JP2009019126A - Regeneration type desulfurization apparatus and desulfurization system - Google Patents

Regeneration type desulfurization apparatus and desulfurization system Download PDF

Info

Publication number
JP2009019126A
JP2009019126A JP2007183194A JP2007183194A JP2009019126A JP 2009019126 A JP2009019126 A JP 2009019126A JP 2007183194 A JP2007183194 A JP 2007183194A JP 2007183194 A JP2007183194 A JP 2007183194A JP 2009019126 A JP2009019126 A JP 2009019126A
Authority
JP
Japan
Prior art keywords
gas
desulfurization
tower
dehydration
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007183194A
Other languages
Japanese (ja)
Other versions
JP5074116B2 (en
Inventor
Fumihiko Kiso
文彦 木曽
Makoto Shimoda
下田  誠
Toru Akiyama
穐山  徹
Masayuki Nakamichi
真之 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2007183194A priority Critical patent/JP5074116B2/en
Publication of JP2009019126A publication Critical patent/JP2009019126A/en
Application granted granted Critical
Publication of JP5074116B2 publication Critical patent/JP5074116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the lowering of heat efficiency involved in the use of a gas for regeneration by applying a dry type desulfurization method to a desulfurization system removing hydrogen sulfide and carbonyl sulfide from the produced gas in a gasification system using a hydrocarbon as a raw material. <P>SOLUTION: Two or more dehydrating towers for absorbing water in a produced gas produced by gasification of a hydrocarbon and two or more desulfurization towers for absorbing a sulfur compound in the downstream of each dehydrating tower are installed so as to change over absorption and regeneration. A zeolite having high selectivity of water absorption is packed in each dehydrating tower, and a zeolite having high selectivity of absorption of hydrogen sulfide and carbonyl sulfide is packed in each desulfurization tower. After water in the produced gas is removed, the produced gas is passed through the desulfurization tower. A gas for regeneration is passed through the dehydrating tower at the time of regeneration to absorb water and the gas for regeneration containing water is used for regeneration of an absorbent packed in the desulfurization tower. The amount of regeneration gas used is reduced thereby. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化石燃料などの炭化水素をガス化し、得られた生成ガス中の硫黄化合物を除去する再生式の脱硫装置と脱硫システムに関する。   The present invention relates to a regenerative desulfurization apparatus and a desulfurization system that gasify hydrocarbons such as fossil fuels and remove sulfur compounds in the resulting product gas.

化石燃料などの炭化水素をガス化した生成ガスには、硫黄化合物として硫化水素と硫化カルボニルが含まれている。これらは下流でガスタービンを用いて発電する場合には、ガスタービン燃焼器で二酸化硫黄となる。二酸化硫黄は有害であり、大気に放出できない。そこで、ガスタービン燃焼器に供給する前に硫黄化合物を除去する。ガスタービン燃焼器では、生成ガスを空気で燃焼するので、その下流では硫黄化合物の濃度が低くなり、したがって、ガスタービン燃焼器の下流で二酸化硫黄を除去したのでは、上流で除去するよりも効率が低下するためである。また、ガス化した生成ガスから、触媒を用いてFT軽油やメタノールを合成する場合にも、硫化水素は触媒を被毒する成分なので、脱硫して下流の機器に供給する必要がある。   A product gas obtained by gasifying a hydrocarbon such as fossil fuel contains hydrogen sulfide and carbonyl sulfide as sulfur compounds. When generating power using a gas turbine downstream, these are converted to sulfur dioxide in the gas turbine combustor. Sulfur dioxide is harmful and cannot be released to the atmosphere. Therefore, sulfur compounds are removed before being supplied to the gas turbine combustor. In a gas turbine combustor, the product gas is burned with air, so the concentration of sulfur compounds is lower downstream, so removing sulfur dioxide downstream of the gas turbine combustor is more efficient than removing upstream. This is because of a decrease. Further, even when FT gas oil or methanol is synthesized from a gasified product gas using a catalyst, hydrogen sulfide is a component that poisons the catalyst, so it must be desulfurized and supplied to downstream equipment.

生成ガス中の硫黄化合物を除去する方法としては、吸収液を用いる湿式脱硫法と、吸着剤を用いる乾式脱硫法がある。   Methods for removing sulfur compounds in the product gas include a wet desulfurization method using an absorbing solution and a dry desulfurization method using an adsorbent.

湿式脱硫法における吸収液には、アミンや、メチルジエタノールアミンなど、硫黄化合物を化学吸収する吸収液を用いる方法と、メタノールなど、硫黄化合物を物理吸収する吸収液を用いる方法がある。   Absorption liquids in the wet desulfurization method include a method using an absorption liquid that chemically absorbs a sulfur compound such as amine and methyldiethanolamine, and a method using an absorption liquid that physically absorbs a sulfur compound such as methanol.

吸収液を用いて硫黄化合物を除去する方法は、例えば特許文献1に示されている。このプロセスは、硫化カルボニルを硫化水素に転化する硫化カルボニル転化器と、硫化水素を吸収する吸収塔、吸収液を再生するための再生塔、吸収液を加熱するためのリボイラ、熱交換器などから構成される。硫化カルボニル転化器が必要なのは、吸収液が硫化水素しか吸収しないためであり、硫化カルボニル転化器では、触媒を用い、硫化カルボニルと水蒸気を反応させて、硫化水素と二酸化炭素に変換する。この触媒反応は200℃前後が適しているので、生成ガスをこの温度まで加熱する必要がある。また、吸収塔は常温で運転されるので、硫化カルボニル転化器を出た後の生成ガスは冷却する必要がある。   For example, Patent Document 1 discloses a method for removing a sulfur compound using an absorbing solution. This process consists of a carbonyl sulfide converter that converts carbonyl sulfide to hydrogen sulfide, an absorption tower that absorbs hydrogen sulfide, a regeneration tower that regenerates the absorption liquid, a reboiler for heating the absorption liquid, and a heat exchanger. Composed. The carbonyl sulfide converter is necessary because the absorbing solution absorbs only hydrogen sulfide. In the carbonyl sulfide converter, the catalyst is used to react carbonyl sulfide with water vapor to convert it into hydrogen sulfide and carbon dioxide. Since this catalytic reaction is suitable at around 200 ° C., it is necessary to heat the product gas to this temperature. Further, since the absorption tower is operated at room temperature, the product gas after leaving the carbonyl sulfide converter needs to be cooled.

