JP2005082010A - Method and device for detecting tire grounding force and pneumatic tire - Google Patents

Method and device for detecting tire grounding force and pneumatic tire Download PDF

Info

Publication number
JP2005082010A
JP2005082010A JP2003316544A JP2003316544A JP2005082010A JP 2005082010 A JP2005082010 A JP 2005082010A JP 2003316544 A JP2003316544 A JP 2003316544A JP 2003316544 A JP2003316544 A JP 2003316544A JP 2005082010 A JP2005082010 A JP 2005082010A
Authority
JP
Japan
Prior art keywords
tire
sensor
detection signal
conductive rubber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003316544A
Other languages
Japanese (ja)
Other versions
JP4367909B2 (en
Inventor
Yukio Tozawa
幸雄 兎沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003316544A priority Critical patent/JP4367909B2/en
Publication of JP2005082010A publication Critical patent/JP2005082010A/en
Application granted granted Critical
Publication of JP4367909B2 publication Critical patent/JP4367909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for detecting a tire grounding force allowing to know a relation of a force acting when the tread surface of a tread is grounded, and a pneumatic tire mounted with a sensor of the device. <P>SOLUTION: This device is constituted of a tire mounting unit 1 provided with a sensor 10 to output a detection signal having a current value changed according to a resistance change of a pressure-sensitive conductive rubber body 8 deformed at the time of grounding and a vehicle mounting unit 2 provided with a processing part 20 to process the detection signal of the sensor 10. The tire mounting unit 1 has a plurality of sensors 10 disposed along the tread surface direction of the tread 4. The vehicle mounting unit 2 is provided with the processing part 20 to calculate each value of an acted force from the value of the detection signal of each sensor 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、タイヤ接地力検知方法と装置、及び該装置のセンサーを埋設した空気入りタイヤに関し、更に詳しくは、空気入りタイヤのトレッド部の踏面が接地した時に作用する力の関係を知ることができるタイヤ接地力検知方法と装置、及び空気入りタイヤに関する。   The present invention relates to a tire contact force detection method and apparatus, and a pneumatic tire in which a sensor of the apparatus is embedded, and more particularly, to know a relationship between forces acting when a tread portion of a tread portion of the pneumatic tire is grounded. The present invention relates to a tire contact force detection method and apparatus, and a pneumatic tire.

空気入りタイヤにおいて、トレッド部の踏面が接地した時に作用する力の関係を知ることができれば、トレッドパターンの開発に大きく寄与する。特に、ブロックパターンでは、ブロックの性能が接地時にブロックに加わる力の加減によって大きく左右される。そこで、同じブロック内において、接地時にどのような大きさの力が作用しているかがわかれば、安全性の高いブロックパターンの開発が可能になる。   In a pneumatic tire, if the relationship of the force acting when the tread surface comes into contact with the ground can be known, it will greatly contribute to the development of the tread pattern. In particular, in the block pattern, the performance of the block greatly depends on the force applied to the block at the time of ground contact. Therefore, if it is known what kind of force is acting on the ground in the same block, it is possible to develop a highly safe block pattern.

従来、タイヤの横力やグリップレベルを測定するようにした技術は提案されている(例えば、特許文献1,2参照)が、同じブロック内において、どのような大きさの力が作用しているかを解明するようにした技術の提案はまだなされていない。
特開昭63−242704号公報 特開2002−82004号公報
Conventionally, techniques for measuring the lateral force and grip level of tires have been proposed (see, for example, Patent Documents 1 and 2), but what kind of force is acting in the same block? No proposal has been made for the technology to solve this problem.
JP 63-242704 A Japanese Patent Laid-Open No. 2002-82004

本発明は、トレッド部の踏面が接地した時に作用する力の関係を知ることが可能なタイヤ接地力検知方法と装置、及び該装置のセンサーを取り付けた空気入りタイヤを提供することにある。   An object of the present invention is to provide a tire contact force detection method and device capable of knowing the relationship between forces acting when the tread surface of the tread contacts the ground, and a pneumatic tire to which a sensor of the device is attached.

上記目的を達成する本発明のタイヤ接地力検知方法は、タイヤのトレッド部に埋設され、該トレッド部の踏面が路面に接地した際に変形する感圧導電ゴム体の抵抗変化により電流値が変化する検知信号を出力するセンサーと、該センサーからの検知信号を送信する送信部とを備えたタイヤ装着ユニットと、該送信部からの検知信号を受信する受信部と、該受信部からの検知信号を処理する処理部を備えた車両装着ユニットとから構成され、前記タイヤ装着ユニットが前記トレッド部の踏面方向に沿って並ぶように配設される複数の前記センサーを有し、前記車両装着ユニットが各センサーの検知信号の値からそれぞれ前記変形時に作用した力の値を算出する前記処理部を有するタイヤ接地力検知装置を使用し、各センサーが前記トレッド部の踏面が路面に接地して変形した際に感圧導電ゴム体の抵抗変化により電流値が変化した検知信号を前記送信部に送出し、該送信部により前記検知信号を前記受信部に送信し、該受信部により前記検知信号を前記処理部に入力し、該処理部で前記入力された検知信号の値に基づいて前記変形時に作用した力の値をそれぞれ算出することを特徴とする。   In the tire contact force detection method of the present invention that achieves the above object, the current value changes due to the resistance change of the pressure-sensitive conductive rubber body that is embedded in the tread portion of the tire and deforms when the tread surface of the tread contacts the road surface. A tire mounting unit including a sensor that outputs a detection signal to be transmitted, a transmission unit that transmits the detection signal from the sensor, a reception unit that receives the detection signal from the transmission unit, and a detection signal from the reception unit A vehicle mounting unit including a processing unit for processing the tire mounting unit, the tire mounting unit having a plurality of sensors arranged so as to be aligned along the tread surface direction of the tread portion, A tire contact force detection device having the processing unit for calculating the value of the force acting at the time of deformation from the value of the detection signal of each sensor is used, and each sensor is connected to the tread portion. When the surface is grounded on the road surface and deformed, a detection signal whose current value has changed due to a resistance change of the pressure-sensitive conductive rubber body is sent to the transmission unit, and the transmission unit transmits the detection signal to the reception unit, The detection signal is input to the processing unit by the receiving unit, and the value of the force applied during the deformation is calculated based on the value of the detection signal input by the processing unit.

本発明のタイヤ接地力検知装置は、タイヤのトレッド部に埋設され、該トレッド部の踏面が路面に接地した際に変形する感圧導電ゴム体の抵抗変化により電流値が変化する検知信号を出力するセンサーと、該センサーからの検知信号を送信する送信部とを備えたタイヤ装着ユニットと、該送信部からの検知信号を受信する受信部と、該受信部からの検知信号を処理する処理部とを備えた車両装着ユニットとから構成され、前記タイヤ装着ユニットを前記トレッド部の踏面方向に沿って並ぶように配設される複数の前記センサーを有し、前記車両装着ユニットが各センサーの検知信号の値からそれぞれ前記変形時に作用した力の値を算出する前記処理部を有することを特徴とする。   The tire contact force detection device of the present invention outputs a detection signal in which a current value changes due to a resistance change of a pressure-sensitive conductive rubber body that is embedded in a tread portion of a tire and deforms when a tread surface of the tread portion contacts a road surface. A tire mounting unit including a sensor that performs detection, a transmission unit that transmits a detection signal from the sensor, a reception unit that receives the detection signal from the transmission unit, and a processing unit that processes the detection signal from the reception unit A plurality of sensors arranged such that the tire mounting units are arranged along the tread surface direction of the tread portion, and the vehicle mounting unit detects each sensor. It has the said process part which calculates the value of the force which acted at the time of the said deformation | transformation from the value of a signal, respectively.

本発明の空気入りタイヤは、トレッド部の踏面が路面に接地した際に変形する感圧導電ゴム体の抵抗変化により電流値が変化する検知信号を出力するセンサーを前記トレッド部に埋設した空気入りタイヤであって、前記センサーを前記トレッド部の踏面方向に沿って並ぶように複数配設したことを特徴とする。   The pneumatic tire of the present invention is a pneumatic tire in which a sensor that outputs a detection signal whose current value changes due to a resistance change of a pressure-sensitive conductive rubber body that deforms when the tread surface of the tread contacts the road surface is embedded in the tread portion. A tire is characterized in that a plurality of sensors are arranged so as to be aligned along the tread surface direction of the tread portion.

上述した本発明によれば、トレッド部の踏面方向に沿って並ぶように配設される複数のセンサーが、それぞれトレッド部の踏面が路面に接地して変形した際に感圧導電ゴム体の抵抗変化により電流値が変化した検知信号を送信部に送出し、送信部から受信部を介して処理部に入力し、処理部で入力された検知信号の値に基づいて変形時に作用した力の値をそれぞれ算出するようにしたので、トレッド部の踏面が接地した時に作用する力の関係を知ることが可能なり、安全性を高めたトレッドパターンの開発に大きく寄与する。   According to the above-described present invention, the plurality of sensors arranged so as to be aligned along the tread surface direction of the tread portion each have a resistance of the pressure-sensitive conductive rubber body when the tread surface treads on the road surface and deforms. A detection signal whose current value has changed due to a change is sent to the transmission unit, input from the transmission unit to the processing unit via the reception unit, and the value of the force that was applied during deformation based on the value of the detection signal input by the processing unit Therefore, it is possible to know the relationship between the forces acting when the tread surface comes in contact with the ground, which greatly contributes to the development of a tread pattern with improved safety.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明のタイヤ接地力検知装置の一実施形態を示し、1はタイヤに装着するタイヤ装着ユニット、2は車両に装着される車両装着ユニットである。   FIG. 1 shows an embodiment of a tire contact force detection device according to the present invention. Reference numeral 1 denotes a tire mounting unit that is mounted on a tire, and 2 is a vehicle mounting unit that is mounted on a vehicle.

タイヤ装着ユニット1は、図2に示すように、空気入りタイヤ3のトレッド部4の踏面5に設けた溝6により区分形成したブロック7内に埋設されるようになっており、図ではトレッド部4のセンター部4Aとショルダー部4Bに埋設した例を示している。タイヤ装着ユニット1を埋設する際には、図示するように踏面5と面一になるように露出させるのが好ましいが、踏面5に露出せず若干埋没するように埋設してもよい。   As shown in FIG. 2, the tire mounting unit 1 is embedded in a block 7 that is partitioned and formed by a groove 6 provided in the tread portion 5 of the tread portion 4 of the pneumatic tire 3. 4 shows an example embedded in the center portion 4A and the shoulder portion 4B. When the tire mounting unit 1 is embedded, it is preferably exposed so as to be flush with the tread surface 5 as shown in the figure, but may be embedded so as not to be exposed to the tread surface 5.

タイヤ装着ユニット1は、トレッド部4の踏面5が路面に接地した際に変形する感圧導電ゴム体8とこれに直列に接続した直流電源9を備えたセンサー10(図3参照)と、このセンサー10の検知信号をアンテナ11を介して送信する送信部12とからなるユニット13を複数備えている。送信部12は電源として直流電源9を使用し、所定の時間間隔で送信する。送信部12と後述する受信部19との間での送受信の強さとしては、0.1〜10mV/m程度にすることができる。   The tire mounting unit 1 includes a pressure-sensitive conductive rubber body 8 that is deformed when the tread surface 5 of the tread portion 4 contacts the road surface, and a sensor 10 (see FIG. 3) including a DC power source 9 connected in series therewith, A plurality of units 13 each including a transmission unit 12 that transmits a detection signal of the sensor 10 via the antenna 11 are provided. The transmission unit 12 uses a DC power source 9 as a power source, and transmits at a predetermined time interval. The strength of transmission / reception between the transmitter 12 and the receiver 19 described later can be about 0.1 to 10 mV / m.

各センサー10は、図4に示すように、感圧導電ゴム体8のタイヤ径方向内側面8aと外側面8bに電極14を設けられ、感圧導電ゴム体8がタイヤ径方向に圧縮変形した際に抵抗値を変化(減少)させ、それにより電流値が変化(増加)する検知信号を送信部12に出力し、踏面5に対して垂直方向に作用する力を検知するようになっている。各接続は導電ゴム体15で行われ、センサー8と送信部12の外側が絶縁ゴム層16で被覆されている。図中17は感圧導電ゴム体8と導電ゴム体15の間に配置した絶縁ゴム層である。   As shown in FIG. 4, each sensor 10 is provided with electrodes 14 on the inner surface 8a and the outer surface 8b in the tire radial direction of the pressure-sensitive conductive rubber body 8, and the pressure-sensitive conductive rubber body 8 is compressed and deformed in the tire radial direction. At this time, the resistance value is changed (decreased), and thereby a detection signal for changing (increasing) the current value is output to the transmission unit 12 to detect a force acting in the vertical direction on the tread surface 5. . Each connection is made with a conductive rubber body 15, and the outside of the sensor 8 and the transmitter 12 is covered with an insulating rubber layer 16. In the figure, reference numeral 17 denotes an insulating rubber layer disposed between the pressure-sensitive conductive rubber body 8 and the conductive rubber body 15.

各ユニット13は、図5に示すように、トレッド部4の踏面方向(踏面5が延在する方向)に沿ってセンサー10が並ぶようにブロック7内に配設される。   As shown in FIG. 5, each unit 13 is arranged in the block 7 so that the sensors 10 are arranged along the tread surface direction (direction in which the tread surface 5 extends) of the tread portion 4.

車両装着ユニット2は、各送信部12からの検知信号をアンテナ18を介して受信する受信部19と、この受信部19からの検知信号を処理する処理部20と、処理部20に接続された表示部21を備えている。   The vehicle mounting unit 2 is connected to the receiving unit 19 that receives the detection signal from each transmitting unit 12 via the antenna 18, the processing unit 20 that processes the detection signal from the receiving unit 19, and the processing unit 20. A display unit 21 is provided.

