stored in the storage means 23. Therefore, the friction state between the tire and the road surface can be accurately estimated with a simple configuration.
Further, in this example, the road surface friction state is estimated from the fluctuation of the contact pressure acting on the tread rubber of the tire. Therefore, even when the slip ratio is substantially zero, the road surface friction state can be estimated. For this reason, there is an advantage that an appropriate initial braking force can be determined before the start of braking.

なお、上記最良の形態では、接地圧検出手段11により求めた接地圧から路面摩擦状態を推定したが、接地圧検出手段11に代えてロードセルなどの接地荷重検出手段を設け、この接地荷重検出手段により求めた接地荷重に基づいて、路面摩擦状態を推定するようにしてもよい。
また、上記接地圧検出手段11は周上に1個あれば、車両がタイヤ周長を進む毎に路面摩擦状態を推定することになるので、車両が進む毎に路面摩擦状態を更新できる。すなわち、車両速度に依存せず、タイヤ1回転毎に路面摩擦状態を更新できる。なお、接地圧検出手段11を周上に複数設ければ、路面摩擦状態の更新距離を容易に短くできる。
また、上記例では、ピーク・ボトム比Rを演算するためのピーク値として、踏み込み側のピーク値pを用いたが、蹴出し点付近に生じるピーク値p2を用いても、同様の効果を得ることができる。
また、ピーク・ボトム比Rに代えて、ピーク値として、踏み込み側のピーク値pまたは蹴出し点付近に生じるピーク値p2と、接地直下部付近に生じるボトム値qとの差を用いてもよい。
In the above-described best mode, the road surface friction state is estimated from the contact pressure obtained by the contact pressure detecting means 11. However, instead of the contact pressure detecting means 11, a contact load detecting means such as a load cell is provided, and this contact load detecting means. The road surface friction state may be estimated based on the ground contact load obtained by the above.
Further, if there is one contact pressure detecting means 11 on the circumference, the road surface friction state is estimated every time the vehicle travels along the tire circumference, so that the road surface friction state can be updated each time the vehicle travels. That is, the road surface friction state can be updated for each rotation of the tire without depending on the vehicle speed. If a plurality of contact pressure detecting means 11 are provided on the circumference, the update distance of the road surface friction state can be easily shortened.
In the above example, the peak value p 1 on the depression side is used as the peak value for calculating the peak / bottom ratio R, but the same effect can be obtained by using the peak value p 2 generated near the kicking point. Can be obtained.
Further, instead of the peak-to-bottom ratio R, as a peak value, a difference between a peak value p 1 on the stepping side or a peak value p 2 occurring near the kicking point and a bottom value q occurring near the ground contact point is used. Also good.

また、上記最良の形態では、ピーク・ボトム比演算手段22を路面摩擦状態推定装置20内に設け、車両側にてピーク・ボトム比R=(q/p)を演算したが、ピーク・ボトム比演算手段22を路面摩擦状態推定用タイヤ10の信号処理装置12内に設けて、タイヤ側にてピーク・ボトム比Rを演算し、その結果を車体側に送信するようにしてもよい。なお、接地圧検出手段11の出力を直接車体側に送信し、車体側にて接地圧波形を検出して踏み込み側のピーク値pと接地直下部のボトム値qとを抽出する構成も考えられるが、この場合には、送信データが多くなるので、本例のように、タイヤ側にて上記ピーク値pとボトム値qとを抽出して車体側に送信する構成とすることが好ましい。
また、上記例では、予め求めたピーク・ボトム比Rと路面摩擦状態との関係を示すマップ23Mを用いて路面摩擦状態を推定したが、上記マップ23Mに代えて、ピーク・ボトム比Rに対する判定値が設定され、ピーク・ボトム比Rが上記判定値以下であれば滑りにくい路面であり、上記判定値を超えた場合には路面は滑りやすい路面であると判定する判定手段を設けて、路面の滑りやすさを推定するようにしてもよい。あるいは、複数の閾値K1,K2を設けて、R≦K1なら高μ路面、K1<R≦K2なら中μ路面、K2<Rなら低μ路面と判定する路面状態判定手段を設けるようにしてもよい。
In the best mode, the peak / bottom ratio calculating means 22 is provided in the road surface friction state estimating device 20 and the peak / bottom ratio R = (q / p 1 ) is calculated on the vehicle side. The ratio calculation means 22 may be provided in the signal processing device 12 of the road surface friction state estimation tire 10 to calculate the peak / bottom ratio R on the tire side and transmit the result to the vehicle body side. Incidentally, conceivable configuration for extracting the bottom value q outputs were sent directly to the vehicle body, a peak value p 1 of leading side detects the ground pressure waveform at the vehicle body side of the ground immediately below the ground pressure detecting means 11 it is, but in this case, since the transmission data increases, as in the present embodiment, it is preferable to adopt a configuration that transmits to the vehicle body by extracting and the peak value p 1 and the bottom value q on a tire side .
Further, in the above example, the road surface friction state is estimated using the map 23M indicating the relationship between the peak / bottom ratio R and the road surface friction state obtained in advance, but instead of the map 23M, the determination with respect to the peak / bottom ratio R is performed. If the value is set and the peak-to-bottom ratio R is equal to or less than the determination value, the road surface is slippery, and if the value exceeds the determination value, determination means is provided to determine that the road surface is slippery road surface. You may make it estimate the slipperiness of. Alternatively, a plurality of threshold values K1 and K2 are provided, and road surface condition determining means for determining a high μ road surface if R ≦ K1, a medium μ road surface if K1 <R ≦ K2, and a low μ road surface if K2 <R is provided. Good.