このように温度を上下させる必要があるため、熱交換器が必要であり、熱損失が発生する。吸収塔や再生塔は棚段を設置するか、気液接触を向上させるための充填材を充填する必要がある。また、吸収液の飛散を防止するためにノックアウトドラムを設置する、或いは、吸収塔から再生塔へ吸収液を送出するラインに、圧力低下に伴い吸収液から揮発するガス成分を分離するためのフラッシュタンクを設置するなど、付帯設備が必要になる。   Since it is necessary to raise and lower the temperature in this way, a heat exchanger is necessary and heat loss occurs. The absorption tower and the regeneration tower need to be installed with a shelf or filled with a filler for improving gas-liquid contact. Also, a knockout drum is installed to prevent scattering of the absorbing liquid, or a flash for separating the gas component that volatilizes from the absorbing liquid as the pressure drops to a line that sends the absorbing liquid from the absorption tower to the regeneration tower. Ancillary facilities such as installing a tank are required.

吸着剤を用いて硫黄化合物を除去する方法は、例えば特許文献2に示されている。この例では、吸着剤として鉄、亜鉛、コバルト、マンガン等の金属酸化物が使用されている。これらの金属は、硫化水素を吸着すると金属硫化物となる。この金属硫化物に酸素を含む再生ガスを供給することで、金属硫化物は金属単体に戻り、再び吸着剤として使うことができる。再生排ガス中の硫黄分は、二酸化硫黄の形態となる。吸着と再生を繰り返すために、吸着塔は2塔設置され、一方が吸着中の間、他方は再生を実施する。吸着剤を充填するための塔は、吸収法で用いる吸収塔や再生塔よりも構造が単純であり、低コストで製作できるものである。しかし、前述の金属を吸着剤に用いる場合には、吸着の機構が化学変化によるものであるために、吸着・再生の繰り返しにより性能が低下する問題がある。   A method for removing a sulfur compound using an adsorbent is disclosed in Patent Document 2, for example. In this example, metal oxides such as iron, zinc, cobalt, and manganese are used as the adsorbent. These metals become metal sulfides when they adsorb hydrogen sulfide. By supplying a regeneration gas containing oxygen to the metal sulfide, the metal sulfide returns to a single metal and can be used again as an adsorbent. The sulfur content in the regenerated exhaust gas is in the form of sulfur dioxide. In order to repeat the adsorption and regeneration, two adsorption towers are installed, one of which is being adsorbed and the other is regenerated. The tower for filling the adsorbent has a simpler structure than an absorption tower or a regeneration tower used in the absorption method, and can be manufactured at a low cost. However, when the above-described metal is used for the adsorbent, the mechanism of adsorption is due to a chemical change, so that there is a problem that the performance deteriorates due to repeated adsorption and regeneration.

特許文献3では、硫化水素を主体とする硫黄化合物の吸着剤として、ゼオライトを含有するシリカ・アルミナ成形物をシユウ酸鉄アンモニウム溶液に浸漬後、乾燥焼成したものを使っている。この吸着剤でも、吸着の機構は化学変化によるものであるため、吸着・再生の繰り返しにより性能が低下する。   In Patent Document 3, as a sulfur compound adsorbent mainly composed of hydrogen sulfide, a silica-alumina molded product containing zeolite is immersed in an iron ammonium oxalate solution and then dried and fired. Even with this adsorbent, the mechanism of adsorption is due to a chemical change, so the performance is degraded by repeated adsorption and regeneration.

特開2000−212581号公報(要約)JP 2000-212581 A (summary) 特開平1−185393号公報(実施例)JP-A-1-185393 (Example) 特開昭63−294944号公報(特許請求の範囲)JP 63-294944 A (Claims)

吸収液法では、硫化カルボニルを硫化水素に転化する硫化カルボニル転化器が必要である。また、生成ガスを硫化カルボニル転化器での触媒反応温度に加熱することと、硫化カルボニル転化器を出た後の生成ガスを吸収塔の運転温度である常温まで冷却することが必要であり、熱損失が発生すると共に、複数の熱交換器が必要である。   The absorbing liquid process requires a carbonyl sulfide converter that converts carbonyl sulfide to hydrogen sulfide. It is also necessary to heat the product gas to the catalytic reaction temperature in the carbonyl sulfide converter, and to cool the product gas after leaving the carbonyl sulfide converter to room temperature, which is the operating temperature of the absorption tower. Loss occurs and multiple heat exchangers are required.

一方、乾式ガス精製方法では、複数の塔を用いて吸着と再生を繰り返すことから、再生用ガスが必要であり、これによる熱効率の低下がある。   On the other hand, in the dry gas purification method, since adsorption and regeneration are repeated using a plurality of towers, a regeneration gas is required, resulting in a decrease in thermal efficiency.

本発明の目的は、乾式脱硫法を適用し、再生用ガスの使用に伴う熱効率の低下を抑制できるようにした再生式脱硫装置及び脱硫システムを提供することにある。   An object of the present invention is to provide a regenerative desulfurization apparatus and a desulfurization system that can apply a dry desulfurization method and suppress a decrease in thermal efficiency associated with the use of a regeneration gas.

本発明は、炭化水素を原料とするガス化システムの生成ガスに含まれる硫黄化合物を吸着剤により吸着除去する脱硫装置において、前記生成ガスに含まれる水分を吸着剤により吸着除去する脱水塔と、前記脱水塔にて水分除去が行われた生成ガスを流通して硫黄化合物を吸着除去する脱硫塔をそれぞれ2塔以上備え、複数の前記脱水塔のうち少なくとも1塔に前記生成ガスを流通しているときに他の少なくとも1塔に再生用ガスを流通して吸着剤の再生を行い、複数の前記脱硫塔のうち少なくとも1塔に前記脱水塔にて水分除去が行われた生成ガスを流通しているときに他の少なくとも1塔に前記脱水塔にて水分を吸収した再生用ガスを流通して吸着剤の再生を行うようにしたことを特徴とするものである。   The present invention relates to a desulfurization apparatus that adsorbs and removes sulfur compounds contained in a product gas of a gasification system using hydrocarbons as a raw material by an adsorbent, and a dehydration tower that adsorbs and removes water contained in the product gas using an adsorbent; Two or more desulfurization towers each for adsorbing and removing sulfur compounds through circulation of the product gas from which moisture has been removed in the dehydration tower are provided, and the product gas is circulated through at least one of the plurality of dehydration towers. The regeneration gas is circulated to at least one other column when the adsorbent is regenerated, and the product gas from which moisture has been removed in the dehydration column is circulated to at least one of the plurality of desulfurization columns. At this time, the adsorbent is regenerated by circulating the regeneration gas that has absorbed moisture in the dehydration tower to at least one other tower.

前記した再生式脱硫装置では、脱水塔に流通する前の生成ガスで脱水塔に流通する再生用ガスを加熱する熱交換器を備えた構成とすることができる。また、その熱交換器と、脱硫塔を通過後の再生排ガスで脱硫塔を通過後の精製ガスを加熱する熱交換器とを備えた構成とすることができる。   The above-described regenerative desulfurization apparatus can be configured to include a heat exchanger that heats the regeneration gas that circulates in the dehydration tower with the product gas that has been circulated to the dehydration tower. Moreover, it can be set as the structure provided with the heat exchanger and the heat exchanger which heats the refinement | purification gas after passing a desulfurization tower with the regeneration waste gas after passing a desulfurization tower.

また、本発明は、炭化水素を原料とするガス化システムで得られた生成ガスに含まれる硫黄化合物を吸着剤により吸着除去する再生式脱硫システムにおいて、前記生成ガスに含まれる水分を吸着剤により吸着除去する複数の脱水塔と、前記脱水塔にて水分除去が行われた生成ガスを流通して硫黄化合物を吸着除去する複数の脱硫塔と、前記脱水塔に流通する前の生成ガスで前記脱水塔に流通する再生用ガスを加熱する熱交換器と、前記脱硫塔を通過した再生排ガスで前記脱硫塔にて精製された精製ガスを加熱する熱交換器を備え、複数の前記脱水塔のうち少なくとも1塔に前記生成ガスを流通しているときに他の少なくとも1塔で前記再生用ガスによる吸着剤の再生が行われ、複数の前記脱硫塔のうち少なくとも1塔に前記脱水塔にて水分を除去された生成ガスを流通しているときに他の少なくとも1塔で前記脱水塔を出た再生用ガスによる吸着剤の再生が行われるようにし、更に前記精製ガスを加熱後の前記再生排ガスを軽油と酸素を含むガスにより燃焼する再生排ガス燃焼炉と、前記再生排ガス燃焼炉の出口ガスを石灰石スラリーと気液接触させる吸収塔と、前記石灰石スラリーから石膏を回収する脱水機を備えたことを特徴とするものである。   The present invention also relates to a regenerative desulfurization system that adsorbs and removes sulfur compounds contained in a product gas obtained by a gasification system using hydrocarbons as a raw material by using an adsorbent. A plurality of dehydration towers to be adsorbed and removed, a plurality of desulfurization towers to adsorb and remove sulfur compounds by circulating a product gas from which moisture has been removed in the dehydration tower, and a product gas before flowing to the dehydration tower A heat exchanger that heats the regeneration gas flowing through the dehydration tower, and a heat exchanger that heats the purified gas purified in the desulfurization tower with the regeneration exhaust gas that has passed through the desulfurization tower. Among the plurality of desulfurization towers, at least one of the desulfurization towers is used to regenerate the adsorbent when the product gas is circulated through at least one tower. Moisture The adsorbent is regenerated by the regeneration gas exiting the dehydration tower in at least one other tower when the generated product gas is circulated, and the regenerated exhaust gas after heating the purified gas is used. A regenerative exhaust gas combustion furnace that burns with gas containing light oil and oxygen, an absorption tower that makes the exit gas of the regenerative exhaust gas combustion furnace come into gas-liquid contact with the limestone slurry, and a dehydrator that recovers gypsum from the limestone slurry. It is a feature.

本発明は吸着剤を用いる乾式脱硫装置であるので、吸収液を用いる方法に比べると簡素な構成で脱硫システムが構築でき、低コスト化することができる。また、脱水塔で生成ガスから除去した水分を脱硫塔の再生ガスとするので、再生ガス量を低減できる。再生ガス量を低減することで、プラント全体での熱効率が向上する。   Since the present invention is a dry desulfurization apparatus using an adsorbent, a desulfurization system can be constructed with a simple configuration as compared with a method using an absorbent, and the cost can be reduced. In addition, since the water removed from the product gas in the dehydration tower is used as the regeneration gas for the desulfurization tower, the amount of regeneration gas can be reduced. By reducing the amount of regenerated gas, the thermal efficiency of the entire plant is improved.

本発明において、脱水塔に流通する前の生成ガスで脱水塔に流通する再生用ガスを加熱する熱交換器と、脱硫塔を通過後の再生排ガスで脱硫塔を通過後の精製ガスを加熱する熱交換器を備えることは、熱損失を低減するために効果がある。   In the present invention, a heat exchanger that heats the regeneration gas that circulates in the dehydration tower with the product gas that has passed through the dehydration tower, and a purified gas that has passed through the desulfurization tower with the regenerated exhaust gas that has passed through the desulfurization tower. Providing a heat exchanger is effective for reducing heat loss.

脱水塔および脱硫塔の吸着剤には、ゼオライトを用いることが望ましい。ゼオライトを吸着剤として用いた場合には、吸着の機構が物理現象による吸着となる。物理現象による吸着の場合、吸着容量は化学吸着よりも小さいが、吸着・再生の繰り返しによる性能低下が少ない。再生の頻度は多くなるが、本発明では再生ガス量を低減できるので、効率低下を抑制できる。   It is desirable to use zeolite as the adsorbent for the dehydration tower and desulfurization tower. When zeolite is used as an adsorbent, the adsorption mechanism is adsorption by a physical phenomenon. In the case of adsorption by a physical phenomenon, the adsorption capacity is smaller than that of chemical adsorption, but there is little performance degradation due to repeated adsorption and regeneration. Although the frequency of regeneration increases, in the present invention, the amount of regenerated gas can be reduced, so that a decrease in efficiency can be suppressed.

脱水塔では主に水分を吸着するので、水分吸着の選択性の高いゼオライトを採用する。例えば、3オングストローム以下の分子を主に吸着する親水性のゼオライトを充填して、水分を吸着する。   Since dehydration towers mainly adsorb moisture, zeolite with high moisture adsorption selectivity is used. For example, a hydrophilic zeolite that mainly adsorbs molecules of 3 angstroms or less is packed to adsorb moisture.