処理部20は、各センサー10の検知信号の値からその平均値を用いて、それぞれ踏面5に対して垂直方向に作用する力を算出するようになっている。即ち、接地時にブロック7に力Fが作用すると、感圧導電ゴム体8の抵抗値Rが減少し、回路を流れる電流値Iが増加する。ブロック7に作用する力Fは、感圧導電ゴム体8の抵抗値Rの変化量ΔRとは反比例するため、直流電源9の電圧をE、電流値Iの変化量ΔIとすると、
F=k/ΔR=k・ΔI/E
として算出される。但し、kは定数であり、使用する感圧導電ゴム体8に使用するゴムの固有値をとる。
The processing unit 20 calculates the force acting in the vertical direction on the tread surface 5 using the average value from the detection signal value of each sensor 10. That is, when the force F acts on the block 7 at the time of grounding, the resistance value R of the pressure-sensitive conductive rubber body 8 decreases, and the current value I flowing through the circuit increases. Since the force F acting on the block 7 is inversely proportional to the change amount ΔR of the resistance value R of the pressure-sensitive conductive rubber body 8, if the voltage of the DC power supply 9 is E and the change amount ΔI of the current value I is
F = k / ΔR = k · ΔI / E
Is calculated as However, k is a constant and takes the characteristic value of the rubber used for the pressure-sensitive conductive rubber body 8 to be used.

処理部20で算出された各データは、表示部21に表示されるようになっている。   Each data calculated by the processing unit 20 is displayed on the display unit 21.

上述したタイヤ接地力検知装置では、トレッド部4の踏面5が路面に接地してブロック7が圧縮変形した際に、感圧導電ゴム体8の抵抗値が変化し、それにより電流値が変化した検知信号が各センサー10から送信部12に出力され、送信部12により検知信号が受信部19に送信され、受信部19から処理部20に入力され、そして処理部20で入力された各検知信号の値に基づいて圧縮変形時に踏面5に対して垂直方向に作用した力がそれぞれ算出される。   In the tire contact force detection device described above, when the tread portion 5 of the tread portion 4 contacts the road surface and the block 7 is compressed and deformed, the resistance value of the pressure-sensitive conductive rubber body 8 changes, and thereby the current value changes. A detection signal is output from each sensor 10 to the transmission unit 12, a detection signal is transmitted from the transmission unit 12 to the reception unit 19, input from the reception unit 19 to the processing unit 20, and input to the processing unit 20. Based on this value, the force acting in the direction perpendicular to the tread surface 5 during compression deformation is calculated.

そのため、同じブロック7内において、踏面5に対して垂直方向及び横方向にどのような大きさの力が作用しているかを解明することができるので、安全性を高めたブロックパターンの設計に大きく寄与する。   Therefore, it is possible to elucidate the magnitude of the force acting in the vertical direction and the lateral direction on the tread surface 5 in the same block 7, so it is great for designing a block pattern with improved safety. Contribute.

図6は、本発明のタイヤ接地力測定装置に使用するセンサーの他の例を示し、上述したセンサー10において、電極14を感圧導電ゴム体8のタイヤ幅方向両側面8cに設けたものである。これにより、感圧導電ゴム体8がタイヤ幅方向Xに圧縮変形した際に抵抗値を変化(減少)させ、それにより電流値が変化(増加)する検知信号を送信部12に出力し、タイヤ幅方向Xに作用する力を検知できるようにしたものである。これにより、同じブロック7内に作用する横力の解明が可能になり、実走行時のグリップ力を認知することができるので安全走行に大きく貢献する。   FIG. 6 shows another example of a sensor used in the tire contact force measuring device of the present invention. In the sensor 10 described above, electrodes 14 are provided on both side surfaces 8c of the pressure-sensitive conductive rubber body 8 in the tire width direction. is there. As a result, when the pressure-sensitive conductive rubber body 8 is compressed and deformed in the tire width direction X, the resistance value is changed (decreased), and thereby a detection signal for changing (increasing) the current value is output to the transmission unit 12. The force acting in the width direction X can be detected. As a result, the lateral force acting in the same block 7 can be elucidated, and the grip force during actual running can be recognized, which greatly contributes to safe running.

図7は、本発明のタイヤ接地力測定装置に使用するセンサーの更に他の例を示し、上述したセンサー10において、電極14を感圧導電ゴム体8のタイヤ周方向両側面8dに設けたものである。これにより、感圧導電ゴム体8がタイヤ周方向に伸縮変形した際に抵抗値を変化(増減)させ、それにより電流値が変化(増減)する検知信号を送信部12に出力し、タイヤ周方向Yに作用する力を検知できるようにしたものである。これにより、同じブロック7内でタイヤ周方向Yにどのような大きさの力が作用しているかを解明することができ、実走行時のタイヤ周方向におけるグリップ力を認知することができるので安全走行に大きく貢献する。   FIG. 7 shows still another example of the sensor used in the tire contact force measuring device of the present invention. In the sensor 10 described above, the electrodes 14 are provided on both side surfaces 8d in the tire circumferential direction of the pressure-sensitive conductive rubber body 8. It is. As a result, when the pressure-sensitive conductive rubber body 8 is stretched and deformed in the tire circumferential direction, the resistance value is changed (increased / decreased), and thereby a detection signal for changing (increasing / decreasing) the current value is output to the transmission unit 12. The force acting in the direction Y can be detected. As a result, it is possible to elucidate what kind of force is acting in the tire circumferential direction Y in the same block 7, and it is safe because the grip force in the tire circumferential direction during actual running can be recognized. Contributes greatly to driving.

図8は、本発明のタイヤ接地力測定装置の他の実施形態を示し、上述したセンサー10を組み合わせるようにしたものである。   FIG. 8 shows another embodiment of the tire contact force measuring device of the present invention, which is a combination of the sensors 10 described above.

複数のユニット13は、図4に示すように、感圧導電ゴム体8のタイヤ径方向内側面8aと外側面8bに電極14を設けるようにした第1センサー10Aを備えた第1ユニット13Aと、図6に示すように、感圧導電ゴム体8のタイヤ幅方向両側面8cに電極14を設けるようにした第2センサー10Bを備えた第2ユニット13Bと、図7に示すように、感圧導電ゴム体8のタイヤ周方向両側面8dに電極14を設けるようにした第3センサー10Cを備えた第3ユニット13Cを一組とする複数組のユニット13’から構成されている。   As shown in FIG. 4, the plurality of units 13 includes a first unit 13A including a first sensor 10A in which electrodes 14 are provided on the inner surface 8a and the outer surface 8b in the tire radial direction of the pressure-sensitive conductive rubber body 8. As shown in FIG. 6, a second unit 13B having a second sensor 10B in which electrodes 14 are provided on both side surfaces 8c of the pressure-sensitive conductive rubber body 8 in the tire width direction, and as shown in FIG. The piezoelectric conductive rubber body 8 is composed of a plurality of sets of units 13 ′ including a third unit 13C including a third sensor 10C provided with electrodes 14 on both side surfaces 8d in the tire circumferential direction.

第1ユニット13Aは、感圧導電ゴム体8がタイヤ径方向に圧縮変形した際に抵抗値を変化させ、それにより電流値が変化する検知信号を第1センサー10Aから送信部12に出力し、踏面5に対して垂直方向に作用する力を検知するようになっている。   The first unit 13A changes the resistance value when the pressure-sensitive conductive rubber body 8 is compressed and deformed in the tire radial direction, and outputs a detection signal that changes the current value from the first sensor 10A to the transmission unit 12, A force acting in a direction perpendicular to the tread surface 5 is detected.

