JP2009019827A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2009019827A
JP2009019827A JP2007183178A JP2007183178A JP2009019827A JP 2009019827 A JP2009019827 A JP 2009019827A JP 2007183178 A JP2007183178 A JP 2007183178A JP 2007183178 A JP2007183178 A JP 2007183178A JP 2009019827 A JP2009019827 A JP 2009019827A
Authority
JP
Japan
Prior art keywords
temperature
heat transfer
corrosion
transfer tube
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007183178A
Other languages
Japanese (ja)
Inventor
Yasuhiko Saijo
康彦 西條
Manabu Noguchi
学 野口
Hiroshi Yakuwa
浩 八鍬
Yoshinobu Uragami
嘉信 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007183178A priority Critical patent/JP2009019827A/en
Publication of JP2009019827A publication Critical patent/JP2009019827A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device capable of overcoming a problem of deliquescence corrosion and elongating the service life of incineration equipment at low cost. <P>SOLUTION: In this exhaust heat recovery device, heat-transfer pipes 16, 18, 20 are arranged on an exhaust gas flow passage of an incinerator 40, and heat is recovered by performing heat exchange between fluid inside the heat-transfer pipes 16, 18, 20 and exhaust gas. The heat-transfer pipes 16, 18, 20 are arranged in three divided regions having different temperature ranges in the exhaust gas flow direction, and materials having different degrees of anti-corrosion characteristics are used for the heat-transfer pipes 16, 18, 20 in the respective regions. Thus, such a structure can overcome a problem of deliquescence corrosion and eliminate a temperature reducing tower by declining the exhaust gas outlet temperature of an economizer, achieving cost reduction in the entire incineration system. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ごみ焼却施設や発電施設、化学プラント等における排熱回収装置に関する。   The present invention relates to a waste heat recovery apparatus in a garbage incineration facility, a power generation facility, a chemical plant, or the like.

図6は、従来の代表的な乾式の焼却システムの処理フローを示すブロック図である。この図に示すように、廃棄物は焼却炉40で焼却され、燃焼排ガスは、ボイラ42、エコノマイザ(排熱回収装置又は節炭器)44を経た後、さらに減温塔46で除熱されて、集塵機48、脱塩装置50、再加熱器52及び触媒反応塔54からなる排ガス処理装置56へ送られ、有害成分を除去してから大気放出される。一方、ボイラ水は、復水タンク58から給水過熱器60、脱気器62、およびエコノマイザ44を経てボイラ42に供給される。図6において、実線の矢印は排ガスの流れを示し、破線の矢印はボイラ水の流れを示す。また矢印の上に表示される温度は、その箇所における排ガス又はボイラ水の温度である。   FIG. 6 is a block diagram showing a processing flow of a conventional typical dry incineration system. As shown in this figure, the waste is incinerated in an incinerator 40, and the combustion exhaust gas passes through a boiler 42 and an economizer (exhaust heat recovery device or economizer) 44, and is further removed by a temperature reducing tower 46. The dust collector 48, the desalinator 50, the reheater 52, and the catalytic reaction tower 54 are sent to an exhaust gas treatment device 56, where harmful components are removed and released into the atmosphere. On the other hand, boiler water is supplied from the condensate tank 58 to the boiler 42 via the feed water superheater 60, the deaerator 62, and the economizer 44. In FIG. 6, solid arrows indicate the flow of exhaust gas, and broken arrows indicate the flow of boiler water. The temperature displayed above the arrow is the temperature of the exhaust gas or boiler water at that location.

焼却炉40には、ストーカ炉、流動床炉、キルン炉等、およびこれらの組合せが用いられる。また、焼却炉に溶融炉を加えたガス化溶融炉およびコークスベット式直接溶融炉なども採用される。排ガス処理装置56には、乾式処理装置であれば、バグフィルタ(BF)を組合わせた2段バグフィルタ、電気集塵器(EP)、サイクロンやこれを多段にしたマルチクロン(MC)、あるいはこれらの組合せが有る。また、またはこれら集塵機の単独設置に消石灰および活性炭、脱塵助剤ほかを噴霧する方式の有害ガス除去装置がある。なお、湿式処理装置の場合、前記集塵装置とスクラバーまたは湿式電気集塵器(EDV)の湿式有害ガス除去装置との組合せがある。   As the incinerator 40, a stoker furnace, a fluidized bed furnace, a kiln furnace, or a combination thereof is used. Further, a gasification melting furnace in which a melting furnace is added to an incinerator, a coke bed type direct melting furnace, and the like are also employed. As the exhaust gas treatment device 56, if it is a dry treatment device, a two-stage bag filter combined with a bag filter (BF), an electrostatic precipitator (EP), a cyclone, or a multi-clone (MC) having a multi-stage, or There are combinations of these. In addition, there is a harmful gas removal device that sprays slaked lime, activated carbon, dust-removal aids, etc., in a single installation of these dust collectors. In addition, in the case of a wet processing apparatus, there exists a combination of the said dust collector and the wet harmful gas removal apparatus of a scrubber or a wet electric dust collector (EDV).

ごみ焼却炉の排ガス中に含まれるダイオキシンが近年問題となっている。ダイオキシンは炉内での燃焼状態が不安定なことにより発生するが、その前駆物質となる微量有機化合物から燃焼排ガスの冷却過程(200〜400℃の温度領域)でも生成されることが明らかになっている。これを抑制するには、急速冷却を行って再合成の温度領域を短時間で通過させ、200℃以下の低温で集塵することが有効である。そこで、例えば低温高効率集塵が可能なバグフィルタが採用されている。集塵温度の低下によってダイオキシンの除去率は向上し、160℃以下では除去率95%以上に達する。ただし、ごみ焼却排ガス中には水分が20〜40%含まれており、腐食と灰の固着を考慮すると、150〜170℃程度が実質的な操作温度の下限値と見られる。   In recent years, dioxins contained in waste gas from incinerators have become a problem. Dioxins are generated due to unstable combustion conditions in the furnace, but it is clear that they are also produced in the cooling process of combustion exhaust gas (temperature range of 200-400 ° C) from trace organic compounds as precursors. ing. In order to suppress this, it is effective to perform rapid cooling, pass through the temperature range of resynthesis in a short time, and collect dust at a low temperature of 200 ° C. or lower. Therefore, for example, a bag filter capable of collecting dust at low temperature and high efficiency is employed. The removal rate of dioxins is improved by lowering the dust collection temperature, and the removal rate reaches 95% or more at 160 ° C. or lower. However, 20-40% of moisture is contained in the waste incineration exhaust gas, and considering the corrosion and ash fixation, about 150-170 ° C. is regarded as the lower limit value of the substantial operating temperature.

このように、通常のプラントではバグフィルタの入口温度を所定温度(150〜170℃程度)まで下げる必要がある。しかし、このような排ガスの急速冷却低温化により、高温排ガス中に含まれるガス状の酸性物質(SOx、HCl等)が結露し、材料を腐食させる現象(露点腐食)を引き起こしてしまうことが問題となっている。露点腐食が問題となるのは、排ガスと接する材料の温度が低温となるところであり、具体的には、エコノマイザや空気予熱器などのような熱回収部分、集塵機のような排煙処理装置、煙道、煙突内筒などである。これらの設備には、加工性、溶接性に優れ、かつ、安価なことから工業的に最も多用されている炭素鋼が一般的に用いられているが、炭素鋼は耐食性に乏しいため、高温強酸が形成される露点腐食によって、年間数〜数十mmの減肉という非常に大きな腐食速度となる。   Thus, in a normal plant, it is necessary to lower the bag filter inlet temperature to a predetermined temperature (about 150 to 170 ° C.). However, such rapid cooling and lowering of exhaust gas causes a problem that gaseous acidic substances (SOx, HCl, etc.) contained in the hot exhaust gas are condensed and cause a phenomenon (dew point corrosion) that corrodes the material. It has become. Dew point corrosion becomes a problem when the temperature of the material in contact with the exhaust gas becomes low. Specifically, heat recovery parts such as an economizer and an air preheater, a flue gas treatment device such as a dust collector, smoke Road, chimney inner cylinder, etc. For these facilities, carbon steel, which is excellent in workability and weldability and is inexpensive and is most commonly used industrially, is generally used. However, since carbon steel is poor in corrosion resistance, high temperature strong acid Due to the dew point corrosion that is formed, the corrosion rate is very high, with a thinning of several to several tens of mm per year.