脱硫塔では主に硫化水素と硫化カルボニルを吸着するので、これらのガスを吸着する選択性が高いゼオライトを選定する。例えば、4オングストローム以下の分子を主に吸着する疎水性のゼオライトを充填して、硫化水素と硫化カルボニルを吸着する。   Since the desulfurization tower mainly adsorbs hydrogen sulfide and carbonyl sulfide, a zeolite having high selectivity for adsorbing these gases is selected. For example, a hydrophobic zeolite mainly adsorbing molecules of 4 angstroms or less is packed to adsorb hydrogen sulfide and carbonyl sulfide.

図1及び図2に、本実施例の再生式脱硫装置の構成を示す。この実施例の再生式脱硫装置は、脱水塔2塔、脱硫塔2塔、熱交換器、バルブなどから構成される。   1 and 2 show the configuration of a regenerative desulfurization apparatus according to this embodiment. The regenerative desulfurization apparatus of this embodiment is composed of two dehydration towers, two desulfurization towers, a heat exchanger, a valve, and the like.

図1の状態では、バルブ31b、32a、33a、34b、35b、36a、37a、38bが開の状態であり、バルブ31a、32b、33b、34a、35a、36b、37b、38aが閉の状態である。このバルブ開閉状態では、生成ガス1は、熱交換器21で再生用ガス3を昇温した後、脱水塔11aに供給される。脱水塔11aでは、生成ガス中の水分が除去される。水分の除去された生成ガスは脱硫塔12aに供給される。脱硫塔12aでは、生成ガス中の硫化水素と硫化カルボニルが除去される。硫黄化合物が除去された精製ガス2は、熱交換器22で再生排ガス4により昇温される。脱硫塔12aでの硫黄化合物吸着量が飽和すると、バルブの開閉を実施し、図2に示したバルブ開閉状態にする。   In the state of FIG. 1, the valves 31b, 32a, 33a, 34b, 35b, 36a, 37a, 38b are in an open state, and the valves 31a, 32b, 33b, 34a, 35a, 36b, 37b, 38a are in a closed state. is there. In this valve open / closed state, the product gas 1 is supplied to the dehydration tower 11 a after the regeneration gas 3 is heated by the heat exchanger 21. In the dehydration tower 11a, moisture in the product gas is removed. The product gas from which moisture has been removed is supplied to the desulfurization tower 12a. In the desulfurization tower 12a, hydrogen sulfide and carbonyl sulfide in the product gas are removed. The purified gas 2 from which the sulfur compound has been removed is heated by the regenerated exhaust gas 4 in the heat exchanger 22. When the sulfur compound adsorption amount in the desulfurization tower 12a is saturated, the valve is opened and closed, and the valve is opened and closed as shown in FIG.

図2の状態では、バルブ31a、32b、33b、34a、35a、36b、37b、38aが開の状態であり、バルブ31b、32a、33a、34b、35b、36a、37a、38bが閉の状態である。このバルブ開閉状態では、生成ガス1は、熱交換器21で再生ガス3を昇温した後、脱水塔11bに供給される。水分の除去された生成ガスは脱硫塔12bに供給される。脱硫塔12bでは、生成ガス中の硫化水素と硫化カルボニルが除去される。硫黄化合物が除去された精製ガス2は、熱交換器22で再生排ガス4により昇温される。脱硫塔12bでの硫黄化合物吸着量が飽和すると、バルブの開閉を実施し、図1に示したバルブ開閉状態にする。   In the state of FIG. 2, the valves 31a, 32b, 33b, 34a, 35a, 36b, 37b, 38a are in an open state, and the valves 31b, 32a, 33a, 34b, 35b, 36a, 37a, 38b are in a closed state. is there. In this valve open / closed state, the product gas 1 is supplied to the dehydration tower 11 b after the regeneration gas 3 is heated by the heat exchanger 21. The product gas from which moisture has been removed is supplied to the desulfurization tower 12b. In the desulfurization tower 12b, hydrogen sulfide and carbonyl sulfide in the product gas are removed. The purified gas 2 from which the sulfur compound has been removed is heated by the regenerated exhaust gas 4 in the heat exchanger 22. When the sulfur compound adsorption amount in the desulfurization tower 12b is saturated, the valve is opened and closed, and the valve is opened and closed as shown in FIG.

一方、図1及び図2のバルブ開閉状態において、生成ガスを流通しない脱水塔及び脱硫塔には再生用ガス3を流通して再生を行う。再生用ガス3は生成ガス1で昇温された後、脱水塔に供給され、水分を吸収する。脱水塔を流通して水分を吸収した再生用ガスは、次いで、脱硫塔に流通され、脱硫塔に充填された吸着剤から硫黄化合物を脱離する。   On the other hand, in the valve open / closed state of FIGS. 1 and 2, regeneration gas 3 is circulated through the dehydration tower and desulfurization tower that do not circulate the product gas to perform regeneration. The regeneration gas 3 is heated by the product gas 1 and then supplied to the dehydration tower to absorb moisture. The regeneration gas that has passed through the dehydration tower and has absorbed moisture is then passed through the desulfurization tower to desorb the sulfur compound from the adsorbent filled in the desulfurization tower.

図3を用い、本実施例の再生式脱硫装置の運用方法を示す。バルブを制御するために、脱水塔入口の生成ガス1のガス組成分析計41、脱硫塔出口の精製ガス2のガス組成分析計42、再生排ガスのガス組成分析計43、精製ガス量を測定する流量計44、バルブ制御装置45を設置する。ガス組成分析計41では、硫化水素と硫化カルボニルの濃度を測定する。   The operation method of the regenerative desulfurization apparatus of this embodiment will be described with reference to FIG. In order to control the valve, the gas composition analyzer 41 of the product gas 1 at the inlet of the dehydration tower, the gas composition analyzer 42 of the purified gas 2 at the outlet of the desulfurization tower, the gas composition analyzer 43 of the regenerated exhaust gas, and the amount of purified gas are measured. A flow meter 44 and a valve control device 45 are installed. The gas composition analyzer 41 measures the concentration of hydrogen sulfide and carbonyl sulfide.

ガス組成測定結果と精製ガス流量から、脱硫塔で吸着されている累積硫黄化合物吸着量を、以下の計算式で求める。   From the gas composition measurement result and the purified gas flow rate, the accumulated sulfur compound adsorption amount adsorbed in the desulfurization tower is obtained by the following calculation formula.

[硫黄化合物濃度]=[硫化水素濃度]+[硫化カルボニル濃度]
[累積硫黄化合物吸着量]=[精製ガス流量]×([入口硫黄化合物濃度]−[出口硫黄化合物濃度])×[運転時間]
この累積硫黄化合物吸着量が設定値に達しており、かつ、もう一方の吸着塔が再生されており、生成ガスを流通可能な状態であれば、バルブ制御信号46を発信し、バルブ31a,31b〜38a,38bを切り替える。
[Sulfur compound concentration] = [hydrogen sulfide concentration] + [carbonyl sulfide concentration]
[Cumulative sulfur compound adsorption amount] = [purified gas flow rate] × ([inlet sulfur compound concentration] − [outlet sulfur compound concentration]) × [operation time]
If this cumulative sulfur compound adsorption amount has reached the set value, and the other adsorption tower has been regenerated and the product gas can be circulated, a valve control signal 46 is transmitted and the valves 31a, 31b are transmitted. Switch between ~ 38a and 38b.

脱硫塔の再生とは、吸着されている硫黄化合物を脱離させることである。脱硫塔が再生された状態であるか否かの判定は、再生排ガスのガス組成分析計43での硫化水素濃度と硫化カルボニル濃度を使い、硫化水素濃度と硫化カルボニル濃度がともに規定値以下となった時点とする。   The regeneration of the desulfurization tower is to desorb the adsorbed sulfur compound. Whether or not the desulfurization tower is in a regenerated state is determined by using the hydrogen sulfide concentration and the carbonyl sulfide concentration in the gas composition analyzer 43 of the regenerated exhaust gas, and both the hydrogen sulfide concentration and the carbonyl sulfide concentration are less than the specified values. And when

ここで、再生ガスの流通を開始してから、再生が完了するまでの時間が規定値以上となった場合には、吸着剤の劣化や再生ガス温度の低下など、何らかの異常がある可能性があるので、警報を発信する。   Here, if the time from the start of circulation of the regeneration gas to the completion of regeneration exceeds the specified value, there may be some abnormality such as deterioration of the adsorbent or a decrease in the regeneration gas temperature. Because there is, send an alarm.

また、累積硫黄化合物吸着量が設定値に達する前に、出口硫黄化合物濃度が規定値に達した場合には、吸着剤が劣化した可能性があるので、警報を発信する。また、この時、もう一方の脱硫塔へ生成ガスを流通可能な条件であれば、バルブ制御信号46を発信し、バルブ31a,31b〜38a,38bを切り替える。   Further, if the outlet sulfur compound concentration reaches a specified value before the cumulative sulfur compound adsorption amount reaches the set value, an alarm is issued because the adsorbent may be deteriorated. At this time, if the conditions allow the product gas to flow to the other desulfurization tower, a valve control signal 46 is transmitted to switch the valves 31a, 31b to 38a, 38b.

本実施例では吸着剤の選定方法の一例を示す。この例では、水分子の有効直径が3オングストローム以下であり、硫化水素と硫化カルボニルの有効直径が3オングストローム以上であることを利用する。   In this embodiment, an example of an adsorbent selection method is shown. In this example, the effective diameter of water molecules is 3 angstroms or less, and the effective diameter of hydrogen sulfide and carbonyl sulfide is 3 angstroms or more.

脱水塔には、3オングストローム以上の分子を主に吸着する親水性のゼオライトを充填して水分を吸着し、硫化水素と硫化カルボニルは吸着されないようにする。脱硫塔には4オングストローム以下の分子を主に吸着する疎水性のゼオライトを充填し、水分は吸着させず、硫化水素と硫化カルボニルが吸着されるようにする。   The dehydration tower is filled with hydrophilic zeolite that mainly adsorbs molecules of 3 angstroms or more to adsorb moisture, so that hydrogen sulfide and carbonyl sulfide are not adsorbed. The desulfurization tower is filled with a hydrophobic zeolite that mainly adsorbs molecules of 4 angstroms or less so that water is not adsorbed and hydrogen sulfide and carbonyl sulfide are adsorbed.

このように吸着剤を選定することにより、脱水塔及び脱硫塔で、それぞれ、水分と硫黄化合物を選択的に吸着することが可能になる。   By selecting the adsorbent in this way, it becomes possible to selectively adsorb moisture and sulfur compounds in the dehydration tower and the desulfurization tower, respectively.

本実施例では、本発明の再生式脱硫装置を適用した脱硫システムの例を説明する。図4に再生式脱硫システムの構成図を示す。   In this embodiment, an example of a desulfurization system to which the regenerative desulfurization apparatus of the present invention is applied will be described. FIG. 4 shows a configuration diagram of the regenerative desulfurization system.

原料5は酸素を含むガスでガス化51され、熱回収52、脱塵53、水洗54された後に、脱水塔11aに供給される。脱水された後のガスは、脱硫塔12aに送られ、硫黄分が除去された精製ガス2となり、下流のプロセスに送出される。   The raw material 5 is gasified 51 with a gas containing oxygen, heat-recovered 52, dust-removed 53, washed with water 54, and then supplied to the dehydrating tower 11a. The dehydrated gas is sent to the desulfurization tower 12a, becomes the purified gas 2 from which the sulfur content is removed, and is sent to a downstream process.

再生用ガス3は脱水塔11bに送られ、脱水塔で吸着されている水分を伴って脱硫塔12bに送られる。水分を伴った再生用ガスは、脱硫塔12bに吸着されている硫黄化合物を伴って再生排ガス4となり、再生排ガス燃焼炉71に供給される。再生排ガス燃焼炉では、軽油6と酸素7を含むガスにより燃焼場が形成されており、再生排ガス中の硫黄化合物は二酸化硫黄となる。軽油の燃焼排ガスと二酸化硫黄を含む再生排ガスは、吸収塔72に送られ、石灰石8を含むスラリーと気液接触する。ここで、二酸化硫黄中の硫黄分は、石膏に固定される。二酸化炭素9は系外に排出される。石膏を含む吸収液は脱水機73に送られ、石膏10が分離される。   The regeneration gas 3 is sent to the dehydration tower 11b, and is sent to the desulfurization tower 12b along with moisture adsorbed by the dehydration tower. The regeneration gas accompanied by moisture becomes the regeneration exhaust gas 4 together with the sulfur compound adsorbed on the desulfurization tower 12 b and is supplied to the regeneration exhaust gas combustion furnace 71. In the regenerated exhaust gas combustion furnace, a combustion field is formed by a gas containing light oil 6 and oxygen 7, and the sulfur compound in the regenerated exhaust gas becomes sulfur dioxide. Light oil combustion exhaust gas and regenerated exhaust gas containing sulfur dioxide are sent to an absorption tower 72 and come into gas-liquid contact with a slurry containing limestone 8. Here, the sulfur content in sulfur dioxide is fixed to gypsum. Carbon dioxide 9 is discharged out of the system. The absorbent containing gypsum is sent to the dehydrator 73, and the gypsum 10 is separated.