第2ユニット13Bは、感圧導電ゴム体8がタイヤ幅方向に圧縮変形した際に抵抗値を変化させ、それにより電流値が変化する検知信号を第2センサー10Bから送信部12に出力し、タイヤ幅方向に作用する力を検知する。   The second unit 13B changes the resistance value when the pressure-sensitive conductive rubber body 8 is compressed and deformed in the tire width direction, and outputs a detection signal that changes the current value from the second sensor 10B to the transmission unit 12, The force acting in the tire width direction is detected.

第3ユニット13Cは、感圧導電ゴム体8がタイヤ周方向に伸縮変形した際に抵抗値を変化させ、それにより電流値が変化する検知信号を第3センサー10Cから送信部12に出力し、タイヤ周方向に作用する力を検知するものである。   The third unit 13C changes the resistance value when the pressure-sensitive conductive rubber body 8 expands and contracts in the tire circumferential direction, and outputs a detection signal that changes the current value from the third sensor 10C to the transmission unit 12, The force acting in the tire circumferential direction is detected.

第1,第2,第3ユニット13A,13B,13Cからなる各組のユニット13’は、図9に示すように、ブロック7内にトレッド部4の踏面方向に沿ってセンサー10A,10B,10Cが並ぶように配設される。   As shown in FIG. 9, each set of units 13 ′ including the first, second, and third units 13 </ b> A, 13 </ b> B, and 13 </ b> C includes sensors 10 </ b> A, 10 </ b> B, and 10 </ b> C along the tread surface direction of the tread portion 4 in the block 7. Are arranged in a line.

車両装着ユニット2の処理部20は、各センサー10A,10B,10Cの検知信号の値からその最大値を用いて、それぞれ上述と同様に接地時に作用する力を算出する。   The processing unit 20 of the vehicle mounting unit 2 uses the maximum value from the detection signal values of the sensors 10A, 10B, and 10C, and calculates the force that acts at the time of grounding in the same manner as described above.

また、各組のユニット13’毎に、第1センサー10Aの検知信号の値に基づいて算出した力の値Fv と、第2センサー10Bの検知信号の値に基づいて算出した力の値Fw との比Fw /Fv を算出し、タイヤ幅方向に対する摩擦係数を得るようにしている。更に、値Fv と第3センサー10Cの検知信号の値に基づいて算出した力の値Fc との比Fc /Fv を算出し、タイヤ周方向に対する摩擦係数を得る。これらの摩擦係数はタイヤのグリップ能力を評価する指標となる。   Further, for each unit 13 ′ of each set, the force value Fv calculated based on the detection signal value of the first sensor 10A, and the force value Fw calculated based on the detection signal value of the second sensor 10B The ratio Fw / Fv is calculated to obtain the coefficient of friction in the tire width direction. Further, a ratio Fc / Fv between the value Fv and the force value Fc calculated based on the value of the detection signal of the third sensor 10C is calculated to obtain a friction coefficient in the tire circumferential direction. These friction coefficients serve as an index for evaluating the grip ability of the tire.

また、第2センサー10Bの検知信号の積分値QBと第1センサー10Aの検出信号の積分値QAとの比QB/QAと、第3センサー10Cの検知信号の積分値QCと積分値QAとの比QC/QAを算出し、それを各検知した毎に算出してその分布状況が安全とされる所定の範囲内にあるか、即ち、グリップ能力と余裕度合いを判定評価する。なお、ここで算出された値は、各平均の摩擦係数である。   Further, the ratio QB / QA between the integrated value QB of the detection signal of the second sensor 10B and the integrated value QA of the detection signal of the first sensor 10A, and the integrated value QC and the integrated value QA of the detection signal of the third sensor 10C. The ratio QC / QA is calculated and calculated every time it is detected, and whether or not the distribution state is within a predetermined safe range, that is, the grip ability and the margin are determined and evaluated. The value calculated here is the average friction coefficient.

図10に第1センサー10Aにより検知された信号の一例、図11に第2センサー10Bにより検知された信号の一例、図12に第3センサー10Cにより検知された信号の一例のグラフ図を示す。横軸は時間、縦軸は力であり、実線はセンター部4A、破線はショルダー部4Bにおけるものである。   FIG. 10 shows an example of a signal detected by the first sensor 10A, FIG. 11 shows an example of a signal detected by the second sensor 10B, and FIG. 12 shows a graph of an example of a signal detected by the third sensor 10C. The horizontal axis represents time, the vertical axis represents force, the solid line represents the center portion 4A, and the broken line represents the shoulder portion 4B.

また、図13に得られた平均の摩擦係数の分布状況と安全とされる所定の範囲Nとの関係を表すグラフ図の一例を示す。横軸はタイヤ幅方向に対する平均の摩擦係数Mx、縦軸はタイヤ周方向に対する平均の摩擦係数Myである。   FIG. 13 shows an example of a graph showing the relationship between the average friction coefficient distribution obtained and a predetermined range N that is considered safe. The horizontal axis represents the average friction coefficient Mx in the tire width direction, and the vertical axis represents the average friction coefficient My in the tire circumferential direction.

上記処理部20で算出された各データは、表示部21に表示される。   Each data calculated by the processing unit 20 is displayed on the display unit 21.

このタイヤ接地力測定装置では、同じブロック7内において、踏面5に対して垂直方向に作用する力、タイヤ幅方向Xに作用する力、タイヤ周方向Yに作用する力に加えて、グリップ能力を評価することが可能になるため、安全性を高めたブロックパターンの設計に一層大きく寄与する。また、実車走行で安全に走行するための情報が得られる。   In this tire contact force measuring device, in the same block 7, in addition to the force acting in the direction perpendicular to the tread surface 5, the force acting in the tire width direction X, the force acting in the tire circumferential direction Y, the grip ability is Since it becomes possible to evaluate, it contributes more greatly to the design of the block pattern with improved safety. In addition, information for safely traveling in actual vehicle traveling can be obtained.

ユニット13’は上記のように第1,第2,第3ユニット13A,13B,13Cを一組とするのがグリップ能力を評価できるので好ましいが、必要に応じて、いずれか2つのユニットを一組とする構成であってもよい。   As described above, it is preferable that the unit 13 ′ is a set of the first, second, and third units 13A, 13B, and 13C because the grip ability can be evaluated. However, if necessary, any two units may be combined. It may be configured as a set.

図14は、本発明のタイヤ接地力検知装置に使用するセンサーの他の例を示し、ブロック7が摩耗限度に達するまで、上述した力を検知できるようにしたものである。   FIG. 14 shows another example of the sensor used in the tire contact force detection device of the present invention, in which the above-described force can be detected until the block 7 reaches the wear limit.

センサー10は、並列に接続した層状の感圧導電ゴム体8を絶縁ゴム層25を介して積層構造にし、ブロック7の摩耗が感圧導電ゴム体8に達した際に順次踏面5側から離脱可能になっている。   The sensor 10 has a laminated structure of the layered pressure-sensitive conductive rubber bodies 8 connected in parallel via the insulating rubber layer 25, and when the wear of the block 7 reaches the pressure-sensitive conductive rubber body 8, it sequentially separates from the tread surface 5 side. It is possible.

内側から1番目の感圧導電ゴム体8Xが、摩耗がタイヤ使用限度に達したことを知らせる位置となるように配置される。感圧導電ゴム体8の抵抗値は、同一であっても、異なるものであってもよい。   The first pressure-sensitive conductive rubber body 8X from the inside is disposed so as to be a position for notifying that the tire usage limit has been reached. The resistance value of the pressure-sensitive conductive rubber body 8 may be the same or different.

上述した処理部20は、更に感圧導電ゴム体8の離脱により変化した検知信号の大きさからトレッド部の摩耗状態を判断可能になっている。入力された検知信号の値と予め設定した複数(導電ゴム抵抗体8の数と同じ数)の閾値とを比較し、その結果からブロック7の摩耗状態を判定する。   The processing unit 20 described above can further determine the wear state of the tread portion from the magnitude of the detection signal changed by the separation of the pressure-sensitive conductive rubber body 8. The value of the input detection signal is compared with a plurality of preset threshold values (the same number as the number of conductive rubber resistors 8), and the wear state of the block 7 is determined from the result.

例えば、最も踏面5側の感圧導電ゴム体8が摩耗により離脱(摩耗により消失した場合も含む)すると、非接地時において、抵抗値が増加し、電流値が減少した検知信号となる。その値は最大の閾値より小さく、次に大きい閾値より大きくなり、それに応じて予め設定された摩耗量(摩耗状態)が得られる。   For example, when the pressure-sensitive conductive rubber body 8 closest to the tread surface 5 is detached due to wear (including the case where the pressure-sensitive conductive rubber body 8 disappears due to wear), the resistance value increases and the current value decreases when not grounded. The value is smaller than the maximum threshold value and larger than the next larger threshold value, and a predetermined wear amount (wear state) is obtained accordingly.

また、摩耗が進行して感圧導電ゴム体8Xまで離脱すると、非接地時において、抵抗値が最大になり、最小の電流値が検知信号となる。その値は摩耗がタイヤ使用限度に達したことを示す最小の閾値より小さくなり、それに応じて予め設定された摩耗量(摩耗状態)が得られる。このように閾値に基づいて得られたデータは、表示部21に摩耗量の数値表示や摩耗量を段階的に表した摩耗度などで表示される。   Further, when wear progresses and the pressure-sensitive conductive rubber body 8X is detached, the resistance value becomes maximum and the minimum current value becomes a detection signal when not grounded. The value becomes smaller than a minimum threshold value indicating that the wear has reached the tire use limit, and a predetermined wear amount (wear state) is obtained accordingly. The data obtained based on the threshold value in this way is displayed on the display unit 21 by a numerical display of the wear amount, a wear degree that represents the wear amount in stages, and the like.

また、摩耗状態が変わる毎に、上述したkの値を補正して、踏面5に対して垂直方向に作用する力、タイヤ幅方向Xに作用する力、タイヤ周方向Yに作用する力が算出される。このようなタイヤ接地力検知装置であってもよい。   Further, each time the wear state changes, the value of k described above is corrected to calculate the force acting in the vertical direction on the tread surface 5, the force acting in the tire width direction X, and the force acting in the tire circumferential direction Y. Is done. Such a tire contact force detection device may be used.

図14では、電極14を感圧導電ゴム体8のタイヤ幅方向両側面8cに設けたものを示したが、電極14を感圧導電ゴム体8のタイヤ周方向両側面8dに設けたもの、あるいは感圧導電ゴム体8のタイヤ径方向内側面8aと外側面8bに電極14を設けたものであっても、同様にすることができる。   In FIG. 14, the electrode 14 is provided on the both sides 8c in the tire width direction of the pressure-sensitive conductive rubber body 8, but the electrode 14 is provided on both sides 8d in the tire circumferential direction of the pressure-sensitive conductive rubber body 8. Alternatively, even if the electrode 14 is provided on the inner surface 8a and the outer surface 8b in the tire radial direction of the pressure-sensitive conductive rubber body 8, the same can be done.

図15は、図9のタイヤ接地力検知装置において、タイヤ装着ユニット1を1組のユニット13’から構成し、1組のユニット13’を上記と同様にしてブロック7内に配置し、ブロック7のグリップ力を評価できるようにしたものである。このように本発明の主要な構成を利用して、ブロック7全体のグリップ力を評価できるようにしてもよい。また、1組のユニット13’は、必要に応じて、第1,第2,第3ユニット13A,13B,13Cの内のいずれか2つのユニットを組み合わせた構成にし、ブロック7に作用するいずれか2つの力を検知することも可能である。   FIG. 15 shows a tire contact force detection device of FIG. 9 in which the tire mounting unit 1 is composed of a set of units 13 ′, and the set of units 13 ′ is arranged in the block 7 in the same manner as described above. The grip strength can be evaluated. In this manner, the gripping force of the entire block 7 may be evaluated using the main configuration of the present invention. In addition, one set of units 13 ′ is configured by combining any two units of the first, second, and third units 13A, 13B, and 13C as needed, and any of the units 13 ′ that act on the block 7 It is also possible to detect two forces.

本発明において、上述したセンサー10,10A,10B,10Cは、直流電源9に代えて、圧電素子を直列に接続するようにしてもよい。接地によるブロック7の変形により、圧電素子が圧縮変形を受け、それにより圧電素子に起電力を発生させ、直流電源9と同じ働きをする。   In the present invention, the sensors 10, 10 </ b> A, 10 </ b> B, and 10 </ b> C described above may be connected in series with piezoelectric elements instead of the DC power supply 9. Due to the deformation of the block 7 due to the grounding, the piezoelectric element is subjected to a compressive deformation, thereby generating an electromotive force in the piezoelectric element and performing the same function as the DC power source 9.

圧電素子に使用する圧電材料としては、例えば、ジルコン酸チタン系セラミックなどを好ましく用いることができる。圧電素子を使用する場合、車両装着ユニット2側からタイヤ装着ユニット1側に高周波信号を定期的に送信し、それをタイヤ装着ユニット1側が電力に変えてタイヤ装着ユニット1を作動させ、送信部12から受信部19に検知信号を送信する構成にするのがよい。   As a piezoelectric material used for the piezoelectric element, for example, a zirconate-based ceramic can be preferably used. When the piezoelectric element is used, a high-frequency signal is periodically transmitted from the vehicle mounting unit 2 side to the tire mounting unit 1 side, and the tire mounting unit 1 side operates the tire mounting unit 1 by changing it to electric power. It is preferable to transmit the detection signal from the receiver to the receiver 19.

タイヤ装着ユニット1は、図2に示すように、空気入りタイヤ3に装着する際に、好ましくは、トレッド部4のセンター部4Aとショルダー部4Bに配置するのがよく、これによりセンター部4Aとショルダー部4Bにおける比較検討が可能になる。   As shown in FIG. 2, the tire mounting unit 1 is preferably disposed in the center portion 4A and the shoulder portion 4B of the tread portion 4 when being mounted on the pneumatic tire 3, whereby the center portion 4A and A comparative study in the shoulder portion 4B becomes possible.

また、タイヤ装着ユニット1をセンター部4Aとショルダー部4Bに配置し、図14に示すセンサー10を使用する場合には、上述した処理部20は、センター部4Aとショルダー部4Bに埋設したそれぞれのセンサー10からの検知信号に基づいて、それぞれの摩耗量を求め、更にその平均の摩耗量、摩耗がタイヤ使用限度に達するまでの残りの平均量(平均寿命)、両摩耗量の内の大きい方の摩耗量から摩耗がタイヤ使用限度に達するまでの残りの量(最小摩耗寿命)、センター部4Aとショルダー部4Bとの摩耗比を算出し、それら得られたデータを表示部21に表示する構成にするのがよい。   Further, when the tire mounting unit 1 is arranged in the center portion 4A and the shoulder portion 4B and the sensor 10 shown in FIG. 14 is used, the processing portion 20 described above is embedded in each of the center portion 4A and the shoulder portion 4B. Each wear amount is obtained based on the detection signal from the sensor 10, and the average wear amount, the remaining average amount until the wear reaches the tire use limit (average life), and the larger of both wear amounts The amount of wear until the wear reaches the tire use limit (minimum wear life), the wear ratio between the center portion 4A and the shoulder portion 4B, and the obtained data are displayed on the display unit 21 It is good to make it.

本発明は、上述したようにブロック7に作用する力を検知するのに好適に使用することができるが、それに限定されす、タイヤ装着ユニット1を周方向溝により区分されたリブ内に埋設し、接地時にリブにどのような大きさの力が作用しているかを検知するようにしてもよい。これにより、安全走行に適したリブパターンの開発に寄与する。   The present invention can be suitably used to detect the force acting on the block 7 as described above. However, the tire mounting unit 1 is limited to that, and is embedded in a rib partitioned by a circumferential groove. Further, it is possible to detect what kind of force is acting on the rib at the time of grounding. This contributes to the development of a rib pattern suitable for safe driving.

本発明のタイヤ接地力検知装置の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the tire ground-contact force detection apparatus of this invention. タイヤ装着ユニットを空気入りタイヤに取り付けた状態を示す断面説明図で ある。FIG. 5 is a cross-sectional explanatory view showing a state where the tire mounting unit is attached to the pneumatic tire. センサーの回路説明図である。It is circuit explanatory drawing of a sensor. ユニットの説明図である。It is explanatory drawing of a unit. ブロック内に埋設したタイヤ装着ユニットの各ユニットの配置を示す説明図 である。FIG. 5 is an explanatory diagram showing the arrangement of each unit of a tire mounting unit embedded in a block. 他のセンサーを有するユニットの説明図である。It is explanatory drawing of the unit which has another sensor. 更に他のセンサーを有するユニットの説明図である。It is explanatory drawing of the unit which has another sensor. 本発明のタイヤ接地力検知装置の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the tire ground-contact force detection apparatus of this invention. 図8の装置において、ブロック内に埋設したタイヤ装着ユニットの各ユニッ トの配置を示す説明図である。FIG. 9 is an explanatory diagram showing an arrangement of units of a tire mounting unit embedded in a block in the apparatus of FIG. 8. 第1センサーにより検知された信号の一例を示すグラフ図である。It is a graph which shows an example of the signal detected by the 1st sensor. 第2センサーにより検知された信号の一例を示すグラフ図である。It is a graph which shows an example of the signal detected by the 2nd sensor. 第3センサーにより検知された信号の一例を示すグラフ図である。It is a graph which shows an example of the signal detected by the 3rd sensor. タイヤ幅方向に対する平均の摩擦係数を横軸に、タイヤ周方向に対する平 均の摩擦係数の縦軸にしたグラフ図である。FIG. 5 is a graph in which the average friction coefficient in the tire width direction is plotted on the horizontal axis and the average friction coefficient in the tire circumferential direction is plotted on the vertical axis. 他のセンサー構造を有するユニットの説明図である。It is explanatory drawing of the unit which has another sensor structure. 本発明のタイヤ接地力検知装置の更に他の実施形態を示す要部説明図であ る。FIG. 6 is an explanatory view of a main part showing still another embodiment of the tire contact force detection device of the present invention.

符号の説明Explanation of symbols

1 タイヤ装着ユニット 2 車両装着ユニット
3 空気入りタイヤ 4 トレッド部
4A センター部 4B ショルダー部
5 踏面 6 溝
7 ブロック 8 感圧導電ゴム体
8a 内側面 8a 外側面
8c,8D 側面 9 直流電源
10 センサー 10A 第1センサー
10B 第2センサー 10C 第3センサー
12 送信部 13 ユニット
13’組のユニット 14 電極
19 受信部 20 処理部
DESCRIPTION OF SYMBOLS 1 Tire mounting unit 2 Vehicle mounting unit 3 Pneumatic tire 4 Tread part 4A Center part 4B Shoulder part 5 Tread surface 6 Groove 7 Block 8 Pressure-sensitive conductive rubber body 8a Inner side surface 8a Outer side surface 8c, 8D Side surface 9 DC power supply
DESCRIPTION OF SYMBOLS 10 Sensor 10A 1st sensor 10B 2nd sensor 10C 3rd sensor 12 Transmitter 13 unit 13 'set of unit 14 Electrode
19 receiving unit 20 processing unit

Claims (19)

タイヤのトレッド部に埋設され、該トレッド部の踏面が路面に接地した際に変形する感圧導電ゴム体の抵抗変化により電流値が変化する検知信号を出力するセンサーと、該センサーからの検知信号を送信する送信部とを備えたタイヤ装着ユニットと、該送信部からの検知信号を受信する受信部と、該受信部からの検知信号を処理する処理部を備えた車両装着ユニットとから構成され、前記タイヤ装着ユニットが前記トレッド部の踏面方向に沿って並ぶように配設される複数の前記センサーを有し、前記車両装着ユニットが各センサーの検知信号の値からそれぞれ前記変形時に作用した力の値を算出する前記処理部を有するタイヤ接地力検知装置を使用し、
各センサーが前記トレッド部の踏面が路面に接地して変形した際に感圧導電ゴム体の抵抗変化により電流値が変化した検知信号を前記送信部に送出し、該送信部により前記検知信号を前記受信部に送信し、該受信部により前記検知信号を前記処理部に入力し、該処理部で前記入力された検知信号の値に基づいて前記変形時に作用した力の値をそれぞれ算出するタイヤ接地力検知方法。
A sensor that outputs a detection signal in which a current value changes due to a resistance change of a pressure-sensitive conductive rubber body that is embedded in a tread portion of a tire and deforms when the tread surface of the tread contacts the road surface, and a detection signal from the sensor A tire mounting unit that includes a transmission unit that transmits a detection signal, a reception unit that receives a detection signal from the transmission unit, and a vehicle mounting unit that includes a processing unit that processes the detection signal from the reception unit. The tire mounting unit has a plurality of the sensors arranged so as to be aligned along the tread surface direction of the tread portion, and the vehicle mounting unit has a force applied during the deformation from the detection signal value of each sensor. Using a tire contact force detection device having the processing unit for calculating the value of
Each sensor sends a detection signal whose current value has changed due to a resistance change of the pressure-sensitive conductive rubber body when the tread surface of the tread portion contacts the road surface and deforms, and the transmission unit sends the detection signal. Tires that transmit to the receiving unit, input the detection signal to the processing unit by the receiving unit, and calculate the value of the force applied during the deformation based on the value of the detection signal input by the processing unit, respectively Grounding force detection method.
タイヤのトレッド部に埋設され、該トレッド部の踏面が路面に接地した際に変形する感圧導電ゴム体の抵抗変化により電流値が変化する検知信号を出力するセンサーと、該センサーからの検知信号を送信する送信部とを備えたタイヤ装着ユニットと、該送信部からの検知信号を受信する受信部と、該受信部からの検知信号を処理する処理部とを備えた車両装着ユニットとから構成され、前記タイヤ装着ユニットを前記トレッド部の踏面方向に沿って並ぶように配設される複数の前記センサーを有し、前記車両装着ユニットが各センサーの検知信号の値からそれぞれ前記変形時に作用した力の値を算出する前記処理部を有するタイヤ接地力検知装置。   A sensor that outputs a detection signal in which a current value changes due to a resistance change of a pressure-sensitive conductive rubber body that is embedded in a tread portion of a tire and deforms when the tread surface of the tread contacts the road surface, and a detection signal from the sensor A tire mounting unit including a transmission unit that transmits the vehicle, a receiving unit that receives a detection signal from the transmission unit, and a vehicle mounting unit that includes a processing unit that processes the detection signal from the reception unit The tire mounting unit has a plurality of sensors arranged so as to be aligned along the tread surface direction of the tread portion, and the vehicle mounting unit acts upon the deformation from the detection signal value of each sensor. A tire contact force detection device having the processing unit for calculating a force value. 前記センサーが前記感圧導電ゴム体のタイヤ径方向内側面と外側面に電極を備える請求項2に記載のタイヤ接地力検知装置。   The tire contact force detection device according to claim 2, wherein the sensor includes electrodes on an inner surface and an outer surface in the tire radial direction of the pressure-sensitive conductive rubber body. 前記センサーが前記感圧導電ゴム体のタイヤ幅方向両側面に電極を備える請求項2に記載のタイヤ接地力検知装置。   The tire contact force detection device according to claim 2, wherein the sensor includes electrodes on both side surfaces in the tire width direction of the pressure-sensitive conductive rubber body. 前記センサーが前記感圧導電ゴム体のタイヤ周方向両側面に電極を備える請求項2に記載のタイヤ接地力検知装置。   The tire contact force detection device according to claim 2, wherein the sensor includes electrodes on both sides in the tire circumferential direction of the pressure-sensitive conductive rubber body. 前記複数のセンサーを感圧導電ゴム体のタイヤ径方向内側面と外側面に電極を備える第1センサーと感圧導電ゴム体のタイヤ幅方向両側面に電極を備える第2センサーとから一組をなす複数組のセンサーから構成し、前記処理部を前記第1センサーの検出信号の値に基づいて算出した力の値Fv と、前記第2センサーの検知信号の値に基づいて算出した力の値Fw との比Fw /Fv を算出する構成にした請求項2に記載のタイヤ接地力検知装置。   A set of the plurality of sensors is composed of a first sensor having electrodes on the inner surface and outer surface in the tire radial direction of the pressure-sensitive conductive rubber body and a second sensor having electrodes on both side surfaces in the tire width direction of the pressure-sensitive conductive rubber body. A force value Fv calculated based on a force value Fv calculated based on a value of a detection signal of the first sensor and a value of a detection signal of the second sensor; The tire contact force detection device according to claim 2, wherein a ratio Fw / Fv to Fw is calculated. 前記複数組のセンサーがそれぞれ感圧導電ゴム体のタイヤ周方向両側面に電極を備える第3センサーを有し、前記処理部を前記値Fv と、前記第3センサーの検知信号の値に基づいて算出した力の値Fc との比Fc /Fv を算出する構成にした請求項6に記載のタイヤ接地力検知装置。   Each of the plurality of sets of sensors has a third sensor having electrodes on both sides in the tire circumferential direction of the pressure-sensitive conductive rubber body, and the processing unit is based on the value Fv and the value of the detection signal of the third sensor. 7. The tire contact force detection device according to claim 6, wherein the ratio Fc / Fv of the calculated force value Fc is calculated. 各センサーを複数の感圧導電ゴム体を並列に接続した積層構造で、かつ前記トレッド部の摩耗により前記複数の感圧導電ゴム体を順次離脱する構成にし、前記処理部を前記感圧導電ゴム体の離脱により変化した検知信号の大きさから前記トレッド部の摩耗状態を判定可能に構成にした請求項2乃至7のいずれか1項に記載のタイヤ接地力検知装置。   Each sensor has a laminated structure in which a plurality of pressure-sensitive conductive rubber bodies are connected in parallel, and the plurality of pressure-sensitive conductive rubber bodies are sequentially separated by wear of the tread portion, and the processing section is the pressure-sensitive conductive rubber. The tire ground contact force detection device according to any one of claims 2 to 7, wherein a wear state of the tread portion can be determined from a magnitude of a detection signal changed due to body detachment. 前記複数のセンサーが感圧導電ゴム体のタイヤ径方向内側面と外側面に電極を備える第1センサーと感圧導電ゴム体のタイヤ幅方向両側面に電極を備える第2センサーとを有し、前記処理部を前記第1センサーの検出信号の値に基づいて算出した力の値Fv と、前記第2センサーの検知信号の値に基づいて算出した力の値Fw との比Fw /Fv を算出する構成にした請求項2に記載のタイヤ接地力検知装置。   The plurality of sensors includes a first sensor having electrodes on the inner and outer surfaces in the tire radial direction of the pressure-sensitive conductive rubber body, and a second sensor having electrodes on both sides in the tire width direction of the pressure-sensitive conductive rubber body, The processor calculates a ratio Fw / Fv between the force value Fv calculated based on the detection signal value of the first sensor and the force value Fw calculated based on the detection signal value of the second sensor. The tire ground contact force detection device according to claim 2, wherein the tire contact force detection device is configured to perform. 前記複数のセンサーが感圧導電ゴム体のタイヤ周方向両側面に電極を備える第3センサーを有し、前記処理部を前記値Fv と、前記第3センサーの検知信号の値に基づいて算出した力の値Fc との比Fc /Fv を算出する構成にした請求項9に記載のタイヤ接地力検知装置。   The plurality of sensors includes a third sensor having electrodes on both sides in the tire circumferential direction of the pressure-sensitive conductive rubber body, and the processing unit is calculated based on the value Fv and a value of a detection signal of the third sensor. The tire contact force detection device according to claim 9, wherein the ratio Fc / Fv with respect to the force value Fc is calculated. トレッド部の踏面が路面に接地した際に変形する感圧導電ゴム体の抵抗変化により電流値が変化する検知信号を出力するセンサーを前記トレッド部に埋設した空気入りタイヤであって、前記センサーを前記トレッド部の踏面方向に沿って並ぶように複数配設した空気入りタイヤ。   A pneumatic tire in which a sensor that outputs a detection signal that changes a current value due to a resistance change of a pressure-sensitive conductive rubber body that is deformed when the tread surface of the tread contacts the road surface is embedded in the tread portion, and the sensor is A plurality of pneumatic tires arranged in a line along the tread surface direction of the tread portion. 前記センサーが前記感圧導電ゴム体のタイヤ径方向内側面と外側面に電極を備える請求項11に記載の空気入りタイヤ。   The pneumatic tire according to claim 11, wherein the sensor includes electrodes on a tire radial inner side surface and an outer side surface of the pressure-sensitive conductive rubber body. 前記センサーが前記感圧導電ゴム体のタイヤ幅方向両側面に電極を備える請求項11または12に記載の空気入りタイヤ。   The pneumatic tire according to claim 11 or 12, wherein the sensor includes electrodes on both side surfaces in the tire width direction of the pressure-sensitive conductive rubber body. 前記センサーが前記感圧導電ゴム体のタイヤ周方向両側面に電極を備える請求項11,12または13に記載の空気入りタイヤ。   The pneumatic tire according to claim 11, wherein the sensor includes electrodes on both side surfaces in the tire circumferential direction of the pressure-sensitive conductive rubber body. 前記複数のセンサーが感圧導電ゴム体のタイヤ径方向内側面と外側面に電極を備える第1センサーと感圧導電ゴム体のタイヤ幅方向両側面に電極を備える第2センサーとから一組をなす複数組のセンサーからなる請求項11に記載の空気入りタイヤ。   A set of the plurality of sensors includes a first sensor having electrodes on the inner surface and outer surface in the tire radial direction of the pressure-sensitive conductive rubber body and a second sensor having electrodes on both sides in the tire width direction of the pressure-sensitive conductive rubber body. The pneumatic tire according to claim 11, comprising a plurality of sets of sensors. 前記複数組のセンサーがそれぞれ感圧導電ゴム体のタイヤ周方向両側面に電極を備える第3センサーを有する請求項15に記載の空気入りタイヤ。   The pneumatic tire according to claim 15, wherein each of the plurality of sets of sensors includes a third sensor having electrodes on both sides in the tire circumferential direction of the pressure-sensitive conductive rubber body. 各センサーを複数の感圧導電ゴム体を並列に接続した積層構造で、かつ前記トレッド部の摩耗により前記複数の感圧導電ゴム体を順次離脱する構成にした請求項11乃至16のいずれか1項に記載の空気入りタイヤ。   17. The structure according to claim 11, wherein each sensor has a laminated structure in which a plurality of pressure-sensitive conductive rubber bodies are connected in parallel, and the plurality of pressure-sensitive conductive rubber bodies are sequentially separated by wear of the tread portion. The pneumatic tire according to item. 前記複数のセンサーを前記トレッド部のセンター部とショルダー部にそれぞれ配置した請求項11乃至17のいずれか1項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 11 to 17, wherein the plurality of sensors are arranged in a center portion and a shoulder portion of the tread portion, respectively. 前記トレッド部の踏面に溝によりブロックを区分形成し、該ブロックに前記複数のセンサーを埋設した請求項11乃至18のいずれか1項に記載の空気入りタイヤ。
The pneumatic tire according to any one of claims 11 to 18, wherein a block is partitioned and formed on the tread surface of the tread portion by a groove, and the plurality of sensors are embedded in the block.
JP2003316544A 2003-09-09 2003-09-09 Tire contact force detection device and pneumatic tire Expired - Fee Related JP4367909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316544A JP4367909B2 (en) 2003-09-09 2003-09-09 Tire contact force detection device and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316544A JP4367909B2 (en) 2003-09-09 2003-09-09 Tire contact force detection device and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2005082010A true JP2005082010A (en) 2005-03-31
JP4367909B2 JP4367909B2 (en) 2009-11-18

Family

ID=34416411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316544A Expired - Fee Related JP4367909B2 (en) 2003-09-09 2003-09-09 Tire contact force detection device and pneumatic tire

Country Status (1)

Country Link
JP (1) JP4367909B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137086A (en) * 2005-11-14 2007-06-07 Bridgestone Corp Method, device and tire for estimating road friction state
JP2008024205A (en) * 2006-07-24 2008-02-07 Bridgestone Corp Road surface friction state estimating method, road surface friction state estimating device, and tire for estimating road surface friction state
EP1867498A3 (en) * 2006-06-16 2011-10-05 Kabushiki Kaisha Bridgestone Method for estimating a tire running condition and an apparatus for effecting the method and a tire with sensors disposed therein
JP2012126396A (en) * 2004-05-21 2012-07-05 Technologie Michelin:Soc System and method for generating electric power from rotating tire's mechanical energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126396A (en) * 2004-05-21 2012-07-05 Technologie Michelin:Soc System and method for generating electric power from rotating tire's mechanical energy
JP2007137086A (en) * 2005-11-14 2007-06-07 Bridgestone Corp Method, device and tire for estimating road friction state
EP1867498A3 (en) * 2006-06-16 2011-10-05 Kabushiki Kaisha Bridgestone Method for estimating a tire running condition and an apparatus for effecting the method and a tire with sensors disposed therein
JP2008024205A (en) * 2006-07-24 2008-02-07 Bridgestone Corp Road surface friction state estimating method, road surface friction state estimating device, and tire for estimating road surface friction state

Also Published As

Publication number Publication date
JP4367909B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4316313B2 (en) Tire wear detection method and apparatus, and pneumatic tire
US10406866B2 (en) Tire sensor for a tire monitoring system
EP1757464B1 (en) Method and device for estimating dynamic state quantity of tire, and tire with sensor
JP4549975B2 (en) Tire condition estimation method
US7497112B2 (en) Method for estimating a tire running condition and an apparatus for effecting the method and a tire with sensors disposed therein
EP2123487B1 (en) Device for estimating tire wear amount and vehicle mounted with device for estimating tire wear amount
US7523656B1 (en) Tire sensor system and monitoring method
JP4479992B2 (en) Method for determining tire characteristics from stress.
JP2012516258A (en) Apparatus and method for measuring tread groove depth of automotive tire
WO2012091719A1 (en) Piezoelectric based system and method for determining tire load
CN1865896A (en) Tire rotation detection using tire temperature profiling
US9815343B1 (en) Tire sensing method for enhanced safety and controllability of vehicles
EP3068640A1 (en) Contact patch measurements during hydroplaning events
EP1998158A2 (en) Method for estimating magnitude of back-and-forth-direction force exerted on tire
CN114008435A (en) Tire deterioration estimation device and tire deterioration estimation method
KR20140067431A (en) Apparatus for warning of tire defect
CN107407547A (en) For the method for the thickness for measuring rubber type of material layer
JP4367909B2 (en) Tire contact force detection device and pneumatic tire
CN110770051A (en) Device for evaluating deformation of carcass of pneumatic tire
KR20180026980A (en) Tire system
WO2019207835A1 (en) Tire state detection device
WO2006090690A1 (en) Sensor abnormality judging device and sensor abnormality judging method
JP4296917B2 (en) Tire state estimating device and tire
JP4300982B2 (en) Tire condition judging device
CN102519735B (en) Tire identification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees