JP2009017346A - Antenna power feed unit - Google Patents

Antenna power feed unit Download PDF

Info

Publication number
JP2009017346A
JP2009017346A JP2007178278A JP2007178278A JP2009017346A JP 2009017346 A JP2009017346 A JP 2009017346A JP 2007178278 A JP2007178278 A JP 2007178278A JP 2007178278 A JP2007178278 A JP 2007178278A JP 2009017346 A JP2009017346 A JP 2009017346A
Authority
JP
Japan
Prior art keywords
unevenness
wavelength
central axis
dielectric
circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007178278A
Other languages
Japanese (ja)
Other versions
JP4919423B2 (en
Inventor
Atsushi Kezuka
敦 毛塚
Ko Tsuchida
航 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007178278A priority Critical patent/JP4919423B2/en
Publication of JP2009017346A publication Critical patent/JP2009017346A/en
Application granted granted Critical
Publication of JP4919423B2 publication Critical patent/JP4919423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna power feed unit, which has a broadband frequency characteristic and does not need huge operation for obtaining a superior return loss characteristic. <P>SOLUTION: At a view of cross section crossing at right angles with a center axis of a circle, a slanted portion of a conical dielectric supporting member from a first radiator 3 to a sub-mirror 2 has a structure in which unevenness is repeated along its circular periphery with a repeated cycle shorter than the wavelength, and an unevenness difference dimension at the slanted face is made 1/4 of unevenness inside wavelength, or a structure in which the unevenness is repeated with a repeated cycle shorter than the usage wavelength in a coaxially way with the central axis of the circle and in a direction of intersection with a plane including the central axis of the slanted portion, and the unevenness difference dimension at the slanted portion is made 1/4 of the unevenness inside wavelength. In this way, an equivalent matching layer is formed at the slanted portion of the dielectric supporting number. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、1次放射器からの誘電体支持部材で支持された副反射鏡を有する複反射鏡アンテナの、副反射鏡で反射された電磁波の誘電体と空間との界面における反射を軽減する反射抑制の技術分野に属する。   The present invention reduces reflection of an electromagnetic wave reflected by a sub-reflector at the interface between the dielectric and the space of a double reflector antenna having a sub-reflector supported by a dielectric support member from the primary radiator. It belongs to the technical field of reflection suppression.

図6は、従来の複反射鏡アンテナの側断面図である。副反射鏡2はその反射面6を誘電体支持部材1に密着させて支持され、誘電体支持部材1の他端は1次放射器3に挿入保持されている。
1次放射器3から放射された電磁波は誘電体支持部材1中を副反射鏡2に向って拡散伝搬し、副反射鏡2の反射面6で反射されて1次放射器3の後方にある主反射鏡11に向い、主反射鏡11で再反射されて空間へ放射される。
FIG. 6 is a side sectional view of a conventional double reflector antenna. The sub-reflecting mirror 2 is supported with its reflecting surface 6 in close contact with the dielectric support member 1, and the other end of the dielectric support member 1 is inserted and held in the primary radiator 3.
The electromagnetic wave radiated from the primary radiator 3 diffuses and propagates in the dielectric support member 1 toward the sub-reflecting mirror 2, is reflected by the reflecting surface 6 of the sub-reflecting mirror 2, and is behind the primary radiator 3. It faces the main reflecting mirror 11 and is re-reflected by the main reflecting mirror 11 to be emitted into the space.

図7は図6の主反射鏡11を除いた部分の拡大図である。
電磁波が副反射鏡2で反射されて、主反射鏡11に向う途中で誘電体支持部材1から空間へ出ることになる。ところが、誘電体支持部材1と空間とでは誘電率が異なるため空間と誘電体支持部材1との界面Rで反射を生ずることになる。
この反射は、本来放射したい電磁波の一部が放射されずに戻って来るものであるから損失(反射損=リターンロス)となる。
FIG. 7 is an enlarged view of a portion excluding the main reflecting mirror 11 of FIG.
The electromagnetic wave is reflected by the sub-reflecting mirror 2 and exits from the dielectric support member 1 to the space on the way to the main reflecting mirror 11. However, since the dielectric support member 1 and the space have different dielectric constants, reflection occurs at the interface R between the space and the dielectric support member 1.
This reflection is a loss (reflection loss = return loss) because a part of the electromagnetic wave to be radiated returns without being radiated.