本発明の一実施例による再生式脱硫装置の構成およびバルブ開閉状態を示す図である。It is a figure which shows the structure and valve | bulb open / close state of the regenerative desulfurization apparatus by one Example of this invention. 図1の構成の再生式脱硫装置において、バルブの開閉状態を切り替えた状態を示す図である。FIG. 2 is a view showing a state in which an open / close state of a valve is switched in the regenerative desulfurization apparatus configured as shown in FIG. 1. 本発明による再生式脱硫装置のバルブ制御方法を示した図である。It is the figure which showed the valve | bulb control method of the regenerative desulfurization apparatus by this invention. 本発明の再生式脱硫装置を適用した再生式脱硫システムの構成図である。It is a block diagram of the regenerative desulfurization system to which the regenerative desulfurization apparatus of the present invention is applied.

符号の説明Explanation of symbols

1…生成ガス、2…精製ガス、3…再生用ガス、4…再生排ガス、5…原料、6…軽油、7…酸素、8…石灰石、9…二酸化炭素、10…石膏、11…脱水塔、12…脱硫塔、31〜38…バルブ、41〜43…ガス組成分析計、44…流量計、45…バルブ制御装置、46…バルブ制御信号、51…ガス化、52…熱回収、53…脱塵、54…水洗、71…再生排ガス燃焼炉、72…吸収塔、73…脱水機。   DESCRIPTION OF SYMBOLS 1 ... Product gas, 2 ... Refined gas, 3 ... Regeneration gas, 4 ... Regeneration exhaust gas, 5 ... Raw material, 6 ... Light oil, 7 ... Oxygen, 8 ... Limestone, 9 ... Carbon dioxide, 10 ... Gypsum, 11 ... Dehydration tower , 12 ... Desulfurization tower, 31-38 ... Valve, 41-43 ... Gas composition analyzer, 44 ... Flow meter, 45 ... Valve control device, 46 ... Valve control signal, 51 ... Gasification, 52 ... Heat recovery, 53 ... Dedusting, 54 ... water washing, 71 ... regenerated exhaust gas combustion furnace, 72 ... absorption tower, 73 ... dehydrator.

Claims (10)

炭化水素を原料とするガス化システムの生成ガスに含まれる硫黄化合物を吸着剤により吸着除去する脱硫装置において、前記生成ガスに含まれる水分を吸着剤により吸着除去する脱水塔と、前記脱水塔にて水分除去が行われた生成ガスを流通して硫黄化合物を吸着除去する脱硫塔をそれぞれ2塔以上備え、複数の前記脱水塔のうち少なくとも1塔に前記生成ガスを流通しているときに他の少なくとも1塔に再生用ガスを流通して吸着剤の再生が行われ、複数の前記脱硫塔のうち少なくとも1塔に前記脱水塔にて水分除去が行われた生成ガスを流通しているときに他の少なくとも1塔に前記脱水塔にて水分を吸収した再生用ガスを流通して吸着剤の再生が行われるようにしたことを特徴とする再生式脱硫装置。   In a desulfurization apparatus that adsorbs and removes sulfur compounds contained in a product gas of a gasification system using hydrocarbon as a raw material by an adsorbent, a dehydration tower that adsorbs and removes moisture contained in the product gas by an adsorbent, and When two or more desulfurization towers that adsorb and remove sulfur compounds by circulating the product gas from which moisture has been removed are provided, and when the product gas is circulated through at least one of the plurality of dehydration towers, When the regeneration gas is circulated through at least one of the towers, the adsorbent is regenerated, and at least one of the plurality of desulfurization towers is circulated with the product gas from which water has been removed in the dehydration tower. The regenerative desulfurization apparatus is characterized in that the adsorbent is regenerated by circulating a regeneration gas having absorbed moisture in the dehydration tower to at least one other tower. 炭化水素を原料とするガス化システムの生成ガスに含まれる硫黄化合物を吸着剤により吸着除去する脱硫装置において、前記生成ガスに含まれる水分を吸着剤により吸着除去する複数の脱水塔と、前記脱水塔にて水分除去が行われた生成ガスを流通して硫黄化合物を吸着除去する複数の脱硫塔と、前記脱水塔に流通する生成ガスで前記脱水塔に流通する再生用ガスを加熱する熱交換器を備え、複数の前記脱水塔のうち少なくとも1塔に前記生成ガスを流通しているときに他の少なくとも1塔に前記熱交換器にて加熱された前記再生用ガスを流通して吸着剤の再生を行い、複数の前記脱硫塔のうち少なくとも1塔に前記脱水塔にて水分除去が行われた生成ガスを流通しているときに他の少なくとも1塔に前記脱水塔にて水分を吸収した再生用ガスを流通して吸着剤の再生を行うようにしたことを特徴とする再生式脱硫装置。   In a desulfurization apparatus that adsorbs and removes sulfur compounds contained in a product gas of a gasification system using hydrocarbon as a raw material by an adsorbent, a plurality of dehydration towers that adsorb and remove moisture contained in the product gas by the adsorbent, and the dehydration A plurality of desulfurization towers that adsorb and remove sulfur compounds by circulating the product gas from which moisture has been removed in the tower, and heat exchange that heats the regeneration gas that flows to the dehydration tower with the product gas that flows to the dehydration tower An adsorbent that circulates the regeneration gas heated by the heat exchanger to at least one other column when the product gas is circulated to at least one of the plurality of dehydration columns When at least one of the plurality of desulfurization towers is circulating the product gas from which water has been removed in the dehydration tower, the other dehydration tower absorbs moisture in the dehydration tower. Recycled video Regenerative desulfurization apparatus characterized by distribution to that to perform the regeneration of the adsorbent. 炭化水素を原料とするガス化システムの生成ガスに含まれる硫黄化合物を吸着剤により吸着除去する脱硫装置において、前記生成ガスに含まれる水分を吸着剤により吸着除去する複数の脱水塔と、前記脱水塔にて水分除去が行われた生成ガスを流通して硫黄化合物を吸着除去する複数の脱硫塔と、前記脱水塔に流通する生成ガスで前記脱水塔に流通する再生用ガスを加熱する熱交換器と、前記脱硫塔を通過した再生排ガスで前記脱硫塔を通過した精製ガスを加熱する熱交換器を備え、複数の前記脱水塔のうち少なくとも1塔に前記生成ガスを流通しているときに他の少なくとも1塔に前記再生用ガスを流通して吸着剤の再生を行い、複数の前記脱硫塔のうち少なくとも1塔に前記脱水塔にて水分除去が行われた生成ガスを流通しているときに他の少なくとも1塔に前記脱水塔にて水分を吸収した再生用ガスを流通して吸着剤の再生を行い、前記精製ガスが前記再生排ガスで加熱されるようにしたことを特徴とする再生式脱硫装置。   In a desulfurization apparatus that adsorbs and removes sulfur compounds contained in a product gas of a gasification system using hydrocarbon as a raw material by an adsorbent, a plurality of dehydration towers that adsorb and remove moisture contained in the product gas by the adsorbent, and the dehydration A plurality of desulfurization towers that adsorb and remove sulfur compounds by circulating the product gas from which moisture has been removed in the tower, and heat exchange that heats the regeneration gas that flows to the dehydration tower with the product gas that flows to the dehydration tower And a heat exchanger that heats the purified gas that has passed through the desulfurization tower with the regenerated exhaust gas that has passed through the desulfurization tower, and the product gas is circulated through at least one of the plurality of dehydration towers. The regeneration gas is circulated through at least one other column to regenerate the adsorbent, and at least one of the plurality of desulfurization columns is circulated through the product gas from which water has been removed in the dehydration column. sometimes The regenerative desulfurization is characterized in that the adsorbent is regenerated by circulating a regeneration gas that has absorbed moisture in the dehydration tower in at least one of the towers so that the purified gas is heated by the regeneration exhaust gas. apparatus. 請求項1乃至3のいずれかに記載の再生式脱硫装置において、前記脱水塔にゼオライトを充填したことを特徴とする再生式脱硫装置。   The regenerative desulfurization apparatus according to any one of claims 1 to 3, wherein the dehydration tower is filled with zeolite. 請求項1乃至3のいずれかに記載の再生式脱硫装置において、前記脱硫塔にゼオライトを充填したことを特徴とする再生式脱硫装置。   The regenerative desulfurization apparatus according to any one of claims 1 to 3, wherein the desulfurization tower is filled with zeolite. 請求項1乃至3のいずれかに記載の再生式脱硫装置において、前記脱水塔に親水性のゼオライトを充填し、前記脱硫塔に疎水性のゼオライトを充填したことを特徴とする再生式脱硫装置。   The regenerative desulfurization apparatus according to any one of claims 1 to 3, wherein the dehydration tower is filled with hydrophilic zeolite, and the desulfurization tower is filled with hydrophobic zeolite. 請求項1乃至3のいずれかに記載の再生式脱硫装置において、複数の前記脱水塔及び複数の前記脱硫塔への生成ガスの流通と再生用ガスの流通との切り替えがバルブ操作によって行われ、前記脱硫塔をガス化による生成ガスが通過することによって精製された精製ガスのガス組成によって前記バルブ操作が行われるようにしたことを特徴とする再生式脱硫装置。   In the regenerative desulfurization apparatus according to any one of claims 1 to 3, switching between the flow of product gas and the flow of regeneration gas to the plurality of dehydration towers and the plurality of desulfurization towers is performed by a valve operation. The regenerative desulfurization apparatus characterized in that the valve operation is performed by the gas composition of the purified gas purified by passing the gas generated by gasification through the desulfurization tower. 請求項7に記載の再生式脱硫装置において、前記精製ガスのガス組成を測定する分析装置と、前記精製ガスのガス組成を用いて前記バルブ操作を実施するバルブ制御装置を備えたことを特徴とする再生式脱硫システム。   The regenerative desulfurization apparatus according to claim 7, further comprising: an analyzer that measures a gas composition of the purified gas; and a valve controller that performs the valve operation using the gas composition of the purified gas. Regenerative desulfurization system. 請求項8に記載の再生式脱硫装置において、前記精製ガス中の硫黄化合物濃度が規定値以上となった場合に、前記脱水塔と前記脱硫塔の吸着と再生の切り替えが行われることを特徴とする再生式脱硫装置。   The regenerative desulfurization apparatus according to claim 8, wherein when the sulfur compound concentration in the refined gas becomes a specified value or more, the adsorption and regeneration of the dehydration tower and the desulfurization tower are switched. Regenerative desulfurization equipment. 炭化水素を原料とするガス化システムで得られた生成ガスに含まれる硫黄化合物を吸着剤により吸着除去する再生式脱硫システムにおいて、前記生成ガスに含まれる水分を吸着剤により吸着除去する複数の脱水塔と、前記脱水塔にて水分除去が行われた生成ガスを流通して硫黄化合物を吸着除去する複数の脱硫塔と、前記脱水塔に流通する生成ガスで前記脱水塔に流通する再生用ガスを加熱する熱交換器と、前記脱硫塔を通過した再生排ガスで前記脱硫塔にて精製された精製ガスを加熱する熱交換器を備え、複数の前記脱水塔のうち少なくとも1塔に前記生成ガスを流通しているときに他の少なくとも1塔で前記再生用ガスによる吸着剤の再生が行われ、複数の前記脱硫塔のうち少なくとも1塔に前記脱水塔にて水分除去が行われた生成ガスを流通しているときに他の少なくとも1塔で前記脱水塔を通過した再生用ガスによる吸着剤の再生が行われるようにし、更に前記精製ガスを加熱後の前記再生排ガスを軽油と酸素を含むガスにより燃焼する再生排ガス燃焼炉と、前記再生排ガス燃焼炉の出口ガスを石灰石スラリーと気液接触させる吸収塔と、前記石灰石スラリーから石膏を回収する脱水機を備えたことを特徴とする再生式脱硫システム。   In a regenerative desulfurization system that adsorbs and removes sulfur compounds contained in a product gas obtained by a gasification system using hydrocarbons as a raw material with an adsorbent, a plurality of dehydrations that adsorb and remove moisture contained in the product gas with an adsorbent A tower, a plurality of desulfurization towers for adsorbing and removing sulfur compounds by removing a product gas from which moisture has been removed in the dehydration tower, and a regeneration gas that is circulated to the dehydration tower with the product gas flowing to the dehydration tower And a heat exchanger that heats the purified gas purified in the desulfurization tower with the regenerated exhaust gas that has passed through the desulfurization tower, and the product gas is provided in at least one of the plurality of dehydration towers When the adsorbent is regenerated by the regeneration gas in at least one other column when the gas is circulated, at least one of the plurality of desulfurization columns is subjected to moisture removal in the dehydration column. The adsorbent is regenerated by the regeneration gas that has passed through the dehydration tower in at least one other tower when in circulation, and the regeneration exhaust gas after heating the purified gas is used as a gas containing light oil and oxygen. A regenerative desulfurization furnace comprising: a regenerative exhaust gas combustion furnace combusted by a gas; an absorption tower for bringing the outlet gas of the regenerative exhaust gas combustion furnace into gas-liquid contact with a limestone slurry; and a dehydrator for recovering gypsum from the limestone slurry. system.
JP2007183194A 2007-07-12 2007-07-12 Regenerative desulfurization apparatus and desulfurization system Active JP5074116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183194A JP5074116B2 (en) 2007-07-12 2007-07-12 Regenerative desulfurization apparatus and desulfurization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183194A JP5074116B2 (en) 2007-07-12 2007-07-12 Regenerative desulfurization apparatus and desulfurization system

