JP2009019223A - Aluminum alloy sheet superior in heat resistance, manufacturing method therefor, aluminum alloy sheet superior in heat resistance and deep drawability, and manufacturing method therefor - Google Patents

Aluminum alloy sheet superior in heat resistance, manufacturing method therefor, aluminum alloy sheet superior in heat resistance and deep drawability, and manufacturing method therefor Download PDF

Info

Publication number
JP2009019223A
JP2009019223A JP2007181036A JP2007181036A JP2009019223A JP 2009019223 A JP2009019223 A JP 2009019223A JP 2007181036 A JP2007181036 A JP 2007181036A JP 2007181036 A JP2007181036 A JP 2007181036A JP 2009019223 A JP2009019223 A JP 2009019223A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat resistance
mpa
slab
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181036A
Other languages
Japanese (ja)
Other versions
JP5412714B2 (en
Inventor
Terue Takahashi
照栄 高橋
Pizhi Zhao
丕植 趙
Toshiya Anami
敏也 穴見
Fumio Otake
富美雄 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2007181036A priority Critical patent/JP5412714B2/en
Publication of JP2009019223A publication Critical patent/JP2009019223A/en
Application granted granted Critical
Publication of JP5412714B2 publication Critical patent/JP5412714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet which is superior in heat resistance and can be manufactured without requiring a complicated process; an aluminum alloy sheet superior in heat resistance and deep drawability; and methods for manufacturing the aluminum alloy sheets. <P>SOLUTION: The aluminum alloy sheet superior in heat resistance and deep drawability comprises, by mass%, 0.05 to 1.0% Si, 0.05 to 1.0% Fe, 0.5 to 2.0% Mn, 0.05 to 0.5% Cu, and the balance Al with unavoidable impurities; and has a matrix which contains dissolved Mn in an amount of 40% or more with respect to the Mn content. The aluminum alloy sheet also is (1) in a cold rolled state, and has a yield strength of 130 MPa or higher and a tensile strength of 140 MPa or higher at 200°C, or (2) in a state of being cold-rolled and then annealed, and has a yield strength of 50 MPa or higher, a tensile strength of 70 MPa or higher at 200°C, and a value r<SB>AVE</SB>of 0.7 or more, which is defined by the expression of r<SB>AVE</SB>=(r<SB>0°</SB>+2r<SB>45°</SB>+r<SB>90°</SB>)/4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐熱性に優れたアルミニウム合金板、耐熱性および深絞り性に優れたアルミニウム合金板およびそれらの製造方法に関する。   The present invention relates to an aluminum alloy plate excellent in heat resistance, an aluminum alloy plate excellent in heat resistance and deep drawability, and a production method thereof.

JIS3000系のAl−Mn系アルミニウム合金板は、成形性および耐食性に優れ、塗装焼付け後の耐力の低下が少なく、アルミニウム缶、電気・機械機器など成形加工用の板として広く用いられてきた。   JIS 3000-based Al—Mn-based aluminum alloy plates are excellent in formability and corrosion resistance, have little decrease in yield strength after baking, and have been widely used as plates for forming such as aluminum cans and electrical / mechanical equipment.

加えて、電池ケース用アルミニウム板、エンジンカバーなど、耐熱性が要求される部品の素材として最適で、焼鈍材として成形性も良好なJIS3000系合金板を安価に供給することが求められている。   In addition, it is required to supply a JIS 3000 alloy plate that is optimal as a material for parts that require heat resistance, such as an aluminum plate for battery cases and an engine cover, and that has good formability as an annealing material at low cost.

耐熱特性に関して、特許文献1では、Mn1.8〜2.8重量%を溶解したアルミニウム溶湯を対向して設けた一対の冷却したロール間を通過させることによって冷却固化して厚さ4〜10mmの板状鋳塊とし、つぎにこれを冷間圧延することを特徴とする耐熱アルミニウム板材の製造方法が開示されている。   Regarding heat resistance characteristics, in Patent Document 1, a thickness of 4 to 10 mm is obtained by cooling and solidifying by passing between a pair of cooled rolls provided facing each other with a molten aluminum melted with 1.8 to 2.8% by weight of Mn. A method for producing a heat-resistant aluminum plate material is disclosed, characterized in that a plate-shaped ingot is formed and then cold-rolled.

しかしながら、ここで検討されている合金特性は、電気炉中で300〜450℃に加熱焼鈍された冷延板の室温引張試験の0.2%耐力であり、いわゆる耐軟化特性に優れた耐熱アルミニウム板材の製造方法を示しているに過ぎない。また、成形性に関する記述は一切見られない。   However, the alloy properties studied here are 0.2% proof stress of a room temperature tensile test of a cold-rolled sheet heat-annealed at 300 to 450 ° C. in an electric furnace, and heat-resistant aluminum with excellent softening resistance It only shows the manufacturing method of the board. In addition, no description regarding formability is found.

一方、成形性に関して、特許文献2では、Al−Mn−Mg系アルミニウム合金板の製造条件、特に熱間圧延の条件、およびその後の焼鈍条件を適切に設定し、最終板におけるMn固溶量0.16%を超え、DI成形性に優れるとともに、DI成形、塗装焼付処理後の缶胴縁部の成形性にも優れたアルミニウム合金板が提唱されている。   On the other hand, regarding the formability, in Patent Document 2, the production conditions of the Al—Mn—Mg-based aluminum alloy sheet, particularly the hot rolling conditions, and the subsequent annealing conditions are appropriately set, and the Mn solid solution amount in the final sheet is 0. More than 16%, an aluminum alloy sheet is proposed that is excellent in DI formability and also excellent in formability of the can body edge after DI molding and paint baking treatment.

具体的には、Al−Mn−Mg系合金をDC鋳造法で鋳造し、530〜600℃で均質化処理、さらに熱間圧延の終了温度を250〜320℃、上がり板厚2.5mmを超え3.5mm以下として熱間圧延を行ない、第1段焼鈍を加熱速度100℃/hr以下、330〜400℃×1〜10時間で行ない、続いて第2段焼鈍を450〜600℃×10分以内行ない、その後85%以上の冷間圧延を施して、Mn固溶量0.16%を超えるアルミニウム合金板を得るものである。   Specifically, an Al—Mn—Mg based alloy is cast by a DC casting method, homogenized at 530 to 600 ° C., the end temperature of hot rolling is 250 to 320 ° C., and the plate thickness exceeds 2.5 mm. Hot rolling is performed at 3.5 mm or less, the first stage annealing is performed at a heating rate of 100 ° C./hr or less, 330 to 400 ° C. × 1 to 10 hours, and then the second stage annealing is performed to 450 to 600 ° C. × 10 minutes. Then, cold rolling of 85% or more is performed to obtain an aluminum alloy plate having an Mn solid solution amount exceeding 0.16%.

特許文献3では、缶底(ボトム)成形時しわ性に優れ、かつ塗装焼付後の耐熱軟化性に優れた飲料缶胴用アルミニウム合金板の製造方法が提唱されている。   Patent Document 3 proposes a method for producing an aluminum alloy plate for a beverage can body that is excellent in wrinkling properties at the time of can bottom molding and excellent in heat-resistant softening after baking.

具体的には、重量比でMg:0.8〜1.5%、Mn:0.5〜1.5%、Fe:0.35〜0.5%、Si:0.20〜0.35%、Cu:0.1〜0.3%、Ti:0.1%以下、B:0.05%以下を含有し、残部Alと不可避的成分を含むアルミニウム合金鋳塊を製造ならびに面削後、550〜620℃の温度域で均質化処理を施し、次いで、熱間圧延を施す際に、均質化処理後熱間粗圧延までの間、熱間粗圧延の開始温度として予め設定される温度域の上限以下の温度域における昇温速度ならびに冷却速度を40℃/時間以上とし、熱間粗圧延を熱間粗圧延の開始温度として予め設定された温度域で行った後、熱間粗圧延の終了から熱間仕上圧延の開始までの滞在時間(HR−HT時間)を20分以内として熱間仕上圧延を出側温度300〜350℃として行い、次いで、冷間圧延を最終パスの出側温度140℃以上の温度とし、冷間圧延最終圧延以外の圧延パスの出側温度を110℃以下として行った後、冷間圧延を行った後の冷却を80℃までの冷却速度を15〜30℃/時間として行うことを特徴とする飲料缶胴用アルミニウム合金板の製造方法が提唱されている。   Specifically, Mg: 0.8 to 1.5%, Mn: 0.5 to 1.5%, Fe: 0.35 to 0.5%, Si: 0.20 to 0.35 by weight ratio %, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.05% or less, and after manufacturing and chamfering an aluminum alloy ingot containing the remaining Al and inevitable components , A temperature set in advance as the starting temperature of hot rough rolling during the hot rolling after the homogenization treatment when performing the homogenizing treatment in a temperature range of 550 to 620 ° C. The temperature rise rate and the cooling rate in the temperature range below the upper limit of the range are set to 40 ° C./hour or more, and hot rough rolling is performed in a temperature range set in advance as the start temperature of hot rough rolling, and then hot rough rolling The finish time from the end of hot rolling to the start of hot finish rolling (HR-HT time) within 20 minutes, and hot finish rolling is performed at the delivery temperature After performing the cold rolling to a temperature of 140 ° C. or higher of the final pass and the outlet temperature of the rolling pass other than the cold rolling final roll to 110 ° C. or lower, There has been proposed a method for producing an aluminum alloy plate for a beverage can body, characterized in that the cooling after rolling is performed at a cooling rate of up to 80 ° C. at 15 to 30 ° C./hour.

以上のように従来は、成形加工性に優れ、同時にMnの固溶量を高く保ちながら、耐焼付軟化性に優れたAl−Mn系アルミニウム合金板を製造するためには、熱間圧延終了時のスラブ温度を適正な範囲に収め、さらに冷間圧延後、所定の中間焼鈍処理、所定の冷間圧延率で冷間圧延し、さらに所定の最終焼鈍処理を施す必要があり、工程が複雑化するためにコストアップとなるという欠点があった。   As described above, conventionally, in order to produce an Al-Mn aluminum alloy sheet having excellent forming processability and at the same time maintaining high Mn solid solution amount and excellent anti-seizure softening property, at the end of hot rolling It is necessary to keep the slab temperature within the appropriate range, and after cold rolling, it is necessary to cold-roll at a predetermined intermediate annealing treatment, a predetermined cold rolling rate, and to carry out a predetermined final annealing treatment, which complicates the process. Therefore, there was a drawback that the cost was increased.

特開昭49−9414号公報Japanese Patent Laid-Open No. 49-9414 特開平8−13109号公報JP-A-8-13109 特開2006−291326号公報JP 2006-291326 A

本発明は、複雑な工程を必要とせずに製造できる、耐熱性に優れたアルミニウム合金板および耐熱性および深絞り性に優れたアルミニウム合金板、およびこれらの製造方法を提供することを目的とする。   An object of the present invention is to provide an aluminum alloy plate excellent in heat resistance, an aluminum alloy plate excellent in heat resistance and deep drawability, and a method for producing them, which can be manufactured without requiring a complicated process. .

上記の目的を達成するために、第1発明によれば、質量%で、Si:0.05〜1.0%、Fe:0.05〜1.0%、Mn:0.5〜2.0%、Cu:0.05〜0.5%を含有し、残部がAlおよび不可避的不純物からなり、冷延されたままの状態であり、マトリックスのMn固溶量はMn含有量の40%以上で、200℃における耐力が130MPa以上、引張強さが140MPa以上であることを特徴とする耐熱性に優れたアルミニウム合金板が提供される。   In order to achieve the above object, according to the first invention, in mass%, Si: 0.05 to 1.0%, Fe: 0.05 to 1.0%, Mn: 0.5 to 2. 0%, Cu: 0.05 to 0.5%, the balance is made of Al and inevitable impurities, and remains in the cold-rolled state, and the Mn solid solution amount of the matrix is 40% of the Mn content. Thus, an aluminum alloy plate excellent in heat resistance, characterized by having a yield strength at 200 ° C. of 130 MPa or more and a tensile strength of 140 MPa or more is provided.

第1発明のアルミニウム合金板を製造する方法は、上記組成の溶湯を双ベルト式鋳造機にて、スラブ厚みの1/4の部位における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施すことを特徴とする。   A method for producing an aluminum alloy plate according to the first invention is such that a molten metal having the above composition is a twin-belt casting machine and has a thickness of 5 to 15 mm at a solidification cooling rate of 20 to 200 ° C./sec at a quarter of the slab thickness. It is characterized by casting on a slab and cold rolling.

更に、第2発明によれば、質量%で、Si:0.05〜1.0%、Fe:0.05〜1.0%、Mn:0.5〜2.0%、Cu:0.05〜0.5%を含有し、残部がAlおよび不可避的不純物からなり、冷延後に焼鈍された状態であり、マトリックスのMn固溶量はMn含有量の40%以上で、200℃における耐力が50MPa以上、引張強さが70MPa以上であり、下記式:
AVE=(r0°+2r45°+r90°)/4
〔ここで、r0°、r45°、r90°はそれぞれ冷延方向に平行、45°、垂直の各方向のランクフォード値である〕
によって定義されたrAVE値が0.7以上であることを特徴とする耐熱性および深絞り性に優れたアルミニウム合金板が提供される。
Furthermore, according to the second invention, Si: 0.05-1.0%, Fe: 0.05-1.0%, Mn: 0.5-2.0%, Cu: 0.0. Contains 0.5 to 0.5%, the balance is made of Al and inevitable impurities, and is annealed after cold rolling, the Mn solid solution amount of the matrix is 40% or more of the Mn content, and the yield strength at 200 ° C. Is 50 MPa or more, the tensile strength is 70 MPa or more, and the following formula:
r AVE = (r 0 ° + 2r 45 ° + r 90 ° ) / 4
[Where r 0 ° , r 45 ° and r 90 ° are the Rankford values in the directions parallel to the cold rolling direction, 45 ° and vertical, respectively]
An aluminum alloy plate excellent in heat resistance and deep drawability is provided, wherein the r AVE value defined by the above is 0.7 or more.

第2発明のアルミニウム合金板を製造する方法は、第1の観点によれば、上記組成の溶湯を双ベルト式鋳造機にて、スラブ厚みの1/4の部位における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施した後、連続焼鈍炉にて450〜550℃で連続焼鈍を施すことを特徴とする。   According to the first aspect of the method for producing the aluminum alloy sheet of the second invention, the molten metal having the above composition is solidified and cooled at a site of 1/4 of the slab thickness by a twin belt type casting machine at 20 to 200 ° C. After casting into a slab having a thickness of 5 to 15 mm at / sec and performing cold rolling, continuous annealing is performed at 450 to 550 ° C. in a continuous annealing furnace.

第2発明のアルミニウム合金板を製造する方法は、第2の観点によれば、上記組成の溶湯を双ベルト式鋳造機にて、スラブ厚みの1/4の部位における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施した後、焼鈍炉にて390〜450℃でバッチ焼鈍を施すことを特徴とする。   According to the second aspect of the method for producing the aluminum alloy sheet of the second invention, the molten metal having the above composition is solidified and cooled at a portion of 1/4 of the slab thickness by a twin belt type casting machine at 20 to 200 ° C. After casting into a slab having a thickness of 5 to 15 mm at / sec and performing cold rolling, batch annealing is performed at 390 to 450 ° C. in an annealing furnace.

JIS3000系相当の組成において、双ベルト鋳造機により凝固冷却速度を限定し、Mn含有量に対するMn固溶量の比率を限定したことにより、冷延板としては耐熱性に優れ、焼鈍板としては耐熱性および深絞り性に優れた、アルミニウム合金板が得られる。   In the composition corresponding to JIS 3000 series, the solidification cooling rate is limited by a twin belt casting machine, and the ratio of the Mn solid solution amount to the Mn content is limited, so that it is excellent in heat resistance as a cold rolled plate and heat resistant as an annealed plate. An aluminum alloy sheet having excellent properties and deep drawability can be obtained.

本発明者は、JIS3000系に相当する組成のAl−Mn系合金溶湯をベルト式鋳造機にて、スラブ厚み1/4箇所における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施した後、(1)連続焼鈍炉にて450〜550℃で連続焼鈍を施すか、または(2)焼鈍炉にて390〜450℃でバッチ焼鈍を施すことにより、深絞り性および耐熱性に優れたアルミニウム合金板を製造することができることを見出した。   The present inventor made a slab having a thickness of 5 to 15 mm at a solidification cooling rate of 20 to 200 ° C./sec at a slab thickness of 1/4 with a belt-type casting machine using a molten Al—Mn alloy having a composition corresponding to JIS 3000 series. After casting and cold rolling, (1) continuous annealing at 450 to 550 ° C. in a continuous annealing furnace, or (2) batch annealing at 390 to 450 ° C. in an annealing furnace, It has been found that an aluminum alloy plate excellent in deep drawability and heat resistance can be produced.

この製造方法によると、従来のDC鋳造機によるスラブ鋳造、両面面削、均質化処理、熱間圧延、その後の中間焼鈍などのプロセスが不要となるため、大幅にコストを低減することができる。   According to this manufacturing method, processes such as slab casting by a conventional DC casting machine, double-sided face milling, homogenization treatment, hot rolling, and subsequent intermediate annealing are not required, and the cost can be greatly reduced.

本発明によると、質量%で、Si:0.05〜1.0%、Fe:0.05〜1.0%、Mn:0.5〜2.0%、Cu:0.05〜0.5%を含有し、残部が実質的にAlおよび不可避的不純物からなる合金溶湯を双ベルト式鋳造機によって厚み5〜15mmのスラブに鋳造する。スラブ厚み1/4箇所における凝固冷却速度を20〜200℃/secと比較的速くすることができるため、マトリクスからのMnの析出が抑制され、マトリックス中のMn固溶量を高くすることができる。   According to the present invention, by mass%, Si: 0.05-1.0%, Fe: 0.05-1.0%, Mn: 0.5-2.0%, Cu: 0.05-0. A molten alloy containing 5% and the balance substantially consisting of Al and inevitable impurities is cast into a slab having a thickness of 5 to 15 mm by a twin belt type casting machine. Since the solidification cooling rate at a quarter of the slab thickness can be made relatively high at 20 to 200 ° C./sec, precipitation of Mn from the matrix is suppressed, and the amount of Mn solid solution in the matrix can be increased. .

このスラブを直接コイルに巻き取り、中間焼鈍を施すことなく、最終ゲージまで冷間圧延を施すことにより、耐熱性に優れたAl−Mn系アルミニウム合金板とすることができる。さらに、最終焼鈍処理として、(1)連続焼鈍炉にて450〜550℃で連続焼鈍を施すか、または(2)焼鈍炉にて390〜450℃でバッチ焼鈍を施すことにより、調質を行うことにより、深絞り性および耐熱性に優れたAl−Mn系アルミニウム合金板とすることができる。   By winding this slab directly on a coil and performing cold rolling to the final gauge without performing intermediate annealing, an Al—Mn-based aluminum alloy plate having excellent heat resistance can be obtained. Furthermore, as the final annealing treatment, tempering is performed by (1) continuous annealing at 450 to 550 ° C. in a continuous annealing furnace or (2) batch annealing at 390 to 450 ° C. in an annealing furnace. Thereby, it can be set as the Al-Mn type aluminum alloy plate excellent in deep drawability and heat resistance.

次に本発明の合金成分の意義および限定理由について説明する。本願においては、特に断りのない限り、「%」は「質量%」を意味する。   Next, the significance and reasons for limitation of the alloy components of the present invention will be described. In the present application, “%” means “mass%” unless otherwise specified.

〔Mn:0.5〜2.0%〕
必須元素であるMnは、Fe、Siとともに鋳造時に5μm以下のサイズのAl-(Fe・Mn)-Si系金属間化合物を均一かつ微細に晶出させ、分散強化による強度アップに寄与する。これら微細な金属間化合物は最終焼鈍時に再結晶粒の核となるが、マトリックス中のMnの固溶量が高く、再結晶阻止作用が強く、最終焼鈍後も圧延集合組織が残存するため、rAVE値を高め深絞り性に優れた板となる。
[Mn: 0.5 to 2.0%]
Mn, which is an essential element, causes Al— (Fe · Mn) —Si intermetallic compounds having a size of 5 μm or less together with Fe and Si to crystallize uniformly and finely, thereby contributing to an increase in strength by dispersion strengthening. These fine intermetallic compounds become the nuclei of recrystallized grains during the final annealing, but the amount of Mn in the matrix is high, the recrystallization inhibiting action is strong, and the rolling texture remains after the final annealing. The AVE value is increased and the plate is excellent in deep drawability.

また、薄スラブ連続鋳造機では、溶湯の凝固冷却速度が速いため、Mnが過飽和に固溶する傾向が大きくなり、均質化処理、中間焼鈍を施さない本発明においては、最終板におけるマトリックス中のMn固溶量がMn含有量の40%以上となる。マトリックスに固溶されたMnは最終焼鈍後も圧延集合組織を残存させ、深絞り性に優れた板となる。しかも、高温保持による強度は、従来法によるDC材に比較して高くなり、耐熱性にも優れた板となる。   Further, in the thin slab continuous casting machine, since the solidification cooling rate of the molten metal is fast, the tendency of Mn to dissolve in supersaturation increases, and in the present invention in which homogenization treatment and intermediate annealing are not performed, in the matrix in the final plate The Mn solid solution amount is 40% or more of the Mn content. Mn dissolved in the matrix remains a rolled texture after the final annealing, and becomes a plate excellent in deep drawability. Moreover, the strength by holding at a high temperature is higher than that of the DC material by the conventional method, and the plate has excellent heat resistance.

Mn含有量の範囲は、0.5〜2.0%とする。Mn含有量が0.5%未満ではその効果が十分でなく、耐熱性が低下する。2.0%を超えると鋳造時に粗大な金属間化合物を生じやすく、深絞り性を劣化させる。好ましいMn含有量は、0.5〜1.7%である。   The range of Mn content is 0.5 to 2.0%. If the Mn content is less than 0.5%, the effect is not sufficient, and the heat resistance is lowered. If it exceeds 2.0%, a coarse intermetallic compound is likely to be produced during casting, and the deep drawability is deteriorated. A preferable Mn content is 0.5 to 1.7%.

〔Fe:0.05〜1.0%〕
必須元素であるFeは、Mn、Siと共存させることにより、薄スラブ中にAl-Fe、Al-(Fe・Mn)-Si系化合物などを均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍後も金属組織中に残存するが非常に微細であるため、高温強度が高まる。
[Fe: 0.05 to 1.0%]
Fe, which is an essential element, coexists with Mn and Si to crystallize Al—Fe, Al— (Fe · Mn) —Si based compounds in a thin slab uniformly and finely. Although these fine intermetallic compounds remain in the metal structure after the final annealing, they are very fine, so that the high-temperature strength is increased.

Fe含有量の範囲は0.05〜1.0%とする。Fe含有量が0.05%未満では最終板の強度が低くなりすぎ、1.0%を越えると鋳造時に粗大な金属間化合物を生じやすく、深絞り成形性を劣化させる可能性があり好ましくないからである。Fe含有量の好ましい範囲は、0.05〜0.8%である。   The range of Fe content is 0.05 to 1.0%. If the Fe content is less than 0.05%, the strength of the final plate becomes too low, and if it exceeds 1.0%, a coarse intermetallic compound is likely to be produced during casting, and the deep drawability may be deteriorated. Because. A preferable range of the Fe content is 0.05 to 0.8%.

〔Si:0.05〜1.0%〕
必須元素であるSiは、Fe、Mnとともに鋳造時に5μm以下のサイズのAl-(Fe・Mn)-Si系金属間化合物を均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍後も金属組織中に残存するが非常に微細であるため、高温強度が高まる。
[Si: 0.05-1.0%]
Si, which is an essential element, causes Al— (Fe · Mn) —Si intermetallic compounds having a size of 5 μm or less to crystallize uniformly and finely together with Fe and Mn during casting. Although these fine intermetallic compounds remain in the metal structure after the final annealing, they are very fine, so that the high-temperature strength is increased.

Si含有量の範囲は0.05〜1.0%とする。Si含有量が0.05%未満では最終板の強度が低くなりすぎ、1.0%を越えると鋳造時に粗大な金属間化合物を生じやすく、深絞り成形性を劣化させる可能性があり、いずれも好ましくない。Si含有量の好ましい範囲は、0.05〜0.8%である。   The range of Si content shall be 0.05 to 1.0%. If the Si content is less than 0.05%, the strength of the final plate becomes too low, and if it exceeds 1.0%, a coarse intermetallic compound is likely to be produced during casting, which may deteriorate the deep drawability. Is also not preferred. A preferable range of the Si content is 0.05 to 0.8%.

〔Cu:0.05〜0.5%〕
必須元素であるCuは、マトリックス中に固溶し、高温強度が高まる。Cu含有量の範囲は、0.05〜0.5%とする。Cu含有量が0.05%未満では最終焼鈍板の強度が低くなりすぎ、0.5%を越えると耐食性が劣化し、いずれも好ましくない。
[Cu: 0.05 to 0.5%]
Cu, which is an essential element, dissolves in the matrix and increases the high-temperature strength. The range of Cu content shall be 0.05-0.5%. If the Cu content is less than 0.05%, the strength of the final annealed plate becomes too low, and if it exceeds 0.5%, the corrosion resistance deteriorates, which is not preferable.

〔任意元素:Ti〕
Tiは0.10%以下ならば含有しても本発明の効果を阻害することはなく、薄スラブの結晶粒微細化剤として作用し、スラブ割れ等の鋳造欠陥を確実に防止することができる。Ti含有量が0.005%未満では、その効果が十分でなく、Ti含有量が0.10%を超える場合には、鋳造時にTiAl等の粗大な金属間化合物が生成するため、成形性を著しく低下する。したがって、Ti含有量の好ましい範囲は0.005〜0.10%とする。Ti含有量の更に好ましい範囲は、0.005〜0.05%である。
[Arbitrary element: Ti]
Even if Ti is contained in an amount of 0.10% or less, the effect of the present invention is not hindered, it acts as a grain refiner for thin slabs, and casting defects such as slab cracks can be reliably prevented. . When the Ti content is less than 0.005%, the effect is not sufficient, and when the Ti content exceeds 0.10%, a coarse intermetallic compound such as TiAl 3 is generated at the time of casting. Is significantly reduced. Therefore, the preferable range of Ti content is 0.005 to 0.10%. A more preferable range of the Ti content is 0.005 to 0.05%.

〔任意元素:B〕
Bは、Tiと混在することで、鋳塊の結晶粒微細化効果が飛躍的に向上する。B含有量が0.0005%未満の場合には、結晶粒微細化効果が十分でなく、スラブ割れ等の鋳造欠陥を確実に防止することが困難である。B含有量が0.01%を超える場合には、鋳塊の結晶粒微細化効果が飽和するだけではなく、最終焼鈍板において、余剰のTiBの凝集体が介在物として作用する場合があり、深絞り加工時に板表面キズを発生させるなど成形性を低下させる虞がある。したがって、B含有量の好ましい範囲は、0.0005〜0.01%である。
[Arbitrary element: B]
When B is mixed with Ti, the crystal grain refining effect of the ingot is greatly improved. When the B content is less than 0.0005%, the crystal grain refining effect is not sufficient, and it is difficult to reliably prevent casting defects such as slab cracks. When the B content exceeds 0.01%, not only the crystal grain refining effect of the ingot is saturated, but excess TiB 2 aggregates may act as inclusions in the final annealed plate. Further, there is a possibility that the formability may be deteriorated by causing scratches on the plate surface during deep drawing. Therefore, the preferable range of the B content is 0.0005 to 0.01%.

〔不可避的不純物〕
不可避的不純物は、アルミニウム地金、返り材、フラックスなどに含まれる不純物元素、或いは炉材シリカの還元溶出、溶製治具と溶湯との反応などが原因で混入する。Ni、Zn、Ga、V、Ca、Naなどが代表的な元素である。
[Inevitable impurities]
Inevitable impurities are mixed due to the impurity element contained in the aluminum ingot, the return material, the flux, or the like, or the reduction elution of the furnace material silica, the reaction between the melting jig and the molten metal, and the like. Ni, Zn, Ga, V, Ca, Na, etc. are typical elements.

本発明の製造方法の諸条件を限定した理由を説明する。
本発明の耐熱性及び深絞り性に優れたAl−Mn系合金板の製造に用いるスラブは双ベルト式鋳造機により鋳造する。双ベルト式鋳造機とは、上下に対面し水冷されている一対の回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る方式の鋳造機である。
The reason why the conditions of the production method of the present invention are limited will be described.
The slab used for the production of the Al-Mn alloy plate excellent in heat resistance and deep drawability of the present invention is cast by a twin belt type casting machine. The twin-belt casting machine is a method in which molten metal is poured between a pair of rotating belts facing up and down and cooled by water, and the molten metal is solidified by cooling from the belt surface to form a slab. This is a casting machine that draws out a slab continuously and winds it up in a coil.

〔双ベルト式鋳造機により鋳造した厚さ5〜15mmのスラブを巻き取り〕
〔スラブ厚み1/4における凝固冷却速度が20〜200℃/sec〕
本発明においては、鋳造するスラブの厚さは5〜15mmとする。この範囲の厚さであれば、スラブ厚み1/4において20〜200℃/sec程度の凝固冷却速度を確保できるので、均一な鋳造組織を形成し易く、マトリックス中へのMnの固溶量を確保することができる。また、鋳造凝固時に生成される金属間化合物のサイズを5μm以下に抑えることが可能となり、深絞り性および耐熱性に優れたアルミニウム合金板を製造することができる。
上記のスラブ厚さ範囲は、ベルト式鋳造機の実行面からも適当である。すなわち、スラブ厚さが5mm未満であると、単位時間当りに鋳造機を通過するアルミニウム合金量が少なくなり過ぎて、鋳造自体が困難になる。スラブ厚さが15mmを超えると、コイルとして巻き取ることが困難になる。
[Take up a 5-15mm thick slab cast by a twin-belt casting machine]
[Solidification cooling rate at slab thickness 1/4 is 20 to 200 ° C./sec]
In the present invention, the slab to be cast has a thickness of 5 to 15 mm. If the thickness is within this range, a solidification cooling rate of about 20 to 200 ° C./sec can be secured at a slab thickness of ¼, so that a uniform cast structure can be easily formed, and the solid solution amount of Mn in the matrix can be reduced. Can be secured. Moreover, it becomes possible to suppress the size of the intermetallic compound produced | generated at the time of casting solidification to 5 micrometers or less, and the aluminum alloy plate excellent in deep drawability and heat resistance can be manufactured.
The above slab thickness range is also appropriate from the execution side of the belt type casting machine. That is, when the slab thickness is less than 5 mm, the amount of aluminum alloy passing through the casting machine per unit time becomes too small, and casting itself becomes difficult. When the slab thickness exceeds 15 mm, it becomes difficult to wind it as a coil.

〔薄スラブに均質化処理、中間焼鈍を施すことなく〕
本発明においては、コイルに巻き取った薄スラブに均質化処理、中間焼鈍を施すことなく最終板厚まで冷間圧延する。均質化処理、中間焼鈍を施さないため、マトリックス中に過飽和に固溶されたMnは、そのまま維持され、耐熱性に優れた板を製造できる。さらに、これらマトリックス中に固溶されたMnなどの遷移金属元素は転位の動きを妨げて最終焼鈍での再結晶に必要な歪エネルギーを十分に蓄えることができる。このような理由から、冷間圧延における圧下率は、80〜96%程度が好ましい。
また、この製造方法では、従来法による複雑な工程のうち、両面面削、均質化処理、熱間圧延、中間焼鈍などの工程が省略されるため、製造コストを低く抑えることが可能である。
(Thin slabs are not homogenized or annealed)
In the present invention, the thin slab wound around the coil is cold-rolled to the final thickness without being subjected to homogenization or intermediate annealing. Since the homogenization and intermediate annealing are not performed, Mn dissolved in supersaturation in the matrix is maintained as it is, and a plate having excellent heat resistance can be manufactured. Furthermore, transition metal elements such as Mn dissolved in the matrix can prevent the movement of dislocations and can sufficiently store the strain energy necessary for recrystallization in the final annealing. For these reasons, the rolling reduction in cold rolling is preferably about 80 to 96%.
Moreover, in this manufacturing method, steps such as double-sided chamfering, homogenization treatment, hot rolling, and intermediate annealing among the complicated steps according to the conventional method are omitted, so that the manufacturing cost can be kept low.

〔連続焼鈍炉にて450〜550℃で連続焼鈍を施す〕
本発明においては、冷間圧延後に最終焼鈍を行う。この最終焼鈍は、バッチ焼鈍炉で実施してもよいが、連続焼鈍炉(CAL)で実施する方が好ましい。連続焼鈍炉(CAL)とは、コイルを連続的に溶体化処理等するための設備であり、熱処理を施すための誘導加熱装置や水冷するための水槽および空冷するためのエアノズル等を備えたことを特徴としている。
連続焼鈍による焼鈍温度は450〜550℃の範囲とする。450℃未満であると、再結晶が十分ではないため、深絞り性が低下する。550℃を超えると、再結晶粒が粗大化し最終焼鈍板の強度が低下して好ましくない。
[Continuous annealing is performed at 450 to 550 ° C. in a continuous annealing furnace]
In the present invention, final annealing is performed after cold rolling. This final annealing may be performed in a batch annealing furnace, but is preferably performed in a continuous annealing furnace (CAL). Continuous annealing furnace (CAL) is equipment for continuously solution treatment of coils, etc., equipped with induction heating device for heat treatment, water tank for water cooling, air nozzle for air cooling, etc. It is characterized by.
The annealing temperature by continuous annealing shall be 450-550 degreeC. If it is lower than 450 ° C., redrawing is not sufficient, and deep drawability is reduced. If it exceeds 550 ° C., the recrystallized grains become coarse and the strength of the final annealed sheet is lowered, which is not preferable.

連続焼鈍炉における焼鈍温度での保持時間は40秒以内とする。40秒以上の保持時間の場合、ライン速度を下げる必要があり、生産性を低下させるため好ましくない。   The holding time at the annealing temperature in the continuous annealing furnace is 40 seconds or less. In the case of holding time of 40 seconds or more, it is necessary to reduce the line speed, which is not preferable because productivity is lowered.

〔焼鈍炉にて390〜450℃でバッチ焼鈍を施す〕
最終焼鈍は、焼鈍炉でバッチ焼鈍を実施してもよい。バッチ焼鈍の焼鈍温度は390〜450℃の範囲とする。390℃未満であると、再結晶が十分ではないため、深絞り性が低下する。450℃を超えると、再結晶粒が粗大化し最終焼鈍板の強度が低下して好ましくない。
[Batch annealing at 390 to 450 ° C. in an annealing furnace]
The final annealing may be performed by batch annealing in an annealing furnace. The annealing temperature for batch annealing is in the range of 390 to 450 ° C. If it is lower than 390 ° C., redrawing is not sufficient, and deep drawability is reduced. If it exceeds 450 ° C., the recrystallized grains become coarse and the strength of the final annealed sheet is lowered, which is not preferable.

焼鈍温度での保持時間は1〜10時間の範囲とする。保持時間1時間未満の場合、昇温速度にもよるが、コイル全体が均一に加熱されないため、均一で微細な再結晶組織が得られない。保持時間10時間を超える場合、生産コストが掛かりすぎるため好ましくない。   The holding time at the annealing temperature is in the range of 1 to 10 hours. When the holding time is less than 1 hour, although depending on the rate of temperature increase, the entire coil is not heated uniformly, so a uniform and fine recrystallized structure cannot be obtained. If the holding time exceeds 10 hours, the production cost is too high, which is not preferable.

〔サンプルの製造〕
CC材については、表1に示す合金組成のアルミニウム合金溶湯を溶解炉で溶製し、セラミックスフィルターを通して濾過し、双ベルト式連続鋳造機で10mmの厚みのスラブを鋳造してコイルに巻き取った。鋳造したスラブはその後、均質化処理、中間焼鈍を施すことなく、最終板厚1mmまで冷間圧延した。この冷間圧延板の調質は、H18である。
[Production of sample]
For the CC material, a molten aluminum alloy having the alloy composition shown in Table 1 was melted in a melting furnace, filtered through a ceramic filter, a 10 mm thick slab was cast with a twin-belt continuous casting machine, and wound around a coil. . Thereafter, the cast slab was cold-rolled to a final thickness of 1 mm without being subjected to homogenization or intermediate annealing. The tempering of this cold rolled sheet is H18.

Figure 2009019223
Figure 2009019223

DC材については、表1に示す合金組成のアルミニウム合金溶湯をDC鋳造機にて1200mm×500mm×3800mmのスラブに鋳造し、両面面削した後、熱処理炉にて550℃×12hrsの均質化処理を行い、引き続き熱間圧延機にて、熱延を行って、6mm厚さの熱間圧延板をコイルに巻き取った。その後、中間焼鈍することなく、最終板厚1mmまで冷間圧延した。この冷間圧延板の調質も、H18である。   For the DC material, a molten aluminum alloy having the alloy composition shown in Table 1 is cast into a 1200 mm × 500 mm × 3800 mm slab with a DC casting machine, both sides are cut, and then homogenized at 550 ° C. × 12 hrs in a heat treatment furnace. Subsequently, hot rolling was performed with a hot rolling mill, and a 6 mm thick hot rolled sheet was wound around the coil. Then, it cold-rolled to the final board thickness of 1 mm, without carrying out intermediate annealing. The tempering of this cold rolled sheet is also H18.

CC材冷延板は、連続焼鈍炉(CAL:continuous annealing line)にて、保持温度525℃で焼鈍し、DC材冷延板は、同じく連続焼鈍炉にて、保持温度525℃で焼鈍を行った。これらの最終焼鈍板の調質は、いずれも「O」である。   CC material cold-rolled sheets are annealed at a holding temperature of 525 ° C in a continuous annealing line (CAL), while DC material cold-rolled plates are annealed at a holding temperature of 525 ° C in the same continuous annealing furnace. It was. The tempering of these final annealed plates is “O”.

〔Mn固溶量の測定〕
その後、CC材(H18材、O材)、DC材(H18材、O材)について、マトリックス中のMnの固溶量は、熱フェノール法で測定した。具体的に記載すると、板を熱フェノールで分解し、フィルター濾過した溶液をクエン酸で抽出した後、ICP発光分光分析法で測定した。結果を表2に示す。CC材におけるMn固溶量とMn含有量との比率は40%以上で、DC材における比率は10%以下である。
[Measurement of Mn solid solution amount]
Then, about CC material (H18 material, O material) and DC material (H18 material, O material), the solid solution amount of Mn in a matrix was measured by the hot phenol method. Specifically, the plate was decomposed with hot phenol, and the filtered solution was extracted with citric acid, and then measured by ICP emission spectroscopic analysis. The results are shown in Table 2. The ratio of the Mn solid solution amount to the Mn content in the CC material is 40% or more, and the ratio in the DC material is 10% or less.

Figure 2009019223
Figure 2009019223

〔耐熱性(高温強度)〕
さらに各板材から、圧延平行方向の引張試験片を切り出し加工して、200℃、300℃、400℃の各温度において温間引張試験を行い、耐力、引張強さを測定した。結果を表3に示す。
[Heat resistance (high temperature strength)]
Furthermore, a tensile test piece in the rolling parallel direction was cut out from each plate material and subjected to a warm tensile test at each temperature of 200 ° C., 300 ° C., and 400 ° C., and the proof stress and tensile strength were measured. The results are shown in Table 3.

Figure 2009019223
Figure 2009019223

冷間圧延板(H18材)および最終焼鈍後の各板材(O材)について、CC材はDC材に比べ、各温度における耐力、引張強さともに高いことが判った。   Regarding the cold-rolled sheet (H18 material) and each sheet material (O material) after the final annealing, it was found that the CC material had higher proof stress and tensile strength at each temperature than the DC material.

CC材(H18材)は、200℃で耐力130MPa以上、引張強さ140MPa以上であり、300℃で耐力40MPa以上、引張強さ50MPa以上であり、400℃で耐力25MPa以上、引張強さ30MPa以上であった。   The CC material (H18 material) has a yield strength of 130 MPa or more and a tensile strength of 140 MPa or more at 200 ° C., a yield strength of 40 MPa or more and a tensile strength of 50 MPa or more at 300 ° C., a yield strength of 25 MPa or more and a tensile strength of 30 MPa or more at 400 ° C. Met.

CC材(O材)は、200℃で耐力50MPa以上、引張強さ70MPa以上であり、300℃で耐力40MPa以上、引張強さ50MPa以上であり、400℃で耐力25MPa以上、引張強さ30MPa以上であった。   The CC material (O material) has a yield strength of 50 MPa or more and a tensile strength of 70 MPa or more at 200 ° C., a yield strength of 40 MPa or more and a tensile strength of 50 MPa or more at 300 ° C., a yield strength of 25 MPa or more and a tensile strength of 30 MPa or more at 400 ° C. Met.

〔深絞り性〕
焼鈍後の各板材から、圧延平行方向、圧延45°方向、圧延垂直方向の引張試験片を切り出し、室温引張試験を行って、r値(ランクフォード値)を計測し、前記3方向の平均値であるrAVE値を以下の式で算出した。結果を表4に示す。
AVE=(r0°+2r45°+r90°)/4
(Deep drawability)
From each plate after annealing, a tensile test piece in the rolling parallel direction, the 45 ° direction of rolling, and the vertical direction of rolling was cut out, a room temperature tensile test was performed, and an r value (Rankford value) was measured. The r AVE value was calculated by the following formula. The results are shown in Table 4.
r AVE = (r 0 ° + 2r 45 ° + r 90 ° ) / 4

Figure 2009019223
Figure 2009019223

表4に示したように、CC材はDC材に比較してrAVE値が高く、深絞り性に優れることが判った。 As shown in Table 4, it was found that the CC material had a higher r AVE value than the DC material and was excellent in deep drawability.

本発明によれば、複雑な工程を必要とせずに製造できる、耐熱性に優れたアルミニウム合金板および耐熱性および深絞り性に優れたアルミニウム合金板、およびこれらの製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy plate excellent in heat resistance and the aluminum alloy plate excellent in heat resistance and deep drawability which can be manufactured without a complicated process, and these manufacturing methods are provided.

Claims (5)

質量%で、Si:0.05〜1.0%、Fe:0.05〜1.0%、Mn:0.5〜2.0%、Cu:0.05〜0.5%を含有し、残部がAlおよび不可避的不純物からなり、冷延されたままの状態であり、マトリックスのMn固溶量はMn含有量の40%以上で、200℃における耐力が130MPa以上、引張強さが140MPa以上であることを特徴とする耐熱性に優れたアルミニウム合金板。   In mass%, Si: 0.05-1.0%, Fe: 0.05-1.0%, Mn: 0.5-2.0%, Cu: 0.05-0.5% The balance consists of Al and inevitable impurities, and is in a cold-rolled state. The Mn solid solution content of the matrix is 40% or more of the Mn content, the proof stress at 200 ° C. is 130 MPa or more, and the tensile strength is 140 MPa. An aluminum alloy plate excellent in heat resistance characterized by the above. 質量%で、Si:0.05〜1.0%、Fe:0.05〜1.0%、Mn:0.5〜2.0%、Cu:0.05〜0.5%を含有し、残部がAlおよび不可避的不純物からなり、冷延後に焼鈍された状態であり、マトリックスのMn固溶量はMn含有量の40%以上で、200℃における耐力が50MPa以上、引張強さが70MPa以上であり、下記式:
AVE=(r0°+2r45°+r90°)/4
〔ここで、r0°、r45°、r90°はそれぞれ冷延方向に平行、45°、垂直の各方向のランクフォード値である〕
によって定義されたrAVE値が0.7以上であることを特徴とする耐熱性および深絞り性に優れたアルミニウム合金板。
In mass%, Si: 0.05-1.0%, Fe: 0.05-1.0%, Mn: 0.5-2.0%, Cu: 0.05-0.5% The balance is made of Al and inevitable impurities, and is annealed after cold rolling. The Mn solid solution amount of the matrix is 40% or more of the Mn content, the proof stress at 200 ° C. is 50 MPa or more, and the tensile strength is 70 MPa. That is the following formula:
r AVE = (r 0 ° + 2r 45 ° + r 90 ° ) / 4
[Where r 0 ° , r 45 ° and r 90 ° are the Rankford values in the directions parallel to the cold rolling direction, 45 ° and vertical, respectively]
An aluminum alloy plate excellent in heat resistance and deep drawability, wherein the r AVE value defined by is 0.7 or more.
請求項1に記載のアルミニウム合金板の製造方法であって、上記組成の溶湯を双ベルト式鋳造機にて、スラブ厚みの1/4の部位における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施すことを特徴とする耐熱性に優れたアルミニウム合金板の製造方法。   The method for producing an aluminum alloy plate according to claim 1, wherein the molten metal having the above composition is formed by a twin-belt casting machine with a thickness of 5 at a solidification cooling rate of 20 to 200 ° C / sec at a quarter of the slab thickness. A method for producing an aluminum alloy plate excellent in heat resistance, which is cast on a slab of ˜15 mm and cold-rolled. 請求項2に記載のアルミニウム合金板の製造方法であって、上記組成の溶湯を双ベルト式鋳造機にて、スラブ厚みの1/4の部位における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施した後、連続焼鈍炉にて450〜550℃で連続焼鈍を施すことを特徴とする耐熱性および深絞り性に優れたアルミニウム合金板の製造方法。   3. The method for producing an aluminum alloy sheet according to claim 2, wherein the molten metal having the above composition is formed at a thickness of 5 at a solidification cooling rate of 20 to 200 [deg.] C./sec. A method for producing an aluminum alloy plate excellent in heat resistance and deep drawability, which is cast on a slab of ˜15 mm, cold-rolled, and then subjected to continuous annealing at 450 to 550 ° C. in a continuous annealing furnace . 請求項2に記載のアルミニウム合金板の製造方法であって、上記組成の溶湯を双ベルト式鋳造機にて、スラブ厚みの1/4の部位における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施した後、焼鈍炉にて390〜450℃でバッチ焼鈍を施すことを特徴とする耐熱性および深絞り性に優れたアルミニウム合金板の製造方法。   3. The method for producing an aluminum alloy sheet according to claim 2, wherein the molten metal having the above composition is formed at a thickness of 5 at a solidification cooling rate of 20 to 200 [deg.] C./sec. A method for producing an aluminum alloy plate excellent in heat resistance and deep drawability, which is cast on a slab of ˜15 mm, subjected to cold rolling, and then subjected to batch annealing at 390 to 450 ° C. in an annealing furnace.
JP2007181036A 2007-07-10 2007-07-10 Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability Expired - Fee Related JP5412714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181036A JP5412714B2 (en) 2007-07-10 2007-07-10 Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181036A JP5412714B2 (en) 2007-07-10 2007-07-10 Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability

Publications (2)

Publication Number Publication Date
JP2009019223A true JP2009019223A (en) 2009-01-29
JP5412714B2 JP5412714B2 (en) 2014-02-12

Family

ID=40359124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181036A Expired - Fee Related JP5412714B2 (en) 2007-07-10 2007-07-10 Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability

Country Status (1)

Country Link
JP (1) JP5412714B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059836A (en) * 2010-09-07 2012-03-22 Mitsubishi Materials Corp Substrate for power module, method of manufacturing substrate for power module, and power module
WO2013141060A1 (en) * 2012-03-23 2013-09-26 住友軽金属工業株式会社 Aluminum alloy material for lithium-ion cell and method for manufacturing same
WO2015015828A1 (en) * 2013-08-02 2015-02-05 日本軽金属株式会社 Battery-case aluminium alloy plate exhibiting excellent moulding properties, heat-dissipation properties, and welding properties
KR20190006945A (en) 2016-05-18 2019-01-21 스미토모덴키고교가부시키가이샤 Manufacturing method of aluminum alloy and aluminum alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017364A (en) * 1998-06-26 2000-01-18 Sky Alum Co Ltd Aluminum alloy sheet for case excellent in blister resistance and its production
JP2000285872A (en) * 1999-03-31 2000-10-13 At Battery:Kk Nonaqueous electrolyte secondary battery
JP2002134069A (en) * 2000-10-23 2002-05-10 Sky Alum Co Ltd Aluminum alloy board for case that is superior in high temperature resistance in swelling and its manufacture
JP2004156117A (en) * 2002-11-07 2004-06-03 Nippon Light Metal Co Ltd Aluminum alloy sheet with excellent wear resistance, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017364A (en) * 1998-06-26 2000-01-18 Sky Alum Co Ltd Aluminum alloy sheet for case excellent in blister resistance and its production
JP2000285872A (en) * 1999-03-31 2000-10-13 At Battery:Kk Nonaqueous electrolyte secondary battery
JP2002134069A (en) * 2000-10-23 2002-05-10 Sky Alum Co Ltd Aluminum alloy board for case that is superior in high temperature resistance in swelling and its manufacture
JP2004156117A (en) * 2002-11-07 2004-06-03 Nippon Light Metal Co Ltd Aluminum alloy sheet with excellent wear resistance, and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059836A (en) * 2010-09-07 2012-03-22 Mitsubishi Materials Corp Substrate for power module, method of manufacturing substrate for power module, and power module
WO2013141060A1 (en) * 2012-03-23 2013-09-26 住友軽金属工業株式会社 Aluminum alloy material for lithium-ion cell and method for manufacturing same
JPWO2013141060A1 (en) * 2012-03-23 2015-08-03 株式会社Uacj Aluminum alloy sheet for lithium ion battery and method for producing the same
US9748527B2 (en) 2012-03-23 2017-08-29 Uacj Corporation Aluminum alloy sheet material for lithium-ion battery and method for producing the same
WO2015015828A1 (en) * 2013-08-02 2015-02-05 日本軽金属株式会社 Battery-case aluminium alloy plate exhibiting excellent moulding properties, heat-dissipation properties, and welding properties
JP2015030878A (en) * 2013-08-02 2015-02-16 日本軽金属株式会社 Aluminum alloy sheet for battery case excellent in formability, heat release property and weldability
KR20150088840A (en) * 2013-08-02 2015-08-03 니폰게이긴조쿠가부시키가이샤 Battery-case aluminium alloy plate exhibiting excellent moulding properties, heat-dissipation properties, and welding properties
CN104838025A (en) * 2013-08-02 2015-08-12 日本轻金属株式会社 Battery-case aluminium alloy plate exhibiting excellent moulding properties, heat-dissipation properties, and welding properties
KR101721785B1 (en) * 2013-08-02 2017-03-30 니폰게이긴조쿠가부시키가이샤 Battery-case aluminium alloy plate exhibiting excellent moulding properties, heat-dissipation properties, and welding properties
KR20190006945A (en) 2016-05-18 2019-01-21 스미토모덴키고교가부시키가이샤 Manufacturing method of aluminum alloy and aluminum alloy
US10808300B2 (en) 2016-05-18 2020-10-20 Sumitomo Electric Industries, Ltd. Aluminum alloy and method for manufacturing aluminum alloy

Also Published As

Publication number Publication date
JP5412714B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
US8016958B2 (en) High strength aluminum alloy sheet and method of production of same
TW201925489A (en) Aluminum alloy sheet for battery lids for molding integrated explosion-prevention valve, and method for producing same
JP2007031819A (en) Method for producing aluminum alloy sheet
KR20140114031A (en) Aluminum alloy sheet with excellent baking-paint curability
JP2008174797A (en) Aluminum alloy sheet
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
US20180282848A1 (en) Aluminum alloy sheet for can body, and process for producing the same
KR20150047246A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP5412714B2 (en) Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JP5813358B2 (en) Highly formable Al-Mg-Si alloy plate and method for producing the same
JP5233568B2 (en) Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5412714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees