JP2009018342A - Method of forming different diameter part of workpiece - Google Patents

Method of forming different diameter part of workpiece Download PDF

Info

Publication number
JP2009018342A
JP2009018342A JP2008033767A JP2008033767A JP2009018342A JP 2009018342 A JP2009018342 A JP 2009018342A JP 2008033767 A JP2008033767 A JP 2008033767A JP 2008033767 A JP2008033767 A JP 2008033767A JP 2009018342 A JP2009018342 A JP 2009018342A
Authority
JP
Japan
Prior art keywords
revolution
workpiece
roller
center axis
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008033767A
Other languages
Japanese (ja)
Inventor
Toru Irie
入江  徹
Shinji Ota
真志 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2008033767A priority Critical patent/JP2009018342A/en
Publication of JP2009018342A publication Critical patent/JP2009018342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a similar shape to one formed by an inclined spinning method is formed even when using an eccentric spinning method. <P>SOLUTION: In the eccentric spinning method, a small diameter part having an inclined shape to the center axis of a workpiece by individually performing drive control so that the orbit of a roller which is revolved on the revolution plane which is perpendicular to the center axis of the workpiece becomes non-circular and also the center position of the revolution is cooperatively controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はワークの異径部成形方法に関し、円筒状の金属管素材の端部にテーパ部と筒状縮径部を一体的に形成する異径部成形方法に係る。  The present invention relates to a method for forming a different diameter portion of a workpiece, and relates to a method for forming a different diameter portion in which a tapered portion and a cylindrical reduced diameter portion are integrally formed at an end portion of a cylindrical metal tube material.

筒状の金属管素材(以下、ワークという)の端部にテーパ部と偏芯(偏心)縮径部(直管状の筒状部)をスピニング加工にて一体的に形成する異径部成形方法について、例えば下記の特許文献1には、ワーク(の非加工部)の中心軸とスピニング成形ローラ(成形ロールとも呼ばれる。以下、ローラという)のスピニング加工中における瞬間的な(仮想)公転軸が偏芯するようにセットし、公転中心軸と加工目標軸とを一致させた状態で公転中心軸を中心にワークとローラとを相反回転させつつワーク軸方向に移動させることでワークにスピニング加工を施して、ワーク中心軸に対して偏芯した筒状小径部を形成する方法が開示されている。ここにおいて、ローラは常にワーク中心軸と直角な平面(公転面)上で円軌道を描き、複数ローラの場合は同円軌道を描く。更に特許文献2及び特許文献3には、前記スピニング加工のサイクル毎に複数の目標加工軸及び目標形状を設定することで、高縮管率かつ高精度の最終目標形状を得る方法も開示されている。これらを総じて、『本来的偏芯スピニング工法』という。  A different-diameter portion forming method in which a tapered portion and an eccentric (eccentric) reduced diameter portion (straight tubular cylindrical portion) are integrally formed at the end of a cylindrical metal tube material (hereinafter referred to as a workpiece) by spinning. For example, in Patent Document 1 below, there is an instantaneous (virtual) revolution axis during the spinning process of a center axis of a workpiece (non-processed part) and a spinning forming roller (also referred to as a forming roll, hereinafter referred to as a roller). Spinning is performed on the workpiece by setting it to be eccentric and moving the workpiece and roller in the direction of the workpiece axis while reciprocally rotating around the revolution center axis with the revolution center axis and the machining target axis aligned. And a method for forming a cylindrical small diameter portion that is eccentric with respect to the center axis of the workpiece is disclosed. Here, the roller always draws a circular orbit on a plane (revolution surface) perpendicular to the workpiece center axis, and in the case of a plurality of rollers, draws the same circular orbit. Further, Patent Document 2 and Patent Document 3 disclose a method for obtaining a final target shape with a high contraction rate and high accuracy by setting a plurality of target processing axes and target shapes for each spinning processing cycle. Yes. These are collectively referred to as “original eccentric spinning method”.

そして、下記の特許文献4乃至7には、本来的偏芯スピニング工法の一実施形態であって、ローラ支持手段(面盤等)の回転軸とワーク中心軸とを同軸上に維持(制限)したまま、ローラの(仮想)公転中心軸及び公転軌道をワーク(非加工部)の中心軸から偏芯させて偏芯縮径部を形成する、特殊な実施形態が開示されている。これらを総じて、『制限的偏芯スピニング工法』という。  Patent Documents 4 to 7 listed below are one embodiment of the inherent eccentric spinning method, and maintain (restrict) the rotation axis of the roller support means (face plate or the like) and the work center axis on the same axis. Thus, a special embodiment is disclosed in which the (virtual) revolution center axis and revolution track of the roller are eccentric from the center axis of the workpiece (non-machined part) to form an eccentric reduced diameter part. These are collectively referred to as “restricted eccentric spinning method”.

制限的偏芯スピニング工法は、ワーク中心軸とスピニング加工中における瞬間的なローラ公転軸の関係が本来的偏芯スピニング工法と同一であるので、当然ながら形成可能な縮径部形状も同一である。ローラ支持や駆動方法等の周辺部分、非本質部分だけが異なるに過ぎないので、本来的偏芯スピニング工法以上の加工メリットを享受できるものではない。しかしながら、設備機構上、あるいは設備設置スペース上、クランプ手段とローラ公転手段を相互に偏芯駆動することが制限されるような場合に限り、ローラ運用で対処できる点において設備上の便宜性は期待できる。  In the limited eccentric spinning method, the relationship between the workpiece center axis and the instantaneous roller revolution axis during spinning is the same as that of the original eccentric spinning method. . Since only the peripheral part and the non-essential part such as the roller support and driving method are different, it is not possible to enjoy the processing advantage over the original eccentric spinning method. However, facility convenience is expected in that it can be handled by the roller operation only when the eccentric drive of the clamp means and the roller revolving means is restricted due to the equipment mechanism or the equipment installation space. it can.

更に、前記特許文献5乃至7においては、制限的偏芯スピニング工法を用いて、ワーク(非加工部)の中心軸に対して非偏芯状の筒状小径部を形成する方法も開示されている。これは、前記刊行物3に開示された、ワーク中心軸と筒状小径部の中心軸とが同一平面内で相互に角度を有する『傾斜スピニング工法』か、両軸が3次元的に捩れの関係にある『捩れスピニング工法』によるものと、近似するワーク形状が得られるかのように記載されている。しかしながら後述理由により、実際はこのような近似形状は成形不可能であった。  Further, Patent Documents 5 to 7 also disclose a method of forming a non-eccentric cylindrical small-diameter portion with respect to the central axis of a workpiece (non-processed portion) using a limited eccentric spinning method. Yes. This is because the work center axis and the center axis of the cylindrical small diameter portion disclosed in the above-mentioned publication 3 have an angle with each other in the same plane, or both axes are twisted three-dimensionally. It is described as if it is based on the related “twist spinning method” and if an approximate workpiece shape is obtained. However, for the reason described later, such an approximate shape cannot actually be formed.