Publications (2)

Publication Number Publication Date
JP2009019126A true JP2009019126A (en) 2009-01-29
JP5074116B2 JP5074116B2 (en) 2012-11-14

Family

ID=40359047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183194A Active JP5074116B2 (en) 2007-07-12 2007-07-12 Regenerative desulfurization apparatus and desulfurization system

Country Status (1)

Country Link
JP (1) JP5074116B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571771B1 (en) 2013-12-13 2015-11-25 삼성중공업 주식회사 A natural gas regeneration system
WO2017056134A1 (en) * 2015-10-01 2017-04-06 日揮株式会社 Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
CN114515500A (en) * 2022-03-15 2022-05-20 北京北科环境工程有限公司 Device and method for removing blast furnace gas hydrogen sulfide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111249854A (en) * 2020-02-20 2020-06-09 中国科学院过程工程研究所 High-humidity industrial waste gas purification device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168877A (en) * 1982-03-31 1983-10-05 日本酸素株式会社 Method of refining gas
JPS61113689A (en) * 1984-11-08 1986-05-31 Nippon Steel Corp Purification of coke oven gas
JPS6257628A (en) * 1985-09-05 1987-03-13 Kobe Steel Ltd Pretreatment of by-product gas from ironworks
JPH06287575A (en) * 1993-04-05 1994-10-11 Ishikawajima Harima Heavy Ind Co Ltd Desulfurization process and apparatus therefor
JPH09268904A (en) * 1996-04-03 1997-10-14 Babcock Hitachi Kk Coal gasification complex power generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168877A (en) * 1982-03-31 1983-10-05 日本酸素株式会社 Method of refining gas
JPS61113689A (en) * 1984-11-08 1986-05-31 Nippon Steel Corp Purification of coke oven gas
JPS6257628A (en) * 1985-09-05 1987-03-13 Kobe Steel Ltd Pretreatment of by-product gas from ironworks
JPH06287575A (en) * 1993-04-05 1994-10-11 Ishikawajima Harima Heavy Ind Co Ltd Desulfurization process and apparatus therefor
JPH09268904A (en) * 1996-04-03 1997-10-14 Babcock Hitachi Kk Coal gasification complex power generating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571771B1 (en) 2013-12-13 2015-11-25 삼성중공업 주식회사 A natural gas regeneration system
WO2017056134A1 (en) * 2015-10-01 2017-04-06 日揮株式会社 Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
US10737214B2 (en) 2015-10-01 2020-08-11 Jgc Corporation Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
CN114515500A (en) * 2022-03-15 2022-05-20 北京北科环境工程有限公司 Device and method for removing blast furnace gas hydrogen sulfide
CN114515500B (en) * 2022-03-15 2022-12-20 北京北科环境工程有限公司 Device and method for removing blast furnace gas hydrogen sulfide

Also Published As

Publication number Publication date
JP5074116B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
Golmakani et al. Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation
JP5425586B2 (en) Method and apparatus for removing carbon dioxide and hydrogen sulfide
RU2619691C2 (en) Method for removing carbon dioxide from gas flow
JP4845438B2 (en) Method for removing sulfur compounds from natural gas
Chen et al. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas: Experimental and computational investigations
CN110290850B (en) Gas recovery and concentration device
KR101623611B1 (en) Multiple fixed-fluidized beds for contaminant removal
US4978439A (en) Desulphurisation using solid sorbents
JP5906074B2 (en) Hydrogen production system
KR20100118570A (en) Contaminant removal from a gas stream
US20100132553A1 (en) Maintaining low carbon monoxide levels in product carbon dioxide
JP7106275B2 (en) Method and system for purifying crude biogas
JP5074116B2 (en) Regenerative desulfurization apparatus and desulfurization system
KR20200092360A (en) Process for recovery of sulfur from acid gas streams without catalytic cloth reactor
CA2772427C (en) Maintaining lowered co in a co2 product stream in a process for treating synthesis gas
EA014385B1 (en) Process for producing a gas stream depleted of mercaptans
JP2007182468A (en) Gas purification system and gas purification method
CN103459791A (en) Exhaust gas purification method and device
RU2551510C2 (en) Method of removing harmful substances from carbon dioxide and device for its realisation
JP2009262086A (en) Method of recovering carbon dioxide of coal boiler exhaust gas and system for recovering this carbon dioxide
Charisiou et al. Biogas Sweetening Technologies
Kiani et al. Syngas Conditioning (Catalyst, Process: Sulfur and Tar Cl, F)
CA2649006C (en) Self regenerating desulfurizer for gaseous fuels
JPS63291986A (en) Purification of high-temperature reducing gas
RU2786205C1 (en) Adsorbent regeneration method in natural gas processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250