そこで従来は、この反射損を少なくして且つ所望の給電指向性が得られるように、誘電体支持部材1の形状や副反射鏡2の反射面6の形状に工夫を凝らしていた(例えば、非特許文献1参照)。
A.Kumar、PERFORMANCE OF REFLECTOR ANTENNAE WITH SPLASH PLATE FEED、IEEE AP-S Intl.Symp.Proceedings、米国、IEEE、1984、vol.22、P.482-485
Therefore, conventionally, the shape of the dielectric support member 1 and the shape of the reflecting surface 6 of the sub-reflecting mirror 2 have been devised so as to reduce this reflection loss and obtain a desired feeding directivity (for example, Non-patent document 1).
A.Kumar, PERFORMANCE OF REFLECTOR ANTENNAE WITH SPLASH PLATE FEED, IEEE AP-S Intl.Symp.Proceedings, USA, IEEE, 1984, vol.22, P.482-485

しかしながら、所望の指向性と低反射損をともに得るため曲面を最適設計するためには膨大な演算量の処理を必要とし、さらに反射波による干渉が周波数依存性を持つために、広帯域な周波数特性を得るのは難しいという問題があった。   However, in order to obtain both the desired directivity and low reflection loss, a large amount of computation is required to optimally design the curved surface, and the interference due to the reflected wave has frequency dependence, so that it has a wide frequency response. There was a problem that it was difficult to get.

本発明の課題は、上記従来技術の問題点に鑑みて、膨大な演算量の処理を必要とせず且つ広帯域な周波数特性を有するアンテナ給電部を実現することにある。   An object of the present invention is to realize an antenna feeding unit that does not require processing of an enormous amount of computation and has a wideband frequency characteristic in view of the problems of the above-described prior art.

本発明は、上記の課題を解決するために次の手段構成を有する。
本発明の第1の構成は、円形周囲を有し、該円周から該円周を含む平面の一方側へ出っ張る反射面を形成する導体が、その反射面を誘電体に密着させて支持され、誘電体の形状は前記円の中心軸に直交する断面では円状で、前記導体の密着部分から距離が長くなるにつれて漸次径が細くなり、端部に到り1次放射器に嵌合する形状であり、その軸方向傾斜部分に、円の中心軸に直交する断面で見た場合に、その円周に沿って使用波長より短い繰り返し間隔で凹凸を繰り返し、傾斜面における凹凸差寸法が凹凸部内波長の4分の1になっていることを特徴とするアンテナ給電部である。
The present invention has the following means to solve the above problems.
In the first configuration of the present invention, a conductor having a circular periphery and forming a reflection surface protruding from the circumference to one side of a plane including the circumference is supported with the reflection surface closely attached to a dielectric. The shape of the dielectric is circular in the cross section orthogonal to the central axis of the circle, and the diameter gradually decreases as the distance from the close contact portion of the conductor increases, and reaches the end portion to fit into the primary radiator. It is a shape, and when viewed in a cross section perpendicular to the center axis of the circle, the concave and convex portions are repeated along the circumference at a repetition interval shorter than the operating wavelength, and the unevenness difference dimension on the inclined surface is uneven. The antenna feeding unit is characterized in that it is one-fourth of the internal wavelength.

本発明の第2の構成は、円形周囲を有し、該円周から該円周を含む平面の一方側へ出っ張る反射面を形成する導体が、その反射面を誘電体に密着させて支持され、誘電体の形状は前記円の中心軸に直交する断面では円状で、前記導体の密着部分から距離が長くなるにつれて漸次径が細くなり、端部に到り1次放射器に嵌合する形状であり、その軸方向傾斜部分に、前記円の中心軸に関して同心状で傾斜部分の中心軸を含む面との交線の方向に使用波長より短い繰り返し間隔で凹凸を繰り返し、傾斜面における凹凸差寸法が凹凸部内波長の4分の1になっていることを特徴とするアンテナ給電部である。   According to a second configuration of the present invention, a conductor having a circular periphery and forming a reflection surface protruding from the circumference to one side of a plane including the circumference is supported by bringing the reflection surface into close contact with a dielectric. The shape of the dielectric is circular in the cross section orthogonal to the central axis of the circle, and the diameter gradually decreases as the distance from the close contact portion of the conductor increases, and reaches the end portion to fit into the primary radiator. It has a shape, and the concave and convex portions on the inclined surface are repeated at a repetition interval shorter than the wavelength used in the direction of the line of intersection with the surface including the central axis of the inclined portion and concentric with the central axis of the circle. The antenna feeding portion is characterized in that the difference dimension is ¼ of the wavelength in the uneven portion.

本発明の第1の構成のアンテナ給電部は、1次放射器から副反射鏡までの誘電体支持部材の傾斜部分に、円の中心軸に直交する断面で見た場合、その円周に沿って使用波長より短い繰り返し間隔で凹凸を繰り返し、傾斜部分における凹凸差寸法が凹凸部内波長の4分の1となっている。   The antenna feeding portion of the first configuration of the present invention is along the circumference of the inclined portion of the dielectric support member from the primary radiator to the sub-reflecting mirror when viewed in a cross section perpendicular to the central axis of the circle. The unevenness is repeated at a repetition interval shorter than the used wavelength, and the unevenness difference dimension in the inclined portion is ¼ of the wavelength in the unevenness.

また、本発明の第2の構成のアンテナ給電部は、1次放射器から副反射鏡までの誘電体支持部材の傾斜部分に、前記円の中心軸に関して同心状で、傾斜部分の中心軸を含む面との交線の方向に、使用波長より短い繰り返し間隔で凹凸を繰り返し、傾斜部分における凹凸差寸法が凹凸部内波長の4分の1となっている。   Further, the antenna feeding portion of the second configuration of the present invention is concentric with respect to the central axis of the circle, and the central axis of the inclined portion is formed on the inclined portion of the dielectric support member from the primary radiator to the sub-reflector. In the direction of the line of intersection with the included surface, the unevenness is repeated at a repetition interval shorter than the used wavelength, and the unevenness difference dimension in the inclined portion is a quarter of the wavelength in the unevenness portion.

これら2つの構成は、いずれも誘電体支持部材の表面に、図4の(a)に示すような凹凸を有するものである。
(a)は断面図であり凹部(溝部)と凸部が交互になっている。rは凹凸の繰り返し間隔で使用周波数の波長より充分短く選ばれている。凹部の深さ(段差寸法)hは凹凸部内波長の4分の1に設定されている。
Both of these two configurations have irregularities as shown in FIG. 4A on the surface of the dielectric support member.
(A) is sectional drawing, and the recessed part (groove part) and the convex part are alternated. r is selected to be sufficiently shorter than the wavelength of the operating frequency at the repetition interval of the unevenness. The depth (step size) h of the concave portion is set to ¼ of the wavelength within the concave and convex portion.

このような構造において、図7の面Rにおけるように、電磁波が誘電体支持部材1側から空間へ伝搬する場合、凹部の底部の界面を通過する電磁波と凸部の上部の界面を通過する電磁波が考えられるが、それぞれの箇所で誘電体支持部材内への反射が生ずる。ところが凹部の深さhは4分の1波長に設定されているため凸部上面で反射した電磁波は、凹部の底部で反射された反射波よりも往復で約2分の1波長に近い距離だけ長い距離を伝搬することになり、その位相が凹部の底で反射した反射波に対して逆相に近くなり、反射波同士が相殺し合うことになる。
その結果として誘電体支持部材1内へ向う反射波は少なくなることになる。即ち、反射損失が小さくなるという効果がある。
In such a structure, as in the surface R of FIG. 7, when the electromagnetic wave propagates from the dielectric support member 1 side to the space, the electromagnetic wave that passes through the interface at the bottom of the concave portion and the electromagnetic wave that passes through the interface at the top of the convex portion. However, reflection into the dielectric support member occurs at each point. However, since the depth h of the concave portion is set to a quarter wavelength, the electromagnetic wave reflected on the upper surface of the convex portion is a distance closer to about a half wavelength than the reflected wave reflected on the bottom portion of the concave portion. Propagation takes place over a long distance, the phase of which is close to the opposite phase to the reflected wave reflected at the bottom of the recess, and the reflected waves cancel each other.
As a result, the number of reflected waves toward the dielectric support member 1 is reduced. That is, there is an effect that the reflection loss is reduced.