上述の、『傾斜スピニング工法』、『捩れスピニング工法』のうち、『傾斜スピニング工法』の形状が制限的偏芯スピニング工法で実現不可能なことを、図5乃至図7を用いて詳説する。なお、『捩れスピニング工法』は『傾斜スピニング工法』の軸関係を非同一平面化した応用工法であるので、重ねての説明は省略する。図5乃至図7は、特許文献5乃至7に記載された『偏角スピニング』と称される傾斜スピニング工法の擬似的工法について、共通概念を推測し模式化したものである。ただし、いずれの特許文献とも偏角スピニングと称するも、その意味や具体的工法について詳細説明が欠如しているため、これには言及しない。  Of the above-described “inclined spinning method” and “twisted spinning method”, the fact that the shape of the “inclined spinning method” cannot be realized by the restrictive eccentric spinning method will be described in detail with reference to FIGS. Note that the “twist spinning method” is an applied method in which the axial relationship of the “inclined spinning method” is made non-coplanar, and therefore, repeated description is omitted. FIG. 5 to FIG. 7 are diagrams in which a common concept is estimated and modeled for a pseudo method of the inclined spinning method called “deflection spinning” described in Patent Documents 5 to 7. FIG. However, although any patent document is called declination spinning, detailed description of its meaning and specific construction method is lacking, so this is not mentioned.

図5は、素管のままの非加工部101と、偏芯スピニング加工によって形成されたテーパ部103及び小径部104から成るワーク100を現す。非加工部101の中心軸102と直管状の小径部104の中心軸106とが偏芯(オフセット)している。テーパ部103及び小径部104を形成するスピニング加工は、各交点中心a、b、d、c、eを公転中心とするローラ107の円軌道が、径縮小しつつ中心軸102方向へ移動することによって成される。該円軌道は、常に中心軸102と垂直な公転面(108、109等)上にあって、公転面が中心軸102方向へ相対的に平行移動する。なお、本来的偏芯スピニング工法によっても、制限的偏芯スピニング工法によっても、この関係は同じである。  FIG. 5 shows a workpiece 100 composed of a non-machined portion 101 that is a raw pipe, and a tapered portion 103 and a small-diameter portion 104 that are formed by eccentric spinning. The central axis 102 of the non-processed part 101 and the central axis 106 of the straight tubular small diameter part 104 are eccentric (offset). In the spinning process for forming the tapered portion 103 and the small-diameter portion 104, the circular orbit of the roller 107 whose revolution centers are the intersection centers a, b, d, c, and e moves toward the central axis 102 while reducing the diameter. Made by. The circular orbit is always on a revolution surface (108, 109, etc.) perpendicular to the central axis 102, and the revolution surface relatively translates in the direction of the central axis 102. Note that this relationship is the same regardless of whether the eccentric eccentric spinning method is fundamentally used or the limited eccentric spinning method.

図6は、特許文献5乃至7において形成可能と記載され、中心軸202に対し非偏芯形状の小径部204を有するワーク200である。そして、ワーク200に至る前工程が、図7である。前述の制限的偏芯スピニング工法によって、図7の偏芯縮径部104を先ず形成する。次いで、ローラ公転中心dからgの間で複数回の偏芯スピニング加工を偏芯縮径部104に施すことで、図6の筒状小径部204を形成するものと推測される。なお、筒状小径部204には中心軸202と同一平面状で傾斜状態の仮想中心軸208を便宜上記載した。  FIG. 6 shows a workpiece 200 described in Patent Documents 5 to 7 as being capable of being formed and having a small diameter portion 204 that is non-eccentric with respect to the central axis 202. And the pre-process which reaches the workpiece | work 200 is FIG. First, the eccentric reduced diameter portion 104 of FIG. 7 is formed by the above-described restrictive eccentric spinning method. Next, it is assumed that the eccentric small diameter portion 104 is subjected to eccentric spinning processing a plurality of times between the roller revolution centers d and g to form the cylindrical small diameter portion 204 of FIG. In addition, the cylindrical small diameter part 204 described the virtual center axis 208 in the same plane as the center axis 202 and in an inclined state for convenience.

図7の小径部104を図6の小径部204へとスピニング加工で変形させるためには、図下側でβ分の縮径加工と図上側でγ分の拡径加工を達成する必要がある。しかしながら、回転塑性加工たるスピニング加工は、縮径に伴う余肉を塑性流動させて所望形状を得るので、γ分の拡径加工は不可能である。すなわち、当初から材料が包含していないγ領域へ、ローラ107によって材料を流動させることは不可能である。小径部104を小径部204へと略同径のまま屈曲変形できるとすれば、スピニング加工ではなくて引き曲げ(ベンド)加工であるが、曲げ芯金もない上に、点接触であるローラにベンド加工が望めないことは明白であるし、特許文献5乃至7にもその旨の説明記載はない。以上のごとくであるから、図7の小径部104を図6の小径部204へと屈曲成形することは、現状のスピニング加工では不可能である。  In order to deform the small-diameter portion 104 in FIG. 7 into the small-diameter portion 204 in FIG. 6 by spinning, it is necessary to achieve diameter reduction processing for β on the lower side of the drawing and diameter expansion processing for γ on the upper side of the drawing. . However, in the spinning process, which is a rotational plastic process, a desired shape is obtained by plastic flow of the surplus due to the reduced diameter, and therefore it is impossible to expand the diameter by γ. That is, it is impossible for the roller 107 to flow the material to the γ region which is not included from the beginning. If the small-diameter portion 104 can be bent and deformed to the small-diameter portion 204 with substantially the same diameter, it is not a spinning process but a bending process, but there is no bending metal core and a roller that is a point contact. It is clear that bend processing cannot be expected, and Patent Documents 5 to 7 do not have an explanation to that effect. As described above, it is impossible to bend the small-diameter portion 104 in FIG. 7 into the small-diameter portion 204 in FIG. 6 by the current spinning process.

万一、(何らかの手段を付加するなどして)スピニング加工にて小径部104を204へと変形することができたとしても、その端面205は仮想中心軸208上のY視において楕円を描く。すなわち、長径と短径を有し角度θ1分だけ潰れた楕円断面となってしまい、接続軸(仮想中心軸208)に対し円断面である相手部品との嵌合接続ができないという問題も発生する。これは、ローラが中心軸302と直角な公転面107上を円軌道で公転する限り、避けられない結果である。  Even if the small diameter portion 104 can be deformed to 204 by spinning (by adding some means), the end face 205 draws an ellipse in the Y view on the virtual central axis 208. That is, an elliptical cross section having a major axis and a minor axis and crushed by an angle θ1 is generated, and there is a problem that a fitting connection with a mating part having a circular section with respect to the connection axis (virtual central axis 208) is not possible. . This is an unavoidable result as long as the roller revolves on a revolving surface 107 perpendicular to the central axis 302 in a circular orbit.

特許第2957153号公報Japanese Patent No. 2957153 特許第3442666号公報Japanese Patent No. 3442666 特許第3390725号公報Japanese Patent No. 3390725 特開2000−64832号公報JP 2000-64832 A 特開2003−181554号公報JP 2003-181554 A 特開2003−164920号公報JP 2003-164920 A 特開2001−321859号公報JP 2001-321859 A

本発明は上記問題に鑑み、偏芯スピニング工法を用いても、傾斜スピニング工法によるものと類似形状を形成できる工法を提案することを目的とする。  In view of the above problems, an object of the present invention is to propose a construction method that can form a similar shape to that obtained by the inclined spinning method even if an eccentric spinning method is used.

上記課題を解決するために、1番目の発明では、ワークの中心軸とローラの公転中心軸とを偏芯させ、公転中心軸を加工目標軸に一致させた状態で公転中心軸を中心にワークとローラを相反回転させるとともに、ローラをワーク外周面に押し付けつつワーク中心軸に沿った方向へ相対駆動してスピニング加工を施し、テーパ部とその先端に筒状小径部を形成するワークの異径部成形方法において、ワークの中心軸に対し垂直な公転面上におけるローラ軌道が公転中心軸周りに回転対称である非円形となるよう駆動制御し、テーパ部および/又は筒状小径部を公転面上において非円形断面に形成するスピニング加工を含むようにした。  In order to solve the above-mentioned problem, in the first invention, the workpiece center axis and the revolution center axis of the roller are eccentric, and the workpiece centering on the revolution center axis in a state in which the revolution center axis coincides with the machining target axis. And rotating the roller in a reciprocal manner, and by rotating the roller against the workpiece outer peripheral surface and relatively driving in the direction along the workpiece center axis, spinning is performed, and the workpiece has a different diameter of the tapered portion and the cylindrical small diameter portion formed at the tip In the part forming method, the roller track on the revolution surface perpendicular to the center axis of the workpiece is driven and controlled so as to be a non-circular shape that is rotationally symmetric about the revolution center axis, and the taper portion and / or the cylindrical small diameter portion is the revolution surface. A spinning process for forming a non-circular cross section is included above.

2番目の発明では、1番目の発明において、ローラのワーク中心軸に沿った方向の相対駆動と協調して偏芯量と公転軌道を変化させる。  In the second invention, in the first invention, the eccentric amount and the revolution trajectory are changed in cooperation with the relative drive in the direction along the work center axis of the roller.

3番目の発明では、2番目の発明におけるスピニング加工の後、更なる同スピニング加工によってテーパ部および筒状小径部を鼓状に絞り込み、テーパ部および/又は筒状小径部をワークの中心軸に対して非平行に形成する。  In the third invention, after the spinning process in the second invention, the taper part and the cylindrical small diameter part are narrowed down into a drum shape by the same spinning process, and the taper part and / or the cylindrical small diameter part are used as the central axis of the workpiece. In contrast, they are formed non-parallel.

本発明によれば、偏芯スピニング工法によって、傾斜スピニング工法によるものと類似形状を形成できる。  According to the present invention, the eccentric spinning method can form a shape similar to that of the inclined spinning method.

以下、図面を参照して本発明のスピニング工法について説明する。図1(A)〜(G)は、本発明の第1の実施形態による偏芯スピニング加工を、各工程(スピニングサイクル)毎に示すものである。なお、被加工部の縮径率と形状精度を高めるには、このようにスピニングサイクル数(ステップ数)を増やすとよい。もちろん、1サイクル辺りのローラのパス数(往復数)を増やすことも好適である。  Hereinafter, the spinning method of the present invention will be described with reference to the drawings. FIGS. 1A to 1G show the eccentric spinning process according to the first embodiment of the present invention for each step (spinning cycle). In order to increase the diameter reduction rate and the shape accuracy of the workpiece, it is preferable to increase the number of spinning cycles (number of steps) in this way. Of course, it is also preferable to increase the number of roller passes per cycle (the number of reciprocations).

先ず、(A)工程においては、図示しない金属管(ワーク1)の端部に対し、公知の偏芯スピニング加工(本来的偏芯スピニング工法あるいは制限的偏芯スピニング工法)を施して、非加工部3の中心軸6に対して偏芯した軸7を有する筒状小径部5と、非加工部3と筒状小径部5の間にテーパ部4とを一体的に形成してワーク2を得る。この時の各ローラ9の公転中心軸は軸7であるとともに、軸7はそのステップにおける目標加工形状の中心軸(目標加工軸)であり、軸7を中心にワーク1とローラ9とを相対反転させている。なお、素管である金属管の断面は、円形に限らず任意である。  First, in the step (A), the end of the metal pipe (work 1) (not shown) is subjected to a known eccentric spinning process (original eccentric spinning method or restrictive eccentric spinning method), and no processing is performed. The workpiece 2 is formed by integrally forming a cylindrical small diameter portion 5 having a shaft 7 eccentric with respect to the central axis 6 of the portion 3 and a tapered portion 4 between the non-processed portion 3 and the cylindrical small diameter portion 5. obtain. At this time, the revolution center axis of each roller 9 is the axis 7, and the axis 7 is the center axis (target machining axis) of the target machining shape in the step, and the workpiece 1 and the roller 9 are relatively moved around the axis 7. Inverted. In addition, the cross section of the metal pipe which is an element pipe is not restricted circularly, but is arbitrary.

本来的偏芯スピニング工法であれ制限的偏芯スピニング工法であれ、(A)乃至(C)工程でのローラ公転は、公転中心(8,16,26)を中心としワーク中心軸と直角な公転面上での円軌道でよい。なお、同一公転面上にローラは1個でも構わないが、加工の効率化と精度向上から、複数個のローラを公転軌道上に等間隔配置し、公転しながら同時に径変更(開閉)させることが好ましい。本実施形態においては、同一公転面上の同一軌道上に、等間隔で3つのローラ9を配している。ワークとローラの相対反転駆動としては、ワークを回転不可に把持しローラを公転させる方式でもよいし、ワークを中心軸周りに回転させローラを軸方向および軸直角方向に相対往復動させる方式でもよいし、両方式の組み合せでもよい。  Regardless of the inherent eccentric spinning method or the limited eccentric spinning method, the roller revolution in the steps (A) to (C) is centered on the revolution center (8, 16, 26) and perpendicular to the workpiece center axis. A circular orbit on the surface is sufficient. Although one roller may be on the same revolving surface, a plurality of rollers are arranged on the revolving track at equal intervals to change the diameter (open and close) at the same time while revolving in order to improve processing efficiency and accuracy. Is preferred. In the present embodiment, three rollers 9 are arranged at equal intervals on the same track on the same revolution surface. As the relative reversal drive of the workpiece and the roller, a method of gripping the workpiece in a non-rotatable manner and revolving the roller may be used, or a method of rotating the workpiece around the central axis and relatively reciprocating the roller in the axial direction and the axis perpendicular direction may be used. However, a combination of both types may be used.

続いて、次ステップである(B)工程において、次なる目標軸に公転中心軸15を一致させ、前工程で形成したワーク2の端部に対し、同様に偏芯スピニング加工を施して、更に大きな偏芯間隔かつ小径な筒状小径部13を形成し、ワーク10を得る。  Subsequently, in the next step (B), the revolution center axis 15 is made to coincide with the next target axis, and the end of the work 2 formed in the previous step is similarly subjected to eccentric spinning, A cylindrical small diameter portion 13 having a large eccentric interval and a small diameter is formed, and the workpiece 10 is obtained.

続いて、次ステップである(C)工程において、次なる目標軸に公転中心軸25を一致させ、前工程で形成したワーク10の端部に対し、同様に偏芯スピニング加工を施して、更に大きな偏芯間隔かつ小径な筒状小径部23を形成し、ワーク20を得る。  Subsequently, in step (C) as the next step, the revolution center axis 25 is made to coincide with the next target axis, and the end of the workpiece 10 formed in the previous step is similarly subjected to eccentric spinning, A cylindrical small diameter portion 23 having a large eccentric interval and a small diameter is formed, and the workpiece 20 is obtained.

続いて、次ステップである(D)工程において、ワーク10から更に偏芯間隔を増やして、ローラ公転中心軸であるともに目標加工軸である軸35をセットする。そして、前記工程までのローラ公転軌道とは異なり、各ローラ9を公転面上に軸35を中心とする楕円軌道で公転させる。楕円軌道は、(D)図において天地方向に短径を裏表方向に長径を有する180度の軸回転対称形状であって、後述の切断面48が真円となるように楕円度が設定される。このようなローラの楕円軌道でスピニング加工を施し、非加工部31の中心軸34に対して偏芯した軸35を有し公転面上で楕円断面を有する筒状小径部33と、非加工部31と筒状小径部33の間で断面形状が徐変するテーパ部32とを一体的に形成して、ワーク30を得る。  Subsequently, in step (D) as the next step, the eccentric interval is further increased from the workpiece 10, and the shaft 35 that is the roller revolution center axis and the target machining axis is set. Then, unlike the roller revolution trajectory up to the process, each roller 9 is revolved on the revolution surface by an elliptical trajectory centered on the shaft 35. The elliptical orbit is a 180-degree axially rotationally symmetric shape having a minor axis in the vertical direction and a major axis in the front and rear directions in FIG. 4D, and the ellipticity is set so that a cut surface 48 described later becomes a perfect circle. . A cylindrical small-diameter portion 33 having a shaft 35 that is eccentric with respect to the central axis 34 of the non-processed portion 31 and having an elliptical cross section on the revolution plane, and a non-processed portion A workpiece 30 is obtained by integrally forming a taper portion 32 whose cross-sectional shape gradually changes between 31 and the cylindrical small-diameter portion 33.

このような非円形のローラ軌道は、公転面上において公転中心軸を中心とする回転対称形状である。すなわち、公転面上において特定角度の回転毎に自ら一致する形状であって、上記楕円の他には、長円(180度の回転対称/2回対称)、正三角形(120度の回転対称/3回対称)、多角形(各形状毎の角度の回転対称)等があるので、任意に適用すればよい。いずれのローラ軌道形状においても、回転対称中心点は必ずその瞬間のスピニング加工のローラ公転中心軸上にある。  Such a non-circular roller track has a rotationally symmetric shape around the revolution center axis on the revolution surface. That is, it has a shape that matches itself every rotation of a specific angle on the revolution surface, and in addition to the ellipse, an ellipse (180 degree rotational symmetry / two-fold symmetry), an equilateral triangle (120 degree rotational symmetry / (3 times symmetry), polygons (rotational symmetry of the angle for each shape), etc., and so on, may be applied arbitrarily. In any roller track shape, the rotationally symmetric center point is always on the roller revolution center axis of the instantaneous spinning process.

続いて、(E)工程において、(D)工程と同様の偏芯スピニング加工を施して、公転面上において更に偏芯かつ小径の楕円断面を有する筒状小径部43を得る。そして、軸45に対し角度θ2で交差する切断面48にて筒状小径部43を切断し、先端部を廃棄する。  Subsequently, in the step (E), an eccentric spinning process similar to that in the step (D) is performed to obtain a cylindrical small-diameter portion 43 having a further eccentric and small-diameter elliptical cross section on the revolution surface. And the cylindrical small diameter part 43 is cut | disconnected by the cut surface 48 which cross | intersects at the angle (theta) 2 with respect to the axis | shaft 45, and a front-end | tip part is discarded.

(F)は、ワーク40の先端が切除された筒状小径部51を有するワーク50を示す。筒状小径部51の端面52は、その面直視(軸55視)にて、端面中心53を有する略真円を描く。従って、例えば、ワーク50が排気管部品のケーシングとして供されるのであれば、軸周りに略真円の接続部を有する相手部品(排気管、排気部品等)との接続は軸55上で円筒同士の嵌合となり、気密も維持される。  (F) shows a workpiece 50 having a cylindrical small-diameter portion 51 in which the tip of the workpiece 40 is cut off. The end surface 52 of the cylindrical small-diameter portion 51 draws a substantially perfect circle having an end surface center 53 when the surface is viewed directly (as viewed from the shaft 55). Therefore, for example, if the workpiece 50 is provided as a casing for an exhaust pipe part, the connection with a mating part (exhaust pipe, exhaust part, etc.) having a substantially circular connecting portion around the shaft is cylindrical on the shaft 55. It becomes a fitting between each other, and airtightness is also maintained.

(G)は、相手部品との接続のため板状の締結フランジ56を用いる例である。このように、円断面開口を有する締結フランジ56を筒状小径部51に外嵌し、溶接固定することも可能となる。  (G) is an example in which a plate-like fastening flange 56 is used for connection with a counterpart component. In this way, the fastening flange 56 having a circular cross-sectional opening can be externally fitted to the cylindrical small diameter portion 51 and fixed by welding.

以上の如く本実施形態においては、(A)乃至(C)工程にて、公転面内で円形のローラ軌道を適用し、仕上げ工程に相当する(D)乃至(E)工程にて楕円形(非円形)のローラ軌道を適用したので、偏芯スピニング工法であっても、傾斜スピニング工法と類似の筒状小径部を形成できる。すなわち、(F)図において、軸55を公転中心とするローラ公転をすることなしに軸55周りに円断面を形成できる。なお、(A)乃至(E)工程全てを楕円形(非円形)ローラ軌道としてもよいが、ローラ軌道の制御が複雑化し公転スピード(加工スピード)が落ちることが懸念されるので、支障ない加工ステップにおいては従来の円軌道スピニングを適用するのが合理的である。  As described above, in the present embodiment, a circular roller raceway is applied in the revolution surface in the steps (A) to (C), and an oval shape is used in the steps (D) to (E) corresponding to the finishing step. Since a non-circular) roller track is applied, a cylindrical small-diameter portion similar to the inclined spinning method can be formed even with the eccentric spinning method. That is, in FIG. (F), a circular cross section can be formed around the shaft 55 without performing roller revolution with the shaft 55 as the center of revolution. Although all the steps (A) to (E) may be elliptical (non-circular) roller raceways, since there is a concern that the control of the roller raceway will be complicated and the revolution speed (machining speed) may be reduced, machining that does not hinder the process. It is reasonable to apply conventional circular orbit spinning in the step.

以上の工程を具現化する設備の2実施形態を示す。第1実施形態は図8に記載の装置であって、特許文献1乃至3に記載のように、ワークが非回転(非自転)であってローラがワーク周囲を公転する実施形態、所謂ワーク固定式である。特許文献1乃至3に記載の工法が、(瞬間仮想)公転軸の周りを同径の複数ローラが円軌道で公転するのに対し本実施形態では非円軌道で公転し、各ローラは公転面上で公転軸を中心とする回転対称の図形を共通して描くことが特徴である。  2 embodiment of the equipment which embodies the above process is shown. The first embodiment is an apparatus shown in FIG. 8, and as described in Patent Documents 1 to 3, an embodiment in which the work is non-rotating (non-rotating) and the roller revolves around the work, so-called work fixing. It is a formula. In the construction method described in Patent Documents 1 to 3, a plurality of rollers having the same diameter revolve around a (instantaneous virtual) revolution axis in a circular orbit, whereas in this embodiment, each roller revolves on a non-circular orbit. It is characterized by drawing a rotationally symmetric figure around the revolution axis in common.

スピニング加工装置400は、ベース404上にレール405、ガイド406を介して筐体401が載置され、レール405とガイド406を摺動させることで、ベース404上に筐体401をX軸方向へ任意に相対移動させられるようになっている。ベース404と筐体401の相対駆動装置の詳細、およびスピニング加工における各軸の制御に関しては、特許文献1乃至3に準じる。筐体401内の図示しない慣用の回転駆動装置によって、主軸402およびそれに固定された面盤403は、任意に回転駆動される。  In the spinning processing apparatus 400, a casing 401 is placed on a base 404 via rails 405 and guides 406, and the casing 401 is moved on the base 404 in the X-axis direction by sliding the rails 405 and the guides 406. Relative movement can be made arbitrarily. The details of the relative drive device of the base 404 and the housing 401 and the control of each axis in the spinning process conform to Patent Documents 1 to 3. The main shaft 402 and the face plate 403 fixed to the main shaft 402 are arbitrarily rotated by a conventional rotary drive device (not shown) in the housing 401.

面盤403の一側面には、電気駆動のアクチュエータA407・B408・C409が等間隔に取付けられている。アクチュエータA407・B408・C409を貫通するアームA410・B411・C412の各先端部には、スピニング加工用のローラA413・B414・C415が自転自在に取付けられている。ローラA413・B414・C415の自転中心軸が主軸402の中心軸417と平行を保ったまま、アクチュエータA407・B408・C409の作動により、それぞれ任意に中心軸417と近接/離隔(以下、開閉駆動)が自在になっている。すなわち、図示しない慣用の制御装置からの開閉駆動指示および動力が筐体401、主軸402、面盤403を介してアクチュエータA407・B408・C409へそれぞれ個別に伝達され、アクチュエータA407・B408・C409によるアームA410・B411・C412の個別な進退駆動によって、ローラA413・B414・C415が個別、あるいは同時に開閉駆動される。もちろん、これら開閉駆動は、面盤403のY方向回転中や筐体401のX方向移動中にも自在である。制御装置からアクチュエータA407・B408・C409までの電気伝達経路は、スリップ給電等周知慣用の機構を適用すればよい。なお、アクチュエータA407・B408・C409の駆動は、電動に限らず、油圧駆動、空圧等、任意である。  Electric drive actuators A407, B408, and C409 are attached to one side surface of the face plate 403 at equal intervals. Spinning rollers A413, B414, and C415 are rotatably attached to the tip portions of the arms A410, B411, and C412 that pass through the actuators A407, B408, and C409. While the rotation center shafts of the rollers A413, B414, and C415 are kept in parallel with the center shaft 417 of the main shaft 402, the actuators A407, B408, and C409 are arbitrarily moved close to / separated from each other (hereinafter referred to as opening / closing drive). Has become free. That is, an opening / closing drive instruction and power from a conventional control device (not shown) are individually transmitted to the actuators A407, B408, and C409 via the housing 401, the main shaft 402, and the face plate 403, respectively, and the arms by the actuators A407, B408, and C409 are transmitted. The rollers A413, B414, and C415 are driven to open and close individually or simultaneously by the individual forward and backward driving of A410, B411, and C412. Of course, the opening / closing drive can be performed while the face plate 403 is rotating in the Y direction and the housing 401 is moving in the X direction. For the electrical transmission path from the control device to the actuators A407, B408, and C409, a well-known and conventional mechanism such as slip feeding may be applied. The driving of the actuators A407, B408, and C409 is not limited to electric, but is optional such as hydraulic driving or pneumatic pressure.

図8(a)は、加工開始前に素管であるワーク416がセットされた状態を想像線で図示したものであり、ワーク416右端部は図示しないクランプ手段によって回転不能に保持されている。この状態から、特許文献1乃至3に記載の工法と同様に、ローラ公転とローラ開閉とX軸方向相対移動の3軸動を協調的に制御して、スピニング加工による絞り加工をワーク416左端部に施す。  FIG. 8A illustrates a state in which the workpiece 416, which is a raw pipe, is set before starting the processing by an imaginary line, and the right end portion of the workpiece 416 is held in a non-rotatable manner by clamping means (not shown). From this state, similarly to the construction methods described in Patent Documents 1 to 3, the three-axis movements of roller revolution, roller opening / closing, and relative movement in the X-axis direction are cooperatively controlled, and drawing by spinning is performed at the left end of the work 416. To apply.

図8(b)は、本発明の特徴であるローラ(最内側)の非円軌道公転を図示するものである。主軸402の中心軸417を公転中心とする楕円状公転軌道419においては、各ローラA413・B414・C415はその最内側が公転軌道419に接し公転軌道419をトレースするように、公転中に個別開閉駆動される。すなわち、アクチュエータA407・B408・C409は1回の公転の間に、割出に応じてアームA410・B411・C412を径方向へ適宜進退駆動するものである。スピニング加工においては、X軸方向への公転面の移動に伴って楕円状公転軌道419も拡大/縮小させねばならないので、当然、X軸方向への公転面の移動と各ローラA413・B414・C415の開閉駆動は、図示しない制御装置によって協調制御される。  FIG. 8B illustrates non-circular orbital revolution of the roller (innermost side), which is a feature of the present invention. In the elliptical revolution track 419 having the center axis 417 of the main shaft 402 as the center of revolution, the rollers A413, B414, and C415 are individually opened and closed during revolution so that the innermost side is in contact with the revolution track 419 and traces the revolution track 419. Driven. That is, the actuators A407, B408, and C409 drive the arms A410, B411, and C412 appropriately in the radial direction according to the index during one revolution. In the spinning process, the elliptical revolution track 419 must be enlarged / reduced along with the movement of the revolution surface in the X-axis direction. Therefore, naturally, the movement of the revolution surface in the X-axis direction and the rollers A413, B414, and C415 are performed. The opening / closing drive is controlled cooperatively by a control device (not shown).

このような装置、およびその駆動制御によって、本発明の工法は実現される。なお、同一軌道上のローラ数やローラ開閉手段は任意に選択すればよいし、各ローラを複数の公転面上に配設しても構わない。  The construction method of the present invention is realized by such an apparatus and its drive control. The number of rollers on the same track and the roller opening / closing means may be arbitrarily selected, and each roller may be disposed on a plurality of revolution surfaces.

以上の工程を具現化する装置の第2実施形態を、図9に示す。これは所謂ワーク回転式のスピニング加工装置500であって、装置自体は旧来の同軸スピニング加工において周知慣用である。ワーク505自身がその中心軸506周りに回転する間に、各ローラ507・508は個別に中心軸506と近接/離隔(以下、開閉駆動)される。  FIG. 9 shows a second embodiment of an apparatus that embodies the above steps. This is a so-called workpiece rotating type spinning machine 500, which is well known and commonly used in the conventional coaxial spinning machine. While the workpiece 505 itself rotates around its central axis 506, the rollers 507 and 508 are individually moved close to / separated from the central axis 506 (hereinafter referred to as opening / closing drive).

筐体501はベース502上に固設され、回転クランプ503が、回転中心軸506を中心に筐体501によって保持および駆動される。筐体501内の図示しない慣用の回転駆動装置によって、回転クランプ503およびそれに内蔵されるチャック504は、任意に回転駆動される。ワーク505の左側部分は、回転クランプ503内にチャック504によって強固に把持されている。チャック504の構造、および、チャック504へ把持/開放信号や駆動力を伝達する機構は、周知機構を用いればよい。  The housing 501 is fixed on the base 502, and the rotation clamp 503 is held and driven by the housing 501 around the rotation center axis 506. The rotary clamp 503 and the chuck 504 built in the rotary clamp 503 are arbitrarily rotated by a conventional rotary drive device (not shown) in the housing 501. The left side portion of the workpiece 505 is firmly held by the chuck 504 in the rotary clamp 503. As a structure of the chuck 504 and a mechanism for transmitting a grip / release signal and a driving force to the chuck 504, a known mechanism may be used.

制御装置517からの開閉駆動指示がスライダA513・B514およびアクチュエータA509・B510へ個別に伝達され、アクチュエータA509・B510によるアームA511・B512の個別なy方向進退駆動によって、ローラA507・B508が個別、あるいは同時に開閉駆動される。なお、公転面515、すなわちローラA507・B508のx方向への相対移動は、スライダA513・B514がそれぞれアクチュエータA509・B510をx+方向あるいはx−方向へ駆動することによってなされる。図9においては、2つのローラは同一公転面515上にあるが、スライダA513・B514を操作し2つの公転面を設定することも任意である。  The opening / closing drive instruction from the control device 517 is individually transmitted to the sliders A513 and B514 and the actuators A509 and B510, and the rollers A507 and B508 are individually driven by the actuators A509 and B510 by the individual Y-direction advance / retreat driving. At the same time, it is opened and closed. The relative movement of the revolution surface 515, that is, the rollers A507 and B508 in the x direction is performed by the sliders A513 and B514 driving the actuators A509 and B510 in the x + direction or the x− direction, respectively. In FIG. 9, the two rollers are on the same revolution surface 515, but it is optional to set two revolution surfaces by operating the sliders A513 and B514.

スピニング加工自体は、図8のワーク固定式におけるワークとローラの相対反転関係を逆にしたものに過ぎない。すなわち、ローラかワークのどちらを公転駆動するかの違いだけであって、ワークにとっては同じ加工である。本実施形態においては、公転面515における瞬間的な仮想公転中心は、公転中心軸516である。x軸方向への公転面515の移動に伴って非円公転軌道が拡大/縮小されねばならないので、当然、x軸方向への公転面の移動と各ローラA507・B508の開閉駆動は、制御装置517によって協調制御される。  The spinning process itself is merely a reverse of the relative reversal relationship between the workpiece and the roller in the workpiece fixing type in FIG. That is, only the difference between whether the roller or the workpiece is driven to revolve is the same for the workpiece. In the present embodiment, the instantaneous virtual revolution center on the revolution plane 515 is the revolution center axis 516. Since the non-circular revolution track has to be enlarged / reduced along with the movement of the revolution surface 515 in the x-axis direction, naturally, the movement of the revolution surface in the x-axis direction and the opening / closing drive of the rollers A507 and B508 are controlled by the control device. Cooperative control is performed by 517.

このような装置、およびその駆動制御によっても、本発明の工法は実現可能である。なお、同一軌道上のローラ数、ローラ開閉手段は任意に選択すればよいし、各ローラを複数の公転面上に配設しても構わないことも、ワーク回転式と同じである。ワーク固定式/回転式の装置選択は任意である。更に両者を組合せた両回転式も考えられるが、複雑化するばかりで、メリットは期待できない。  The method of the present invention can also be realized by such an apparatus and its drive control. In addition, the number of rollers on the same track and the roller opening / closing means may be arbitrarily selected, and each roller may be disposed on a plurality of revolution surfaces as in the work rotation type. The workpiece fixed / rotary type device selection is optional. Furthermore, a double-rotation type combining both is also conceivable, but it is only complicated and no merit can be expected.

図2乃至図4は、本発明の第2の実施形態による偏芯スピニング加工を示すものであって、図3のワーク80の中心軸81に対して同一面内で非平行な直管状小径部83を形成するための工法である。すなわち、傾斜スピニング工法による形状と類似のテーパ部および小径部を形成できる。  2 to 4 show an eccentric spinning process according to the second embodiment of the present invention, and a straight tubular small-diameter portion that is non-parallel in the same plane with respect to the central axis 81 of the workpiece 80 of FIG. This is a construction method for forming 83. That is, it is possible to form a tapered portion and a small diameter portion similar to the shape by the inclined spinning method.

先ず、図示しないワーク素管に対し、第1の実施形態における(A)乃至(C)ステップの偏芯スピニング加工を施して、ワーク20を得て図2の加工に供する。そして、小径部23に対し更なる偏芯スピニング加工を施す。ワーク20のテーパ部22と小径部23の境界面69を起点とし、その中心を公転中心イとして偏芯スピニング加工を開始する。但し、第1の実施形態は公転中心をワーク中心軸と平行に移動させていたが、本実施形態においては、中心軸61に沿った方向(図右方)へ移動するのに協調して偏芯量(図上下方向)と公転軌道(径)を連続的に変更し、連続して終点ハまで公転中心を移動させつつスピニング加工を行なう。すなわち、ローラの最内側が所望形状を描くように、中心軸61方向への移動と、偏芯量と、公転軌道とが連続的に協調制御され、本実施形態特有の偏芯スピニング加工が施される。  First, an eccentric spinning process of steps (A) to (C) in the first embodiment is performed on a workpiece base pipe (not shown) to obtain a workpiece 20 for use in the process of FIG. Then, a further eccentric spinning process is performed on the small diameter portion 23. Eccentric spinning is started with the boundary surface 69 of the tapered portion 22 and the small diameter portion 23 of the workpiece 20 as a starting point and the center of the boundary surface 69 as the revolution center. However, in the first embodiment, the revolution center is moved in parallel with the workpiece center axis. However, in this embodiment, the center of revolution is coordinated to move in the direction along the center axis 61 (right side in the figure). Spinning is performed while continuously changing the center amount (vertical direction in the figure) and the revolution track (diameter), and continuously moving the revolution center to the end point c. That is, the movement in the direction of the central axis 61, the eccentric amount, and the revolution trajectory are continuously coordinated controlled so that the innermost side of the roller draws a desired shape, and the eccentric spinning process unique to this embodiment is performed. Is done.

ここにおいて、公転面上で非円形軌道の場合は、もちろん割出(インデックス。中心軸周りの公転軌道の傾き角度)も織り込まれていることが肝要である。本実施形態においては、中心軸61と仮想中心軸76が包含される平面内に楕円軌道の短径が位置するように割出設定され、その割出が変化しないよう加工される。その他、公転中心が移動するに伴って、公転軌道の割出が変化するような加工も可能であるが、その場合には割出も協調制御項として加える必要がある。  Here, in the case of a non-circular orbit on the revolution surface, it is of course important that the index (index, the inclination angle of the revolution orbit around the central axis) is also incorporated. In the present embodiment, the index is set so that the minor axis of the elliptical orbit is located in the plane including the center axis 61 and the virtual center axis 76, and the index is processed so that the index does not change. In addition, it is possible to perform machining in which the index of the revolution trajectory changes as the revolution center moves. In that case, however, the index must be added as a cooperative control term.

このように、公転中心をイ、ロ、…ハと移動させる位置に応じて対応する公転面上の公転軌道形状も協調して連続制御すれば、最低1パスのスピニング加工によって、所望形状であるテーパ部65及び66を得られる。  In this way, if the revolution trajectory shape on the corresponding revolution surface is also coordinated and continuously controlled in accordance with the position of the revolution center to be moved to a, b,. Tapered portions 65 and 66 are obtained.

そして更に、仕上げ加工として公転中心イからハに亘って再度偏芯スピニング加工を施す。この仕上げ加工においても、公転中心位置(座標)と公転軌道を協調制御しながらテーパ部65を鼓状に絞り込む。その結果、ワーク中心軸に対して傾斜した軸76を有し筒状の絞り部74を得る。すなわち、傾斜スピニング加工による形状と類似の絞り部74が得られる。この工法は図5乃至図7の工法とは違い、材料の存在する部分に対する縮径加工なので、ローラは常にワーク外表面に接触・押圧し、塑性流動により無理なく絞り部74を実現できる。  Further, as a finishing process, the eccentric spinning process is performed again from the center of revolution A to C. Also in this finishing process, the tapered portion 65 is narrowed down into a drum shape while cooperatively controlling the revolution center position (coordinates) and the revolution trajectory. As a result, a cylindrical throttle portion 74 having a shaft 76 inclined with respect to the workpiece center axis is obtained. That is, the narrowed portion 74 having a shape similar to the shape obtained by the inclined spinning process is obtained. This method is different from the method shown in FIGS. 5 to 7 because the diameter of the portion where the material exists is reduced, so that the roller always contacts and presses the outer surface of the workpiece, and the drawn portion 74 can be realized without difficulty by plastic flow.

以上のようにして、傾斜スピニング加工による形状と類似の、絞り部及び非平行小径部を有するワーク80を得られる。仕上げ加工において、第1の実施形態と同様に楕円軌道を適用すれば、仮想中心軸76上のX視で円形断面の小径部83を得ることが可能である。そして、例えば触媒コンバータ86等の排気部品のケースとして使用する際には、図4のように締結用フランジ85を嵌合し溶接固定しても良い。  As described above, a workpiece 80 having a narrowed portion and a non-parallel small-diameter portion similar to the shape obtained by the inclined spinning process can be obtained. In the finishing process, if an elliptical orbit is applied as in the first embodiment, it is possible to obtain a small-diameter portion 83 having a circular cross section in the X view on the virtual central axis 76. For example, when used as a case of an exhaust part such as the catalytic converter 86, a fastening flange 85 may be fitted and fixed by welding as shown in FIG.

以上、本発明の実施形態を説明してきたが、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲の変更があっても、本発明に包含される。  As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, Even if there is a change of the range which does not deviate from the meaning of this invention, it is included by this invention.

本発明は、あらゆる金属管のスピニング加工に適用可能である。  The present invention is applicable to spinning processing of any metal pipe.

第1の実施形態の加工ステップ図である。It is a processing step figure of a 1st embodiment. 第2の実施形態の加工説明図である。It is processing explanatory drawing of 2nd Embodiment. 第2の実施形態による成形品を示す図である。It is a figure which shows the molded article by 2nd Embodiment. 第2の実施形態による成形品の応用例を示す図である。It is a figure which shows the application example of the molded article by 2nd Embodiment. 従来の技術を示す図である。It is a figure which shows the prior art. 従来の技術を示す図である。It is a figure which shows the prior art. 従来の技術を示す図である。It is a figure which shows the prior art. 本発明の加工を実現する装置の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the apparatus which implement | achieves the process of this invention. 本発明の加工を実現する装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the apparatus which implement | achieves the process of this invention.

符号の説明Explanation of symbols

1,2,10,20,30,40,50,60,70,80,100,200,300 416,505 ワーク
3,11,21,31,41,62,101,201,301 非加工部
4,12,22,32,42,64,65,66,82,103,203,303 テーパ部
5,13,23,33,43,51,83,104,204 筒状小径部
6,14,24,34,44,61,81,102,106,202,302,417,506 中心軸
7,15,25,35,45,206,207,516 公転中心軸
8,16,26,36,46,公転中心
9,73,107,413,414,415,507,508 ローラ
48,75 切断面
56,85 締結フランジ
53 端面中心
54 角度
55,76,208 仮想中心線
63 環状溝
47,52,67,84,105,205 端面
68 端部
69,71 境界面
70,72,108,109,418,515 公転面
74 絞り部
86 触媒コンバータ
400,500 スピニング加工装置
401,501 筐体
402 主軸
403 面盤
404,502 ベース
405 レール
406 ガイド
407,408,409,509,510 アクチュエータ
410,411,412,511,512 アーム
503 回転クランプ
504 チャック
513,514 スライダ
517 制御装置
1, 2, 10, 20, 30, 40, 50, 60, 70, 80, 100, 200, 300 416, 505 Work 3, 11, 21, 31, 41, 62, 101, 201, 301 Non-machined part 4 12, 22, 32, 42, 64, 65, 66, 82, 103, 203, 303 Taper part 5, 13, 23, 33, 43, 51, 83, 104, 204 Cylindrical small diameter part 6, 14, 24 , 34, 44, 61, 81, 102, 106, 202, 302, 417, 506 Center axis 7, 15, 25, 35, 45, 206, 207, 516 Revolving center axis 8, 16, 26, 36, 46, Revolution center 9, 73, 107, 413, 414, 415, 507, 508 Roller 48, 75 Cutting surface 56, 85 Fastening flange 53 End surface center 54 Angle 55, 76, 208 Virtual center line 63 Annular groove 4 , 52, 67, 84, 105, 205 End surface 68 End portion 69, 71 Boundary surface 70, 72, 108, 109, 418, 515 Revolving surface 74 Restriction portion 86 Catalytic converter 400, 500 Spinning processing device 401, 501 Housing 402 Main shaft 403 Face plate 404, 502 Base 405 Rail 406 Guide 407, 408, 409, 509, 510 Actuator 410, 411, 412, 511, 512 Arm 503 Rotating clamp 504 Chuck 513, 514 Slider 517 Control device

Claims (3)

ワークの中心軸とローラの公転中心軸とを偏芯させ、公転中心軸を加工目標軸に一致させた状態で公転中心軸を中心にワークとローラを相反回転させるとともに、ローラをワーク外周面に押し付けつつワーク中心軸に沿った方向へ相対駆動してスピニング加工を施し、テーパ部とその先端に筒状小径部を形成するワークの異径部成形方法において、
ワークの中心軸に対し垂直な公転面上におけるローラ軌道が、公転中心軸周りに回転対称な非円形となるよう駆動制御し、
前記テーパ部および/又は前記筒状小径部を前記公転面上において非円形断面に形成するスピニング加工を含む、
ワークの異径部成形方法。
The work center and the roller's revolution center axis are decentered, and the work center and the roller are reciprocally rotated around the revolution center axis with the revolution center axis aligned with the machining target axis. In the different diameter part forming method of the work, which is relatively driven in the direction along the work center axis while pressing to perform the spinning process, and the cylindrical small diameter part is formed at the tapered part and the tip thereof
The roller trajectory on the revolution surface perpendicular to the center axis of the workpiece is driven and controlled so as to be a non-circular rotationally symmetric around the revolution center axis.
Including a spinning process for forming the tapered portion and / or the cylindrical small-diameter portion in a non-circular cross section on the revolution surface,
Different diameter part forming method for workpieces.
前記ローラの前記ワーク中心軸に沿った方向の相対駆動と協調して前記偏芯の量と前記ローラ軌道を変化させる、
ことを特徴とする請求項1記載のワークの異径部成形方法。
Changing the amount of the eccentricity and the roller trajectory in cooperation with the relative driving of the roller in the direction along the work center axis;
The method for forming a different-diameter portion of the workpiece according to claim 1.
前記スピニング加工の後、更なる前記スピニング加工によってテーパ部および筒状小径部を鼓状に絞り込み、前記テーパ部および/又は前記筒状小径部をワークの中心軸に対して非平行に形成する、
ことを特徴とする請求項2記載のワークの異径部成形方法。
After the spinning process, the taper part and the cylindrical small diameter part are narrowed down in a drum shape by the further spinning process, and the taper part and / or the cylindrical small diameter part are formed non-parallel to the central axis of the workpiece.
The method for forming a different diameter portion of a workpiece according to claim 2.
JP2008033767A 2007-06-11 2008-01-17 Method of forming different diameter part of workpiece Pending JP2009018342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033767A JP2009018342A (en) 2007-06-11 2008-01-17 Method of forming different diameter part of workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007179029 2007-06-11
JP2008033767A JP2009018342A (en) 2007-06-11 2008-01-17 Method of forming different diameter part of workpiece

Publications (1)

Publication Number Publication Date
JP2009018342A true JP2009018342A (en) 2009-01-29

Family

ID=40358438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033767A Pending JP2009018342A (en) 2007-06-11 2008-01-17 Method of forming different diameter part of workpiece

Country Status (1)

Country Link
JP (1) JP2009018342A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010744A (en) * 2011-12-16 2014-08-27 浦项工科大学校产学协力团 Torsional extreme-plastic processing method of conic metal pipe
JP2015150613A (en) * 2014-02-19 2015-08-24 国立研究開発法人産業技術総合研究所 spinning method
CN109201831A (en) * 2017-07-25 2019-01-15 中国航空制造技术研究院 A kind of method that large size spinning lathe synchronizes spinning control
CN110560543A (en) * 2019-10-08 2019-12-13 西北工业大学 Spinning forming method of sealing ring with omega-shaped section
CN112191729A (en) * 2020-09-11 2021-01-08 上海应用技术大学 Core-free conical piece spinning forming machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518537A (en) * 2000-12-29 2004-06-24 マッシー, ヨハン Method and molding machine for deforming hollow processed member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518537A (en) * 2000-12-29 2004-06-24 マッシー, ヨハン Method and molding machine for deforming hollow processed member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010744A (en) * 2011-12-16 2014-08-27 浦项工科大学校产学协力团 Torsional extreme-plastic processing method of conic metal pipe
JP2015150613A (en) * 2014-02-19 2015-08-24 国立研究開発法人産業技術総合研究所 spinning method
CN109201831A (en) * 2017-07-25 2019-01-15 中国航空制造技术研究院 A kind of method that large size spinning lathe synchronizes spinning control
CN109201831B (en) * 2017-07-25 2019-06-11 中国航空制造技术研究院 A kind of method that large size spinning lathe synchronizes spinning control
CN110560543A (en) * 2019-10-08 2019-12-13 西北工业大学 Spinning forming method of sealing ring with omega-shaped section
CN110560543B (en) * 2019-10-08 2020-12-08 西北工业大学 Spinning forming method of sealing ring with omega-shaped section
CN112191729A (en) * 2020-09-11 2021-01-08 上海应用技术大学 Core-free conical piece spinning forming machine
CN112191729B (en) * 2020-09-11 2022-10-14 上海应用技术大学 Core-free conical piece spinning forming machine

Similar Documents

Publication Publication Date Title
EP1017515B1 (en) Spinning processing method and apparatus therefor
US10537926B2 (en) Bending apparatus
JP6363560B2 (en) Pipe bending method and bending apparatus
JP2009018342A (en) Method of forming different diameter part of workpiece
JP5609904B2 (en) Super finishing equipment
JP2010115709A (en) Method and forming machine for deforming hollow workpiece
JP2007014983A (en) Method and apparatus for forming pipe
JP2957153B2 (en) Pipe end forming method and apparatus
KR101316920B1 (en) Bending device
JP4003056B2 (en) Spinning molding method and spinning molding apparatus
JP4986179B2 (en) Spinning method and apparatus
JP2005297041A (en) Method and apparatus for forming pipe
CN210172389U (en) Mouth expanding and contracting device for stainless steel pipe
CN105307791B (en) Spin-on process and spinning machine
JP2000190038A5 (en)
TW200924902A (en) Precision guidance device in a machine for machining cylindrical components
JP4393621B2 (en) Pipe end forming method and apparatus
JP4822928B2 (en) Molding method and molding apparatus
CN105382069B (en) Forward incremental forming type round hole flanging device
JP6494042B2 (en) Apparatus and method for forming a hollow cylinder
JP2011167733A (en) Seaming device
JP5433434B2 (en) Pipe cutting device and pipe cutting method
JP2020510796A (en) Method and apparatus for machining a ball track and a guide web in a joint inner part
JP2010158684A (en) Flange forming machine of tubular material
JP2000343166A (en) Spring molding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604