特にHClが多く含まれる廃棄物燃焼環境においては、凝縮相の形成される温度が、純粋なガス平衡から計算される露点(70℃程度)よりも高温側(ガス組成によるが高くても80℃程度)に移行するとされており、エコノマイザの排ガス出口温度をガス平衡計算される露点を基準にして高めに設定(200〜180℃程度)している。   Especially in a waste combustion environment containing a lot of HCl, the temperature at which the condensed phase is formed is higher than the dew point (about 70 ° C) calculated from the pure gas equilibrium (at least 80 ° C depending on the gas composition). The exhaust gas outlet temperature of the economizer is set higher (about 200 to 180 ° C.) based on the dew point calculated for gas equilibrium.

このような露点腐食を回避する都合上、エコノマイザの排ガス出口温度をバグフィルタの入口の所定温度まで下げることが出来ないため、従来は図6に示すように、エコノマイザ44の後段にさらに減温塔46を設ける事が一般的である。もし、エコノマイザで排ガス温度を160℃まで減温する事が可能となれば、後段の減温塔を省く事が可能となり大幅なコストダウンとなる。エコノマイザの排ガス出口温度を160℃以下まで下げて熱回収するためには、伝熱管の温度を露点以下にして熱回収を行う必要がある。そのため、露点腐食に対抗できる材料を用いる必要がある。非特許文献1には、実機焼却炉での暴露試験等を基にした検討により、露点以上では炭素鋼、露点以下では耐食性の高い材料を使う事によりエコノマイザ出口における排ガス温度を160℃程度に設定できるエコノマイザが開示されている。   In order to avoid such dew-point corrosion, the exhaust gas outlet temperature of the economizer cannot be lowered to a predetermined temperature at the bag filter inlet. Conventionally, as shown in FIG. It is common to provide 46. If it is possible to reduce the exhaust gas temperature to 160 ° C with an economizer, it will be possible to omit the downstream cooling tower, resulting in a significant cost reduction. In order to recover heat by reducing the exhaust gas outlet temperature of the economizer to 160 ° C. or lower, it is necessary to perform heat recovery by setting the temperature of the heat transfer tube below the dew point. Therefore, it is necessary to use a material that can resist dew point corrosion. Non-Patent Document 1 sets the exhaust gas temperature at the economizer outlet to around 160 ° C by using carbon steel above the dew point and highly corrosion-resistant materials below the dew point, based on studies based on exposure tests in actual incinerators. A possible economizer is disclosed.

ところで、上記の露点腐食は装置運転時の問題であるが、発明者らは、運転時に生じる露点腐食および凝縮相生成による腐食以外に、装置運転時(高温)に生成して付着した塩化鉄が、運転停止時(常温)に潮解するために著しい腐食が起こることを発見した。発明者らは、この運転停止時に生じる腐食を「潮解腐食」と定義命名した。このような潮解腐食は、露点腐食と同様に、高濃度の塩化水素かつ、水分量の排ガスが低温状態の材料と接触することによって生じるものであり、排ガス処理設備に限らず、ダクトやケーシングといった温度が低温となる箇所の問題でもある。潮解腐食は、高温強酸環境となる露点腐食ほど大きな腐食速度ではないが無視できない腐食現象である。従って、例えば、上記の減温塔を省くという手法を実現させるためには、運転時の腐食以外に、運転停止時の潮解腐食の対策が必要となる。   By the way, although the above dew point corrosion is a problem at the time of operation of the apparatus, in addition to the dew point corrosion occurring at the time of operation and the corrosion due to the generation of condensed phase, the inventors have found that iron chloride generated and adhered during operation of the apparatus (high temperature) It was discovered that significant corrosion occurs due to liquefaction during shutdown (room temperature). The inventors defined and named the corrosion that occurs during the shutdown as “deliquescent corrosion”. Similar to dew point corrosion, such deliquescent corrosion is caused by contact of exhaust gas with a high concentration of hydrogen chloride and moisture in low temperature conditions, and is not limited to exhaust gas treatment equipment, such as ducts and casings. It is also a problem where the temperature is low. Deliquescent corrosion is a corrosion phenomenon that is not as large as dew point corrosion, which is a high temperature and strong acid environment, but cannot be ignored. Therefore, for example, in order to realize the technique of omitting the above-described temperature reduction tower, it is necessary to take measures against deliquescent corrosion when the operation is stopped in addition to the corrosion during the operation.

安藤真一郎、他5名、「低温エコノマイザ導入による発電効率の向上」、日立造船技報Vol.63,No.1,P.17~21(2002)Shinichiro Ando and five others, “Improvement of power generation efficiency by introducing low-temperature economizer”, Hitachi Zosen Technical Report Vol.63, No.1, P.17-21 (2002)

本発明は、上記のような潮解腐食の問題を克服して、低コストで焼却装置の長寿命化を図ることができる排熱回収装置を提供することを目的とする。さらには、エコノマイザの排ガス出口温度を低下させることで減温塔を省き、焼却システム全体の低コスト化を実現することを目的とする。   An object of the present invention is to provide an exhaust heat recovery device that can overcome the problems of deliquescent corrosion as described above and can extend the life of an incinerator at low cost. Furthermore, it aims at reducing the cost of the entire incineration system by reducing the temperature at the exhaust gas outlet of the economizer to eliminate the temperature reduction tower.

前記目的を達成するために、請求項1に記載の排熱回収装置は、焼却炉の排ガス流路に伝熱管を配置し、該伝熱管内の流体と排ガスとの間で熱交換を行うことにより熱回収を行う排熱回収装置において、前記伝熱管を排ガスの流れ方向において異なる温度範囲となる少なくとも3つの領域に区分して配置し、それぞれの領域の伝熱管に耐食性の程度が異なる材料を用いたことを特徴とする。   In order to achieve the above object, the exhaust heat recovery apparatus according to claim 1, wherein a heat transfer tube is disposed in an exhaust gas flow path of an incinerator and heat exchange is performed between the fluid in the heat transfer tube and the exhaust gas. In the exhaust heat recovery apparatus that performs heat recovery by the above, the heat transfer tubes are divided into at least three regions having different temperature ranges in the flow direction of the exhaust gas, and materials having different degrees of corrosion resistance are disposed on the heat transfer tubes in each region. It is used.

請求項1に記載の発明においては、温度範囲が異なる少なくとも3つの領域の伝熱管に、各領域の設定温度によって形成される腐食特性に適合したそれぞれ異なる耐食性を持つ材料を用いることで、より低コストでありながら充分な耐用性を持つ装置を構成することができる。   In the first aspect of the invention, the heat transfer tubes in at least three regions having different temperature ranges are made to have lower corrosion resistance by using materials having different corrosion resistances adapted to the corrosion characteristics formed by the set temperature in each region. An apparatus having sufficient durability while being cost can be configured.

請求項2に記載の排熱回収装置は、請求項1に記載の発明において、前記領域として、排ガス流路の下流側の低温領域、中流部の中温領域及び上流側の高温領域を設け、低温領域には耐露点腐食性材料を、中温領域には耐潮解腐食性材料を、高温領域には一般材料を用いたことを特徴とする。
請求項2に記載の発明においては、従来同じ原因とされて同じ高耐食性材料で構築していた低温領域と中温領域を明確に異なる温度領域とし、それぞれに耐露点腐食性材料と耐潮解腐食材料とを使い分けることで、高価な耐露点腐食性材料の使用量を減らし、低コスト化と高耐用性とを実現することができる。
According to a second aspect of the present invention, there is provided the exhaust heat recovery apparatus according to the first aspect of the present invention. A dew point corrosion resistant material is used for the region, a deliquescent corrosion resistant material is used for the medium temperature region, and a general material is used for the high temperature region.
In the invention according to claim 2, the low temperature region and the medium temperature region, which have been conventionally made of the same high corrosion resistance material and have the same cause, are clearly different temperature regions, and each has a dew point corrosion resistant material and a deliquescent corrosion resistant material. By properly using these, it is possible to reduce the amount of expensive dew-point corrosion-resistant material used, and to achieve cost reduction and high durability.

潮解腐食の発生は、露点温度以上で金属を用いた場合に、金属酸化皮膜とその下の金属との界面で排ガスに含まれる塩化水素が反応して金属の塩化物が生成することに起因する。すなわち、一般的な鉄基の材料を用いた場合は、塩化鉄が生成され、運転停止時の常温で相対湿度が58%を超えると、塩化鉄の吸湿とそれに伴う加水分解によって生じる強酸で激しく腐食反応を起こす。このような潮解腐食は、運転時の材料表面温度が露点温度よりかなり高くてもある程度は生じるものであり、腐食はさほど問題とならないが、材料表面温度が所定温度以下になると、塩化鉄の生成量が急激に増加し、腐食量も増加する。   The occurrence of deliquescent corrosion is caused by the reaction of hydrogen chloride contained in the exhaust gas at the interface between the metal oxide film and the metal underneath when metal is used at the dew point temperature or higher to produce metal chloride. . That is, when a general iron-based material is used, iron chloride is generated, and when the relative humidity exceeds 58% at room temperature when the operation is stopped, it is intensely caused by the strong acid generated by the absorption of iron chloride and the accompanying hydrolysis. Causes a corrosion reaction. Such deliquescent corrosion occurs to some extent even when the material surface temperature during operation is considerably higher than the dew point temperature. Corrosion is not a problem, but when the material surface temperature falls below a predetermined temperature, iron chloride is generated. The amount increases rapidly and the amount of corrosion also increases.

さらに、露点腐食が問題となる温度まで、材料表面温度が下がるほど、また排ガスと材料表面との温度差が大きいほど塩化鉄の生成量が増加し、それに併せて潮解腐食の腐食量も増加していく。露点腐食ほど大きな腐食速度ではないが、無視できない腐食現象である。この潮解腐食は、装置運転時の腐食をその場で観察することが出来ないため、露点腐食として混同されてきた。その結果、これらが混在して発生する装置では、露点腐食とみなされて過大な対策が採られてきたが、本発明ではこれらを区分して異なる材料を用いることでより低コスト化を実現することができる。   Furthermore, as the material surface temperature decreases to a temperature at which dew point corrosion becomes a problem, and as the temperature difference between the exhaust gas and the material surface increases, the amount of iron chloride generated increases, and the amount of deliquescent corrosion increases accordingly. To go. Although it is not as fast as dew point corrosion, it is a corrosion phenomenon that cannot be ignored. This deliquescent corrosion has been confused as dew point corrosion because corrosion during operation of the apparatus cannot be observed on the spot. As a result, in an apparatus in which these are mixed, it is regarded as dew point corrosion and excessive measures have been taken. However, in the present invention, these are classified and different materials are used to achieve lower cost. be able to.

請求項3に記載の排熱回収装置は、請求項2に記載の発明において、前記低温領域の伝熱管の表面温度は90℃未満、前記中温領域の伝熱管の表面温度は90℃以上で140℃未満、前記高温領域の伝熱管の表面温度は140℃以上であることを特徴とする。
請求項3に記載の発明においては、一般的なゴミ焼却の際の排ガス組成(N2−10%O2−20%H2O−10%CO−1000ppmHCl−50ppmSO2)に対応した腐食区分領域が形成され、効率的な耐食性向上効果を得ることができる。なお、実機で直接表面温度を測定するのは環境を考慮すると困難なので、給水や排ガスの温度を熱電対で測定し、各熱電対設置箇所での材料表面温度を用いられる材料の熱伝導から推定して求めることができる。
The exhaust heat recovery apparatus according to claim 3 is the invention according to claim 2, wherein the surface temperature of the heat transfer tube in the low temperature region is less than 90 ° C, and the surface temperature of the heat transfer tube in the intermediate temperature region is 90 ° C or more and 140 ° C. The surface temperature of the heat transfer tube in the high temperature region is 140 ° C. or higher.
In the invention of claim 3, corrosion classification corresponding to the exhaust gas composition during typical incinerator (N 2 -10% O 2 -20 % H 2 O-10% CO 2 -1000ppmHCl-50ppmSO 2) A region is formed, and an efficient effect of improving corrosion resistance can be obtained. In addition, since it is difficult to measure the surface temperature directly with an actual machine in consideration of the environment, the temperature of water supply or exhaust gas is measured with a thermocouple, and the material surface temperature at each thermocouple installation location is estimated from the heat conduction of the material used Can be obtained.

請求項4に記載の排熱回収装置は、請求項2又は請求項3に記載の発明において、前記排ガス流路は、上流側が上方に、下流側が下方になるように配置されていることを特徴とする。
請求項4に記載の発明においては、排ガス流路において高腐食性の低温領域が下方になるので、腐食性液体が他の領域に落下して悪影響を与えるという可能性を排除することができる。
According to a fourth aspect of the present invention, there is provided the exhaust heat recovery apparatus according to the second or third aspect of the invention, wherein the exhaust gas flow path is arranged so that the upstream side is upward and the downstream side is downward. And
In the invention according to claim 4, since the highly corrosive low temperature region is located downward in the exhaust gas flow path, the possibility that the corrosive liquid falls to other regions and has an adverse effect can be eliminated.

請求項5に記載の排熱回収装置は、請求項4に記載の発明において、前記低温領域と前記中温領域の間に前記低温領域へ洗浄水を供給する洗浄水噴射ノズルが配置されていることを特徴とする。
請求項5に記載の発明においては、洗浄水噴射ノズルにより低温領域へ洗浄水が供給されて、凝縮水により汚れやすい部分の洗浄が他の領域への悪影響なしに行われる。
According to a fifth aspect of the present invention, there is provided the exhaust heat recovery apparatus according to the fourth aspect, wherein a cleaning water jet nozzle that supplies cleaning water to the low temperature region is disposed between the low temperature region and the intermediate temperature region. It is characterized by.
According to the fifth aspect of the present invention, the cleaning water is supplied to the low temperature region by the cleaning water jet nozzle, and the portion easily contaminated by the condensed water is cleaned without adversely affecting other regions.

請求項1ないし請求項5に記載の発明によれば、低コストで潮解腐食や露点腐食を抑制し、焼却装置の長寿命化を図ることができ、さらには、エコノマイザの排ガス出口温度を低下させることで減温塔を省き、焼却システム全体の低コスト化を実現することができる。   According to the first to fifth aspects of the invention, deliquescent corrosion and dew point corrosion can be suppressed at low cost, the life of the incinerator can be extended, and the exhaust gas outlet temperature of the economizer can be lowered. In this way, the temperature reduction tower can be omitted, and the overall cost of the incineration system can be reduced.