このような構造では、誘電体支持部材1の表面の厚さhの部分は、誘電体が存在する部分と存在しない部分が交互に構成されているので距離rを使用周波数の波長に較べて充分小さくすることにより等価的に低い誘電率の誘電体層が存在すると見做すことができる。そして、hを誘電体層内の波長の約4分の1とすることで、反射を少なくする整合層となり界面での反射を抑圧すると考えることができる。これを図示すると図4の(b)のようになる。
即ち、誘電体支持部材1側からの電磁波はまず整合層7との界面で一部反射し、次いで整合層7と空間との界面で一部が反射されるが、整合層7の厚さhが約4分の1波長となっているので、この2つの反射波は位相が逆相に近くなり相殺し合って、結果的に反射が少なくなるということである。
In such a structure, the portion with the thickness h on the surface of the dielectric support member 1 is configured such that the portion where the dielectric is present and the portion where the dielectric is not present are alternately configured, so that the distance r is sufficiently larger than the wavelength of the operating frequency. It can be assumed that a dielectric layer having a low dielectric constant is present by reducing the size. It can be considered that by setting h to about one-fourth of the wavelength in the dielectric layer, it becomes a matching layer that reduces reflection and suppresses reflection at the interface. This is illustrated in FIG. 4B.
That is, the electromagnetic wave from the dielectric support member 1 side is first partially reflected at the interface with the matching layer 7 and then partially reflected at the interface between the matching layer 7 and the space. Therefore, the two reflected waves are nearly out of phase and cancel each other, resulting in less reflection.

誘電体支持部材の傾斜面に凹凸構造を設けるに当っては全面に設ける必要はなく、電磁界の強い範囲の部分に設けるのが最良である。
また、第1の構成において、副反射鏡の背面から見て誘電体支持部材の凸部が副反射鏡の外周円から突出しないようにするのが、主反射鏡を含めたアンテナの特性にとって最良の実施形態である。
When providing the uneven structure on the inclined surface of the dielectric support member, it is not necessary to provide it on the entire surface, and it is best to provide it on the portion where the electromagnetic field is strong.
In the first configuration, it is best for the characteristics of the antenna including the main reflector to prevent the convex portion of the dielectric support member from protruding from the outer circumference of the sub-reflector when viewed from the back of the sub-reflector. It is an embodiment.

誘電体支持部材の製造に関しては、第1の構成のものの量産の場合には型成形が最良の実施形態である。
第2の構成の同心円状に溝を有する構造の場合は回転切削による製造が最良の実施形態である。
With respect to the production of the dielectric support member, mold forming is the best embodiment for mass production of the first configuration.
In the case of the structure having the concentric grooves of the second configuration, the production by rotary cutting is the best embodiment.

以下、本発明のアンテナ給電部の実施例を図面を参照して説明する。
図1は、本発明の第1の構成の実施例を示す図である。(a)は側断面図であり、(b)は(a)を右から見た正面図である。
Hereinafter, embodiments of the antenna feeding unit of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of the first configuration of the present invention. (A) is side sectional drawing, (b) is the front view which looked at (a) from the right.

図2は図1の実施例の斜視図である。誘電体支持部材1の左部分は1次放射器3に挿入されて支持され、1次放射器3の開口部から円錐状に拡がって行き、右方で反射面6を有する副反射鏡2の反射面6と密着し、副反射鏡2を支持している。
誘電体支持部材1は、円錐状に拡がっている途中から高さhを有する凸部5が副反射鏡2の円周部まで延びている。凸部5と凸部5の間は必然的に空間である凹部を形成している。凸部の高さhは、凹凸部内の波長の約4分の1となっている。
FIG. 2 is a perspective view of the embodiment of FIG. The left portion of the dielectric support member 1 is inserted into and supported by the primary radiator 3, extends conically from the opening of the primary radiator 3, and has a reflecting surface 6 on the right side. The sub-reflection mirror 2 is supported by being in close contact with the reflection surface 6.
In the dielectric support member 1, a convex portion 5 having a height h extends to the circumferential portion of the sub-reflecting mirror 2 from the middle of spreading in a conical shape. A concave portion which is necessarily a space is formed between the convex portion 5 and the convex portion 5. The height h of the convex portion is about a quarter of the wavelength in the concave and convex portion.

