JP2009019696A - Vacuum insulating material and building using the same - Google Patents

Vacuum insulating material and building using the same Download PDF

Info

Publication number
JP2009019696A
JP2009019696A JP2007182922A JP2007182922A JP2009019696A JP 2009019696 A JP2009019696 A JP 2009019696A JP 2007182922 A JP2007182922 A JP 2007182922A JP 2007182922 A JP2007182922 A JP 2007182922A JP 2009019696 A JP2009019696 A JP 2009019696A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
core
vacuum heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007182922A
Other languages
Japanese (ja)
Inventor
Masaya Kojima
真弥 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007182922A priority Critical patent/JP2009019696A/en
Publication of JP2009019696A publication Critical patent/JP2009019696A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum insulating material capable of retaining a heat insulating effect over a long period. <P>SOLUTION: There is provided a vacuum insulating material 1 which includes a gas barrier outer covering material 6 having a thermally adhered layer and a plurality of core materials 5a and further is depressurized and hermetically sealed so that the plurality of the core materials 5a is positioned within an independent vacuum space separated by the thermally adhered layer 7 between the outer covering materials 6 where the thermally adhered layers are opposed to each other and furthermore the whole parts of at least a peripheral border of the core material 5a in the opposed thermally adhered layers are thermally adhered. In the vacuum insulating material 1, the core materials 5a are arranged on extended lines 8a, 8b, 8c, 8d, 8e, 8f and 8g of a folded line of the vacuum insulating material 1 formed between adjacent core materials 5a. As a result, the outer covering material 6 is imparted with rigidity in the thermally adhered portion 7 and besides the core materials 5a are arranged on the extended lines 8e, 8f and 8g of the folded line. Hence, the outer covering material 6 can be prevented from bending in the vicinity of the core materials 5a, thus reducing the number of a crack and a pin hole which are generated by inadvertently occurring bending of the vacuum insulating material 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、長期にわたって断熱効果が維持可能な真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material that can maintain a heat insulating effect over a long period of time.

近年、地球環境問題である温暖化の対策として住宅の省エネルギーを推進する動きが活発となっており、優れた断熱性能を有する断熱材が求められている。   In recent years, there has been an active movement to promote energy saving in houses as a countermeasure against global warming, which is a global environmental problem, and a heat insulating material having excellent heat insulating performance is demanded.

住宅用断熱材として現在では、グラスウールやウレタンボードが主流となっているが、さらなる省エネルギー化を進める為には優れた断熱性能を有する真空断熱材の適用が望ましい。しかしながら、従来の真空断熱材は一つの袋状外装体に一つの芯材を挿入した後に減圧密封するものであり、これをパネルとして考えると、パネル全体が一つの部屋を構成されている。このため、釘や螺子などで真空断熱材を固定する際、誤って外装体に傷を付けると真空がリークし、断熱材全体の断熱性能を維持することができなくなるという課題を有していた。   At present, glass wool and urethane board are mainly used as heat insulating materials for houses, but in order to further save energy, it is desirable to apply a vacuum heat insulating material having excellent heat insulating performance. However, the conventional vacuum heat insulating material is one that seals under reduced pressure after inserting one core material into one bag-like exterior body, and considering this as a panel, the entire panel constitutes one room. For this reason, when fixing a vacuum heat insulating material with a nail or a screw, there is a problem that if the exterior body is damaged by mistake, the vacuum leaks and the heat insulating performance of the whole heat insulating material cannot be maintained. .

この課題を解決するために、芯材が外被材中に封入され、低真空状態である密封体よりなる真空断熱材において、密封体が複数の部屋に分割された真空断熱材が報告されている(例えば、特許文献1参照)。   In order to solve this problem, a vacuum heat insulating material in which a core material is enclosed in an outer cover material and is made of a sealing body in a low vacuum state, and the sealing body is divided into a plurality of rooms has been reported. (For example, refer to Patent Document 1).

図9は、特許文献1に記載された従来の真空断熱材の断面図である。この真空断熱材1は、複数の芯材2が外被材3中に低真空状態で封入され、各芯材2が独立した真空の部屋となるように熱融着部4が設けたものである。   FIG. 9 is a cross-sectional view of a conventional vacuum heat insulating material described in Patent Document 1. In this vacuum heat insulating material 1, a plurality of core materials 2 are enclosed in a jacket material 3 in a low vacuum state, and a heat fusion part 4 is provided so that each core material 2 becomes an independent vacuum chamber. is there.

これにより、芯材2と芯材2の間で切断が可能であるため、真空断熱材1の寸法調整が容易に行える。また、真空断熱材1を一つのパネルとして考えると、パネルとして一部の真空がリークしても、そのリークは他の箇所に及ばないため、耐久性能が向上し、また、真空断熱材を釘等によって簡便で安価な方法により固定することができるとされている。
特開平7−139690号公報
Thereby, since the cutting | disconnection between the core material 2 and the core material 2 is possible, the dimension adjustment of the vacuum heat insulating material 1 can be performed easily. Considering the vacuum heat insulating material 1 as one panel, even if a part of the vacuum leaks as a panel, the leak does not reach other parts, so the durability is improved, and the vacuum heat insulating material is nail. It can be fixed by a simple and inexpensive method.
Japanese Patent Laid-Open No. 7-139690

しかしながら、上記特許文献1の構成では、真空断熱材1を細かい部屋に分割すると、パネル全体としての剛性が失われ、隣接する芯材2の間の外被材3を作用点として屈曲しやすくなり、建築材料のような大きな真空断熱材では施工が困難となる。また、真空断熱材1の製造から施工までの間に不用意な屈曲が繰り返されると、外被材3にクラックやピンホールが発生し、外被材3内部の真空度を長期にわたって維持することが困難となる。   However, in the configuration of Patent Document 1, when the vacuum heat insulating material 1 is divided into fine rooms, the rigidity of the entire panel is lost, and it becomes easy to bend with the covering material 3 between the adjacent core materials 2 acting as an action point. Construction is difficult with large vacuum heat insulating materials such as building materials. Further, if careless bending is repeated between the manufacture and construction of the vacuum heat insulating material 1, cracks and pinholes are generated in the jacket material 3, and the vacuum inside the jacket material 3 is maintained for a long time. It becomes difficult.

本発明では、上記従来の課題を解決するものであり、施工性を改善するとともに、外被材の不用意な屈曲によるクラックやピンホールの発生を抑えることで長期にわたって断熱効果を維持することができる真空断熱材を提供することを目的とする。   The present invention solves the above-described conventional problems, improves workability, and maintains the heat insulation effect over a long period of time by suppressing the occurrence of cracks and pinholes due to inadvertent bending of the jacket material. An object of the present invention is to provide a vacuum insulating material that can be used.

上記目的を達成するために、本発明の真空断熱材は、熱溶着層を有するガスバリア性の外被材と、複数の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に前記芯材が熱溶着部によって離間される独立した真空空間内に位置するように減圧密封され、対向する前記熱溶着層同士が、芯材の少なくとも周縁部の全てが熱溶着された真空断熱材において、前記芯材と、隣接する前記芯材の間に形成される真空断熱材の折曲げ線の延長線上に芯材を配置したものである。   In order to achieve the above object, the vacuum heat insulating material of the present invention has a gas barrier outer covering material having a heat welding layer and a plurality of core materials, and the outer covering materials facing each other. The core material is sealed under reduced pressure so that the core material is located in an independent vacuum space separated by the heat welded portion, and the opposing heat weld layers are heat welded at least all of the peripheral edge portions of the core material. In the vacuum heat insulating material, the core material is disposed on an extension line of a fold line of the vacuum heat insulating material formed between the core material and the adjacent core material.

対向する熱溶着層同士が熱溶着部を形成することで外被材の剛性が付与されるとともに、芯材と隣接する他の芯材の間に形成される折曲げ線の延長線上に芯材を配置することで、芯材近傍における外被材の屈曲が防止される。   The opposing heat-welding layers form a heat-welded portion to give the outer shell material rigidity, and the core material on the extension line of the bending line formed between the core material and another adjacent core material By arranging this, bending of the jacket material in the vicinity of the core material is prevented.

これにより、真空断熱材の不用意な屈曲により発生するクラックやピンホールが減少し、真空断熱材の断熱効果を長期にわたって維持することが可能となる。   Thereby, the crack and pinhole which generate | occur | produce by the careless bending of a vacuum heat insulating material reduce, and it becomes possible to maintain the heat insulation effect of a vacuum heat insulating material over a long term.

また、真空断熱材全体に剛性が生じるため、建築部材としての施工性が改善する。   Moreover, since rigidity arises in the whole vacuum heat insulating material, the workability | operativity as a building member improves.

本発明の真空断熱材は、対向する熱溶着層同士が熱溶着部を形成することで外被材の剛性が付与されるとともに、芯材と隣接する他の芯材の間に形成される折曲げ線の延長線上に芯材を配置することで、芯材近傍における外被材の屈曲が防止されるため、施工性が改善されるとともに、長期にわたって断熱効果を維持することができる。   In the vacuum heat insulating material of the present invention, the opposing heat-welded layers form a heat-welded portion, thereby providing the rigidity of the jacket material and folding formed between the core material and another adjacent core material. By disposing the core material on the extension line of the bend line, bending of the jacket material in the vicinity of the core material is prevented, so that the workability is improved and the heat insulating effect can be maintained for a long time.

請求項1に記載の発明は、熱溶着層を有するガスバリア性の外被材と、複数の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に前記芯材が熱溶着部によって離間される独立した真空空間内に位置するように減圧密封され、対向する前記熱溶着層同士が、芯材の少なくとも周縁部の全てが熱溶着された真空断熱材において、前記芯材と、隣接する前記芯材の間に形成される真空断熱材の折曲げ線の延長線上に芯材を配置したものである。   The invention according to claim 1 has a gas barrier outer covering material having a heat welding layer and a plurality of core materials, and the core material is between the outer covering materials facing each other. In the vacuum heat insulating material, which is sealed under reduced pressure so as to be located in an independent vacuum space separated by a heat welded portion, and the opposite heat welded layers are heat welded at least all of the peripheral edge portion of the core material, the core A core material is disposed on an extension line of a fold line of a vacuum heat insulating material formed between a material and the adjacent core material.

対向する熱溶着層同士が熱溶着部を形成することで外被材の剛性が付与されるとともに、芯材と隣接する芯材の間に形成される折曲げ線の延長線上に芯材を配置することで、芯材近傍における外被材の屈曲が防止できる。   The opposing heat-welding layers form a heat-welded part to give the jacket material rigidity, and the core material is placed on the extension of the fold line formed between the core material and the adjacent core material. By doing so, it is possible to prevent the jacket material from being bent in the vicinity of the core material.

これにより、真空断熱材の不用意な屈曲により発生するクラックやピンホールが減少し、真空断熱材の断熱効果を長期にわたって維持することが可能となる。   Thereby, the crack and pinhole which generate | occur | produce by the careless bending of a vacuum heat insulating material reduce, and it becomes possible to maintain the heat insulation effect of a vacuum heat insulating material over a long term.

また、真空断熱材全体に剛性が生じるため、建築部材としての施工性が改善する。   Moreover, since rigidity arises in the whole vacuum heat insulating material, the workability | operativity as a building member improves.

なお、ここで独立した空間とは、各空間が熱溶着部を介して離間された状態のことを指す。また、独立した空間の形成方法に関しては特に指定するものではないが、ヒートシール方式やインパルスシール方式に、高周波シール方式、超音波シール方式等、従来公知技術による熱溶着部の形成方法が考えられる。   Here, the independent space refers to a state in which each space is separated via a heat welding portion. In addition, the method for forming the independent space is not particularly specified, but a method for forming a heat-welded portion by a conventionally known technique such as a high-frequency seal method or an ultrasonic seal method can be considered as a heat seal method or an impulse seal method. .

また、周縁部の熱溶着方法に関しては特に指定するものではなく、芯材を減圧密封した後に大気圧によって押圧されている熱溶着層同士を高温雰囲気において熱溶着層の融点まで加熱する方法や、外被材を減圧雰囲気において熱溶着層の融点まで加熱した直後に芯材を密封する方法が考えられる。   Also, there is no particular designation as to the method of heat-sealing the peripheral portion, a method of heating the heat-welded layers pressed by the atmospheric pressure to the melting point of the heat-welded layer in a high-temperature atmosphere after sealing the core material under reduced pressure, A method of sealing the core material immediately after heating the jacket material to the melting point of the heat-welded layer in a reduced-pressure atmosphere is conceivable.

また、芯材の形状は断熱を必要とする箇所に応じて三角形、四角形、多角形、円形、L型あるいはそれらの組み合わせからなる任意形状が使用できる。   Moreover, the shape of a core material can use the arbitrary shape which consists of a triangle, a quadrangle | tetragon, a polygon, a circle | round | yen, L type, or those combinations according to the location which requires heat insulation.

また、折曲げ線とは、芯材と隣接する他の芯材との間に位置する熱溶着部を作用点として折曲げた際に生じる線を示す。   Moreover, a fold line shows the line | wire produced when it bends by making into a point of action the heat welding part located between a core material and the other adjacent core material.

次に真空断熱材の構成材料について説明する。   Next, constituent materials of the vacuum heat insulating material will be described.

外被材に使用するラミネートフィルムは、最内層を熱溶着層とし、中間層にはガスバリア層として金属箔あるいは金属蒸着層を有し、最外層には表面保護層を設けたものが適用できる。   As the laminate film used for the covering material, a film having an innermost layer as a heat welding layer, an intermediate layer having a metal foil or a metal vapor deposition layer as a gas barrier layer, and an outermost layer having a surface protective layer can be applied.

なお、熱溶着層としては特に指定するものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂或いはそれらの混合体が使用できる。   In addition, although it does not specify in particular as a heat welding layer, thermoplastic resins, such as a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, or those mixtures are used. it can.

また、ガスバリア層としては、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体へアルミニウムや銅等の金属原子を蒸着したフィルム等が使用できる。   As the gas barrier layer, a metal foil such as an aluminum foil or a copper foil, a film obtained by evaporating metal atoms such as aluminum or copper on a polyethylene terephthalate film or an ethylene-vinyl alcohol copolymer, or the like can be used.

また、表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用できる。   Moreover, as a surface protective layer, conventionally well-known materials, such as a nylon film, a polyethylene terephthalate film, a polypropylene film, can be used.

芯材の種類について特に指定するものではないが、気層比率90%前後の多孔体をシート状または板状に加工したものであり、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの連続気泡体や、グラスウールやロックウール、アルミナ繊維、シリカアルミナ繊維、シリカ繊維などの繊維体、パーライトや湿式シリカ、乾式シリカなどの粉体など、従来公知の芯材が利用できる。   Although it is not particularly specified for the type of the core material, it is a porous body having a gas phase ratio of about 90% processed into a sheet shape or a plate shape, and an open cell body such as urethane foam, styrene foam, phenol foam, Conventionally known core materials such as fiber bodies such as glass wool, rock wool, alumina fibers, silica alumina fibers, and silica fibers, and powders such as pearlite, wet silica, and dry silica can be used.

請求項2に記載の発明は、請求項1に記載の真空断熱材において、1方向にのみ折曲げ可能となるよう、芯材を配置したものである。真空断熱材の折曲げ方向を1方向に限定したため、折畳んで保管することができ、また、意図する方向以外の不用意な屈曲により発生するクラックやピンホールの発生を未然に防止することができるため、真空断熱材の断熱効果を長期にわたって維持することが可能となる。   The invention according to claim 2 is the vacuum heat insulating material according to claim 1, wherein the core material is arranged so that it can be bent only in one direction. Since the folding direction of the vacuum heat insulating material is limited to one direction, it can be folded and stored, and the occurrence of cracks and pinholes caused by inadvertent bending other than the intended direction can be prevented in advance. Therefore, the heat insulating effect of the vacuum heat insulating material can be maintained for a long time.

請求項3に記載の発明は、請求項1または2に記載の真空断熱材において、同一形状の芯材を配置したものである。同一形状の芯材が配置されているため、寸法調整により端部の芯材を切断した真空断熱材であっても、真空断熱材の剛性が維持可能であることから、真空断熱材の不用意な屈曲によって外被材に発生するクラックやピンホールが減少し、真空断熱材の断熱効果を長期にわたって維持することが可能となる。   Invention of Claim 3 arrange | positions the core material of the same shape in the vacuum heat insulating material of Claim 1 or 2. Since the same shape of the core material is arranged, the vacuum heat insulating material can maintain its rigidity even if it is a vacuum heat insulating material whose end core material is cut by adjusting the dimensions. Cracks and pinholes generated in the jacket material due to an appropriate bending are reduced, and the heat insulating effect of the vacuum heat insulating material can be maintained over a long period of time.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の真空断熱材を用いた建物である。   Invention of Claim 4 is a building using the vacuum heat insulating material as described in any one of Claim 1 to 3.

本発明の真空断熱材を壁や床、屋根へ適用することにより、建物の断熱性能が向上することにより、冷暖房費が節約できるため、省エネルギー化が可能となる。   By applying the vacuum heat insulating material of the present invention to walls, floors, and roofs, the heat insulation performance of the building is improved, and thus the heating and cooling costs can be saved, so that energy saving can be achieved.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の平面図であり、図2は、図1をA−A線で切断した真空断熱材の断面図である。
(Embodiment 1)
FIG. 1 is a plan view of the vacuum heat insulating material in Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view of the vacuum heat insulating material taken along line AA in FIG.

図1、図2において真空断熱材1は、10個の方形またはL字形に成形されたグラスウールからなる厚み5mmの芯材5a,5b,5cを、ガスバリア性を有するラミネートフィルムからなる外被材6で覆い、外被材6の内部を減圧したものであり、各芯材5a,5b,5cのそれぞれが独立した真空空間内に位置するように芯材5a,5b,5cの周縁部全てに熱溶着部7を設けたものである。   In FIG. 1 and FIG. 2, a vacuum heat insulating material 1 is a core material 5a, 5b, 5c made of glass wool formed into 10 squares or L-shapes, and an outer cover material 6 made of a laminate film having gas barrier properties. And the inside of the jacket material 6 is decompressed, and heat is applied to all the peripheral portions of the core materials 5a, 5b, 5c so that each of the core materials 5a, 5b, 5c is located in an independent vacuum space. The welding part 7 is provided.

なお、芯材5a,5b,5cに隣接する他の芯材5a,5b,5cの間には、それぞれ折曲げ線(図示せず)の延長線8a,8b,8c,8d,8e,8f,8gが形成され、延長線8a,8b,8c,8d,8e,8f,8g上にそれぞれ芯材5a,5b,5cが配置されている。   In addition, between the other core materials 5a, 5b, 5c adjacent to the core materials 5a, 5b, 5c, extension lines 8a, 8b, 8c, 8d, 8e, 8f of bending lines (not shown) are respectively provided. 8g is formed, and the core members 5a, 5b, and 5c are arranged on the extension lines 8a, 8b, 8c, 8d, 8e, 8f, and 8g, respectively.

以上のように、本実施の形態の真空断熱材1は、隣接する各芯材5a,5b,5cの間に位置する外被材6の熱溶着部7を作用点として屈曲しようとするが、各延長線8a,8b,8c,8d,8e,8f,8g上にそれぞれ芯材5a,5b,5cが配置されているため、熱溶着部7での屈曲が防止できる。これにより、真空断熱材1の不用意な屈曲により発生するクラックやピンホールの発生を未然に防止することができるため、真空断熱材1の断熱効果を長期にわたって維持することが可能となる。   As described above, the vacuum heat insulating material 1 according to the present embodiment tries to bend with the heat welding portion 7 of the jacket material 6 positioned between the adjacent core materials 5a, 5b, 5c as an action point. Since the core members 5a, 5b, and 5c are disposed on the extension lines 8a, 8b, 8c, 8d, 8e, 8f, and 8g, respectively, bending at the heat welding portion 7 can be prevented. Thereby, since the generation | occurrence | production of the crack and pinhole which generate | occur | produce by the careless bending of the vacuum heat insulating material 1 can be prevented beforehand, it becomes possible to maintain the heat insulation effect of the vacuum heat insulating material 1 over a long period of time.

(実施の形態2)
図3は、本発明の実施の形態2における真空断熱材の平面図であり、図4は、図3をB−B線で切断した真空断熱材の断面図である。
(Embodiment 2)
FIG. 3 is a plan view of the vacuum heat insulating material according to Embodiment 2 of the present invention, and FIG. 4 is a cross-sectional view of the vacuum heat insulating material taken along line BB in FIG.

図3、図4において真空断熱材1は、18個の方形に成形されたグラスウールからなる厚み5mmの芯材5a,5bを、ガスバリア性を有するラミネートフィルムからなる外被材6で覆い、外被材6の内部を減圧したものであり、各芯材5a,5bのそれぞれが独立した真空空間内に位置するように芯材5a,5bの周縁部全てに熱溶着部7を設けたものである。なお、芯材5a,5bに隣接する他の芯材5a,5bの間には、それぞれ折曲げ線(図示せず)の延長線8a,8b,8c,8d,8e,8f,8gが形成され、延長線8e,8f,8g上にそれぞれ芯材5a,5bが配置されている。   3 and 4, the vacuum heat insulating material 1 is formed by covering the core materials 5 a and 5 b made of glass wool formed into 18 squares and having a thickness of 5 mm with a jacket material 6 made of a laminate film having gas barrier properties. The inside of the material 6 is depressurized, and the heat welding portion 7 is provided on all the peripheral portions of the core materials 5a and 5b so that each of the core materials 5a and 5b is located in an independent vacuum space. . Note that extension lines 8a, 8b, 8c, 8d, 8e, 8f, and 8g of fold lines (not shown) are formed between the other core materials 5a and 5b adjacent to the core materials 5a and 5b, respectively. The core members 5a and 5b are disposed on the extension lines 8e, 8f and 8g, respectively.

以上のように、本実施の形態の真空断熱材1は、隣接する各芯材5a,5bの間に位置する外被材6の熱溶着部7を作用点として屈曲しようとするが、各延長線8e,8f,8g上にそれぞれ芯材5a,5bが配置されているため、熱溶着部7での屈曲が防止できる。一方、延長線8a,8b,8c,8d上には、芯材5a,5bが配置されていないため、折曲げが可能である。これにより、真空断熱材1の折曲げ方向を1方向に限定したため、折畳んで保管することができ、また、意図する方向以外の不用意な屈曲により発生するクラックやピンホールの発生を未然に防止することができるため、真空断熱材1の断熱効果を長期にわたって維持することが可能となる。   As described above, the vacuum heat insulating material 1 according to the present embodiment tries to bend using the heat welded portion 7 of the jacket material 6 positioned between the adjacent core materials 5a and 5b as an action point. Since the core members 5a and 5b are disposed on the wires 8e, 8f, and 8g, respectively, bending at the heat welding portion 7 can be prevented. On the other hand, since the core members 5a and 5b are not arranged on the extension lines 8a, 8b, 8c and 8d, bending is possible. Thereby, since the folding direction of the vacuum heat insulating material 1 is limited to one direction, it can be folded and stored, and the occurrence of cracks and pinholes caused by inadvertent bending other than the intended direction is obviated. Since it can prevent, it becomes possible to maintain the heat insulation effect of the vacuum heat insulating material 1 over a long period of time.

(実施の形態3)
図5は、本発明の実施の形態3における真空断熱材の平面図であり、図6は、図5をC−C線で切断した真空断熱材の断面図である。
(Embodiment 3)
FIG. 5 is a plan view of a vacuum heat insulating material according to Embodiment 3 of the present invention, and FIG. 6 is a cross-sectional view of the vacuum heat insulating material taken along line CC in FIG.

図5、図6において真空断熱材1は、20個の同一形状に成形されたグラスウールからなる厚み5mmの芯材5aを、ガスバリア性を有するラミネートフィルムからなる外被材6で覆い、外被材6の内部を減圧したものであり、各芯材5aのそれぞれが独立した真空空間内に位置するように芯材5aの周縁部全てに熱溶着部7を設けたものである。なお、芯材5aに隣接する他の芯材5aの間には、それぞれ折曲げ線(図示せず)の延長線8a,8b,8c,8d,8e,8f,8gが形成され、延長線8e,8f,8g上にそれぞれ芯材5aが配置されている。   5 and 6, the vacuum heat insulating material 1 covers a core material 5 a having a thickness of 5 mm made of glass wool formed in the same shape with a jacket material 6 made of a laminate film having gas barrier properties. The inside of 6 is decompressed, and the heat welding part 7 is provided on the entire peripheral edge of the core material 5a so that each of the core materials 5a is located in an independent vacuum space. Note that extension lines 8a, 8b, 8c, 8d, 8e, 8f, and 8g of bending lines (not shown) are formed between the other core members 5a adjacent to the core member 5a, and the extension line 8e. , 8f, 8g, the core material 5a is disposed.

以上のように、本実施の形態の真空断熱材1は、隣接する各芯材5aの間に位置する外被材6の熱溶着部7を作用点として屈曲しようとするが、各延長線8e,8f,8g上にそれぞれ芯材5aが配置されているため、熱溶着部7での屈曲が防止できる。一方、延長線8a,8b,8c,8d上には、芯材5aが配置されていないため、折曲げが可能である。   As described above, the vacuum heat insulating material 1 according to the present embodiment tries to bend with the heat welding portion 7 of the outer covering material 6 positioned between the adjacent core materials 5a as the action point, but each extension line 8e. , 8f, and 8g, the core material 5a is disposed on each of them, so that bending at the heat welding portion 7 can be prevented. On the other hand, since the core material 5a is not disposed on the extension lines 8a, 8b, 8c, and 8d, it can be bent.

これにより、真空断熱材1の折曲げ方向を1方向に限定したため、折畳んで保管することができ、また、意図する方向以外の不用意な屈曲により発生するクラックやピンホールの発生を未然に防止することができるため、真空断熱材1の断熱効果を長期にわたって維持することが可能となる。また、寸法調整を理由に延長線8e,8f,8gの近傍で真空断熱材を分割しても、真空断熱材1の剛性が維持可能であり、意図する方向以外の不用意な屈曲によって外被材6に発生するクラックやピンホールの発生を未然に防止することができるため、真空断熱材1の断熱効果を長期にわたって維持することが可能となる。   Thereby, since the folding direction of the vacuum heat insulating material 1 is limited to one direction, it can be folded and stored, and the occurrence of cracks and pinholes caused by inadvertent bending other than the intended direction is obviated. Since it can prevent, it becomes possible to maintain the heat insulation effect of the vacuum heat insulating material 1 over a long period of time. Further, even if the vacuum heat insulating material is divided in the vicinity of the extension lines 8e, 8f, and 8g for the purpose of dimension adjustment, the rigidity of the vacuum heat insulating material 1 can be maintained, and the outer cover can be formed by careless bending other than the intended direction. Since the generation of cracks and pinholes in the material 6 can be prevented in advance, the heat insulating effect of the vacuum heat insulating material 1 can be maintained over a long period of time.

(実施の形態4)
図7は、本発明の実施の形態4における真空断熱材を用いた建物の断面図であり、図8は図7のD−D線断面図である。
(Embodiment 4)
FIG. 7 is a cross-sectional view of a building using the vacuum heat insulating material in Embodiment 4 of the present invention, and FIG. 8 is a cross-sectional view taken along the line DD of FIG.

図7、8において建物は、壁材9と柱10で構成される枠の内部に繊維状断熱材11を隙間無く充填し、室内側の壁材9と内装材12の間には真空断熱材1が固定具13によって固定されている。   7 and 8, the building is filled with a fibrous heat insulating material 11 inside the frame composed of the wall material 9 and the pillar 10 without any gap, and a vacuum heat insulating material is provided between the wall material 9 on the indoor side and the interior material 12. 1 is fixed by a fixture 13.

以上のように構成された建物について、以下その動作、作用を説明する。   The operation | movement and effect | action are demonstrated below about the building comprised as mentioned above.

まず、真空断熱材1は、繊維状断熱材11とともに建物の断熱部を形成するものである。   First, the vacuum heat insulating material 1 forms the heat insulating part of a building with the fibrous heat insulating material 11.

壁材9は、柱10とともに建物の骨格を形成するものである。   The wall material 9 forms a skeleton of the building together with the pillar 10.

内装材12は、建物の内部を装飾するとともに、真空断熱材1の表面を保護する役割を果たすものである。   The interior material 12 serves to decorate the interior of the building and protect the surface of the vacuum heat insulating material 1.

固定具13は、真空断熱材1を壁材9の表面に固定する役割を果たすものである。   The fixing tool 13 plays a role of fixing the vacuum heat insulating material 1 to the surface of the wall material 9.

本実施の形態による建物において、柱や梁などによって構成される軸組間に繊維状断熱材を充填する従来の木造軸組工法に加え、繊維状断熱材よりも断熱効果の優れた真空断熱材1を室内側の壁材へ固定する容易な施工方法である。   In the building according to the present embodiment, in addition to the conventional wooden frame construction method that fills the fiber insulation between the frames composed of pillars, beams, etc., the vacuum insulation better than the fiber insulation This is an easy construction method for fixing 1 to a wall material on the indoor side.

本発明にかかる真空断熱材は、対向する熱溶着層同士が熱溶着部を形成することで外被材の剛性が付与されるとともに、芯材と隣接する他の芯材の間に形成される折曲げ線の延長線上に芯材を配置することで、芯材近傍における外被材の屈曲が防止されるため、真空断熱材の不用意な屈曲によって外被材に発生するクラックやピンホールが減少し、真空断熱材の断熱効果を長期にわたって維持することが可能となることから、冷蔵庫用断熱材や、住宅用断熱材、保冷コンテナ用断熱壁、自動車用断熱材など、複数の芯材を有する真空断熱材を必要とするあらゆる場所に適用することができる。   The vacuum heat insulating material according to the present invention is formed between the other core materials adjacent to the core material while providing the rigidity of the outer cover material by forming the heat-welded portions between the opposite heat-welded layers. By arranging the core material on the extension line of the bend line, bending of the jacket material in the vicinity of the core material is prevented, so cracks and pinholes generated in the jacket material due to inadvertent bending of the vacuum heat insulating material are prevented. Since the heat insulation effect of the vacuum insulation material can be maintained over a long period of time, a plurality of core materials such as a heat insulation material for a refrigerator, a heat insulation material for a house, a heat insulation wall for a cold insulation container, and a heat insulation material for an automobile are used. It can be applied to any place where vacuum insulation is required.

本発明の実施の形態1における真空断熱材の平面図The top view of the vacuum heat insulating material in Embodiment 1 of this invention 図1のA−A線断面図AA line sectional view of FIG. 本発明の実施の形態2における真空断熱材の平面図The top view of the vacuum heat insulating material in Embodiment 2 of this invention 図3のB−B線断面図BB sectional view of FIG. 本発明の実施の形態3における真空断熱材の平面図The top view of the vacuum heat insulating material in Embodiment 3 of this invention 図5のC−C線断面図CC sectional view of FIG. 本発明の実施の形態4における真空断熱材を用いた建物の断面図Sectional drawing of the building using the vacuum heat insulating material in Embodiment 4 of this invention 図7のD−D線断面図DD sectional view of FIG. 従来の真空断熱材の断面図Cross section of conventional vacuum insulation

符号の説明Explanation of symbols

1 真空断熱材
5a,5b,5c 芯材
6 外被材
7 熱溶着部
8a,8b,8c,8d,8e,8f,8g 折曲げ線の延長線
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 5a, 5b, 5c Core material 6 Jacket | cover material 7 Thermal welding part 8a, 8b, 8c, 8d, 8e, 8f, 8g Extension line of a bending line

Claims (4)

熱溶着層を有するガスバリア性の外被材と、複数の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に前記芯材が熱溶着部によって離間される独立した真空空間内に位置するように減圧密封され、対向する前記熱溶着層同士が、芯材の少なくとも周縁部の全てが熱溶着された真空断熱材において、隣接する前記芯材の間に形成される前記真空断熱材の折曲げ線の延長線上に前記芯材を配置した真空断熱材。   A gas barrier outer cover material having a thermal welding layer and a plurality of core materials, and the core material is separated by a thermal welding portion between the outer jacket materials facing each other. In a vacuum heat insulating material that is hermetically sealed under reduced pressure so as to be located in a vacuum space, and the opposing heat-welding layers are heat-welded at least all of the peripheral edge portions of the core material, it is formed between adjacent core materials. The vacuum heat insulating material which has arrange | positioned the said core material on the extension line | wire of the bending line of the said vacuum heat insulating material. 1方向にのみ折曲げ可能となるよう、芯材を配置した請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein a core material is arranged so that it can be bent only in one direction. 同一形状の芯材を配置した請求項1または2に記載の真空断熱材。   The vacuum heat insulating material of Claim 1 or 2 which has arrange | positioned the core material of the same shape. 請求項1から3のいずれか一項に記載の真空断熱材を用いた建物。   The building using the vacuum heat insulating material as described in any one of Claim 1 to 3.
JP2007182922A 2007-07-12 2007-07-12 Vacuum insulating material and building using the same Pending JP2009019696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182922A JP2009019696A (en) 2007-07-12 2007-07-12 Vacuum insulating material and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182922A JP2009019696A (en) 2007-07-12 2007-07-12 Vacuum insulating material and building using the same

Publications (1)

Publication Number Publication Date
JP2009019696A true JP2009019696A (en) 2009-01-29

Family

ID=40359523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182922A Pending JP2009019696A (en) 2007-07-12 2007-07-12 Vacuum insulating material and building using the same

Country Status (1)

Country Link
JP (1) JP2009019696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093630A2 (en) 2011-12-22 2013-06-27 Pronova Biopharma Norge As Gelatin/alginate delayed release capsules comprising omega-3 fatty acids, and methods and uses thereof
JPWO2018029997A1 (en) * 2016-08-09 2019-06-20 パナソニックIpマネジメント株式会社 Thermal insulation sheet and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093630A2 (en) 2011-12-22 2013-06-27 Pronova Biopharma Norge As Gelatin/alginate delayed release capsules comprising omega-3 fatty acids, and methods and uses thereof
JPWO2018029997A1 (en) * 2016-08-09 2019-06-20 パナソニックIpマネジメント株式会社 Thermal insulation sheet and method of manufacturing the same
JP7050230B2 (en) 2016-08-09 2022-04-08 パナソニックIpマネジメント株式会社 Insulation sheet and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4609305B2 (en) Thermal insulation structure and building using thermal insulation structure
JP4216516B2 (en) Vacuum insulation panel
JP2011122739A (en) Refrigerator
KR101444342B1 (en) Pump tower base support structure of lng storage tank
JP5453907B2 (en) Building construction method
JP2010047902A (en) Heat insulating wall and building and house having heat insulating wall
JP2007239288A (en) Member for construction using vacuum insulating material
JP2009019696A (en) Vacuum insulating material and building using the same
JP2007211913A (en) Heat insulating panel
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP6742090B2 (en) Vacuum insulation
JP2010013839A (en) Heat insulating wall
JP5157119B2 (en) Building wall
JP2007155083A (en) Vacuum thermal-insulating material
JP2008095365A (en) Building
JP2006292063A (en) Vacuum heat insulating material constitution
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP2008156910A (en) Building member and building structure
JP5239389B2 (en) Insulated wall and house with it
JP4229031B2 (en) Heat insulation box
JP5217594B2 (en) Insulated walls and buildings and houses to which they are applied
JP2009138918A (en) Thermal insulation member
JP2009041647A (en) Vacuum insulation material and heat insulating structure using the same
JP5446357B2 (en) Vacuum insulation used in buildings and buildings
JP2007032779A (en) Vacuum heat insulating material