本発明の路面摩擦状態推定システムを搭載した車両を、DRYアスファルト路面(μ≒1)からICE路面(μ≒0.1)に一定速度で進入させて、ピーク・ボトム比の時間変化を測定した。その結果を図4に示す。同図の横軸は時間、縦軸はピーク・ボトム比である。同図から明らかなように、ICE路面に入ったと同時に上記ピーク・ボトム比が増大していることが分かる。したがって、同図の判定ラインのように、適当な閾値を設けるようにすれば、路面の滑りやすさを容易に判定することができることが確認された。   A vehicle equipped with the road surface friction state estimation system of the present invention was allowed to enter the ICE road surface (μ≈0.1) from the DRY asphalt road surface (μ≈1) at a constant speed, and the time change of the peak / bottom ratio was measured. . The result is shown in FIG. In the figure, the horizontal axis represents time, and the vertical axis represents the peak / bottom ratio. As is apparent from the figure, the peak-to-bottom ratio increases at the same time as entering the ICE road surface. Therefore, it was confirmed that the slipperiness of the road surface can be easily determined by providing an appropriate threshold value as in the determination line of FIG.

以上説明したように、本発明によれば、定常走行中でも、温度、速度に対してロバストにタイヤ挙動から路面摩擦状態を推定することができるので、上記推定された路面摩擦状態の情報を用いれば、ドライバーへ注意を喚起したりできるとともに、ABSやVSC等の車両制御の精度を格段に向上させることができるので、車両の走行安全性を大幅に向上させることができる。   As described above, according to the present invention, it is possible to estimate the road surface friction state from the tire behavior robustly with respect to the temperature and speed even during steady running, so if the information on the estimated road surface friction state is used, In addition to alerting the driver, the accuracy of vehicle control such as ABS and VSC can be greatly improved, so that the driving safety of the vehicle can be greatly improved.

本発明の最良の形態に係わる路面摩擦状態推定システムの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the road surface friction state estimation system concerning the best form of this invention. 接地圧検出手段の装着位置の一例を示す図である。It is a figure which shows an example of the mounting position of a ground pressure detection means. タイヤの接地状態とトレッド部中央に位置する陸部のトレッドゴムに作用する接地圧の時間波形の一例を示す図である。It is a figure which shows an example of the time waveform of the contact pressure which acts on the tread rubber of the land part located in the contact state of a tire, and the tread part center. 本発明の路面状態推定システムを搭載した車両を、DRYアスファルト路面からICE路面に一定速度で進入させたときの、ピーク・ボトム比の時間変化を示す図である。It is a figure which shows the time change of a peak / bottom ratio when the vehicle carrying the road surface state estimation system of this invention is approached from the DRY asphalt road surface to the ICE road surface at a constant speed. 従来の路面摩擦状態の推定方法を示す図である。It is a figure which shows the estimation method of the conventional road surface friction state.

符号の説明Explanation of symbols

10 路面摩擦状態推定用タイヤ、10a トレッド部、10b 中央の陸部、
11 接地圧検出手段、12 信号処理装置、12a 接地圧波形検出手段、
12b 接地圧値抽出手段、13 送信手段、14 計測ユニット、
20 路面摩擦状態推定装置、21 受信手段、22 ピーク・ボトム比演算手段、
23 記憶手段、23M マップ、24 路面摩擦状態推定手段。
10 tires for estimating the road surface friction state, 10a tread portion, 10b center land portion,
11 ground pressure detecting means, 12 signal processing device, 12a ground pressure waveform detecting means,
12b Ground pressure value extracting means, 13 transmitting means, 14 measuring unit,
20 road surface friction state estimating device, 21 receiving means, 22 peak / bottom ratio calculating means,
23 storage means, 23M map, 24 road surface friction state estimation means.

Claims (7)

走行中のタイヤのトレッドゴムに作用する接地荷重または接地圧を計測して、上記計測された接地荷重または接地圧の変動状態に基づいて、タイヤと路面間の摩擦状態を推定するようにしたことを特徴とする路面摩擦状態推定方法。   The contact load or contact pressure acting on the tread rubber of the running tire was measured, and the friction state between the tire and the road surface was estimated based on the above measured contact load or contact pressure fluctuation state. A road surface friction state estimation method characterized by the above. 上記計測された接地荷重または接地圧の時間変化波形の、踏み込み点または蹴出し点付近に生じるピーク値の大きさと接地直下部付近に生じるボトム値の大きさとからタイヤと路面間の摩擦状態を推定するようにしたことを特徴とする請求項1に記載の路面摩擦状態推定方法。   Estimate the frictional condition between the tire and the road surface from the measured time-varying waveform of the contact load or contact pressure based on the peak value generated near the stepping-on or kick-out point and the bottom value generated immediately below the contact point. The road surface friction state estimation method according to claim 1, wherein: 走行中のタイヤのトレッドゴムに作用する接地荷重または接地圧を検出する手段と、上記検出された接地荷重または接地圧の時間変化波形から、上記接地荷重または接地圧の踏み込み点または蹴出し点付近に生じるピーク値と接地直下部付近に生じるボトム値を検出する手段と、上記ピーク値とボトム値とを用いた演算値を演算する手段と、上記演算値を用いてタイヤと路面間の摩擦状態を推定する路面摩擦状態推定手段とを備えたことを特徴とする路面摩擦状態推定装置。   From the means for detecting the contact load or contact pressure acting on the tread rubber of the running tire and the time-varying waveform of the detected contact load or contact pressure, in the vicinity of the stepping or kicking point of the contact load or contact pressure. Means for detecting a peak value generated in the vicinity of the vehicle and a bottom value generated immediately below the ground contact, means for calculating a calculated value using the peak value and the bottom value, and a friction state between the tire and the road surface using the calculated value A road surface friction state estimation device comprising: a road surface friction state estimation means for estimating the road surface friction state. 上記ピーク値とボトム値とから得られる演算値に基づき、路面の滑りやすさを判定する手段を設けたことを特徴とする請求項3に記載の路面摩擦状態推定装置。   4. A road surface friction state estimating apparatus according to claim 3, further comprising means for determining the slipperiness of the road surface based on a calculated value obtained from the peak value and the bottom value. 予め作成された、上記ピーク値と上記ボトム値とから得られる演算値と様々な路面状態との関係を示すマップを記憶する手段を備えるとともに、上記路面摩擦状態推定手段により、上記演算値と上記マップとを用いてタイヤと路面間の摩擦状態を推定するように構成したことを特徴とする請求項3または請求項4に記載の路面摩擦状態推定装置。   In addition to storing a map that shows the relationship between the calculated value obtained from the peak value and the bottom value and various road surface conditions, which is created in advance, the road surface frictional state estimating unit provides the calculated value and the 5. The road surface friction state estimation device according to claim 3, wherein the road surface friction state estimation device is configured to estimate a friction state between a tire and a road surface using a map. 請求項1または請求項2に記載の路面摩擦状態推定方法に用いられるタイヤであって、タイヤトレッドの幅方向中心に陸部を有するとともに、上記陸部のトレッドゴム内に、上記トレッドゴムに作用する接地荷重または接地圧を検出する手段を配設したことを特徴とする路面摩擦状態推定用タイヤ。   A tire used in the road surface friction state estimation method according to claim 1 or 2, wherein the tire tread has a land portion at a center in a width direction, and acts on the tread rubber in the tread rubber of the land portion. A road surface friction state estimating tire characterized in that means for detecting a contact load or a contact pressure is provided. 上記接地荷重または接地圧を検出する手段を上記陸部の接地面から深さ方向に10mm以内の位置に配設したことを特徴とする請求項6に記載の路面摩擦状態推定用タイヤ。
7. The road surface friction state estimating tire according to claim 6, wherein the means for detecting the contact load or contact pressure is disposed at a position within 10 mm in the depth direction from the contact surface of the land portion.
JP2005329281A 2005-11-14 2005-11-14 Method, device and tire for estimating road friction state Pending JP2007137086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329281A JP2007137086A (en) 2005-11-14 2005-11-14 Method, device and tire for estimating road friction state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329281A JP2007137086A (en) 2005-11-14 2005-11-14 Method, device and tire for estimating road friction state

Publications (1)

Publication Number Publication Date
JP2007137086A true JP2007137086A (en) 2007-06-07

Family

ID=38200497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329281A Pending JP2007137086A (en) 2005-11-14 2005-11-14 Method, device and tire for estimating road friction state

Country Status (1)

Country Link
JP (1) JP2007137086A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216888A (en) * 2009-03-13 2010-09-30 Bridgestone Corp Rubber testing machine
WO2014141690A1 (en) * 2013-03-15 2014-09-18 株式会社デンソー Tire device
CN114608982A (en) * 2022-03-31 2022-06-10 江苏奥赛体育科技有限公司 Production process and detection method of polyurethane plastic runway

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098123A1 (en) * 2000-06-23 2001-12-27 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2002079815A (en) * 2000-09-05 2002-03-19 Bridgestone Corp Intelligent tire system, power generating set and tire wheel
JP2002340863A (en) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc Road surface determination device and system
JP2005082010A (en) * 2003-09-09 2005-03-31 Yokohama Rubber Co Ltd:The Method and device for detecting tire grounding force and pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098123A1 (en) * 2000-06-23 2001-12-27 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2002079815A (en) * 2000-09-05 2002-03-19 Bridgestone Corp Intelligent tire system, power generating set and tire wheel
JP2002340863A (en) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc Road surface determination device and system
JP2005082010A (en) * 2003-09-09 2005-03-31 Yokohama Rubber Co Ltd:The Method and device for detecting tire grounding force and pneumatic tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216888A (en) * 2009-03-13 2010-09-30 Bridgestone Corp Rubber testing machine
WO2014141690A1 (en) * 2013-03-15 2014-09-18 株式会社デンソー Tire device
JP2014177234A (en) * 2013-03-15 2014-09-25 Nippon Soken Inc Tire device
US9827815B2 (en) 2013-03-15 2017-11-28 Denso Corporation Tire device
CN114608982A (en) * 2022-03-31 2022-06-10 江苏奥赛体育科技有限公司 Production process and detection method of polyurethane plastic runway
CN114608982B (en) * 2022-03-31 2023-11-17 江苏奥赛体育科技有限公司 Polyurethane plastic course production process and detection method

Similar Documents

Publication Publication Date Title
JP4817753B2 (en) Road surface state estimation method, road surface state estimation device, and vehicle control device
JP5121452B2 (en) Road surface state estimation method, road surface state estimation tire, road surface state estimation device, and vehicle control device
JP6921096B2 (en) Devices and methods to improve the performance of vehicle anti-lock braking and anti-slip regulation
JP5620268B2 (en) Tire wear estimation method and tire wear estimation apparatus
JP5111505B2 (en) Tire wear estimation method
US7694556B2 (en) Method of detecting hydroplaning and estimating an intensity of hydroplaning of a tire on a wet road
EP2995520B1 (en) Tire grounded state estimation method
US9821815B2 (en) Estimating adhesion potential by assessing rolling radius
WO2013011992A1 (en) Road surface condition estimation method, and road surface condition estimation device
US8392089B2 (en) Method of estimating an available grip margin of a tire when rolling
JP5036459B2 (en) Tire wear estimation method and tire wear estimation apparatus
US7832262B2 (en) Method of detecting an occurrence of hydroplaning of a tire on a road
JP5183114B2 (en) Tire wear estimation method and tire wear estimation apparatus
JP2014532170A (en) Method for estimating rolling resistance of vehicle wheel
JP5309763B2 (en) Tire contact length calculation method and apparatus
JP2008162392A (en) Method and device for estimating tire ground contact state, tire and vehicular control device
JP2007223583A (en) Vehicle braking distance forecasting device and vehicle braking distance forecasting method
JP2007121274A (en) Method and apparatus for evaluating cornering stability of wheel
JP2002087032A (en) Hydroplaning detecting method, hydroplaning detecting device and vehicle control system
JP2007137086A (en) Method, device and tire for estimating road friction state
US7739905B2 (en) Method of estimating a height of water in contact with a tire on a road
JP4813284B2 (en) Road surface friction state estimation method and road surface friction state estimation device
JP5116516B2 (en) Road surface state estimation method and road surface state estimation device
JP2002036836A (en) Estimation method of road surface friction coefficient, device therefor, and pneumatic tire
JP5705051B2 (en) Road surface state estimation method and road surface state estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322