また、凸部5の繰り返し間隔(ピッチ)rは、前記波長よりも充分短く設定されている。この例では、1次放射器3の開口部から円錐状になっている最初の部分は、副反射鏡2で反射された電磁界の強度が低いので凸部5は設けられていない。
このような凸部5、凹部4を設けることにより、図4の(b)で述べた整合層7が形成され、図7で示した面Rでの反射の量が少なくなり、反射損失特性が改善される。
Further, the repetition interval (pitch) r of the convex portion 5 is set sufficiently shorter than the wavelength. In this example, the convex portion 5 is not provided in the first portion that is conical from the opening of the primary radiator 3 because the intensity of the electromagnetic field reflected by the sub-reflecting mirror 2 is low.
By providing the convex portion 5 and the concave portion 4 as described above, the matching layer 7 described in FIG. 4B is formed, the amount of reflection on the surface R shown in FIG. 7 is reduced, and the reflection loss characteristic is reduced. Improved.

図5は、図1、図2の実施例について、反射損失を計算しグラフ化した反射損失特性である。
破線が従来の凹凸のない場合であり、実線が本発明実施例の場合である。これによれば帯域全体に渡って反射損失が低下していることが分かる。
なお、凸部5の繰り返し間隔rに対する凸部5の幅dの比率d/rは、電界の方向が凹部4或いは凸部5の長手方向と直交するときには大きくし、平行するときには小さくすると反射損失低減の効果が大きくなる。
FIG. 5 is a reflection loss characteristic obtained by calculating and graphing the reflection loss for the embodiments of FIGS.
A broken line is a case without the conventional unevenness | corrugation, and a continuous line is a case of this invention Example. This shows that the reflection loss is reduced over the entire band.
The ratio d / r of the width d of the convex portion 5 to the repeating interval r of the convex portion 5 is increased when the direction of the electric field is orthogonal to the longitudinal direction of the concave portion 4 or the convex portion 5, and is decreased when the direction is parallel. The effect of reduction is increased.

図3は、本発明第2の構成の実施例を示す斜視図である。
1次放射器3から副反射鏡2までの誘電体支持部材10の傾斜部分に、副反射鏡2の円の中心軸に関して同心状で、前記中心軸を含む面と傾斜部分との交線の方向に使用波長より充分短い繰り返し間隔で凸部8、凹部9を繰り返し、凸部8と凹部9との段差寸法が凹凸部内波長の約4分の1となっている。
FIG. 3 is a perspective view showing an embodiment of the second configuration of the present invention.
The inclined portion of the dielectric support member 10 from the primary radiator 3 to the sub-reflecting mirror 2 is concentric with respect to the central axis of the circle of the sub-reflecting mirror 2, and the line of intersection between the plane including the central axis and the inclined portion The convex portions 8 and the concave portions 9 are repeated in the direction at a repetition interval sufficiently shorter than the use wavelength, and the step size between the convex portions 8 and the concave portions 9 is about one quarter of the wavelength in the concave and convex portions.

このような凸部8、凹部9を設けることにより、図4の(b)で述べた整合層7が形成され、図7で示した面Rでの反射の量が少なくなり、図1および図2の実施例の場合と同様に反射損失特性が改善される。   By providing the convex portion 8 and the concave portion 9 as described above, the matching layer 7 described in FIG. 4B is formed, and the amount of reflection on the surface R shown in FIG. 7 is reduced. Similar to the second embodiment, the reflection loss characteristic is improved.

本発明の第1の構成の実施例を示す2面図である。It is a 2nd page figure showing the example of the 1st composition of the present invention. 本発明の第1の構成の実施例の斜視図である。It is a perspective view of the Example of the 1st structure of this invention. 本発明の第2の構成の実施例の斜視図である。It is a perspective view of the Example of the 2nd structure of this invention. 本発明における反射損失軽減の説明図である。It is explanatory drawing of reflection loss reduction in this invention. 図1、図2の実施例について反射損失を計算し、グラフ化した反射損失特性図である。It is the reflection loss characteristic figure which computed the reflection loss about the Example of FIG. 1, FIG. 2, and was made into the graph. 従来の複反射鏡アンテナの側断面図である。It is a sectional side view of the conventional double reflector antenna. 図6の主反射鏡を除いた部分の拡大図である。It is an enlarged view of the part except the main reflective mirror of FIG.