以下、図面を参照してこの発明の実施の形態を説明する。
図1は、この発明の実施の形態の排熱回収装置(エコノマイザ)10を示す図である。このエコノマイザ10は、排出する排ガスの温度を160℃以下とするようにしており、その結果、図2に示すように後段の減温塔を省いて直接排ガス処理装置56に送られるようになっている。装置は、略垂直方向に延びて構成され、上部には排ガス流入口12が、下部に排ガス流出口14が形成されている。排ガス流入口12はボイラの出口に接続され、排ガス流出口14は排ガス処理装置56に接続され、排ガスは上から下へ降下する流れとなる。排熱回収装置10内には例えば水平方向に伸びる伝熱管群が層状に設けられ、排ガスと効率的に接触して熱交換を行うようになっている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an exhaust heat recovery device (economizer) 10 according to an embodiment of the present invention. In this economizer 10, the temperature of the exhaust gas to be discharged is set to 160 ° C. or less, and as a result, as shown in FIG. Yes. The apparatus is configured to extend in a substantially vertical direction, and an exhaust gas inlet 12 is formed in the upper part and an exhaust gas outlet 14 is formed in the lower part. The exhaust gas inlet 12 is connected to the outlet of the boiler, the exhaust gas outlet 14 is connected to the exhaust gas treatment device 56, and the exhaust gas flows downward from above. In the exhaust heat recovery apparatus 10, for example, heat transfer tube groups extending in the horizontal direction are provided in layers, and heat exchange is performed by efficiently contacting the exhaust gas.

この排熱回収装置10では、伝熱管群は3つのグループに分けられている。すなわち、排ガスの上流側の高温伝熱管群16、中流部の中温伝熱管群18、及び下流側の低温伝熱管群20である。各伝熱管群への給水配管22は、基本的に直列に接続されており、同じ水が低温伝熱管群20から中温伝熱管群18を経て高温伝熱管群16に流れようになっている。水は排ガスと対向する向きに流れる間に順次昇温し、排ガスを順次冷却する。高温伝熱管群16から取り出された水は、ボイラへ給水され、ボイラ水として使用される。低温伝熱管群20の上側には、後述するように、低温伝熱管群20を洗浄するための洗浄水噴射ノズル24が設けられ、装置の下端部には洗浄後の水を排出するためのドレイン26が設けられている。洗浄水噴射ノズル24への給水は伝熱管群の給水配管22からその一部を流すようにしている。   In the exhaust heat recovery apparatus 10, the heat transfer tube group is divided into three groups. That is, the high-temperature heat transfer tube group 16 on the upstream side of the exhaust gas, the middle-temperature heat transfer tube group 18 in the midstream portion, and the low-temperature heat transfer tube group 20 on the downstream side. The water supply piping 22 to each heat transfer tube group is basically connected in series, and the same water flows from the low temperature heat transfer tube group 20 to the high temperature heat transfer tube group 16 through the intermediate temperature heat transfer tube group 18. While the water flows in a direction opposite to the exhaust gas, the temperature is raised sequentially, and the exhaust gas is cooled sequentially. The water taken out from the high temperature heat transfer tube group 16 is supplied to the boiler and used as boiler water. As will be described later, a washing water jet nozzle 24 for washing the low temperature heat transfer tube group 20 is provided on the upper side of the low temperature heat transfer tube group 20, and a drain for discharging the washed water at the lower end of the apparatus. 26 is provided. A part of the water supplied to the washing water injection nozzle 24 is supplied from the water supply pipe 22 of the heat transfer pipe group.

図3に示すように、これらの伝熱管群16,18,20は、それぞれ以下のように温度が制御される。すなわち、高温伝熱管群16の管壁表面温度がT以上に、中温伝熱管群18は表面温度がT2以上でTより低く、低温伝熱管群20は表面温度がT2より低くなるように制御される。Tは、後述するように、それ以下の温度において例えば一般炭素綱表面に潮解腐食が発生しやすくなる温度T10(この例では140℃)であり、T2は、それ以下の温度において露点腐食が発生しやすくなる温度T20(この例では90℃)である。 As shown in FIG. 3, the temperature of these heat transfer tube groups 16, 18, and 20 is controlled as follows. That is, the tube wall surface temperature of the hot heat exchanger tube group 16 is above T 1, the medium-temperature heat-transfer tube group 18 is the surface temperature is lower than T 1 at T 2 or more, the low-temperature heat transfer tube group 20 is the surface temperature is lower than T 2 To be controlled. As will be described later, T 1 is a temperature T 10 (140 ° C. in this example) at which a deliquescent corrosion is likely to occur on the surface of a general carbon steel, and T 2 is a dew point at a temperature lower than that. The temperature T 20 at which corrosion is likely to occur (90 ° C. in this example).

このような温度の制御は、例えば給水配管22に設けた温度センサTs1〜Ts6や図示しない排ガスの温度を測る温度センサから表面温度を推定し、給水量や給水温度を制御することによって行うことができる。この場合、制御するのは伝熱管群の表面温度であるが、実機で直接表面温度を測定するのは環境を考慮すると困難なので、給水や排ガスの温度を熱電対で測定し、各熱電対設置箇所での材料表面温度を用いられる材料の熱伝導から推定して求めて、その温度を表面温度とすればよい。また、実機で燃焼状態に応じた温度状況を把握しておけば、必ずしもモニター制御をする必要は無い。 Such temperature control is performed by, for example, estimating the surface temperature from temperature sensors T s1 to T s6 provided in the water supply pipe 22 or a temperature sensor that measures the temperature of exhaust gas (not shown), and controlling the water supply amount and the water supply temperature. be able to. In this case, it is the surface temperature of the heat transfer tube group that is controlled, but it is difficult to measure the surface temperature directly with the actual machine, considering the environment, so measure the temperature of the feed water and exhaust gas with a thermocouple and install each thermocouple. What is necessary is just to presume and obtain | require the material surface temperature in a location from the heat conduction of the material used, and let the temperature be surface temperature. Moreover, if the temperature state according to the combustion state is grasped with an actual machine, it is not always necessary to perform the monitor control.

また、各伝熱管群の表面温度の制御は、配管にバイパスラインを設け伝熱管群への給水量を制御する方法により可能である。具体的には、熱回収装置の後段にある排ガスダクトやボイラ給水にバイパスラインを設けることが可能である。伝熱管温度を上昇させるためには、バイパスラインへの給水量を増やし熱回収装置の伝熱管群への給水量を減らすことで吸熱量が減少するため、伝熱管の表面温度を上昇させることができる。   The surface temperature of each heat transfer tube group can be controlled by a method in which a bypass line is provided in the piping to control the amount of water supplied to the heat transfer tube group. Specifically, it is possible to provide a bypass line in the exhaust gas duct and the boiler feed water at the rear stage of the heat recovery apparatus. In order to increase the heat transfer tube temperature, the amount of heat absorption decreases by increasing the amount of water supplied to the bypass line and decreasing the amount of water supplied to the heat transfer tube group of the heat recovery device, so the surface temperature of the heat transfer tube can be increased. it can.

潮解腐食発生温度T10及び露点腐食発生温度T20は、実験室において、排熱回収装置10を模擬した状態での腐食試験によって求めた。すなわち、伝熱管を模擬した試験片をいくつかの試験温度まで冷却した状態で、N2−10%O2−20%H2O−10%CO−1000ppmHCl−50ppmSO2組成の試験ガスを、ガス移動速度:0.5cm/秒(風速1.8m/秒)で吹き付けて腐食状況を調べた。その結果、図4に示すように、試験片温度が140℃を下回ると、試験直後では腐食が起きていなかった試験片が、湿度を60%RHまで上げることによって、激しい腐食が起こることが確認された。試験片温度が140℃以上であっても、ある程度の発銹が起こることが確認されたが、問題となるような腐食量ではなかった。なお、実際の装置においても、おおよそこの温度を境に腐食量が激変することが確認されている。 The deliquescent corrosion occurrence temperature T 10 and the dew point corrosion occurrence temperature T 20 were determined by a corrosion test in a laboratory simulating the exhaust heat recovery apparatus 10. That is, with a test piece simulating a heat transfer tube cooled to several test temperatures, a test gas having a composition of N 2 -10% O 2 -20% H 2 O -10% CO 2 -1000 ppm HCl 50 ppm SO 2 The state of corrosion was investigated by spraying at a gas moving speed of 0.5 cm / sec (wind speed 1.8 m / sec). As a result, as shown in Fig. 4, when the test piece temperature falls below 140 ° C, it was confirmed that the test piece that had not been corroded immediately after the test was severely corroded by raising the humidity to 60% RH. It was. Even if the test piece temperature was 140 ° C. or higher, it was confirmed that a certain amount of cracking occurred, but the corrosion amount was not problematic. In an actual apparatus, it has been confirmed that the amount of corrosion changes drastically around this temperature.

一方、潮解腐食と露点腐食の境界温度については、試験片温度が90℃程度であっても露点腐食を生じることは無く、試験温度が80℃程度まで下がると露点腐食が生じた。炭素鋼の他にSUS304および、SUS410も同様に試験した結果、ステンレス鋼であっても、潮解腐食反応が起こることは確認されたが、腐食量はかなり小さくなっていた。これは、炭素鋼と違い、ステンレス鋼では塩化鉄が生成されると同時に耐食性のある緻密な酸化膜が形成され、潮解で生じた塩酸による腐食反応が抑制されたためと考えられる。以上の結果から、潮解腐食発生温度T10及び露点腐食発生温度T20をそれぞれ140℃、90℃に決定した。 On the other hand, as for the boundary temperature between deliquescent corrosion and dew point corrosion, no dew point corrosion occurred even when the test piece temperature was about 90 ° C, and dew point corrosion occurred when the test temperature dropped to about 80 ° C. In addition to carbon steel, SUS304 and SUS410 were tested in the same manner. As a result, it was confirmed that a deliquescent corrosion reaction occurred even in stainless steel, but the amount of corrosion was considerably small. This is probably because, unlike carbon steel, stainless steel produced iron oxide as well as a dense oxide film with corrosion resistance, and the corrosion reaction caused by hydrochloric acid caused by deliquescence was suppressed. From the above results, the deliquescent corrosion occurrence temperature T 10 and the dew point corrosion occurrence temperature T 20 were determined to be 140 ° C. and 90 ° C., respectively.

上記のように温度を制御することによって、低温伝熱管群20が配置された低温領域は露点腐食領域、中温伝熱管群18が配置された中温領域は潮解腐食領域、高温伝熱管群16が配置された高温領域は非腐食領域となる。なお、例えば、燃焼物が異なる場合や、ゴミの場合でもゴミ質や焼却プロセスが変化するなどして排ガス組成が異なる可能性がある場合には、この区分温度も変化する可能性があるので、新たに試験を行う等により正確な温度を求めるのがよい。   By controlling the temperature as described above, the low temperature region where the low temperature heat transfer tube group 20 is arranged is the dew point corrosion region, the intermediate temperature region where the intermediate temperature heat transfer tube group 18 is arranged is the deliquescent corrosion region, and the high temperature heat transfer tube group 16 is arranged. The high temperature region thus formed becomes a non-corrosion region. In addition, for example, when there is a possibility that the exhaust gas composition may be different due to changes in the quality of the garbage or the incineration process even if the combustion products are different, or even in the case of garbage, this division temperature may also change, It is better to obtain an accurate temperature by conducting a new test.

これらの各伝熱管群は、それらの領域の腐食特性に応じて異なる材料から構成されている。すなわち、低温伝熱管群20は高耐食性材料から、中温伝熱管群18は中耐食性材料から、高温伝熱管群16は低耐食性材料から構成されている。また、各領域に接する装置部分はその領域と同じ腐食環境であるので、少なくともその領域の材料と同じ程度の耐食性を持つ材料を採用する必要がある。例えば、低温領域に接するドレイン26は低温伝熱管群20と同じ高耐食性材料を採用する。   Each of these heat transfer tube groups is made of different materials depending on the corrosion characteristics of those regions. That is, the low temperature heat transfer tube group 20 is made of a high corrosion resistance material, the intermediate temperature heat transfer tube group 18 is made of a medium corrosion resistance material, and the high temperature heat transfer tube group 16 is made of a low corrosion resistance material. Moreover, since the device part which touches each area | region is the same corrosive environment as the area | region, it is necessary to employ | adopt the material which has the corrosion resistance of the same grade as the material of the area | region at least. For example, the drain 26 in contact with the low temperature region employs the same high corrosion resistance material as the low temperature heat transfer tube group 20.

低温伝熱管群20は露点腐食が問題となる温度領域にあり、従って、これに用いる高耐食性材料としては、従来から露点腐食に使用されている材料を使用する。露点腐食は非特許文献1等に示すように周知の現象であり、対抗することができる材料も多く提案されている。従って、これらの材料から燃焼物等の特性に応じて適宜に選択すればよい。例えば、硫酸を想定した耐食材料ではステンレス鋼やニッケル基合金で対応可能と思われるが、一方、塩酸を想定した場合は、さらなる耐食材料が必要となる。具体的には、金属を用いる場合には、ニッケルクロム合金(インコネル、ハステロイ)やチタン合金、ジルコニウム、タンタル、モリブデン、タングステン等がある。これらで伝熱管を作製することもできるが、コストや強度等から鉄系の伝熱管の表面皮膜として用いると良い。また、酸に侵されない無機材料として、アルミナ系、ジルコニア系の材料を伝熱管の表面皮膜として用いると良い。また、樹脂材料、特に、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン・パーフルオロアルコキシ樹脂(PFA)など、フッ素を含んだ樹脂を表面皮膜として用いるようにしてもよい。   The low-temperature heat transfer tube group 20 is in a temperature region where dew point corrosion is a problem. Therefore, as a highly corrosion resistant material used for this, a material conventionally used for dew point corrosion is used. Dew point corrosion is a well-known phenomenon as shown in Non-Patent Document 1, and many materials that can be countered have been proposed. Accordingly, these materials may be appropriately selected according to the characteristics of the combustion products. For example, a corrosion-resistant material that assumes sulfuric acid seems to be compatible with stainless steel or a nickel-based alloy. On the other hand, when hydrochloric acid is assumed, a further corrosion-resistant material is required. Specifically, when a metal is used, there are nickel chromium alloy (Inconel, Hastelloy), titanium alloy, zirconium, tantalum, molybdenum, tungsten, and the like. Although a heat transfer tube can also be produced by these, it is preferable to use it as a surface film of an iron-based heat transfer tube from the viewpoint of cost and strength. In addition, as an inorganic material that is not affected by acid, an alumina-based or zirconia-based material is preferably used as the surface coating of the heat transfer tube. Resin materials, especially polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene perfluoroalkoxy resin (PFA), etc. should be used as the surface coating. Also good.

中温伝熱管群18の材料としては、潮解腐食に耐える材料を用いる。先に説明したように、潮解腐食は、排ガスに含まれる塩化水素により、塩化金属が生成し、運転停止時の塩化金属の吸湿によって高濃度の塩酸が生成する現象である。従って、中温伝熱管群18の材料として金属を用いる場合には、酸化しにくく、応力腐食割れの心配の無い耐食材料を用いればよい。露点腐食に耐えるような高級な材料を用いる必要はなく、コストや施工性などを考えるとフェライト系の鋼材が好ましい。なお、運転停止時において該当部の相対湿度が58%以下にすることによって潮解腐食を抑制することができると思われるが、実用性を考慮すると可能な場合に補助的に実施すればよい対策と思われる。   As the material of the intermediate temperature heat transfer tube group 18, a material that can withstand deliquescent corrosion is used. As described above, deliquescent corrosion is a phenomenon in which metal chloride is generated by hydrogen chloride contained in exhaust gas, and high-concentration hydrochloric acid is generated by moisture absorption of the metal chloride when operation is stopped. Therefore, when a metal is used as the material of the intermediate temperature heat transfer tube group 18, a corrosion resistant material that is difficult to oxidize and is free from stress corrosion cracking may be used. It is not necessary to use a high-grade material that can withstand dew point corrosion, and ferritic steel is preferable in view of cost, workability, and the like. In addition, it seems that deliquescent corrosion can be suppressed by making the relative humidity of the relevant part 58% or less at the time of operation stop, but considering practicality, it should be implemented as an auxiliary measure when possible. Seem.

次に、表面温度が140℃以上である高温伝熱管群16の材料としては、特に制限はない。一般の炭素鋼を用いた場合でも、材料表面温度が140℃以上となると、塩化鉄の生成量が極端に減少し、潮解腐食量が問題にならなくなるからである。   Next, there is no restriction | limiting in particular as a material of the high temperature heat exchanger tube group 16 whose surface temperature is 140 degreeC or more. This is because even when general carbon steel is used, when the material surface temperature is 140 ° C. or higher, the amount of iron chloride produced is extremely reduced, and the amount of deliquescent corrosion does not become a problem.

以下、上記のように構成された排熱回収装置10の動作を説明する。この排熱回収装置10は、例えば図2に示すように排ガスの温度を160℃以下として、後段の集塵機48に直接送るエコノマイザとして用いられる。エコノマイザ10に流入したボイラ42からの排ガスは、図1に示すように、装置上部から下部に流れ、高温伝熱管群16、中温伝熱管群18、低温伝熱管群20を順次通過する。各伝熱管群は、それぞれの温度領域の温度を維持するように、例えば水の供給量が制御され、各伝熱管群やその付属部材は、運転時の露点腐食と運転停止時の潮解腐食に関してそれぞれの腐食環境に置かれる。   Hereinafter, the operation of the exhaust heat recovery apparatus 10 configured as described above will be described. For example, as shown in FIG. 2, the exhaust heat recovery device 10 is used as an economizer that directs the exhaust gas temperature to 160 ° C. or lower and directly sends it to the subsequent dust collector 48. As shown in FIG. 1, the exhaust gas from the boiler 42 that has flowed into the economizer 10 flows from the upper part to the lower part of the apparatus, and sequentially passes through the high temperature heat transfer tube group 16, the intermediate temperature heat transfer tube group 18, and the low temperature heat transfer tube group 20. For example, the amount of water supplied is controlled so that each heat transfer tube group maintains the temperature in the respective temperature range, and each heat transfer tube group and its attached members are related to dew point corrosion during operation and deliquescent corrosion during operation stop. Placed in each corrosive environment.

この時の各部の温度の関係は、例えば、図3に示されている。ここで、TGi,TGoは排ガスの排熱回収装置10への流入及び流出温度、Ts1〜Ts6は温度センサTs1〜Ts6で測定された供給水の温度を、また、T1i,T1o、T2i,T2o、T3i,T3oはそれぞれ高温伝熱管群16、中温伝熱管群18、低温伝熱管群20の管壁表面温度を、それぞれ模式的に示している。これらの管壁表面温度は、給水及び排ガス温度から推定されたものである。また、T1,T2はそれぞれこの排ガス環境において潮解腐食及び露点腐食が問題となる温度であり、この実施の形態では一般的な排ガス組成(N2−10%O2−20%H2O−10%CO−1000ppmHCl−50ppmSO2)を想定したT1=140℃,T2=90℃である。この図に示すように、各伝熱管群の表面温度はT1i,T1o≧T1>T2i,T2o≧T2>T3i,T3oとなるように設定されている。 The relationship of the temperature of each part at this time is shown, for example in FIG. Here, TGi, TGO influx and outflow temperature of the exhaust heat recovery apparatus 10 of the exhaust gas, the temperature of T s1 through T s6 is supplied water measured by the temperature sensor T s1 through T s6, also, T1i, T1o, T2i, T2o, T3i, and T3o schematically show the tube wall surface temperatures of the high temperature heat transfer tube group 16, the intermediate temperature heat transfer tube group 18, and the low temperature heat transfer tube group 20, respectively. These tube wall surface temperatures are estimated from the feed water and exhaust gas temperatures. T1 and T2 are temperatures at which deliquescent corrosion and dew point corrosion are problems in this exhaust gas environment. In this embodiment, a general exhaust gas composition (N 2 -10% O 2 -20% H 2 O-10 T1 = 140 ° C. and T2 = 90 ° C. assuming% CO 2 −1000 ppm HCl-50 ppm SO 2 ). As shown in this figure, the surface temperature of each heat transfer tube group is set to satisfy T1i, T1o ≧ T1> T2i, T2o ≧ T2> T3i, T3o.

このような制御により、高温伝熱管群16では、運転時の表面温度がT1=140℃以上であって、運転時の露点腐食や停止時の潮解腐食は問題となるようなものではない。従って、一般の炭素鋼を用いた場合でも耐用性は高い。
次に、中温伝熱管群18では、表面温度がT1=140℃未満T2=90℃以上であって、運転中に塩化鉄が生成し、管壁に付着した塩化鉄が原因となって、運転停止後に潮解腐食が発生する可能性が有る。しかしながら、酸化しにくく、応力腐食割れの心配の無いフェライト系の鋼材等の耐食材料を用いることにより、充分な耐用性が得られる。
By such control, in the high-temperature heat transfer tube group 16, the surface temperature during operation is T1 = 140 ° C. or higher, and dew point corrosion during operation and deliquescent corrosion during stop are not a problem. Therefore, even when general carbon steel is used, durability is high.
Next, in the intermediate temperature heat transfer tube group 18, the surface temperature is less than T1 = 140 ° C., T2 = 90 ° C. or more, iron chloride is generated during operation, and iron chloride attached to the tube wall causes operation. Deliquescent corrosion may occur after stopping. However, sufficient durability can be obtained by using a corrosion-resistant material such as a ferritic steel material that does not easily oxidize and does not cause stress corrosion cracking.

次に、低温伝熱管群20では、表面温度がT2=90℃未満であるので排ガスの結露による潜熱回収が行なわれ、結露により硫酸や塩酸等の腐食性成分を含む凝縮水が発生するが、高耐食性材料を用いているので、充分な耐用性が得られる。結露により発生した凝縮水は重力及び排ガスの下降流れによってドレイン26に向けて迅速に落下し、ドレイン26から適宜に排出される。
このように、この実施の形態では、伝熱管群を腐食が問題となる程度に異なる複数の温度領域に区分し、それぞれに領域に合った材料を用いることで、全体としての低素材コストでありながら、伝熱管群に対する腐食を抑えることができ、排熱回収装置10の耐久性を向上させることができた。
Next, in the low-temperature heat transfer tube group 20, since the surface temperature is less than T2 = 90 ° C., latent heat recovery is performed by dew condensation of exhaust gas, and condensed water containing corrosive components such as sulfuric acid and hydrochloric acid is generated due to dew condensation. Since a highly corrosion resistant material is used, sufficient durability can be obtained. The condensed water generated by the dew condensation falls quickly toward the drain 26 due to gravity and the downward flow of the exhaust gas, and is appropriately discharged from the drain 26.
As described above, in this embodiment, the heat transfer tube group is divided into a plurality of temperature regions that differ to such a degree that corrosion is a problem, and by using materials suitable for each region, the overall cost of the material is low. However, corrosion to the heat transfer tube group could be suppressed, and the durability of the exhaust heat recovery apparatus 10 could be improved.

また、この実施の形態では低温伝熱管群20を排熱回収装置10の最下段に設置しているので、他の伝熱管群に腐食性流体が降下して影響が及んだり、伝熱管に落下した凝縮水が再蒸発するのに熱を奪われて伝熱管への伝熱量が減少したりすることを防止している。また、排ガスを下降流として形成しているので、凝縮水の落下に伴う排ガスの流れの乱れによる圧力損失の増大や熱回収効率の低下を防止することができる。   Further, in this embodiment, the low temperature heat transfer tube group 20 is installed at the lowermost stage of the exhaust heat recovery device 10, so that corrosive fluid falls to other heat transfer tube groups, and the heat transfer tubes are affected. It prevents the condensed water that has fallen from being re-evaporated and deprived of heat, thereby reducing the amount of heat transferred to the heat transfer tubes. Further, since the exhaust gas is formed as a downward flow, it is possible to prevent an increase in pressure loss and a decrease in heat recovery efficiency due to the turbulence of the exhaust gas flow accompanying the fall of condensed water.

洗浄水噴射ノズル24からは、定期的に洗浄水が噴射され、低温伝熱管群20の伝熱管の表面を洗浄する。これにより低温伝熱管群20の伝熱管に凝縮水を介して付着した排ガス中の灰・すすを除去し、灰・すすの付着による熱交換率の低下や腐食を防止することができる。この洗浄水噴射ノズル24による洗浄は、灰の除去だけでなく、低温伝熱管群20の水分濃度をあげるために蒸気を噴霧するためにも使用し、潜熱の回収効率を上げることも可能である。この場合、中温伝熱管群18にこの蒸気がかかってしまうと、露点温度が上昇し、露点腐食を引き起こす恐れがある。この実施の形態では、低温伝熱管群20と中温伝熱管群18の間に洗浄水噴射ノズル24を設置し、かつ、排ガスの流れによって、蒸気が中温伝熱管群18にかからないようになっている。   The cleaning water is periodically sprayed from the cleaning water injection nozzle 24 to clean the surface of the heat transfer tubes of the low temperature heat transfer tube group 20. As a result, the ash / soot in the exhaust gas adhering to the heat transfer tubes of the low-temperature heat transfer tube group 20 via the condensed water can be removed, and a reduction in heat exchange rate and corrosion due to the adhesion of ash / soot can be prevented. The cleaning by the cleaning water jet nozzle 24 is used not only for removing ash but also for spraying steam to increase the moisture concentration of the low-temperature heat transfer tube group 20 and to increase the recovery efficiency of latent heat. . In this case, if this steam is applied to the intermediate temperature heat transfer tube group 18, the dew point temperature rises, which may cause dew point corrosion. In this embodiment, the washing water injection nozzle 24 is installed between the low temperature heat transfer tube group 20 and the intermediate temperature heat transfer tube group 18, and the steam is not applied to the intermediate temperature heat transfer tube group 18 due to the flow of the exhaust gas. .

この実施の形態では、低温伝熱管群20及び中温伝熱管群18で熱回収を行い、さらに高温伝熱管群16で潜熱回収を行っているので、潜熱回収だけで排ガス出口温度を160℃以下にする場合よりも、ボイラ42への給水温度や燃焼用空気温度を上げることができ、廃棄物処理装置全体としての熱回収効率が向上している。   In this embodiment, heat recovery is performed by the low temperature heat transfer tube group 20 and the intermediate temperature heat transfer tube group 18, and further, latent heat recovery is performed by the high temperature heat transfer tube group 16, so that the exhaust gas outlet temperature is reduced to 160 ° C. or less only by the latent heat recovery. Compared with the case where it does, the feed water temperature and combustion air temperature to the boiler 42 can be raised, and the heat recovery efficiency of the whole waste treatment apparatus is improved.

なお、潮解腐食発生温度T10及び露点腐食発生温度T20は、異なる排ガス組成では異なる値となるので、運転中において排ガス中の塩化水素濃度や水分量が極端に変化すると変化する。もし、濃度が上昇すると、中流側伝熱管群で露点腐食が生じたり、上流側伝熱管群で潮解腐食が生じたりするおそれがある。そこで、そのような場合には、高温伝熱管群16の管壁表面下限温度T、中温伝熱管群18は管壁表面下限温度T2としては、試験的に求めた潮解腐食発生温度T10及び露点腐食発生温度T20より安全側に設定するのが好ましい。例えば、前記の例では、高温伝熱管群16の管壁表面下限温度(水の流入側温度)Tを140℃ではなく150℃とし、中温伝熱管群18の管壁表面下限温度(水の流入側温度)T2を90℃ではなく100℃とする。 Incidentally, deliquescence corroded temperature T 10 and the sulfuric acid dew point corrosion temperature T 20 is different because a different value in the exhaust gas composition, hydrogen chloride concentration and the water content in the exhaust gas changes with extreme changes during operation. If the concentration is increased, dew point corrosion may occur in the midstream heat transfer tube group, and deliquescent corrosion may occur in the upstream heat transfer tube group. Therefore, in such a case, the tube wall surface lower limit temperature T 1 of the hot heat transfer tube group 16, the medium-temperature heat transfer tube group 18 wall surface lower limit temperature T 2, deliquescence corrosion generation temperature T 10 was determined experimentally and preferably set than on the safe side sulfuric acid dew point corrosion temperature T 20. For example, in the above example, the tube wall surface lower limit temperature (water inflow side temperature) T 1 of the high temperature heat transfer tube group 16 is set to 150 ° C. instead of 140 ° C., and the tube wall surface lower limit temperature of the medium temperature heat transfer tube group 18 (water Inflow side temperature) T 2 is set to 100 ° C instead of 90 ° C.

また、このように状態変化の影響を受けやすい高温伝熱管群16や中温伝熱管群18の水の流入側部分の潮解腐食や露点腐食を防ぐために、前記のような温度設定自体を変えるのではなく(あるいはそれに加えて)、図5に示すように、これらの部分の熱伝導率を下げるような工夫をしてもよい。これは、これらの部分の表面温度が下がり難い状態にするため、伝熱管30の内部に伝熱管30の材料よりも熱伝導率の低い材料で皮膜32を形成して内面を被覆したものである。この材料としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン・パーフルオロアルコキシ樹脂(PFA)などの樹脂を用いると良い。伝熱管入口部の表面温度が下がらなくても、徐々に給水および、空気温度が上がっていくので、入口部からある程度のところまで到達すれば、表面温度の急激な低下の問題は回避できるようになる。   Further, in order to prevent deliquescent corrosion and deliquescent corrosion of the water inflow side portion of the high temperature heat transfer tube group 16 and the intermediate temperature heat transfer tube group 18 that are easily affected by the state change, the temperature setting itself is not changed. Without (or in addition to), as shown in FIG. 5, it may be devised to lower the thermal conductivity of these portions. In order to make it difficult for the surface temperature of these portions to be lowered, the coating 32 is formed in the heat transfer tube 30 with a material having a lower thermal conductivity than the material of the heat transfer tube 30 to cover the inner surface. . As this material, for example, a resin such as polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), or tetrafluoroethylene / perfluoroalkoxy resin (PFA) may be used. Even if the surface temperature of the heat transfer tube inlet does not drop, the water supply and air temperatures will gradually rise, so if you reach a certain point from the inlet, you can avoid the problem of a sudden drop in the surface temperature. Become.

この発明の実施の形態の排熱回収装置を示す図である。It is a figure which shows the waste heat recovery apparatus of embodiment of this invention. この発明の実施の形態の排熱回収装置が用いられた焼却システムを示す図である。It is a figure which shows the incineration system using the exhaust-heat recovery apparatus of embodiment of this invention. 排熱回収装置における各部の温度変化を示す図である。It is a figure which shows the temperature change of each part in an exhaust heat recovery apparatus. 温度による腐食状況の変化を示す図である。It is a figure which shows the change of the corrosion condition by temperature. 伝熱管についての1つの改良を示す図である。It is a figure which shows one improvement about a heat exchanger tube. 従来の焼却システムを示す図である。It is a figure which shows the conventional incineration system.

符号の説明Explanation of symbols

10 排熱回収装置(エコノマイザ)
16 高温伝熱管群
18 中温伝熱管群
20 低温伝熱管群
24 洗浄水噴射ノズル
26 ドレイン
30 伝熱管
32 皮膜
40 焼却炉
42 ボイラ
44 エコノマイザ
46 減温塔
48 集塵機
高温伝熱管群管壁表面下限温度
2 中温伝熱管群管壁表面下限温度
10 潮解腐食発生温度
20 露点腐食発生温度
10 Waste heat recovery device (economizer)
16 High Temperature Heat Transfer Tube Group 18 Medium Temperature Heat Transfer Tube Group 20 Low Temperature Heat Transfer Tube Group 24 Wash Water Injection Nozzle 26 Drain 30 Heat Transfer Tube 32 Film 40 Incinerator 42 Boiler 44 Economizer 46 Temperature Reduction Tower 48 Dust Collector T 1 High Temperature Heat Transfer Tube Group Wall Surface Lower Limit Temperature T 2 Medium temperature heat transfer tube group wall surface lower limit temperature T 10 Deliquescent corrosion occurrence temperature T 20 Dew point corrosion occurrence temperature

Claims (5)

焼却炉の排ガス流路に伝熱管を配置し、該伝熱管内の流体と排ガスとの間で熱交換を行うことにより熱回収を行う排熱回収装置において、
前記伝熱管を排ガスの流れ方向において異なる温度範囲となる少なくとも3つの領域に区分して配置し、
それぞれの領域の伝熱管に耐食性の程度が異なる材料を用いたことを特徴とする排熱回収装置。
In an exhaust heat recovery apparatus that arranges a heat transfer tube in an exhaust gas flow path of an incinerator and performs heat recovery by exchanging heat between the fluid in the heat transfer tube and the exhaust gas,
The heat transfer tube is divided into at least three regions having different temperature ranges in the flow direction of the exhaust gas,
An exhaust heat recovery apparatus characterized in that materials having different levels of corrosion resistance are used for the heat transfer tubes in each region.
前記領域として、排ガス流路の下流側の低温領域、中流部の中温領域及び上流側の高温領域を設け、低温領域には耐露点腐食性材料を、中温領域には耐潮解腐食性材料を、高温領域には一般材料を用いたことを特徴とする請求項1に記載の排熱回収装置。   As the region, a low temperature region downstream of the exhaust gas flow channel, a middle temperature region of the midstream portion and a high temperature region upstream, a dew point corrosion resistant material in the low temperature region, a deliquescent corrosion resistant material in the medium temperature region, The exhaust heat recovery apparatus according to claim 1, wherein a general material is used for the high temperature region. 前記低温領域の伝熱管の表面温度は90℃未満、前記中温領域の伝熱管の表面温度は90℃以上で140℃未満、前記高温領域の伝熱管の表面温度は140℃以上であることを特徴とする請求項2に記載の排熱回収装置。   The surface temperature of the heat transfer tube in the low temperature region is less than 90 ° C, the surface temperature of the heat transfer tube in the medium temperature region is 90 ° C or more and less than 140 ° C, and the surface temperature of the heat transfer tube in the high temperature region is 140 ° C or more. The exhaust heat recovery apparatus according to claim 2. 前記排ガス流路は、上流側が上方に、下流側が下方になるように配置されていることを特徴とする請求項2又は請求項3に記載の排熱回収装置。   4. The exhaust heat recovery apparatus according to claim 2, wherein the exhaust gas flow path is disposed so that the upstream side is upward and the downstream side is downward. 5. 前記低温領域と前記中温領域の間に前記低温領域へ洗浄水を供給する洗浄水噴射ノズルが配置されていることを特徴とする請求項4に記載の排熱回収装置。   The exhaust heat recovery apparatus according to claim 4, wherein a cleaning water injection nozzle that supplies cleaning water to the low temperature region is disposed between the low temperature region and the intermediate temperature region.
JP2007183178A 2007-07-12 2007-07-12 Exhaust heat recovery device Withdrawn JP2009019827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183178A JP2009019827A (en) 2007-07-12 2007-07-12 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183178A JP2009019827A (en) 2007-07-12 2007-07-12 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2009019827A true JP2009019827A (en) 2009-01-29

Family

ID=40359618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183178A Withdrawn JP2009019827A (en) 2007-07-12 2007-07-12 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP2009019827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018769A (en) * 2012-07-20 2014-02-03 Nippon Steel & Sumitomo Metal Method and facility for treating waste acid
JP2021060000A (en) * 2019-10-04 2021-04-15 株式会社ブリヂストン Exhaust gas heat recovery method, exhaust gas heat recovery device, and exhaust gas heat recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018769A (en) * 2012-07-20 2014-02-03 Nippon Steel & Sumitomo Metal Method and facility for treating waste acid
JP2021060000A (en) * 2019-10-04 2021-04-15 株式会社ブリヂストン Exhaust gas heat recovery method, exhaust gas heat recovery device, and exhaust gas heat recovery system
JP7368999B2 (en) 2019-10-04 2023-10-25 株式会社ブリヂストン Exhaust gas heat recovery equipment and exhaust gas heat recovery system

Similar Documents

Publication Publication Date Title
Wang et al. Mechanism research on coupling effect between dew point corrosion and ash deposition
JP5500642B2 (en) Low-temperature heat recovery system from exhaust gas after waste gas treatment facility of waste incineration facility
KR101160815B1 (en) Waste Heat Recovery System
CN105937765B (en) A kind of the burning quenching apparatus and method of processing high viscosity strong corrosive salt bearing liquid wastes
CN105605947A (en) Fluorine plastic tubular heat exchanger capable of being horizontally arranged
JP2009019827A (en) Exhaust heat recovery device
JP4761284B2 (en) Exhaust gas treatment device and its operation method
JP4754959B2 (en) Heat exchanger
CN109939516A (en) Flue gas condensing dedusting energy-saving device based on graphene heat-exchanging tube bundle
CN205878185U (en) That handles that high viscosity highly corrosive contains salt waste liquid burns rapid cooling device
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
CN205482504U (en) But fluoroplastics tubular heat exchanger structure that level was placed
CN209679748U (en) Flue gas condensing dedusting energy-saving device based on graphene heat-exchanging tube bundle
JP7177685B2 (en) Waste heat recovery system
CN107525064A (en) The pulverized-coal fired boiler economizer soot blower system optimization operation method calculated based on temperature and pressure
Cox et al. Components susceptible to dew-point corrosion
JP2003185123A (en) High temperature dust collecting equipment
JP2017150694A (en) Exhaust heat recovery system and boiler system
Coletti et al. Effects of fouling on performance of retrofitted heat exchanger networks; a thermo-hydraulic based analysis
CN205388305U (en) Novel low temperature second grade economizer
CN210107340U (en) Anticorrosive type exhaust-heat boiler system
JP5974126B1 (en) Energy recovery equipment and waste incineration equipment
Kilkovský et al. Aspects of fouling in case of heat exchangers with polluted gas
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment
CN107354255B (en) A method of extending coal gas plate type preheater service life

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090330

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005