JP2021060000A - Exhaust gas heat recovery method, exhaust gas heat recovery device, and exhaust gas heat recovery system - Google Patents

Exhaust gas heat recovery method, exhaust gas heat recovery device, and exhaust gas heat recovery system Download PDF

Info

Publication number
JP2021060000A
JP2021060000A JP2019183894A JP2019183894A JP2021060000A JP 2021060000 A JP2021060000 A JP 2021060000A JP 2019183894 A JP2019183894 A JP 2019183894A JP 2019183894 A JP2019183894 A JP 2019183894A JP 2021060000 A JP2021060000 A JP 2021060000A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat recovery
flow path
recovery device
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183894A
Other languages
Japanese (ja)
Other versions
JP7368999B2 (en
Inventor
克明 弘中
Katsuaki Hironaka
克明 弘中
慶之 宮▲崎▼
Yoshiyuki Miyazaki
慶之 宮▲崎▼
慎強 菊竹
Shingo Kikutake
慎強 菊竹
孝志 西村
Takashi Nishimura
孝志 西村
雅弓 石田
Mayumi Ishida
雅弓 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCC CO Ltd
Junkosha Co Ltd
Bridgestone Corp
Original Assignee
JCC CO Ltd
Junkosha Co Ltd
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCC CO Ltd, Junkosha Co Ltd, Bridgestone Corp filed Critical JCC CO Ltd
Priority to JP2019183894A priority Critical patent/JP7368999B2/en
Publication of JP2021060000A publication Critical patent/JP2021060000A/en
Application granted granted Critical
Publication of JP7368999B2 publication Critical patent/JP7368999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To enable further recovery of heat energy from an exhaust gas which is exhausted from a boiler and from which heat energy is recovered by an economizer and enable desulfurization and denitration that do not need additive agents.SOLUTION: An exhaust gas heat recovery device 3 includes: a shell 31 serving as an exhaust gas passage formed by a tube body made of a corrosion resistant material; a tube 39 disposed within the shell 31 and serving as a cooling medium passage formed by a tube body made of a corrosion resistant material; and an outlet 38 of sulfuric acid generated by reaction between steam, which is contained in an exhaust gas flowing in the shell 31 and cooled by a cooling medium in heat exchange between the cooling medium flowing in the tube 39 and the exhaust gas flowing in the shell 31 to be condensed, and an SOx component.SELECTED DRAWING: Figure 2

Description

本発明は、ボイラなどの排ガスからその熱エネルギーを回収する排ガス熱回収方法、排ガス熱回収装置、及び排ガス熱回収システムに関する。 The present invention relates to an exhaust gas heat recovery method for recovering heat energy from an exhaust gas such as a boiler, an exhaust gas heat recovery device, and an exhaust gas heat recovery system.

従来、ボイラからの排ガスの熱エネルギーの回収はエコノマイザ(節炭器)などにより実施されているが、ボイラの燃料として硫黄成分を含むものが使用されているため、その排ガス中には燃焼により生じたSOxが含まれ、そのまま排気すると大気汚染や酸性雨などの原因となる。 Conventionally, the recovery of heat energy from exhaust gas from boilers is carried out by economizers, etc., but since boilers containing sulfur components are used as fuel, the exhaust gas is generated by combustion. SOx is contained, and if it is exhausted as it is, it may cause air pollution and acid rain.

そこで、排ガスからSOxを除去することが行われるが、排ガスから熱を回収する際に、熱回収により排ガスの温度を下げ過ぎるとガス中の水が凝集され、凝集された水とSOxとの反応により生成される硫酸が設備を腐食する。そのため、排ガスから熱を回収する際に、その回収温度を高く(約150℃以上)設定しなければならず、熱エネルギーの回収に制限がある。また、排ガス中のSOxの処理には添加物(消石灰など)が必要となるため、その経費や装置のメンテナンス費用などが掛かり、装置の維持管理のコストが高いという問題もある(例えば特許文献1)。 Therefore, SOx is removed from the exhaust gas, but when the heat is recovered from the exhaust gas, if the temperature of the exhaust gas is lowered too much by heat recovery, the water in the gas is aggregated and the aggregated water reacts with SOx. The sulfuric acid produced by the above corrodes the equipment. Therefore, when recovering heat from the exhaust gas, the recovery temperature must be set high (about 150 ° C. or higher), and there is a limit to the recovery of heat energy. Further, since an additive (slaked lime or the like) is required for the treatment of SOx in the exhaust gas, there is a problem that the cost and the maintenance cost of the device are high and the maintenance cost of the device is high (for example, Patent Document 1). ).

つまり、ボイラ(特に石炭炊き・重油炊きボイラ、一般ごみの焼却ボイラ)では、約150℃以下の低温度域では、排ガス中に含まれるNOx(窒素酸化物)成分やSOx(硫黄酸化物)成分が結露した水と反応して、腐食性を有する硝酸や硫酸として抽出され、エコノマイザ以降の煙道設備などを腐食させる低温腐食が発生することで、設備の寿命を短縮させるため、熱回収は十分でなくまた、別途排ガス中のSOxを処理するためのコストが掛かっている。 In other words, in boilers (especially coal-cooked / heavy oil-cooked boilers, general waste incineration boilers), NOx (nitrogen oxide) components and SOx (sulfur oxide) components contained in exhaust gas are contained in the low temperature range of about 150 ° C or lower. Reacts with the condensed water and is extracted as corrosive nitrates and sulfuric acid, which causes low-temperature corrosion that corrodes the flue equipment after the economizer, shortening the life of the equipment and thus sufficient heat recovery. In addition, there is a separate cost for treating SOx in the exhaust gas.

特開2004−309079号公報Japanese Unexamined Patent Publication No. 2004-309079

本発明は、このような状況に鑑みてなされたものであり、その目的は、ボイラから排出され、エコノマイザで熱エネルギーが回収された排ガスに対する更なる熱エネルギーの回収及び添加剤の不要な脱硫・脱硝を可能にすることである。 The present invention has been made in view of such a situation, and an object of the present invention is to further recover heat energy from exhaust gas discharged from a boiler and recover heat energy by an economizer, and desulfurization that does not require additives. It is to enable desulfurization.

本発明に係る排ガス熱回収方法は、ボイラから排出され、エコノマイザで熱エネルギーが回収されたNOx成分及び/又はSOx成分を含む排ガスを、耐腐食性を有する素材の管体からなる排ガス流路内に供給するとともに、当該排ガス流路の内部に配置された耐腐食性を有する素材の管体からなる冷却媒体流路に冷却媒体を供給して、排ガスと冷却媒体との間で熱交換を行う第1の工程と、第1の工程で結露した排ガス中の水蒸気とNOx成分及び/又はSOx成分との反応で生成された硝酸及び/又は硫酸を排ガス流路から回収する第2の工程と、を有する排ガス熱回収方法である。
また、本発明に係る排ガス熱回収装置は、ボイラから排出され、エコノマイザで熱エネルギーが回収されたNOx成分及び/又はSOx成分を含む排ガスから熱エネルギーを回収するとともに、NOx成分及び/又はSOx成分を除去する排ガス熱回収装置であって、耐腐食性を有する素材の管体からなる排ガス流路と、排ガス流路の内部に配置された、耐腐食性を有する素材の管体からなる冷却媒体流路と、冷却媒体流路内を流れる冷却媒体と排ガス流路内を流れる排ガスとの間の熱交換で冷却媒体により冷却されて結露した排ガス流路内の排ガス中の水蒸気と当該排ガス中のNOx成分及び/又はSOx成分との反応で生成された硝酸及び/又は硫酸の出口と、を有する排ガス熱回収装置である。
また、本発明に係る排ガス熱回収システムは、ボイラから排出されたNOx成分及び/又はSOx成分を含む排ガスの熱交換を行うエコノマイザと、本発明に係る排ガス熱回収装置と、を有する排ガス熱回収システムである。
In the exhaust gas heat recovery method according to the present invention, the exhaust gas containing the NOx component and / or the SOx component discharged from the boiler and recovered by the economizer is discharged into an exhaust gas flow path made of a tube made of a corrosion-resistant material. The cooling medium is supplied to the cooling medium flow path made of a tube made of a corrosion-resistant material arranged inside the exhaust gas flow path, and heat is exchanged between the exhaust gas and the cooling medium. The first step and the second step of recovering nitric acid and / or sulfuric acid generated by the reaction between the water vapor in the exhaust gas condensed in the first step and the NOx component and / or the SOx component from the exhaust gas flow path. It is an exhaust gas heat recovery method having.
Further, the exhaust gas heat recovery device according to the present invention recovers heat energy from the exhaust gas containing the NOx component and / or the SOx component discharged from the boiler and the heat energy is recovered by the economizer, and also recovers the NOx component and / or the SOx component. An exhaust gas heat recovery device that removes heat from an exhaust gas, and is a cooling medium composed of an exhaust gas flow path made of a corrosion-resistant material tube and a corrosion-resistant material tube arranged inside the exhaust gas flow path. Water vapor in the exhaust gas in the exhaust gas flow path cooled by the cooling medium by heat exchange between the flow path, the cooling medium flowing in the cooling medium flow path, and the exhaust gas flowing in the exhaust gas flow path, and the exhaust gas in the exhaust gas. An exhaust gas heat recovery device having an outlet for nitric acid and / or sulfuric acid produced by a reaction with a NOx component and / or a SOx component.
Further, the exhaust gas heat recovery system according to the present invention includes an economizer for exchanging heat of exhaust gas containing NOx components and / or SOx components discharged from the boiler, and an exhaust gas heat recovery device according to the present invention. It is a system.

本発明によれば、ボイラから排出され、エコノマイザで熱エネルギーが回収された排ガスに対する更なる熱エネルギーの回収及び添加剤の不要な脱硫・脱硝が可能になる。 According to the present invention, it is possible to further recover the heat energy from the exhaust gas discharged from the boiler and recover the heat energy by the economizer, and to desulfurize / denitrate the waste without additives.

本発明の実施形態に係る排ガス熱回収システムを示す図である。It is a figure which shows the exhaust gas heat recovery system which concerns on embodiment of this invention. 本発明の実施形態に係る排ガス熱回収装置の概略構成を示す正面図である。It is a front view which shows the schematic structure of the exhaust gas heat recovery device which concerns on embodiment of this invention. 本発明の実施形態に係る排ガス熱回収装置におけるチューブの構成を示す図である。It is a figure which shows the structure of the tube in the exhaust gas heat recovery apparatus which concerns on embodiment of this invention.

以下、本発明の実施形態について図面を参照して詳細に説明する。
〈排ガス熱回収システムの構成〉
図1は、本発明の実施形態に係る排ガス熱回収システムを示す図である。この排ガス熱回収システムは、ボイラ1から排出されたSOx成分を含む排ガスから熱エネルギーを回収するとともに、従来のように添加剤などを必要とせずに脱硫(SOx成分を除去)する機能を有するものであり、エコノマイザ2、排ガス熱回収装置3、給水タンク4、及び脱気器5を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Structure of exhaust gas heat recovery system>
FIG. 1 is a diagram showing an exhaust gas heat recovery system according to an embodiment of the present invention. This exhaust gas heat recovery system has a function of recovering heat energy from the exhaust gas containing the SOx component discharged from the boiler 1 and desulfurization (removing the SOx component) without the need for additives as in the conventional case. The economizer 2, the exhaust gas heat recovery device 3, the water supply tank 4, and the deaerator 5 are provided.

ボイラ1では、硫黄成分を含む廃棄物を燃焼することで、SOx成分を含む所定の温度(ここでは450℃)の排ガスが発生する。なお、排ガスの温度は、ボイラ1の燃焼状態などによって変化しており、上記の温度は例えば定常運転における温度である。また、温度値は一例である。 In the boiler 1, the exhaust gas containing the SOx component at a predetermined temperature (here, 450 ° C.) is generated by burning the waste containing the sulfur component. The temperature of the exhaust gas changes depending on the combustion state of the boiler 1 and the like, and the above temperature is, for example, the temperature in steady operation. The temperature value is an example.

エコノマイザ2は、ボイラ1から排出された排ガスを後述する脱気器5からの所定の温度(ここでは155℃)の熱湯と熱交換することで、より低温(ここでは150℃)の排ガスに変換する。 The economizer 2 converts the exhaust gas discharged from the boiler 1 into a lower temperature (150 ° C. here) exhaust gas by exchanging heat with hot water having a predetermined temperature (155 ° C. here) from the deaerator 5 described later. To do.

従来の排ガス熱回収システムでは、この150℃の排ガスを脱硫装置に供給し、添加剤を使用して脱硫し、脱硫後の150℃の排ガスを大気中に放出している。これに対して、本発明の実施形態に係る排ガス熱回収システムでは、この150℃の排ガスに対して、排ガス熱回収装置3において所定の温度(ここでは20℃)の冷却媒体としての冷水と熱交換することで、より低温(ここでは100℃未満)の排ガスに変換するとともに、添加剤を使用せずに脱流した後、煙突6から大気中に放出する。なお、排ガス熱回収装置3で脱硫する仕組みについては後述する。 In the conventional exhaust gas heat recovery system, the exhaust gas at 150 ° C. is supplied to the desulfurization apparatus, desulfurized using an additive, and the exhaust gas at 150 ° C. after desulfurization is released into the atmosphere. On the other hand, in the exhaust gas heat recovery system according to the embodiment of the present invention, cold water and heat as a cooling medium at a predetermined temperature (here, 20 ° C.) in the exhaust gas heat recovery device 3 are applied to the exhaust gas at 150 ° C. By exchanging it, it is converted into a lower temperature (here, less than 100 ° C.) exhaust gas, and after escaping without using an additive, it is released into the atmosphere from the chimney 6. The mechanism of desulfurization by the exhaust gas heat recovery device 3 will be described later.

排ガス熱回収装置3は、後に図2及び図3を参照して詳述するように、円筒状のシェル31内にチューブ39を設け、チューブ39内を流れる冷水と、シェル31内を流れる排ガスとの間で熱交換を行う、所謂シェルアンドチューブ型熱交換器を基本構成とするものである。 The exhaust gas heat recovery device 3 is provided with a tube 39 in a cylindrical shell 31 as described in detail later with reference to FIGS. 2 and 3, and includes cold water flowing in the tube 39 and exhaust gas flowing in the shell 31. The basic configuration is a so-called shell-and-tube heat exchanger that exchanges heat between the two.

給水タンク4は、排ガス熱回収装置3での排ガスとの熱交換(熱エネルギー回収)により、所定の温度(ここでは35℃)に上昇した温水が排ガス熱回収装置3から供給される。給水タンク4に供給された温水は、図示されていない蒸気発生源から蒸気ドレンが供給されることで、より高温(ここでは65℃)に温度上昇する。 In the water supply tank 4, hot water having risen to a predetermined temperature (here, 35 ° C.) is supplied from the exhaust gas heat recovery device 3 by heat exchange (heat energy recovery) with the exhaust gas in the exhaust gas heat recovery device 3. The temperature of the hot water supplied to the water supply tank 4 rises to a higher temperature (65 ° C. in this case) by supplying steam drain from a steam generation source (not shown).

給水タンク4内で温度上昇した水は脱気器5に供給される。脱気器5では、蒸気発生源から蒸気を噴射することで、給水タンク4から供給された水に溶存している酸素などの気体成分を分離、除去するとともに水温を上昇させる。 The water whose temperature has risen in the water supply tank 4 is supplied to the deaerator 5. In the deaerator 5, by injecting steam from the steam generation source, gas components such as oxygen dissolved in the water supplied from the water supply tank 4 are separated and removed, and the water temperature is raised.

脱気器5にて気体成分が除去され、かつ温度上昇した水は、エコノマイザ2に供給され、ボイラ1からの排ガスと熱交換されることで、155℃から215℃に温度上昇し、ボイラ1に供給される。 The water whose gas component is removed by the deaerator 5 and whose temperature has risen is supplied to the economizer 2 and exchanges heat with the exhaust gas from the boiler 1, so that the temperature rises from 155 ° C. to 215 ° C. Is supplied to.

〈排ガス熱回収装置の概略構成〉
図2は、本発明の実施形態に係る排ガス熱回収装置の概略構成を示す正面図である。排ガス熱回収装置3は、所謂シェルアンドチューブ型熱交換器を基本構成とするものであり、排ガス流路としての円筒状のシェル(管胴)31内に冷水流路としてのチューブ39を同心状に設け、チューブ39内を流れる冷水(例えば20℃)と、シェル内31内を流れる排ガス(例えば150℃)との間で熱交換を行う。
<Outline configuration of exhaust gas heat recovery device>
FIG. 2 is a front view showing a schematic configuration of an exhaust gas heat recovery device according to an embodiment of the present invention. The exhaust gas heat recovery device 3 has a so-called shell-and-tube heat exchanger as a basic configuration, and has concentric tubes 39 as a chilled water flow path in a cylindrical shell (tube body) 31 as an exhaust gas flow path. Heat exchange is performed between the cold water flowing in the tube 39 (for example, 20 ° C.) and the exhaust gas flowing in the shell 31 (for example, 150 ° C.).

より詳しくは、排ガス熱回収装置3は、シェル31、シェル31の両端部に設けられた管板32、シェル31の一端(図では右端)に設けられた水(冷水)の入口33、シェル31の他端(図では左端)に設けられた水(温水)の出口34を備えている。 More specifically, the exhaust gas heat recovery device 3 includes a shell 31, a pipe plate 32 provided at both ends of the shell 31, a water (cold water) inlet 33 provided at one end (right end in the figure) of the shell 31, and a shell 31. The water (warm water) outlet 34 provided at the other end (left end in the figure) is provided.

また、シェル31の一側(ここでは上側)外周面には複数(ここでは3個)の排ガス入口36が設けられており、シェル31の他側(ここでは下側)の外周面には1個の排ガス出口37が設けられている。水(冷水)の入口33と水(温水)の出口34とにチューブ39の両端が接続され、シェル31の内部のシェル空間35にチューブ39が同心状に配置される。ここでは、シェル31の左端付近、すなわち水(温水)の出口34の付近の排ガス入口36を使用しているが、使用する排ガス入口36を変更することで、排ガスのシェル31内における流路長を変更し、熱交換の度合を変更することができる。チューブ39は、耐腐食性、150℃以上の耐熱性、及び柔軟性を有する素材(例えばフッ素樹脂)で形成されている。 Further, a plurality of (three here) exhaust gas inlets 36 are provided on the outer peripheral surface on one side (upper side here) of the shell 31, and one on the outer peripheral surface on the other side (lower side here) of the shell 31. The exhaust gas outlets 37 are provided. Both ends of the tube 39 are connected to the water (cold water) inlet 33 and the water (hot water) outlet 34, and the tubes 39 are concentrically arranged in the shell space 35 inside the shell 31. Here, the exhaust gas inlet 36 near the left end of the shell 31, that is, near the outlet 34 of water (hot water) is used, but by changing the exhaust gas inlet 36 to be used, the flow path length in the shell 31 of the exhaust gas is used. Can be changed to change the degree of heat exchange. The tube 39 is made of a material (for example, fluororesin) having corrosion resistance, heat resistance of 150 ° C. or higher, and flexibility.

また、シェル31の左端付近の下側の外周面に硫酸の出口38が設けられている。ここで、排ガス熱回収装置3内でSOx成分が硫酸になる仕組みを説明する。水(冷水)の入口33から水(温水)の出口34に向けてチューブ39内に水(冷水)を供給するとともに、排ガス入口36から排ガス出口37に向けてシェル31内に冷水と逆方向に流れる排ガスを供給すると、チューブ39の表面が露点以下に低下することで、排ガス中の水蒸気が結露し、結露した水とSOx(SO、SO)成分とが反応することで、硫酸(亜硫酸を含む)が生成される。この硫酸は、シェル31の内壁、チューブ39の外表面を伝って最終的に硫酸の出口38から取り出される。なお、ここでは便宜上、シェル31内に供給された排ガスはチューブ39の外周面に沿って流れるように記載したが、図3を参照して後述するように、シェル31内に供給された排ガスの一部はチューブ39内をジグザグ40に流れる。 Further, a sulfuric acid outlet 38 is provided on the lower outer peripheral surface near the left end of the shell 31. Here, a mechanism in which the SOx component becomes sulfuric acid in the exhaust gas heat recovery device 3 will be described. Water (cold water) is supplied into the tube 39 from the water (cold water) inlet 33 toward the water (hot water) outlet 34, and in the opposite direction to the cold water in the shell 31 from the exhaust gas inlet 36 toward the exhaust gas outlet 37. When the flowing exhaust gas is supplied, the surface of the tube 39 drops below the dew point, and the water vapor in the exhaust gas condenses, and the condensed water reacts with the SOx (SO 3 , SO 2 ) components, resulting in sulfuric acid (sulfur dioxide). (Including) is generated. This sulfuric acid is finally taken out from the sulfuric acid outlet 38 through the inner wall of the shell 31 and the outer surface of the tube 39. Here, for convenience, the exhaust gas supplied into the shell 31 is described so as to flow along the outer peripheral surface of the tube 39, but as will be described later with reference to FIG. 3, the exhaust gas supplied into the shell 31 is described. A part flows in the tube 39 in a zigzag manner.

〈チューブの構成〉
図3は、本発明の実施形態に係る排ガス熱回収装置におけるチューブ39の構成を示す。ここで、図3Aはチューブ全体の正面図、図3Bは第1の保持板(エンドプレート)、図3Cは第2の保持板(バッフルプレート)、図3Dは第3の保持板(バッフルプレート)を示す正面図である。
<Tube configuration>
FIG. 3 shows the configuration of the tube 39 in the exhaust gas heat recovery device according to the embodiment of the present invention. Here, FIG. 3A is a front view of the entire tube, FIG. 3B is a first holding plate (end plate), FIG. 3C is a second holding plate (baffle plate), and FIG. 3D is a third holding plate (baffle plate). It is a front view which shows.

チューブ39は、長手方向の一端(図では左端)に設けられた第1の接続部39a、長手方向の他端に設けられた第2の接続部39b、外周部に設けられた芯棒39c、長手方向に延びる冷水流路を構成する複数の冷水管39d、長手方向の両端に配置された第1の保持板(仕切板)39e、両端の第1の保持板39e間に所定間隔で交互に配置された第2の保持板39f及び第3の保持板39gを複数対備えている。 The tube 39 includes a first connecting portion 39a provided at one end in the longitudinal direction (left end in the figure), a second connecting portion 39b provided at the other end in the longitudinal direction, and a core rod 39c provided at the outer peripheral portion. A plurality of chilled water pipes 39d forming a chilled water flow path extending in the longitudinal direction, first holding plates (partition plates) 39e arranged at both ends in the longitudinal direction, and first holding plates 39e at both ends alternately at predetermined intervals. A plurality of pairs of a second holding plate 39f and a third holding plate 39g arranged are provided.

第1の接続部39a、第2の接続部39bは、それぞれ水(冷水)の入口33、水(温水)の出口34に接続される。第1の保持板39e、第2の保持板39f、第3の保持板39gのそれぞれの挿入孔39e1、39f1、39g1に芯棒39cを通すことで、各保持板が保持される。 The first connecting portion 39a and the second connecting portion 39b are connected to a water (cold water) inlet 33 and a water (hot water) outlet 34, respectively. Each holding plate is held by passing the core rod 39c through the insertion holes 39e1, 39f1, 39g1 of the first holding plate 39e, the second holding plate 39f, and the third holding plate 39g, respectively.

冷水管39dは、フッ素樹脂からなる細管であり、その両端は第1の接続部39a、第2の接続部39bで束ねられており、両端の間の部分は各保持板に設けられた冷水管挿入孔に通されている。ただし、第2の保持板39fの外周部には切欠39f2が形成されており、第3の保持板39gの中心部には切欠39g2が形成されているので、冷水管39dのうち、第1の保持板39eの外周部を通る冷水管は第2の保持板39fの切欠39f2を通り、第1の保持板39eの中心部を通る冷水管は第3の保持板39gの切欠39g2を通る。このため、切欠39f2,39g2における多数の冷水管39dの間には排ガスが流れる隙間が出来る。 The chilled water pipe 39d is a thin pipe made of fluororesin, both ends of which are bundled by a first connecting portion 39a and a second connecting portion 39b, and a portion between both ends is a chilled water pipe provided on each holding plate. It is passed through the insertion hole. However, since the notch 39f2 is formed in the outer peripheral portion of the second holding plate 39f and the notch 39g2 is formed in the central portion of the third holding plate 39g, the first of the cold water pipes 39d The chilled water pipe passing through the outer peripheral portion of the holding plate 39e passes through the notch 39f2 of the second holding plate 39f, and the chilled water pipe passing through the central portion of the first holding plate 39e passes through the notch 39g2 of the third holding plate 39g. Therefore, there is a gap through which the exhaust gas flows between the large number of cold water pipes 39d in the notches 39f2 and 39g2.

以上の構成を有するシェル31において、排ガスは排ガス入口36からシェル31内に供給され、シェル31内を流れる。このとき、排ガスはシェル31の長手方向に第2の保持板39fの外周部と第3の保持板39gの中心部を通ってジグザグ40に流れる。このため、シェル31内を直線的に流れる場合と比べると、排ガスの流れる距離が長くなるため、結露した水分との接触域を広げることができるので、SOx成分との反応を促進させることができる。また、ここでは、第2の保持板39fの数が15、第3の保持板39gの数が14であるが、これらの保持板は着脱可能であり、それぞれの数を増減することで、排ガスの流れる距離を増減することができる。また、第2の保持板39f及び第3の保持板39gの形状変更(例えば切欠の位置の変更、排気管の挿通位置の変更など)、位置変更、間隔変更、枚数調整でチューブパスや排ガス流路の変更が可能である。 In the shell 31 having the above configuration, the exhaust gas is supplied into the shell 31 from the exhaust gas inlet 36 and flows through the shell 31. At this time, the exhaust gas flows in a zigzag manner in the longitudinal direction of the shell 31 through the outer peripheral portion of the second holding plate 39f and the central portion of the third holding plate 39g. Therefore, as compared with the case where the exhaust gas flows linearly in the shell 31, the distance through which the exhaust gas flows becomes longer, so that the contact area with the condensed moisture can be widened, and the reaction with the SOx component can be promoted. .. Further, here, the number of the second holding plates 39f is 15 and the number of the third holding plates 39g is 14, but these holding plates are removable, and by increasing or decreasing the respective numbers, the exhaust gas is exhausted. You can increase or decrease the flow distance of. In addition, the tube path and exhaust gas flow can be changed by changing the shape of the second holding plate 39f and the third holding plate 39g (for example, changing the position of the notch, changing the insertion position of the exhaust pipe, etc.), changing the position, changing the interval, and adjusting the number of sheets. The route can be changed.

次に本発明の実施例について説明する。
実施例の構成は下記のとおりである。
システム構成:図1と同じ
シェル31の素材:ステンレススチールSUS304
シェル31の外径:250mm
シェル31の長さ:4197mm
チューブ39の構成:図3と同じ
運転条件:図1に示されている温度に設定
Next, examples of the present invention will be described.
The configuration of the embodiment is as follows.
System configuration: Same as FIG. 1 Material of shell 31: Stainless steel SUS304
Outer diameter of shell 31: 250 mm
Length of shell 31: 4197 mm
Configuration of tube 39: Same as FIG. 3 Operating conditions: Set to the temperature shown in FIG.

以上の実施例における排ガス熱回収装置3の熱交換能力及び脱硫能力の測定値を下記の表1に示す。 The measured values of the heat exchange capacity and the desulfurization capacity of the exhaust gas heat recovery device 3 in the above examples are shown in Table 1 below.

Figure 2021060000
Figure 2021060000

ここで、熱交換能力は、シェル31における水の入口33における水温の測定値、水の出口34における水温の測定値、シェル31における排ガス入口36における排ガスの温度の測定値、排ガス出口37における排ガス温度の測定値、一定時間あたりの水の流量及び排ガスの流量から所定の計算式に基づいて算出したものである。また、SO成分の脱硫能力はシェル31における排ガス出口37の付近におけるSO成分の濃度の測定値である。また、ドレンの脱硫能力は硫酸の出口38から取り出した硫酸のpHの測定値である。 Here, the heat exchange capacity includes the measured value of the water temperature at the water inlet 33 of the shell 31, the measured value of the water temperature at the water outlet 34, the measured value of the exhaust gas temperature at the exhaust gas inlet 36 of the shell 31, and the exhaust gas at the exhaust gas outlet 37. It is calculated based on a predetermined formula from the measured value of temperature, the flow rate of water per fixed time, and the flow rate of exhaust gas. Also, the desulfurization capacity of SO 2 component is a measure of the concentration of SO 2 component in the vicinity of the exhaust gas outlet 37 in the shell 31. The desulfurization capacity of the drain is a measured value of the pH of sulfuric acid taken out from the outlet 38 of sulfuric acid.

この表より、熱交換能力は目標値を超えていることが分かる。また、SO成分の脱硫能力については、目標値に達していないものの装置導入前よりは良好な値が得られることが分かる。 From this table, it can be seen that the heat exchange capacity exceeds the target value. Further, it can be seen that the desulfurization capacity of the SO 2 component does not reach the target value, but a better value can be obtained than before the introduction of the apparatus.

以上詳細に説明したように、本発明の実施形態に係る排ガス熱回収装置3によれば、下記(1)〜(8)の効果が得られる。
(1)耐腐食性及び約150℃以上の耐熱性を有する素材により排ガスの流路を構成することにより、約150℃以下の温度域で抽出される硫酸に対して耐性を持たせることができ、約150℃以下の温度域での熱エネルギーの回収が可能である。
(2)耐腐食性及び約150℃以上の耐熱性を有する素材をフッ素樹脂などの柔軟性を有する素材とすることで、既存設備に追加設置する場合など、装置の形状設計の汎用性が高まる。
(3)装置内に排ガス中に含まれる水分を積極的に結露させるための冷却媒体を通すことにより、水分の結露量を増加させ、SOx成分との反応を促進させることができる。
(4)排ガスの流路であるチューブ39内に仕切版(バッフルプレート)を設けることで、排ガスの流路長を増加させ、結露した水分との接触域を広げることができるので、SOx成分との反応を促進させることができる。
(5)排ガス入口を複数設け、使用する排ガス入口を選択することで、排ガスの流路長を変化させ、結露した水分との接触域を調整することができるので、SOx成分との反応を加減することができる。
(6)結露の促進に使用した冷却媒体としての水は排ガス中の熱エネルギーが転嫁された状態で排出されるので、この熱エネルギーを再利用することができる。
(7)150℃以下の温度域で抽出される硫酸を装置内で回収する機能を付加することで、後段の設備を従来の仕様のままにすることができる。
(8)排ガスに含まれる水分とSOx成分との反応により脱硫を行うので、添加剤が不要である。
As described in detail above, according to the exhaust gas heat recovery device 3 according to the embodiment of the present invention, the following effects (1) to (8) can be obtained.
(1) By constructing the flow path of the exhaust gas with a material having corrosion resistance and heat resistance of about 150 ° C. or higher, it is possible to impart resistance to sulfuric acid extracted in a temperature range of about 150 ° C. or lower. It is possible to recover thermal energy in a temperature range of about 150 ° C. or lower.
(2) By using a flexible material such as fluororesin for a material that has corrosion resistance and heat resistance of about 150 ° C or higher, the versatility of the shape design of the device is enhanced when it is additionally installed in existing equipment. ..
(3) By passing a cooling medium for positively dew condensation of water contained in the exhaust gas into the apparatus, the amount of dew condensation of water can be increased and the reaction with the SOx component can be promoted.
(4) By providing a partition plate (baffle plate) in the tube 39, which is the flow path of the exhaust gas, the length of the flow path of the exhaust gas can be increased and the contact area with the condensed moisture can be widened. Reaction can be promoted.
(5) By providing a plurality of exhaust gas inlets and selecting the exhaust gas inlet to be used, the flow path length of the exhaust gas can be changed and the contact area with the condensed moisture can be adjusted, so that the reaction with the SOx component can be adjusted. can do.
(6) Since water as a cooling medium used for promoting dew condensation is discharged in a state where the heat energy in the exhaust gas is passed on, this heat energy can be reused.
(7) By adding a function of recovering sulfuric acid extracted in a temperature range of 150 ° C. or lower in the apparatus, the equipment in the subsequent stage can be kept at the conventional specifications.
(8) Since desulfurization is performed by the reaction between the water contained in the exhaust gas and the SOx component, no additive is required.

以上、本発明の実施形態として、SOx成分を含む排ガスを処理する排ガス熱回収システムを例にして説明したが、本発明はNOx成分を含む排ガスを処理するシステムにも適用することができる。 As described above, as the embodiment of the present invention, the exhaust gas heat recovery system for treating the exhaust gas containing the SOx component has been described as an example, but the present invention can also be applied to the system for treating the exhaust gas containing the NOx component.

1…ボイラ、2…エコノマイザ、3…排ガス熱回収装置、31…シェル、33…水(冷水)の入口、34…水(温水)の出口、35…シェル空間、36…排ガス入口、37…排ガス出口、38…硫酸の出口、39…チューブ、39d…冷水管、39e…第1の保持板、39f…第2の保持板、39g…第3の保持板。 1 ... Boiler, 2 ... Economizer, 3 ... Exhaust gas heat recovery device, 31 ... Shell, 33 ... Water (cold water) inlet, 34 ... Water (hot water) outlet, 35 ... Shell space, 36 ... Exhaust gas inlet, 37 ... Exhaust gas Outlet, 38 ... Sulfuric acid outlet, 39 ... Tube, 39d ... Cold water pipe, 39e ... First holding plate, 39f ... Second holding plate, 39g ... Third holding plate.

Claims (7)

ボイラから排出され、エコノマイザで熱エネルギーが回収されたNOx成分及び/又はSOx成分を含む排ガスを、耐腐食性を有する素材の管体からなる排ガス流路内に供給するとともに、当該排ガス流路の内部に配置された耐腐食性を有する素材の管体からなる冷却媒体流路に冷却媒体を供給して、排ガスと冷却媒体との間で熱交換を行う第1の工程と、
第1の工程で結露した排ガス中の水蒸気とNOx成分及び/又はSOx成分との反応で生成された硝酸及び/又は硫酸を排ガス流路から回収する第2の工程と、を有する排ガス熱回収方法。
The exhaust gas containing the NOx component and / or the SOx component discharged from the boiler and recovered from the heat energy by the economizer is supplied into the exhaust gas flow path made of a tube made of a corrosion-resistant material, and the exhaust gas flow path of the exhaust gas flow path. The first step of supplying a cooling medium to a cooling medium flow path made of a tube body made of a corrosion-resistant material arranged inside and exchanging heat between the exhaust gas and the cooling medium.
An exhaust gas heat recovery method comprising a second step of recovering nitric acid and / or sulfuric acid generated by the reaction of water vapor in the exhaust gas condensed in the first step with the NOx component and / or the SOx component from the exhaust gas flow path. ..
ボイラから排出され、エコノマイザで熱エネルギーが回収されたNOx成分及び/又はSOx成分を含む排ガスから熱エネルギーを回収するとともに、NOx成分及び/又はSOx成分を除去する排ガス熱回収装置であって、
耐腐食性を有する素材の管体からなる排ガス流路と、
排ガス流路の内部に配置された、耐腐食性を有する素材の管体からなる冷却媒体流路と、
冷却媒体流路内を流れる冷却媒体と排ガス流路内を流れる排ガスとの間の熱交換で冷却媒体により冷却されて結露した排ガス流路内の排ガス中の水蒸気と当該排ガス中のNOx成分及び/又はSOx成分との反応で生成された硝酸及び/又は硫酸の出口と、
を有する排ガス熱回収装置。
An exhaust gas heat recovery device that recovers heat energy from exhaust gas containing NOx components and / or SOx components that have been discharged from a boiler and whose heat energy has been recovered by an economizer, and also removes NOx components and / or SOx components.
An exhaust gas flow path made of a tube made of a corrosion-resistant material,
A cooling medium flow path made of a corrosion-resistant material tube arranged inside the exhaust gas flow path, and a cooling medium flow path.
Water vapor in the exhaust gas in the exhaust gas flow path that has been cooled by the cooling medium and condensed by heat exchange between the cooling medium flowing in the cooling medium flow path and the exhaust gas flowing in the exhaust gas flow path, the NOx component in the exhaust gas, and / Or the outlet of nitric acid and / or sulfuric acid produced by the reaction with the SOx component,
Exhaust gas heat recovery device with.
請求項2に記載された排ガス熱回収装置において、
排ガス流路が円筒状のシェルからなり、当該シェル内に冷却媒体流路としてのチューブが配置されており、チューブ内を流れる冷水と、シェル内を流れる排ガスとの間で熱交換を行う排ガス熱回収装置。
In the exhaust gas heat recovery device according to claim 2.
The exhaust gas flow path is composed of a cylindrical shell, and a tube as a cooling medium flow path is arranged in the shell, and exhaust gas heat exchanges heat between the cold water flowing in the tube and the exhaust gas flowing in the shell. Recovery device.
請求項3に記載された排ガス熱回収装置において、
シェルの外周面における長手方向の複数の位置に排ガス入口が設けられており、チューブを接続する排ガス入口を変えることで、排ガス流路長の変更が可能な排ガス熱回収装置。
In the exhaust gas heat recovery device according to claim 3,
An exhaust gas heat recovery device in which exhaust gas inlets are provided at a plurality of positions in the longitudinal direction on the outer peripheral surface of the shell, and the length of the exhaust gas flow path can be changed by changing the exhaust gas inlets to which the tubes are connected.
請求項3に記載された排ガス熱回収装置において、
チューブは、両端に配置された第1の保持板と、当該第1の保持板間に所定間隔で交互に配置された着脱可能な第2の保持板及び第3の保持板を複数対備えており、
第2の保持板及び第3の保持板の数又は形状又はチューブの長手方向における位置の変更により、排ガス流路の変更が可能な排ガス熱回収装置。
In the exhaust gas heat recovery device according to claim 3,
The tube is provided with a plurality of pairs of a first holding plate arranged at both ends and a detachable second holding plate and a third holding plate alternately arranged at predetermined intervals between the first holding plates. Ori
An exhaust gas heat recovery device capable of changing the exhaust gas flow path by changing the number or shape of the second holding plate and the third holding plate or the position of the tube in the longitudinal direction.
請求項2に記載された排ガス熱回収装置において、
前記素材がフッ素樹脂からなる排ガス熱回収装置。
In the exhaust gas heat recovery device according to claim 2.
An exhaust gas heat recovery device whose material is fluororesin.
ボイラから排出されたNOx成分及び/又はSOx成分を含む排ガスの熱交換を行うエコノマイザと、請求項2乃至6のいずれかに記載された排ガス熱回収装置と、を有する排ガス熱回収システム。 An exhaust gas heat recovery system including an economizer that exchanges heat of exhaust gas containing NOx components and / or SOx components discharged from a boiler, and an exhaust gas heat recovery device according to any one of claims 2 to 6.
JP2019183894A 2019-10-04 2019-10-04 Exhaust gas heat recovery equipment and exhaust gas heat recovery system Active JP7368999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183894A JP7368999B2 (en) 2019-10-04 2019-10-04 Exhaust gas heat recovery equipment and exhaust gas heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183894A JP7368999B2 (en) 2019-10-04 2019-10-04 Exhaust gas heat recovery equipment and exhaust gas heat recovery system

Publications (2)

Publication Number Publication Date
JP2021060000A true JP2021060000A (en) 2021-04-15
JP7368999B2 JP7368999B2 (en) 2023-10-25

Family

ID=75379777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183894A Active JP7368999B2 (en) 2019-10-04 2019-10-04 Exhaust gas heat recovery equipment and exhaust gas heat recovery system

Country Status (1)

Country Link
JP (1) JP7368999B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812048Y2 (en) * 1977-11-09 1983-03-07 三井造船株式会社 Double tube heat exchanger for liquids
JP2009019827A (en) * 2007-07-12 2009-01-29 Ebara Corp Exhaust heat recovery device
JP2012508859A (en) * 2008-11-12 2012-04-12 エクソンモービル リサーチ アンド エンジニアリング カンパニー Movable baffle for heat exchanger and method of reducing vibration of heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812048Y2 (en) * 1977-11-09 1983-03-07 三井造船株式会社 Double tube heat exchanger for liquids
JP2009019827A (en) * 2007-07-12 2009-01-29 Ebara Corp Exhaust heat recovery device
JP2012508859A (en) * 2008-11-12 2012-04-12 エクソンモービル リサーチ アンド エンジニアリング カンパニー Movable baffle for heat exchanger and method of reducing vibration of heat exchanger

Also Published As

Publication number Publication date
JP7368999B2 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2004042280A1 (en) Exhaust gas treating apparatus
US9400102B2 (en) Heat exchanger including flow regulating plates
JP5746353B2 (en) Waste heat boiler
JP2006308269A (en) Heat recovery equipment
JP7368999B2 (en) Exhaust gas heat recovery equipment and exhaust gas heat recovery system
CN109647121A (en) A kind of gas cleaning disappears bletilla desulfurization wastewater process integrated system
KR101916083B1 (en) Durable Gas-Gas Heat Exchanger of Thermal Power Plant
US5384106A (en) Method for removing pollutants from a gas stream using a fractional condensing heat exchanger
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
JP2007163115A (en) Heat exchanger
CN206508767U (en) Flue gas disappears white equipment
CN102135271B (en) Flue gas waste heat recovery energy-saver of boiler wet desulphurization system
RU2555919C1 (en) Surface-mounted heat recovery unit for deep heat recovery of flue gases, and its operation method
JP4570187B2 (en) Exhaust gas heat exchanger
JP2014185810A (en) Heat exchanger and heat exchange system
CN205208537U (en) Take economizer of water preheater
KR101941162B1 (en) Gas-gas heat exchanger in a thermal power plant with improved corrosion protection
RU79642U1 (en) VERTICAL NETWORK HEAT EXCHANGER
JP7203069B2 (en) Heat exchangers and flue gas treatment equipment
JP3852820B2 (en) Smoke removal equipment
JP7377942B2 (en) Heat exchanger and flue gas treatment equipment
CN107560462A (en) A kind of segmented smoke heat replacing device
JP2019013893A (en) Exhaust gas treatment method and exhaust gas treatment system
JPH08254397A (en) Heat exchanger for condenser
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7368999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150