符号の説明Explanation of symbols

1 誘電体支持部材
2 副反射鏡
3 1次放射器
4 凹部
5 凸部
6 反射面
7 整合層
8 凸部
9 凹部
10 誘電体支持部材
11 主反射鏡
DESCRIPTION OF SYMBOLS 1 Dielectric support member 2 Subreflective mirror 3 Primary radiator 4 Concave part 5 Convex part 6 Reflecting surface 7 Matching layer 8 Convex part 9 Concave part 10 Dielectric support member 11 Main reflector

Claims (2)

円形周囲を有し、該円周から該円周を含む平面の一方側へ出っ張る反射面を形成する導体が、その反射面を誘電体に密着させて支持され、誘電体の形状は前記円の中心軸に直交する断面では円状で、前記導体の密着部分から距離が長くなるにつれて漸次径が細くなり、端部に到り1次放射器に嵌合する形状であり、その軸方向傾斜部分に、円の中心軸に直交する断面で見た場合に、その円周に沿って使用波長より短い繰り返し間隔で凹凸を繰り返し、傾斜面における凹凸差寸法が凹凸部内波長の4分の1になっていることを特徴とするアンテナ給電部。   A conductor having a circular periphery and forming a reflecting surface protruding from the circumference to one side of a plane including the circumference is supported by bringing the reflecting surface into close contact with the dielectric, and the shape of the dielectric is the shape of the circle The cross section perpendicular to the central axis is circular, and the diameter gradually decreases as the distance from the close contact portion of the conductor increases, reaches the end, and fits to the primary radiator. In addition, when viewed in a cross section perpendicular to the center axis of the circle, the unevenness is repeated along the circumference at a repetition interval shorter than the wavelength used, and the unevenness difference dimension on the inclined surface becomes a quarter of the wavelength in the unevenness. An antenna feeding portion characterized by that. 円形周囲を有し、該円周から該円周を含む平面の一方側へ出っ張る反射面を形成する導体が、その反射面を誘電体に密着させて支持され、誘電体の形状は前記円の中心軸に直交する断面では円状で、前記導体の密着部分から距離が長くなるにつれて漸次径が細くなり、端部に到り1次放射器に嵌合する形状であり、その軸方向傾斜部分に、前記円の中心軸に関して同心状で傾斜部分の中心軸を含む面との交線の方向に使用波長より短い繰り返し間隔で凹凸を繰り返し、傾斜面における凹凸差寸法が凹凸部内波長の4分の1になっていることを特徴とするアンテナ給電部。   A conductor having a circular periphery and forming a reflecting surface protruding from the circumference to one side of a plane including the circumference is supported by bringing the reflecting surface into close contact with the dielectric, and the shape of the dielectric is the shape of the circle The cross section perpendicular to the central axis is circular, and the diameter gradually decreases as the distance from the close contact portion of the conductor increases, reaches the end, and fits to the primary radiator. In addition, unevenness is repeated at a repetition interval shorter than the operating wavelength in the direction of the line of intersection with the surface including the central axis of the inclined portion, which is concentric with respect to the central axis of the circle, and the unevenness difference dimension on the inclined surface is 4 minutes of the wavelength in the unevenness An antenna feeding portion characterized by being 1 of the above.
JP2007178278A 2007-07-06 2007-07-06 Antenna feeder Expired - Fee Related JP4919423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178278A JP4919423B2 (en) 2007-07-06 2007-07-06 Antenna feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178278A JP4919423B2 (en) 2007-07-06 2007-07-06 Antenna feeder

Publications (2)

Publication Number Publication Date
JP2009017346A true JP2009017346A (en) 2009-01-22
JP4919423B2 JP4919423B2 (en) 2012-04-18

Family

ID=40357657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178278A Expired - Fee Related JP4919423B2 (en) 2007-07-06 2007-07-06 Antenna feeder

Country Status (1)

Country Link
JP (1) JP4919423B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946466A1 (en) * 2009-06-04 2010-12-10 Alcatel Lucent SECONDARY REFLECTOR FOR A DOUBLE REFLECTOR ANTENNA
FR2946465A1 (en) * 2009-06-04 2010-12-10 Alcatel Lucent PARABOLIC ANTENNA SECONDARY REFLECTOR
WO2012042958A1 (en) * 2010-09-29 2012-04-05 日本電気株式会社 Antenna provided with dropout prevention means
KR20150090077A (en) * 2012-10-25 2015-08-05 캠비움 네트웍스 리미티드 Reflector arrangement for attachment to a wireless communications terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724254A (en) * 1971-03-11 1972-10-16
JPH04247703A (en) * 1991-02-04 1992-09-03 Nec Corp Parabolic antenna
JPH11355035A (en) * 1998-06-05 1999-12-24 Mitsubishi Electric Corp Dielectric having matching layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724254A (en) * 1971-03-11 1972-10-16
JPH04247703A (en) * 1991-02-04 1992-09-03 Nec Corp Parabolic antenna
JPH11355035A (en) * 1998-06-05 1999-12-24 Mitsubishi Electric Corp Dielectric having matching layer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946466A1 (en) * 2009-06-04 2010-12-10 Alcatel Lucent SECONDARY REFLECTOR FOR A DOUBLE REFLECTOR ANTENNA
FR2946465A1 (en) * 2009-06-04 2010-12-10 Alcatel Lucent PARABOLIC ANTENNA SECONDARY REFLECTOR
EP2264833A2 (en) * 2009-06-04 2010-12-22 Alcatel Lucent Secondary reflector of a parabolic antenna
EP2264832A2 (en) * 2009-06-04 2010-12-22 Alcatel Lucent Secondary reflector for a double reflector antenna
EP2264832A3 (en) * 2009-06-04 2011-01-19 Alcatel Lucent Secondary reflector for a double reflector antenna
EP2264833A3 (en) * 2009-06-04 2011-01-19 Alcatel Lucent Secondary reflector of a parabolic antenna
WO2012042958A1 (en) * 2010-09-29 2012-04-05 日本電気株式会社 Antenna provided with dropout prevention means
JP2012074932A (en) * 2010-09-29 2012-04-12 Nec Corp Antenna
CN103098305A (en) * 2010-09-29 2013-05-08 日本电气株式会社 Antenna provided with dropout prevention means
CN103098305B (en) * 2010-09-29 2015-04-01 日本电气株式会社 Antenna provided with fall-off prevention means
US9331395B2 (en) 2010-09-29 2016-05-03 Nec Corporation Antenna provided with fall-out preventing arrangement
KR20150090077A (en) * 2012-10-25 2015-08-05 캠비움 네트웍스 리미티드 Reflector arrangement for attachment to a wireless communications terminal
KR102191808B1 (en) * 2012-10-25 2020-12-16 캠비움 네트웍스 리미티드 Reflector arrangement for attachment to a wireless communications terminal
EP2912719B1 (en) * 2012-10-25 2021-02-17 Cambium Networks Limited Communication arrangement

Also Published As

Publication number Publication date
JP4919423B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Mohtashami et al. A butterfly substrate integrated waveguide leaky-wave antenna
EP3167510A1 (en) Horn lens antenna
Budhu et al. Understanding the appearance of specular reflection in offset fed reflectarray antennas
JP5854888B2 (en) Primary radiator and antenna device
Wei et al. New hat feed for reflector antennas realised without dielectrics for reducing manufacturing cost and improving reflection coefficient
KR100964623B1 (en) Waveguide slot array antenna and planar slot array antenna
JP4919423B2 (en) Antenna feeder
JP5327939B2 (en) Antenna feeder
Pour et al. A ring choke excited compact dual-mode circular waveguide feed for offset reflector antennas
Salimi et al. Design of a compact Gaussian profiled corrugated horn antenna for low sidelobe-level applications
KR20160126853A (en) Reflective antenna apparatus and method for design thereof
JP6362512B2 (en) Reflect array antenna
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
Kampouridou et al. Broadband THz corrugated bull’s eye antennas
JP2005510162A (en) Parabolic reflector and antenna incorporating the same
JP2012060449A (en) Antenna device
Buck et al. Spiral cavity backing effects on pattern symmetry and modal contamination
Sharma et al. Investigations on a triple mode waveguide horn capable of providing scanned radiation patterns
US20080030417A1 (en) Antenna Apparatus
JP2011109264A (en) Reflect array
RU2435262C1 (en) Multi-beam mirror antenna
Hashmi et al. Directive beaming with lens-like superstates for low profile Fabry-Perot cavity antennas
Yahya et al. Ultra-wideband FSS-based antennas
JP5300626B2 (en) Antenna device
JP6198647B2 (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees